thermal: use %d to print S32 parameters
[linux/fpc-iii.git] / fs / kernfs / dir.c
blob03b688d19f6964010c27c16759520315892c780d
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
9 */
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
50 size_t depth = 0;
52 while (to->parent && to != from) {
53 depth++;
54 to = to->parent;
56 return depth;
59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 struct kernfs_node *b)
62 size_t da, db;
63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
65 if (ra != rb)
66 return NULL;
68 da = kernfs_depth(ra->kn, a);
69 db = kernfs_depth(rb->kn, b);
71 while (da > db) {
72 a = a->parent;
73 da--;
75 while (db > da) {
76 b = b->parent;
77 db--;
80 /* worst case b and a will be the same at root */
81 while (b != a) {
82 b = b->parent;
83 a = a->parent;
86 return a;
89 /**
90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91 * where kn_from is treated as root of the path.
92 * @kn_from: kernfs node which should be treated as root for the path
93 * @kn_to: kernfs node to which path is needed
94 * @buf: buffer to copy the path into
95 * @buflen: size of @buf
97 * We need to handle couple of scenarios here:
98 * [1] when @kn_from is an ancestor of @kn_to at some level
99 * kn_from: /n1/n2/n3
100 * kn_to: /n1/n2/n3/n4/n5
101 * result: /n4/n5
103 * [2] when @kn_from is on a different hierarchy and we need to find common
104 * ancestor between @kn_from and @kn_to.
105 * kn_from: /n1/n2/n3/n4
106 * kn_to: /n1/n2/n5
107 * result: /../../n5
108 * OR
109 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
110 * kn_to: /n1/n2/n3 [depth=3]
111 * result: /../..
113 * return value: length of the string. If greater than buflen,
114 * then contents of buf are undefined. On error, -1 is returned.
116 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
117 struct kernfs_node *kn_from,
118 char *buf, size_t buflen)
120 struct kernfs_node *kn, *common;
121 const char parent_str[] = "/..";
122 size_t depth_from, depth_to, len = 0, nlen = 0;
123 char *p;
124 int i;
126 if (!kn_from)
127 kn_from = kernfs_root(kn_to)->kn;
129 if (kn_from == kn_to)
130 return strlcpy(buf, "/", buflen);
132 common = kernfs_common_ancestor(kn_from, kn_to);
133 if (WARN_ON(!common))
134 return -1;
136 depth_to = kernfs_depth(common, kn_to);
137 depth_from = kernfs_depth(common, kn_from);
139 if (buf)
140 buf[0] = '\0';
142 for (i = 0; i < depth_from; i++)
143 len += strlcpy(buf + len, parent_str,
144 len < buflen ? buflen - len : 0);
146 /* Calculate how many bytes we need for the rest */
147 for (kn = kn_to; kn != common; kn = kn->parent)
148 nlen += strlen(kn->name) + 1;
150 if (len + nlen >= buflen)
151 return len + nlen;
153 p = buf + len + nlen;
154 *p = '\0';
155 for (kn = kn_to; kn != common; kn = kn->parent) {
156 nlen = strlen(kn->name);
157 p -= nlen;
158 memcpy(p, kn->name, nlen);
159 *(--p) = '/';
162 return len + nlen;
166 * kernfs_name - obtain the name of a given node
167 * @kn: kernfs_node of interest
168 * @buf: buffer to copy @kn's name into
169 * @buflen: size of @buf
171 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
172 * similar to strlcpy(). It returns the length of @kn's name and if @buf
173 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
175 * This function can be called from any context.
177 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
179 unsigned long flags;
180 int ret;
182 spin_lock_irqsave(&kernfs_rename_lock, flags);
183 ret = kernfs_name_locked(kn, buf, buflen);
184 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
185 return ret;
189 * kernfs_path_len - determine the length of the full path of a given node
190 * @kn: kernfs_node of interest
192 * The returned length doesn't include the space for the terminating '\0'.
194 size_t kernfs_path_len(struct kernfs_node *kn)
196 size_t len = 0;
197 unsigned long flags;
199 spin_lock_irqsave(&kernfs_rename_lock, flags);
201 do {
202 len += strlen(kn->name) + 1;
203 kn = kn->parent;
204 } while (kn && kn->parent);
206 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
208 return len;
212 * kernfs_path_from_node - build path of node @to relative to @from.
213 * @from: parent kernfs_node relative to which we need to build the path
214 * @to: kernfs_node of interest
215 * @buf: buffer to copy @to's path into
216 * @buflen: size of @buf
218 * Builds @to's path relative to @from in @buf. @from and @to must
219 * be on the same kernfs-root. If @from is not parent of @to, then a relative
220 * path (which includes '..'s) as needed to reach from @from to @to is
221 * returned.
223 * If @buf isn't long enough, the return value will be greater than @buflen
224 * and @buf contents are undefined.
226 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
227 char *buf, size_t buflen)
229 unsigned long flags;
230 int ret;
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
234 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
235 return ret;
237 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
240 * kernfs_path - build full path of a given node
241 * @kn: kernfs_node of interest
242 * @buf: buffer to copy @kn's name into
243 * @buflen: size of @buf
245 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
246 * path is built from the end of @buf so the returned pointer usually
247 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
248 * and %NULL is returned.
