thermal: use %d to print S32 parameters
[linux/fpc-iii.git] / fs / btrfs / xattr.c
blob145d2b89e62dce075903cb73234fd726e8fcec2f
1 /*
2 * Copyright (C) 2007 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/rwsem.h>
23 #include <linux/xattr.h>
24 #include <linux/security.h>
25 #include <linux/posix_acl_xattr.h>
26 #include "ctree.h"
27 #include "btrfs_inode.h"
28 #include "transaction.h"
29 #include "xattr.h"
30 #include "disk-io.h"
31 #include "props.h"
32 #include "locking.h"
35 ssize_t __btrfs_getxattr(struct inode *inode, const char *name,
36 void *buffer, size_t size)
38 struct btrfs_dir_item *di;
39 struct btrfs_root *root = BTRFS_I(inode)->root;
40 struct btrfs_path *path;
41 struct extent_buffer *leaf;
42 int ret = 0;
43 unsigned long data_ptr;
45 path = btrfs_alloc_path();
46 if (!path)
47 return -ENOMEM;
49 /* lookup the xattr by name */
50 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode), name,
51 strlen(name), 0);
52 if (!di) {
53 ret = -ENODATA;
54 goto out;
55 } else if (IS_ERR(di)) {
56 ret = PTR_ERR(di);
57 goto out;
60 leaf = path->nodes[0];
61 /* if size is 0, that means we want the size of the attr */
62 if (!size) {
63 ret = btrfs_dir_data_len(leaf, di);
64 goto out;
67 /* now get the data out of our dir_item */
68 if (btrfs_dir_data_len(leaf, di) > size) {
69 ret = -ERANGE;
70 goto out;
74 * The way things are packed into the leaf is like this
75 * |struct btrfs_dir_item|name|data|
76 * where name is the xattr name, so security.foo, and data is the
77 * content of the xattr. data_ptr points to the location in memory
78 * where the data starts in the in memory leaf
80 data_ptr = (unsigned long)((char *)(di + 1) +
81 btrfs_dir_name_len(leaf, di));
82 read_extent_buffer(leaf, buffer, data_ptr,
83 btrfs_dir_data_len(leaf, di));
84 ret = btrfs_dir_data_len(leaf, di);
86 out:
87 btrfs_free_path(path);
88 return ret;
91 static int do_setxattr(struct btrfs_trans_handle *trans,
92 struct inode *inode, const char *name,
93 const void *value, size_t size, int flags)
95 struct btrfs_dir_item *di = NULL;
96 struct btrfs_root *root = BTRFS_I(inode)->root;
97 struct btrfs_path *path;
98 size_t name_len = strlen(name);
99 int ret = 0;
101 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root))
102 return -ENOSPC;
104 path = btrfs_alloc_path();
105 if (!path)
106 return -ENOMEM;
107 path->skip_release_on_error = 1;
109 if (!value) {
110 di = btrfs_lookup_xattr(trans, root, path, btrfs_ino(inode),
111 name, name_len, -1);
112 if (!di && (flags & XATTR_REPLACE))
113 ret = -ENODATA;
114 else if (IS_ERR(di))
115 ret = PTR_ERR(di);
116 else if (di)
117 ret = btrfs_delete_one_dir_name(trans, root, path, di);
118 goto out;
122 * For a replace we can't just do the insert blindly.
123 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
124 * doesn't exist. If it exists, fall down below to the insert/replace
125 * path - we can't race with a concurrent xattr delete, because the VFS
126 * locks the inode's i_mutex before calling setxattr or removexattr.
128 if (flags & XATTR_REPLACE) {
129 ASSERT(inode_is_locked(inode));
130 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode),
131 name, name_len, 0);
132 if (!di)
133 ret = -ENODATA;
134 else if (IS_ERR(di))
135 ret = PTR_ERR(di);
136 if (ret)
137 goto out;
138 btrfs_release_path(path);
139 di = NULL;
142 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(inode),
143 name, name_len, value, size);
144 if (ret == -EOVERFLOW) {
146 * We have an existing item in a leaf, split_leaf couldn't
147 * expand it. That item might have or not a dir_item that
148 * matches our target xattr, so lets check.
150 ret = 0;
151 btrfs_assert_tree_locked(path->nodes[0]);
152 di = btrfs_match_dir_item_name(root, path, name, name_len);
153 if (!di && !(flags & XATTR_REPLACE)) {
154 ret = -ENOSPC;
155 goto out;
157 } else if (ret == -EEXIST) {
158 ret = 0;
159 di = btrfs_match_dir_item_name(root, path, name, name_len);
160 ASSERT(di); /* logic error */
161 } else if (ret) {
162 goto out;
165 if (di && (flags & XATTR_CREATE)) {
166 ret = -EEXIST;
167 goto out;
170 if (di) {
172 * We're doing a replace, and it must be atomic, that is, at
173 * any point in time we have either the old or the new xattr
174 * value in the tree. We don't want readers (getxattr and
175 * listxattrs) to miss a value, this is specially important
176 * for ACLs.
