2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
41 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
44 * Allocate and initialise an xfs_inode.
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
61 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
62 kmem_zone_free(xfs_inode_zone
, ip
);
66 /* VFS doesn't initialise i_mode! */
67 VFS_I(ip
)->i_mode
= 0;
69 XFS_STATS_INC(mp
, vn_active
);
70 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
71 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
72 ASSERT(!xfs_isiflocked(ip
));
73 ASSERT(ip
->i_ino
== 0);
75 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
77 /* initialise the xfs inode */
80 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
82 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
84 ip
->i_delayed_blks
= 0;
85 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
91 xfs_inode_free_callback(
92 struct rcu_head
*head
)
94 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
95 struct xfs_inode
*ip
= XFS_I(inode
);
97 kmem_zone_free(xfs_inode_zone
, ip
);
102 struct xfs_inode
*ip
)
104 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
108 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
113 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
116 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
117 xfs_inode_item_destroy(ip
);
122 * Because we use RCU freeing we need to ensure the inode always
123 * appears to be reclaimed with an invalid inode number when in the
124 * free state. The ip->i_flags_lock provides the barrier against lookup
127 spin_lock(&ip
->i_flags_lock
);
128 ip
->i_flags
= XFS_IRECLAIM
;
130 spin_unlock(&ip
->i_flags_lock
);
132 /* asserts to verify all state is correct here */
133 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
134 ASSERT(!xfs_isiflocked(ip
));
135 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
137 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
141 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
142 * part of the structure. This is made more complex by the fact we store
143 * information about the on-disk values in the VFS inode and so we can't just
144 * overwrite the values unconditionally. Hence we save the parameters we
145 * need to retain across reinitialisation, and rewrite them into the VFS inode
146 * after reinitialisation even if it fails.
150 struct xfs_mount
*mp
,
154 uint32_t nlink
= inode
->i_nlink
;
155 uint32_t generation
= inode
->i_generation
;
156 uint64_t version
= inode
->i_version
;
157 umode_t mode
= inode
->i_mode
;
159 error
= inode_init_always(mp
->m_super
, inode
);
161 set_nlink(inode
, nlink
);
162 inode
->i_generation
= generation
;
163 inode
->i_version
= version
;
164 inode
->i_mode
= mode
;
169 * Check the validity of the inode we just found it the cache
173 struct xfs_perag
*pag
,
174 struct xfs_inode
*ip
,
177 int lock_flags
) __releases(RCU
)
179 struct inode
*inode
= VFS_I(ip
);
180 struct xfs_mount
*mp
= ip
->i_mount
;
184 * check for re-use of an inode within an RCU grace period due to the
185 * radix tree nodes not being updated yet. We monitor for this by
186 * setting the inode number to zero before freeing the inode structure.
187 * If the inode has been reallocated and set up, then the inode number
188 * will not match, so check for that, too.
190 spin_lock(&ip
->i_flags_lock
);
191 if (ip
->i_ino
!= ino
) {
192 trace_xfs_iget_skip(ip
);
193 XFS_STATS_INC(mp
, xs_ig_frecycle
);
200 * If we are racing with another cache hit that is currently
201 * instantiating this inode or currently recycling it out of
202 * reclaimabe state, wait for the initialisation to complete
205 * XXX(hch): eventually we should do something equivalent to
206 * wait_on_inode to wait for these flags to be cleared
207 * instead of polling for it.
209 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
210 trace_xfs_iget_skip(ip
);
211 XFS_STATS_INC(mp
, xs_ig_frecycle
);
217 * If lookup is racing with unlink return an error immediately.
219 if (VFS_I(ip
)->i_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
225 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
226 * Need to carefully get it back into useable state.
228 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
229 trace_xfs_iget_reclaim(ip
);
232 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
233 * from stomping over us while we recycle the inode. We can't
234 * clear the radix tree reclaimable tag yet as it requires
235 * pag_ici_lock to be held exclusive.
237 ip
->i_flags
|= XFS_IRECLAIM
;
239 spin_unlock(&ip
->i_flags_lock
);
242 error
= xfs_reinit_inode(mp
, inode
);
245 * Re-initializing the inode failed, and we are in deep
246 * trouble. Try to re-add it to the reclaim list.
249 spin_lock(&ip
->i_flags_lock
);
251 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
252 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
253 trace_xfs_iget_reclaim_fail(ip
);
257 spin_lock(&pag
->pag_ici_lock
);
258 spin_lock(&ip
->i_flags_lock
);
261 * Clear the per-lifetime state in the inode as we are now
262 * effectively a new inode and need to return to the initial
263 * state before reuse occurs.