250 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
252 int ret;
254 ret = kernfs_path_from_node(kn, NULL, buf, buflen);
255 if (ret < 0 || ret >= buflen)
256 return NULL;
257 return buf;
259 EXPORT_SYMBOL_GPL(kernfs_path);
262 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
263 * @kn: kernfs_node of interest
265 * This function can be called from any context.
267 void pr_cont_kernfs_name(struct kernfs_node *kn)
269 unsigned long flags;
271 spin_lock_irqsave(&kernfs_rename_lock, flags);
273 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
274 pr_cont("%s", kernfs_pr_cont_buf);
276 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
280 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
281 * @kn: kernfs_node of interest
283 * This function can be called from any context.
285 void pr_cont_kernfs_path(struct kernfs_node *kn)
287 unsigned long flags;
288 int sz;
290 spin_lock_irqsave(&kernfs_rename_lock, flags);
292 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
293 sizeof(kernfs_pr_cont_buf));
294 if (sz < 0) {
295 pr_cont("(error)");
296 goto out;
299 if (sz >= sizeof(kernfs_pr_cont_buf)) {
300 pr_cont("(name too long)");
301 goto out;
304 pr_cont("%s", kernfs_pr_cont_buf);
306 out:
307 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
311 * kernfs_get_parent - determine the parent node and pin it
312 * @kn: kernfs_node of interest
314 * Determines @kn's parent, pins and returns it. This function can be
315 * called from any context.
317 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
319 struct kernfs_node *parent;
320 unsigned long flags;
322 spin_lock_irqsave(&kernfs_rename_lock, flags);
323 parent = kn->parent;
324 kernfs_get(parent);
325 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
327 return parent;
331 * kernfs_name_hash
332 * @name: Null terminated string to hash
333 * @ns: Namespace tag to hash
335 * Returns 31 bit hash of ns + name (so it fits in an off_t )
337 static unsigned int kernfs_name_hash(const char *name, const void *ns)
339 unsigned long hash = init_name_hash();
340 unsigned int len = strlen(name);
341 while (len--)
342 hash = partial_name_hash(*name++, hash);
343 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
344 hash &= 0x7fffffffU;
345 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
346 if (hash < 2)
347 hash += 2;
348 if (hash >= INT_MAX)
349 hash = INT_MAX - 1;
350 return hash;
353 static int kernfs_name_compare(unsigned int hash, const char *name,
354 const void *ns, const struct kernfs_node *kn)
356 if (hash < kn->hash)
357 return -1;
358 if (hash > kn->hash)
359 return 1;
360 if (ns < kn->ns)
361 return -1;
362 if (ns > kn->ns)
363 return 1;
364 return strcmp(name, kn->name);
367 static int kernfs_sd_compare(const struct kernfs_node *left,
368 const struct kernfs_node *right)
370 return kernfs_name_compare(left->hash, left->name, left->ns, right);
374 * kernfs_link_sibling - link kernfs_node into sibling rbtree
375 * @kn: kernfs_node of interest
377 * Link @kn into its sibling rbtree which starts from
378 * @kn->parent->dir.children.
380 * Locking:
381 * mutex_lock(kernfs_mutex)
383 * RETURNS:
384 * 0 on susccess -EEXIST on failure.
386 static int kernfs_link_sibling(struct kernfs_node *kn)
388 struct rb_node **node = &kn->parent->dir.children.rb_node;
389 struct rb_node *parent = NULL;
391 while (*node) {
392 struct kernfs_node *pos;
393 int result;
395 pos = rb_to_kn(*node);
396 parent = *node;
397 result = kernfs_sd_compare(kn, pos);
398 if (result < 0)
399 node = &pos->rb.rb_left;
400 else if (result > 0)
401 node = &pos->rb.rb_right;
402 else
403 return -EEXIST;
406 /* add new node and rebalance the tree */
407 rb_link_node(&kn->rb, parent, node);
408 rb_insert_color(&kn->rb, &kn->parent->dir.children);
410 /* successfully added, account subdir number */
411 if (kernfs_type(kn) == KERNFS_DIR)
412 kn->parent->dir.subdirs++;
414 return 0;
418 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
419 * @kn: kernfs_node of interest
421 * Try to unlink @kn from its sibling rbtree which starts from
422 * kn->parent->dir.children. Returns %true if @kn was actually
423 * removed, %false if @kn wasn't on the rbtree.
425 * Locking:
426 * mutex_lock(kernfs_mutex)
428 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
430 if (RB_EMPTY_NODE(&kn->rb))
431 return false;
433 if (kernfs_type(kn) == KERNFS_DIR)
434 kn->parent->dir.subdirs--;
436 rb_erase(&kn->rb, &kn->parent->dir.children);
437 RB_CLEAR_NODE(&kn->rb);
438 return true;
442 * kernfs_get_active - get an active reference to kernfs_node
443 * @kn: kernfs_node to get an active reference to
445 * Get an active reference of @kn. This function is noop if @kn
446 * is NULL.
448 * RETURNS:
449 * Pointer to @kn on success, NULL on failure.
451 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
453 if (unlikely(!kn))
454 return NULL;
456 if (!atomic_inc_unless_negative(&kn->active))
457 return NULL;
459 if (kernfs_lockdep(kn))
460 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
461 return kn;
465 * kernfs_put_active - put an active reference to kernfs_node
466 * @kn: kernfs_node to put an active reference to
468 * Put an active reference to @kn. This function is noop if @kn
469 * is NULL.