178 const int slot = path->slots[0];
179 struct extent_buffer *leaf = path->nodes[0];
180 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
181 const u32 item_size = btrfs_item_size_nr(leaf, slot);
182 const u32 data_size = sizeof(*di) + name_len + size;
183 struct btrfs_item *item;
184 unsigned long data_ptr;
185 char *ptr;
187 if (size > old_data_len) {
188 if (btrfs_leaf_free_space(root, leaf) <
189 (size - old_data_len)) {
190 ret = -ENOSPC;
191 goto out;
195 if (old_data_len + name_len + sizeof(*di) == item_size) {
196 /* No other xattrs packed in the same leaf item. */
197 if (size > old_data_len)
198 btrfs_extend_item(root, path,
199 size - old_data_len);
200 else if (size < old_data_len)
201 btrfs_truncate_item(root, path, data_size, 1);
202 } else {
203 /* There are other xattrs packed in the same item. */
204 ret = btrfs_delete_one_dir_name(trans, root, path, di);
205 if (ret)
206 goto out;
207 btrfs_extend_item(root, path, data_size);
210 item = btrfs_item_nr(slot);
211 ptr = btrfs_item_ptr(leaf, slot, char);
212 ptr += btrfs_item_size(leaf, item) - data_size;
213 di = (struct btrfs_dir_item *)ptr;
214 btrfs_set_dir_data_len(leaf, di, size);
215 data_ptr = ((unsigned long)(di + 1)) + name_len;
216 write_extent_buffer(leaf, value, data_ptr, size);
217 btrfs_mark_buffer_dirty(leaf);
218 } else {
220 * Insert, and we had space for the xattr, so path->slots[0] is
221 * where our xattr dir_item is and btrfs_insert_xattr_item()
222 * filled it.
225 out:
226 btrfs_free_path(path);
227 return ret;
231 * @value: "" makes the attribute to empty, NULL removes it
233 int __btrfs_setxattr(struct btrfs_trans_handle *trans,
234 struct inode *inode, const char *name,
235 const void *value, size_t size, int flags)
237 struct btrfs_root *root = BTRFS_I(inode)->root;
238 int ret;
240 if (trans)
241 return do_setxattr(trans, inode, name, value, size, flags);
243 trans = btrfs_start_transaction(root, 2);
244 if (IS_ERR(trans))
245 return PTR_ERR(trans);
247 ret = do_setxattr(trans, inode, name, value, size, flags);
248 if (ret)
249 goto out;
251 inode_inc_iversion(inode);
252 inode->i_ctime = current_fs_time(inode->i_sb);
253 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
254 ret = btrfs_update_inode(trans, root, inode);
255 BUG_ON(ret);
256 out:
257 btrfs_end_transaction(trans, root);
258 return ret;
261 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
263 struct btrfs_key key;
264 struct inode *inode = d_inode(dentry);
265 struct btrfs_root *root = BTRFS_I(inode)->root;
266 struct btrfs_path *path;
267 int ret = 0;
268 size_t total_size = 0, size_left = size;
271 * ok we want all objects associated with this id.
272 * NOTE: we set key.offset = 0; because we want to start with the
273 * first xattr that we find and walk forward
275 key.objectid = btrfs_ino(inode);
276 key.type = BTRFS_XATTR_ITEM_KEY;
277 key.offset = 0;
279 path = btrfs_alloc_path();
280 if (!path)
281 return -ENOMEM;
282 path->reada = READA_FORWARD;
284 /* search for our xattrs */
285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
286 if (ret < 0)
287 goto err;
289 while (1) {
290 struct extent_buffer *leaf;
291 int slot;
292 struct btrfs_dir_item *di;
293 struct btrfs_key found_key;
294 u32 item_size;
295 u32 cur;
297 leaf = path->nodes[0];
298 slot = path->slots[0];
300 /* this is where we start walking through the path */
301 if (slot >= btrfs_header_nritems(leaf)) {
303 * if we've reached the last slot in this leaf we need
304 * to go to the next leaf and reset everything
306 ret = btrfs_next_leaf(root, path);
307 if (ret < 0)
308 goto err;
309 else if (ret > 0)
310 break;
311 continue;
314 btrfs_item_key_to_cpu(leaf, &found_key, slot);
316 /* check to make sure this item is what we want */
317 if (found_key.objectid != key.objectid)
318 break;
319 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
320 break;
321 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
322 goto next_item;
324 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
325 item_size = btrfs_item_size_nr(leaf, slot);
326 cur = 0;
327 while (cur < item_size) {
328 u16 name_len = btrfs_dir_name_len(leaf, di);
329 u16 data_len = btrfs_dir_data_len(leaf, di);
330 u32 this_len = sizeof(*di) + name_len + data_len;
331 unsigned long name_ptr = (unsigned long)(di + 1);
333 if (verify_dir_item(root, leaf, di)) {
334 ret = -EIO;
335 goto err;
338 total_size += name_len + 1;
340 * We are just looking for how big our buffer needs to
341 * be.