265 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
266 ip
->i_flags
|= XFS_INEW
;
267 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
268 inode
->i_state
= I_NEW
;
270 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
271 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
273 spin_unlock(&ip
->i_flags_lock
);
274 spin_unlock(&pag
->pag_ici_lock
);
276 /* If the VFS inode is being torn down, pause and try again. */
278 trace_xfs_iget_skip(ip
);
283 /* We've got a live one. */
284 spin_unlock(&ip
->i_flags_lock
);
286 trace_xfs_iget_hit(ip
);
290 xfs_ilock(ip
, lock_flags
);
292 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
293 XFS_STATS_INC(mp
, xs_ig_found
);
298 spin_unlock(&ip
->i_flags_lock
);
306 struct xfs_mount
*mp
,
307 struct xfs_perag
*pag
,
310 struct xfs_inode
**ipp
,
314 struct xfs_inode
*ip
;
316 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
319 ip
= xfs_inode_alloc(mp
, ino
);
323 error
= xfs_iread(mp
, tp
, ip
, flags
);
327 trace_xfs_iget_miss(ip
);
329 if ((VFS_I(ip
)->i_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
335 * Preload the radix tree so we can insert safely under the
336 * write spinlock. Note that we cannot sleep inside the preload
337 * region. Since we can be called from transaction context, don't
338 * recurse into the file system.
340 if (radix_tree_preload(GFP_NOFS
)) {
346 * Because the inode hasn't been added to the radix-tree yet it can't
347 * be found by another thread, so we can do the non-sleeping lock here.
350 if (!xfs_ilock_nowait(ip
, lock_flags
))
355 * These values must be set before inserting the inode into the radix
356 * tree as the moment it is inserted a concurrent lookup (allowed by the
357 * RCU locking mechanism) can find it and that lookup must see that this
358 * is an inode currently under construction (i.e. that XFS_INEW is set).
359 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
360 * memory barrier that ensures this detection works correctly at lookup
364 if (flags
& XFS_IGET_DONTCACHE
)
365 iflags
|= XFS_IDONTCACHE
;
369 xfs_iflags_set(ip
, iflags
);
371 /* insert the new inode */
372 spin_lock(&pag
->pag_ici_lock
);
373 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
374 if (unlikely(error
)) {
375 WARN_ON(error
!= -EEXIST
);
376 XFS_STATS_INC(mp
, xs_ig_dup
);
378 goto out_preload_end
;
380 spin_unlock(&pag
->pag_ici_lock
);
381 radix_tree_preload_end();
387 spin_unlock(&pag
->pag_ici_lock
);
388 radix_tree_preload_end();
390 xfs_iunlock(ip
, lock_flags
);
392 __destroy_inode(VFS_I(ip
));
398 * Look up an inode by number in the given file system.
399 * The inode is looked up in the cache held in each AG.
400 * If the inode is found in the cache, initialise the vfs inode
403 * If it is not in core, read it in from the file system's device,
404 * add it to the cache and initialise the vfs inode.
406 * The inode is locked according to the value of the lock_flags parameter.
407 * This flag parameter indicates how and if the inode's IO lock and inode lock
410 * mp -- the mount point structure for the current file system. It points
411 * to the inode hash table.
412 * tp -- a pointer to the current transaction if there is one. This is
413 * simply passed through to the xfs_iread() call.
414 * ino -- the number of the inode desired. This is the unique identifier
415 * within the file system for the inode being requested.
416 * lock_flags -- flags indicating how to lock the inode. See the comment
417 * for xfs_ilock() for a list of valid values.
434 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
435 * doesn't get freed while it's being referenced during a
436 * radix tree traversal here. It assumes this function
437 * aqcuires only the ILOCK (and therefore it has no need to
438 * involve the IOLOCK in this synchronization).
440 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
442 /* reject inode numbers outside existing AGs */
443 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
446 XFS_STATS_INC(mp
, xs_ig_attempts
);
448 /* get the perag structure and ensure that it's inode capable */
449 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
450 agino
= XFS_INO_TO_AGINO(mp
, ino
);
455 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
458 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
460 goto out_error_or_again
;
463 XFS_STATS_INC(mp
, xs_ig_missed
);
465 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
468 goto out_error_or_again
;
475 * If we have a real type for an on-disk inode, we can setup the inode
476 * now. If it's a new inode being created, xfs_ialloc will handle it.
478 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
479 xfs_setup_existing_inode(ip
);
483 if (error
== -EAGAIN
) {
492 * The inode lookup is done in batches to keep the amount of lock traffic and
493 * radix tree lookups to a minimum. The batch size is a trade off between
494 * lookup reduction and stack usage. This is in the reclaim path, so we can't
497 #define XFS_LOOKUP_BATCH 32
500 xfs_inode_ag_walk_grab(
501 struct xfs_inode
*ip
)
503 struct inode
*inode
= VFS_I(ip
);
505 ASSERT(rcu_read_lock_held());
508 * check for stale RCU freed inode
510 * If the inode has been reallocated, it doesn't matter if it's not in
511 * the AG we are walking - we are walking for writeback, so if it
512 * passes all the "valid inode" checks and is dirty, then we'll write
513 * it back anyway. If it has been reallocated and still being
514 * initialised, the XFS_INEW check below will catch it.