471 void kernfs_put_active(struct kernfs_node *kn)
473 struct kernfs_root *root = kernfs_root(kn);
474 int v;
476 if (unlikely(!kn))
477 return;
479 if (kernfs_lockdep(kn))
480 rwsem_release(&kn->dep_map, 1, _RET_IP_);
481 v = atomic_dec_return(&kn->active);
482 if (likely(v != KN_DEACTIVATED_BIAS))
483 return;
485 wake_up_all(&root->deactivate_waitq);
489 * kernfs_drain - drain kernfs_node
490 * @kn: kernfs_node to drain
492 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
493 * removers may invoke this function concurrently on @kn and all will
494 * return after draining is complete.
496 static void kernfs_drain(struct kernfs_node *kn)
497 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
499 struct kernfs_root *root = kernfs_root(kn);
501 lockdep_assert_held(&kernfs_mutex);
502 WARN_ON_ONCE(kernfs_active(kn));
504 mutex_unlock(&kernfs_mutex);
506 if (kernfs_lockdep(kn)) {
507 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
508 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
509 lock_contended(&kn->dep_map, _RET_IP_);
512 /* but everyone should wait for draining */
513 wait_event(root->deactivate_waitq,
514 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
516 if (kernfs_lockdep(kn)) {
517 lock_acquired(&kn->dep_map, _RET_IP_);
518 rwsem_release(&kn->dep_map, 1, _RET_IP_);
521 kernfs_unmap_bin_file(kn);
523 mutex_lock(&kernfs_mutex);
527 * kernfs_get - get a reference count on a kernfs_node
528 * @kn: the target kernfs_node
530 void kernfs_get(struct kernfs_node *kn)
532 if (kn) {
533 WARN_ON(!atomic_read(&kn->count));
534 atomic_inc(&kn->count);
537 EXPORT_SYMBOL_GPL(kernfs_get);
540 * kernfs_put - put a reference count on a kernfs_node
541 * @kn: the target kernfs_node
543 * Put a reference count of @kn and destroy it if it reached zero.
545 void kernfs_put(struct kernfs_node *kn)
547 struct kernfs_node *parent;
548 struct kernfs_root *root;
550 if (!kn || !atomic_dec_and_test(&kn->count))
551 return;
552 root = kernfs_root(kn);
553 repeat:
555 * Moving/renaming is always done while holding reference.
556 * kn->parent won't change beneath us.
558 parent = kn->parent;
560 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
561 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
562 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
564 if (kernfs_type(kn) == KERNFS_LINK)
565 kernfs_put(kn->symlink.target_kn);
567 kfree_const(kn->name);
569 if (kn->iattr) {
570 if (kn->iattr->ia_secdata)
571 security_release_secctx(kn->iattr->ia_secdata,
572 kn->iattr->ia_secdata_len);
573 simple_xattrs_free(&kn->iattr->xattrs);
575 kfree(kn->iattr);
576 ida_simple_remove(&root->ino_ida, kn->ino);
577 kmem_cache_free(kernfs_node_cache, kn);
579 kn = parent;
580 if (kn) {
581 if (atomic_dec_and_test(&kn->count))
582 goto repeat;
583 } else {
584 /* just released the root kn, free @root too */
585 ida_destroy(&root->ino_ida);
586 kfree(root);
589 EXPORT_SYMBOL_GPL(kernfs_put);
591 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
593 struct kernfs_node *kn;
595 if (flags & LOOKUP_RCU)
596 return -ECHILD;
598 /* Always perform fresh lookup for negatives */
599 if (d_really_is_negative(dentry))
600 goto out_bad_unlocked;
602 kn = dentry->d_fsdata;
603 mutex_lock(&kernfs_mutex);
605 /* The kernfs node has been deactivated */
606 if (!kernfs_active(kn))
607 goto out_bad;
609 /* The kernfs node has been moved? */
610 if (dentry->d_parent->d_fsdata != kn->parent)
611 goto out_bad;
613 /* The kernfs node has been renamed */
614 if (strcmp(dentry->d_name.name, kn->name) != 0)
615 goto out_bad;
617 /* The kernfs node has been moved to a different namespace */
618 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
619 kernfs_info(dentry->d_sb)->ns != kn->ns)
620 goto out_bad;
622 mutex_unlock(&kernfs_mutex);
623 return 1;
624 out_bad:
625 mutex_unlock(&kernfs_mutex);
626 out_bad_unlocked:
627 return 0;
630 static void kernfs_dop_release(struct dentry *dentry)
632 kernfs_put(dentry->d_fsdata);
635 const struct dentry_operations kernfs_dops = {
636 .d_revalidate = kernfs_dop_revalidate,
637 .d_release = kernfs_dop_release,
641 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
642 * @dentry: the dentry in question
644 * Return the kernfs_node associated with @dentry. If @dentry is not a
645 * kernfs one, %NULL is returned.
647 * While the returned kernfs_node will stay accessible as long as @dentry
648 * is accessible, the returned node can be in any state and the caller is
649 * fully responsible for determining what's accessible.