343 if (!size)
344 goto next;
346 if (!buffer || (name_len + 1) > size_left) {
347 ret = -ERANGE;
348 goto err;
351 read_extent_buffer(leaf, buffer, name_ptr, name_len);
352 buffer[name_len] = '\0';
354 size_left -= name_len + 1;
355 buffer += name_len + 1;
356 next:
357 cur += this_len;
358 di = (struct btrfs_dir_item *)((char *)di + this_len);
360 next_item:
361 path->slots[0]++;
363 ret = total_size;
365 err:
366 btrfs_free_path(path);
368 return ret;
371 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
372 struct dentry *dentry, const char *name,
373 void *buffer, size_t size)
375 struct inode *inode = d_inode(dentry);
377 name = xattr_full_name(handler, name);
378 return __btrfs_getxattr(inode, name, buffer, size);
381 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
382 struct dentry *dentry, const char *name,
383 const void *buffer, size_t size,
384 int flags)
386 struct inode *inode = d_inode(dentry);
388 name = xattr_full_name(handler, name);
389 return __btrfs_setxattr(NULL, inode, name, buffer, size, flags);
392 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
393 struct dentry *dentry,
394 const char *name, const void *value,
395 size_t size, int flags)
397 name = xattr_full_name(handler, name);
398 return btrfs_set_prop(d_inode(dentry), name, value, size, flags);
401 static const struct xattr_handler btrfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .get = btrfs_xattr_handler_get,
404 .set = btrfs_xattr_handler_set,
407 static const struct xattr_handler btrfs_trusted_xattr_handler = {
408 .prefix = XATTR_TRUSTED_PREFIX,
409 .get = btrfs_xattr_handler_get,
410 .set = btrfs_xattr_handler_set,
413 static const struct xattr_handler btrfs_user_xattr_handler = {
414 .prefix = XATTR_USER_PREFIX,
415 .get = btrfs_xattr_handler_get,
416 .set = btrfs_xattr_handler_set,
419 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
420 .prefix = XATTR_BTRFS_PREFIX,
421 .get = btrfs_xattr_handler_get,
422 .set = btrfs_xattr_handler_set_prop,
425 const struct xattr_handler *btrfs_xattr_handlers[] = {
426 &btrfs_security_xattr_handler,
427 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
428 &posix_acl_access_xattr_handler,
429 &posix_acl_default_xattr_handler,
430 #endif
431 &btrfs_trusted_xattr_handler,
432 &btrfs_user_xattr_handler,
433 &btrfs_btrfs_xattr_handler,
434 NULL,
437 int btrfs_setxattr(struct dentry *dentry, const char *name, const void *value,
438 size_t size, int flags)
440 struct btrfs_root *root = BTRFS_I(d_inode(dentry))->root;
442 if (btrfs_root_readonly(root))
443 return -EROFS;
444 return generic_setxattr(dentry, name, value, size, flags);
447 int btrfs_removexattr(struct dentry *dentry, const char *name)
449 struct btrfs_root *root = BTRFS_I(d_inode(dentry))->root;
451 if (btrfs_root_readonly(root))
452 return -EROFS;
453 return generic_removexattr(dentry, name);
456 static int btrfs_initxattrs(struct inode *inode,
457 const struct xattr *xattr_array, void *fs_info)
459 const struct xattr *xattr;
460 struct btrfs_trans_handle *trans = fs_info;
461 char *name;
462 int err = 0;
464 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
465 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
466 strlen(xattr->name) + 1, GFP_KERNEL);
467 if (!name) {
468 err = -ENOMEM;
469 break;
471 strcpy(name, XATTR_SECURITY_PREFIX);
472 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
473 err = __btrfs_setxattr(trans, inode, name,
474 xattr->value, xattr->value_len, 0);
475 kfree(name);
476 if (err < 0)
477 break;
479 return err;
482 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
483 struct inode *inode, struct inode *dir,
484 const struct qstr *qstr)
486 return security_inode_init_security(inode, dir, qstr,
487 &btrfs_initxattrs, trans);