651 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
653 if (dentry->d_sb->s_op == &kernfs_sops)
654 return dentry->d_fsdata;
655 return NULL;
658 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
659 const char *name, umode_t mode,
660 unsigned flags)
662 struct kernfs_node *kn;
663 int ret;
665 name = kstrdup_const(name, GFP_KERNEL);
666 if (!name)
667 return NULL;
669 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
670 if (!kn)
671 goto err_out1;
673 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
674 if (ret < 0)
675 goto err_out2;
676 kn->ino = ret;
678 atomic_set(&kn->count, 1);
679 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
680 RB_CLEAR_NODE(&kn->rb);
682 kn->name = name;
683 kn->mode = mode;
684 kn->flags = flags;
686 return kn;
688 err_out2:
689 kmem_cache_free(kernfs_node_cache, kn);
690 err_out1:
691 kfree_const(name);
692 return NULL;
695 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
696 const char *name, umode_t mode,
697 unsigned flags)
699 struct kernfs_node *kn;
701 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
702 if (kn) {
703 kernfs_get(parent);
704 kn->parent = parent;
706 return kn;
710 * kernfs_add_one - add kernfs_node to parent without warning
711 * @kn: kernfs_node to be added
713 * The caller must already have initialized @kn->parent. This
714 * function increments nlink of the parent's inode if @kn is a
715 * directory and link into the children list of the parent.
717 * RETURNS:
718 * 0 on success, -EEXIST if entry with the given name already
719 * exists.
721 int kernfs_add_one(struct kernfs_node *kn)
723 struct kernfs_node *parent = kn->parent;
724 struct kernfs_iattrs *ps_iattr;
725 bool has_ns;
726 int ret;
728 mutex_lock(&kernfs_mutex);
730 ret = -EINVAL;
731 has_ns = kernfs_ns_enabled(parent);
732 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
733 has_ns ? "required" : "invalid", parent->name, kn->name))
734 goto out_unlock;
736 if (kernfs_type(parent) != KERNFS_DIR)
737 goto out_unlock;
739 ret = -ENOENT;
740 if (parent->flags & KERNFS_EMPTY_DIR)
741 goto out_unlock;
743 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
744 goto out_unlock;
746 kn->hash = kernfs_name_hash(kn->name, kn->ns);
748 ret = kernfs_link_sibling(kn);
749 if (ret)
750 goto out_unlock;
752 /* Update timestamps on the parent */
753 ps_iattr = parent->iattr;
754 if (ps_iattr) {
755 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
756 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
759 mutex_unlock(&kernfs_mutex);
762 * Activate the new node unless CREATE_DEACTIVATED is requested.
763 * If not activated here, the kernfs user is responsible for
764 * activating the node with kernfs_activate(). A node which hasn't
765 * been activated is not visible to userland and its removal won't
766 * trigger deactivation.
768 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
769 kernfs_activate(kn);
770 return 0;
772 out_unlock:
773 mutex_unlock(&kernfs_mutex);
774 return ret;
778 * kernfs_find_ns - find kernfs_node with the given name
779 * @parent: kernfs_node to search under
780 * @name: name to look for
781 * @ns: the namespace tag to use
783 * Look for kernfs_node with name @name under @parent. Returns pointer to
784 * the found kernfs_node on success, %NULL on failure.
786 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
787 const unsigned char *name,
788 const void *ns)
790 struct rb_node *node = parent->dir.children.rb_node;
791 bool has_ns = kernfs_ns_enabled(parent);
792 unsigned int hash;
794 lockdep_assert_held(&kernfs_mutex);
796 if (has_ns != (bool)ns) {
797 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
798 has_ns ? "required" : "invalid", parent->name, name);
799 return NULL;
802 hash = kernfs_name_hash(name, ns);
803 while (node) {
804 struct kernfs_node *kn;
805 int result;
807 kn = rb_to_kn(node);
808 result = kernfs_name_compare(hash, name, ns, kn);
809 if (result < 0)
810 node = node->rb_left;
811 else if (result > 0)
812 node = node->rb_right;
813 else
814 return kn;
816 return NULL;
819 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
820 const unsigned char *path,
821 const void *ns)
823 size_t len;
824 char *p, *name;
826 lockdep_assert_held(&kernfs_mutex);
828 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
829 spin_lock_irq(&kernfs_rename_lock);
831 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
833 if (len >= sizeof(kernfs_pr_cont_buf)) {
834 spin_unlock_irq(&kernfs_rename_lock);
835 return NULL;
838 p = kernfs_pr_cont_buf;
840 while ((name = strsep(&p, "/")) && parent) {
841 if (*name == '\0')
842 continue;
843 parent = kernfs_find_ns(parent, name, ns);
846 spin_unlock_irq(&kernfs_rename_lock);
848 return parent;
852 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
853 * @parent: kernfs_node to search under
854 * @name: name to look for
855 * @ns: the namespace tag to use
857 * Look for kernfs_node with name @name under @parent and get a reference
858 * if found. This function may sleep and returns pointer to the found
859 * kernfs_node on success, %NULL on failure.
861 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
862 const char *name, const void *ns)
864 struct kernfs_node *kn;
866 mutex_lock(&kernfs_mutex);
867 kn = kernfs_find_ns(parent, name, ns);
868 kernfs_get(kn);
869 mutex_unlock(&kernfs_mutex);
871 return kn;
873 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
876 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
877 * @parent: kernfs_node to search under
878 * @path: path to look for
879 * @ns: the namespace tag to use
881 * Look for kernfs_node with path @path under @parent and get a reference
882 * if found. This function may sleep and returns pointer to the found
883 * kernfs_node on success, %NULL on failure.
885 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
886 const char *path, const void *ns)
888 struct kernfs_node *kn;
890 mutex_lock(&kernfs_mutex);
891 kn = kernfs_walk_ns(parent, path, ns);
892 kernfs_get(kn);
893 mutex_unlock(&kernfs_mutex);
895 return kn;
899 * kernfs_create_root - create a new kernfs hierarchy
900 * @scops: optional syscall operations for the hierarchy
901 * @flags: KERNFS_ROOT_* flags
902 * @priv: opaque data associated with the new directory
904 * Returns the root of the new hierarchy on success, ERR_PTR() value on
905 * failure.
907 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
908 unsigned int flags, void *priv)
910 struct kernfs_root *root;
911 struct kernfs_node *kn;
913 root = kzalloc(sizeof(*root), GFP_KERNEL);
914 if (!root)
915 return ERR_PTR(-ENOMEM);
917 ida_init(&root->ino_ida);
918 INIT_LIST_HEAD(&root->supers);
920 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
921 KERNFS_DIR);
922 if (!kn) {
923 ida_destroy(&root->ino_ida);
924 kfree(root);
925 return ERR_PTR(-ENOMEM);
928 kn->priv = priv;
929 kn->dir.root = root;
931 root->syscall_ops = scops;
932 root->flags = flags;
933 root->kn = kn;
934 init_waitqueue_head(&root->deactivate_waitq);
936 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
937 kernfs_activate(kn);
939 return root;
943 * kernfs_destroy_root - destroy a kernfs hierarchy
944 * @root: root of the hierarchy to destroy
946 * Destroy the hierarchy anchored at @root by removing all existing
947 * directories and destroying @root.
949 void kernfs_destroy_root(struct kernfs_root *root)
951 kernfs_remove(root->kn); /* will also free @root */
955 * kernfs_create_dir_ns - create a directory
956 * @parent: parent in which to create a new directory
957 * @name: name of the new directory
958 * @mode: mode of the new directory
959 * @priv: opaque data associated with the new directory
960 * @ns: optional namespace tag of the directory
962 * Returns the created node on success, ERR_PTR() value on failure.
964 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
965 const char *name, umode_t mode,
966 void *priv, const void *ns)
968 struct kernfs_node *kn;
969 int rc;
971 /* allocate */
972 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
973 if (!kn)
974 return ERR_PTR(-ENOMEM);
976 kn->dir.root = parent->dir.root;
977 kn->ns = ns;
978 kn->priv = priv;
980 /* link in */
981 rc = kernfs_add_one(kn);
982 if (!rc)
983 return kn;
985 kernfs_put(kn);
986 return ERR_PTR(rc);
990 * kernfs_create_empty_dir - create an always empty directory
991 * @parent: parent in which to create a new directory
992 * @name: name of the new directory
994 * Returns the created node on success, ERR_PTR() value on failure.
996 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
997 const char *name)
999 struct kernfs_node *kn;
1000 int rc;
1002 /* allocate */
1003 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1004 if (!kn)
1005 return ERR_PTR(-ENOMEM);
1007 kn->flags |= KERNFS_EMPTY_DIR;
1008 kn->dir.root = parent->dir.root;
1009 kn->ns = NULL;
1010 kn->priv = NULL;
1012 /* link in */
1013 rc = kernfs_add_one(kn);
1014 if (!rc)
1015 return kn;
1017 kernfs_put(kn);
1018 return ERR_PTR(rc);
1021 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1022 struct dentry *dentry,
1023 unsigned int flags)
1025 struct dentry *ret;
1026 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
1027 struct kernfs_node *kn;
1028 struct inode *inode;
1029 const void *ns = NULL;
1031 mutex_lock(&kernfs_mutex);
1033 if (kernfs_ns_enabled(parent))
1034 ns = kernfs_info(dir->i_sb)->ns;
1036 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1038 /* no such entry */
1039 if (!kn || !kernfs_active(kn)) {
1040 ret = NULL;
1041 goto out_unlock;
1043 kernfs_get(kn);
1044 dentry->d_fsdata = kn;
1046 /* attach dentry and inode */
1047 inode = kernfs_get_inode(dir->i_sb, kn);
1048 if (!inode) {
1049 ret = ERR_PTR(-ENOMEM);
1050 goto out_unlock;
1053 /* instantiate and hash dentry */
1054 ret = d_splice_alias(inode, dentry);
1055 out_unlock:
1056 mutex_unlock(&kernfs_mutex);
1057 return ret;
1060 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1061 umode_t mode)
1063 struct kernfs_node *parent = dir->i_private;
1064 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1065 int ret;
1067 if (!scops || !scops->mkdir)
1068 return -EPERM;
1070 if (!kernfs_get_active(parent))
1071 return -ENODEV;
1073 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1075 kernfs_put_active(parent);
1076 return ret;
1079 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1081 struct kernfs_node *kn = dentry->d_fsdata;
1082 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1083 int ret;
1085 if (!scops || !scops->rmdir)
1086 return -EPERM;
1088 if (!kernfs_get_active(kn))
1089 return -ENODEV;
1091 ret = scops->rmdir(kn);
1093 kernfs_put_active(kn);
1094 return ret;
1097 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1098 struct inode *new_dir, struct dentry *new_dentry)
1100 struct kernfs_node *kn = old_dentry->d_fsdata;
1101 struct kernfs_node *new_parent = new_dir->i_private;
1102 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1103 int ret;
1105 if (!scops || !scops->rename)
1106 return -EPERM;
1108 if (!kernfs_get_active(kn))
1109 return -ENODEV;
1111 if (!kernfs_get_active(new_parent)) {
1112 kernfs_put_active(kn);
1113 return -ENODEV;
1116 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1118 kernfs_put_active(new_parent);
1119 kernfs_put_active(kn);
1120 return ret;
1123 const struct inode_operations kernfs_dir_iops = {
1124 .lookup = kernfs_iop_lookup,
1125 .permission = kernfs_iop_permission,
1126 .setattr = kernfs_iop_setattr,
1127 .getattr = kernfs_iop_getattr,
1128 .setxattr = kernfs_iop_setxattr,
1129 .removexattr = kernfs_iop_removexattr,
1130 .getxattr = kernfs_iop_getxattr,
1131 .listxattr = kernfs_iop_listxattr,
1133 .mkdir = kernfs_iop_mkdir,
1134 .rmdir = kernfs_iop_rmdir,
1135 .rename = kernfs_iop_rename,
1138 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1140 struct kernfs_node *last;
1142 while (true) {
1143 struct rb_node *rbn;
1145 last = pos;
1147 if (kernfs_type(pos) != KERNFS_DIR)
1148 break;
1150 rbn = rb_first(&pos->dir.children);
1151 if (!rbn)
1152 break;
1154 pos = rb_to_kn(rbn);
1157 return last;
1161 * kernfs_next_descendant_post - find the next descendant for post-order walk
1162 * @pos: the current position (%NULL to initiate traversal)
1163 * @root: kernfs_node whose descendants to walk
1165 * Find the next descendant to visit for post-order traversal of @root's
1166 * descendants. @root is included in the iteration and the last node to be
1167 * visited.
1169 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1170 struct kernfs_node *root)
1172 struct rb_node *rbn;
1174 lockdep_assert_held(&kernfs_mutex);
1176 /* if first iteration, visit leftmost descendant which may be root */
1177 if (!pos)
1178 return kernfs_leftmost_descendant(root);
1180 /* if we visited @root, we're done */
1181 if (pos == root)
1182 return NULL;
1184 /* if there's an unvisited sibling, visit its leftmost descendant */
1185 rbn = rb_next(&pos->rb);
1186 if (rbn)
1187 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1189 /* no sibling left, visit parent */
1190 return pos->parent;
1194 * kernfs_activate - activate a node which started deactivated
1195 * @kn: kernfs_node whose subtree is to be activated
1197 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1198 * needs to be explicitly activated. A node which hasn't been activated
1199 * isn't visible to userland and deactivation is skipped during its
1200 * removal. This is useful to construct atomic init sequences where
1201 * creation of multiple nodes should either succeed or fail atomically.
1203 * The caller is responsible for ensuring that this function is not called
1204 * after kernfs_remove*() is invoked on @kn.
1206 void kernfs_activate(struct kernfs_node *kn)
1208 struct kernfs_node *pos;
1210 mutex_lock(&kernfs_mutex);
1212 pos = NULL;
1213 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1214 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1215 continue;
1217 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1218 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1220 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1221 pos->flags |= KERNFS_ACTIVATED;
1224 mutex_unlock(&kernfs_mutex);
1227 static void __kernfs_remove(struct kernfs_node *kn)
1229 struct kernfs_node *pos;
1231 lockdep_assert_held(&kernfs_mutex);
1234 * Short-circuit if non-root @kn has already finished removal.
1235 * This is for kernfs_remove_self() which plays with active ref
1236 * after removal.
1238 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1239 return;
1241 pr_debug("kernfs %s: removing\n", kn->name);
1243 /* prevent any new usage under @kn by deactivating all nodes */
1244 pos = NULL;
1245 while ((pos = kernfs_next_descendant_post(pos, kn)))
1246 if (kernfs_active(pos))
1247 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1249 /* deactivate and unlink the subtree node-by-node */
1250 do {
1251 pos = kernfs_leftmost_descendant(kn);
1254 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1255 * base ref could have been put by someone else by the time
1256 * the function returns. Make sure it doesn't go away
1257 * underneath us.
1259 kernfs_get(pos);
1262 * Drain iff @kn was activated. This avoids draining and
1263 * its lockdep annotations for nodes which have never been
1264 * activated and allows embedding kernfs_remove() in create
1265 * error paths without worrying about draining.
1267 if (kn->flags & KERNFS_ACTIVATED)
1268 kernfs_drain(pos);
1269 else
1270 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1273 * kernfs_unlink_sibling() succeeds once per node. Use it
1274 * to decide who's responsible for cleanups.
1276 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1277 struct kernfs_iattrs *ps_iattr =
1278 pos->parent ? pos->parent->iattr : NULL;
1280 /* update timestamps on the parent */
1281 if (ps_iattr) {
1282 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1283 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1286 kernfs_put(pos);
1289 kernfs_put(pos);
1290 } while (pos != kn);
1294 * kernfs_remove - remove a kernfs_node recursively
1295 * @kn: the kernfs_node to remove
1297 * Remove @kn along with all its subdirectories and files.
1299 void kernfs_remove(struct kernfs_node *kn)
1301 mutex_lock(&kernfs_mutex);
1302 __kernfs_remove(kn);
1303 mutex_unlock(&kernfs_mutex);
1307 * kernfs_break_active_protection - break out of active protection
1308 * @kn: the self kernfs_node
1310 * The caller must be running off of a kernfs operation which is invoked
1311 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1312 * this function must also be matched with an invocation of
1313 * kernfs_unbreak_active_protection().
1315 * This function releases the active reference of @kn the caller is
1316 * holding. Once this function is called, @kn may be removed at any point
1317 * and the caller is solely responsible for ensuring that the objects it
1318 * dereferences are accessible.
1320 void kernfs_break_active_protection(struct kernfs_node *kn)
1323 * Take out ourself out of the active ref dependency chain. If
1324 * we're called without an active ref, lockdep will complain.
1326 kernfs_put_active(kn);
1330 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1331 * @kn: the self kernfs_node
1333 * If kernfs_break_active_protection() was called, this function must be
1334 * invoked before finishing the kernfs operation. Note that while this
1335 * function restores the active reference, it doesn't and can't actually
1336 * restore the active protection - @kn may already or be in the process of
1337 * being removed. Once kernfs_break_active_protection() is invoked, that
1338 * protection is irreversibly gone for the kernfs operation instance.
1340 * While this function may be called at any point after
1341 * kernfs_break_active_protection() is invoked, its most useful location
1342 * would be right before the enclosing kernfs operation returns.
1344 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1347 * @kn->active could be in any state; however, the increment we do
1348 * here will be undone as soon as the enclosing kernfs operation
1349 * finishes and this temporary bump can't break anything. If @kn
1350 * is alive, nothing changes. If @kn is being deactivated, the
1351 * soon-to-follow put will either finish deactivation or restore
1352 * deactivated state. If @kn is already removed, the temporary
1353 * bump is guaranteed to be gone before @kn is released.
1355 atomic_inc(&kn->active);
1356 if (kernfs_lockdep(kn))
1357 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1361 * kernfs_remove_self - remove a kernfs_node from its own method
1362 * @kn: the self kernfs_node to remove
1364 * The caller must be running off of a kernfs operation which is invoked
1365 * with an active reference - e.g. one of kernfs_ops. This can be used to
1366 * implement a file operation which deletes itself.
1368 * For example, the "delete" file for a sysfs device directory can be
1369 * implemented by invoking kernfs_remove_self() on the "delete" file
1370 * itself. This function breaks the circular dependency of trying to
1371 * deactivate self while holding an active ref itself. It isn't necessary
1372 * to modify the usual removal path to use kernfs_remove_self(). The
1373 * "delete" implementation can simply invoke kernfs_remove_self() on self
1374 * before proceeding with the usual removal path. kernfs will ignore later
1375 * kernfs_remove() on self.
1377 * kernfs_remove_self() can be called multiple times concurrently on the
1378 * same kernfs_node. Only the first one actually performs removal and
1379 * returns %true. All others will wait until the kernfs operation which
1380 * won self-removal finishes and return %false. Note that the losers wait
1381 * for the completion of not only the winning kernfs_remove_self() but also
1382 * the whole kernfs_ops which won the arbitration. This can be used to
1383 * guarantee, for example, all concurrent writes to a "delete" file to
1384 * finish only after the whole operation is complete.
1386 bool kernfs_remove_self(struct kernfs_node *kn)
1388 bool ret;
1390 mutex_lock(&kernfs_mutex);
1391 kernfs_break_active_protection(kn);
1394 * SUICIDAL is used to arbitrate among competing invocations. Only
1395 * the first one will actually perform removal. When the removal
1396 * is complete, SUICIDED is set and the active ref is restored
1397 * while holding kernfs_mutex. The ones which lost arbitration
1398 * waits for SUICDED && drained which can happen only after the
1399 * enclosing kernfs operation which executed the winning instance
1400 * of kernfs_remove_self() finished.
1402 if (!(kn->flags & KERNFS_SUICIDAL)) {
1403 kn->flags |= KERNFS_SUICIDAL;
1404 __kernfs_remove(kn);
1405 kn->flags |= KERNFS_SUICIDED;
1406 ret = true;
1407 } else {
1408 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1409 DEFINE_WAIT(wait);
1411 while (true) {
1412 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1414 if ((kn->flags & KERNFS_SUICIDED) &&
1415 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1416 break;
1418 mutex_unlock(&kernfs_mutex);
1419 schedule();
1420 mutex_lock(&kernfs_mutex);
1422 finish_wait(waitq, &wait);
1423 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1424 ret = false;
1428 * This must be done while holding kernfs_mutex; otherwise, waiting
1429 * for SUICIDED && deactivated could finish prematurely.
1431 kernfs_unbreak_active_protection(kn);
1433 mutex_unlock(&kernfs_mutex);
1434 return ret;
1438 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1439 * @parent: parent of the target
1440 * @name: name of the kernfs_node to remove
1441 * @ns: namespace tag of the kernfs_node to remove
1443 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1444 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1446 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1447 const void *ns)
1449 struct kernfs_node *kn;
1451 if (!parent) {
1452 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1453 name);
1454 return -ENOENT;
1457 mutex_lock(&kernfs_mutex);
1459 kn = kernfs_find_ns(parent, name, ns);
1460 if (kn)
1461 __kernfs_remove(kn);
1463 mutex_unlock(&kernfs_mutex);
1465 if (kn)
1466 return 0;
1467 else
1468 return -ENOENT;
1472 * kernfs_rename_ns - move and rename a kernfs_node
1473 * @kn: target node
1474 * @new_parent: new parent to put @sd under
1475 * @new_name: new name
1476 * @new_ns: new namespace tag
1478 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1479 const char *new_name, const void *new_ns)
1481 struct kernfs_node *old_parent;
1482 const char *old_name = NULL;
1483 int error;
1485 /* can't move or rename root */
1486 if (!kn->parent)
1487 return -EINVAL;
1489 mutex_lock(&kernfs_mutex);
1491 error = -ENOENT;
1492 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1493 (new_parent->flags & KERNFS_EMPTY_DIR))
1494 goto out;
1496 error = 0;
1497 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1498 (strcmp(kn->name, new_name) == 0))
1499 goto out; /* nothing to rename */
1501 error = -EEXIST;
1502 if (kernfs_find_ns(new_parent, new_name, new_ns))
1503 goto out;
1505 /* rename kernfs_node */
1506 if (strcmp(kn->name, new_name) != 0) {
1507 error = -ENOMEM;
1508 new_name = kstrdup_const(new_name, GFP_KERNEL);
1509 if (!new_name)
1510 goto out;
1511 } else {
1512 new_name = NULL;
1516 * Move to the appropriate place in the appropriate directories rbtree.
1518 kernfs_unlink_sibling(kn);
1519 kernfs_get(new_parent);
1521 /* rename_lock protects ->parent and ->name accessors */
1522 spin_lock_irq(&kernfs_rename_lock);
1524 old_parent = kn->parent;
1525 kn->parent = new_parent;
1527 kn->ns = new_ns;
1528 if (new_name) {
1529 old_name = kn->name;
1530 kn->name = new_name;
1533 spin_unlock_irq(&kernfs_rename_lock);
1535 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1536 kernfs_link_sibling(kn);
1538 kernfs_put(old_parent);
1539 kfree_const(old_name);
1541 error = 0;
1542 out:
1543 mutex_unlock(&kernfs_mutex);
1544 return error;
1547 /* Relationship between s_mode and the DT_xxx types */
1548 static inline unsigned char dt_type(struct kernfs_node *kn)
1550 return (kn->mode >> 12) & 15;
1553 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1555 kernfs_put(filp->private_data);
1556 return 0;
1559 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1560 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1562 if (pos) {
1563 int valid = kernfs_active(pos) &&
1564 pos->parent == parent && hash == pos->hash;
1565 kernfs_put(pos);
1566 if (!valid)
1567 pos = NULL;
1569 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1570 struct rb_node *node = parent->dir.children.rb_node;
1571 while (node) {
1572 pos = rb_to_kn(node);
1574 if (hash < pos->hash)
1575 node = node->rb_left;
1576 else if (hash > pos->hash)
1577 node = node->rb_right;
1578 else
1579 break;
1582 /* Skip over entries which are dying/dead or in the wrong namespace */
1583 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1584 struct rb_node *node = rb_next(&pos->rb);
1585 if (!node)
1586 pos = NULL;
1587 else
1588 pos = rb_to_kn(node);
1590 return pos;
1593 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1594 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1596 pos = kernfs_dir_pos(ns, parent, ino, pos);
1597 if (pos) {
1598 do {
1599 struct rb_node *node = rb_next(&pos->rb);
1600 if (!node)
1601 pos = NULL;
1602 else
1603 pos = rb_to_kn(node);
1604 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1606 return pos;
1609 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1611 struct dentry *dentry = file->f_path.dentry;
1612 struct kernfs_node *parent = dentry->d_fsdata;
1613 struct kernfs_node *pos = file->private_data;
1614 const void *ns = NULL;
1616 if (!dir_emit_dots(file, ctx))
1617 return 0;
1618 mutex_lock(&kernfs_mutex);
1620 if (kernfs_ns_enabled(parent))
1621 ns = kernfs_info(dentry->d_sb)->ns;
1623 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1624 pos;
1625 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1626 const char *name = pos->name;
1627 unsigned int type = dt_type(pos);
1628 int len = strlen(name);
1629 ino_t ino = pos->ino;
1631 ctx->pos = pos->hash;
1632 file->private_data = pos;
1633 kernfs_get(pos);
1635 mutex_unlock(&kernfs_mutex);
1636 if (!dir_emit(ctx, name, len, ino, type))
1637 return 0;
1638 mutex_lock(&kernfs_mutex);
1640 mutex_unlock(&kernfs_mutex);
1641 file->private_data = NULL;
1642 ctx->pos = INT_MAX;
1643 return 0;
1646 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1647 int whence)
1649 struct inode *inode = file_inode(file);
1650 loff_t ret;
1652 inode_lock(inode);
1653 ret = generic_file_llseek(file, offset, whence);
1654 inode_unlock(inode);
1656 return ret;
1659 const struct file_operations kernfs_dir_fops = {
1660 .read = generic_read_dir,
1661 .iterate = kernfs_fop_readdir,
1662 .release = kernfs_dir_fop_release,
1663 .llseek = kernfs_dir_fop_llseek,