516 spin_lock(&ip
->i_flags_lock
);
518 goto out_unlock_noent
;
520 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
521 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
522 goto out_unlock_noent
;
523 spin_unlock(&ip
->i_flags_lock
);
525 /* nothing to sync during shutdown */
526 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
527 return -EFSCORRUPTED
;
529 /* If we can't grab the inode, it must on it's way to reclaim. */
537 spin_unlock(&ip
->i_flags_lock
);
543 struct xfs_mount
*mp
,
544 struct xfs_perag
*pag
,
545 int (*execute
)(struct xfs_inode
*ip
, int flags
,
551 uint32_t first_index
;
563 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
570 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
571 (void **)batch
, first_index
,
574 nr_found
= radix_tree_gang_lookup_tag(
576 (void **) batch
, first_index
,
577 XFS_LOOKUP_BATCH
, tag
);
585 * Grab the inodes before we drop the lock. if we found
586 * nothing, nr == 0 and the loop will be skipped.
588 for (i
= 0; i
< nr_found
; i
++) {
589 struct xfs_inode
*ip
= batch
[i
];
591 if (done
|| xfs_inode_ag_walk_grab(ip
))
595 * Update the index for the next lookup. Catch
596 * overflows into the next AG range which can occur if
597 * we have inodes in the last block of the AG and we
598 * are currently pointing to the last inode.
600 * Because we may see inodes that are from the wrong AG
601 * due to RCU freeing and reallocation, only update the
602 * index if it lies in this AG. It was a race that lead
603 * us to see this inode, so another lookup from the
604 * same index will not find it again.
606 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
608 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
609 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
613 /* unlock now we've grabbed the inodes. */
616 for (i
= 0; i
< nr_found
; i
++) {
619 error
= execute(batch
[i
], flags
, args
);
621 if (error
== -EAGAIN
) {
625 if (error
&& last_error
!= -EFSCORRUPTED
)
629 /* bail out if the filesystem is corrupted. */
630 if (error
== -EFSCORRUPTED
)
635 } while (nr_found
&& !done
);
645 * Background scanning to trim post-EOF preallocated space. This is queued
646 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
650 struct xfs_mount
*mp
)
653 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
654 queue_delayed_work(mp
->m_eofblocks_workqueue
,
655 &mp
->m_eofblocks_work
,
656 msecs_to_jiffies(xfs_eofb_secs
* 1000));
661 xfs_eofblocks_worker(
662 struct work_struct
*work
)
664 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
665 struct xfs_mount
, m_eofblocks_work
);
666 xfs_icache_free_eofblocks(mp
, NULL
);
667 xfs_queue_eofblocks(mp
);
671 xfs_inode_ag_iterator(
672 struct xfs_mount
*mp
,
673 int (*execute
)(struct xfs_inode
*ip
, int flags
,
678 struct xfs_perag
*pag
;
684 while ((pag
= xfs_perag_get(mp
, ag
))) {
685 ag
= pag
->pag_agno
+ 1;
686 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
690 if (error
== -EFSCORRUPTED
)
698 xfs_inode_ag_iterator_tag(
699 struct xfs_mount
*mp
,
700 int (*execute
)(struct xfs_inode
*ip
, int flags
,
706 struct xfs_perag
*pag
;
712 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
713 ag
= pag
->pag_agno
+ 1;
714 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
718 if (error
== -EFSCORRUPTED
)
726 * Queue a new inode reclaim pass if there are reclaimable inodes and there
727 * isn't a reclaim pass already in progress. By default it runs every 5s based
728 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
729 * tunable, but that can be done if this method proves to be ineffective or too
733 xfs_reclaim_work_queue(
734 struct xfs_mount
*mp
)
738 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
739 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
740 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
746 * This is a fast pass over the inode cache to try to get reclaim moving on as
747 * many inodes as possible in a short period of time. It kicks itself every few
748 * seconds, as well as being kicked by the inode cache shrinker when memory
749 * goes low. It scans as quickly as possible avoiding locked inodes or those
750 * already being flushed, and once done schedules a future pass.
754 struct work_struct
*work
)
756 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
757 struct xfs_mount
, m_reclaim_work
);
759 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
760 xfs_reclaim_work_queue(mp
);
764 __xfs_inode_set_reclaim_tag(
765 struct xfs_perag
*pag
,
766 struct xfs_inode
*ip
)
768 radix_tree_tag_set(&pag
->pag_ici_root
,
769 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
770 XFS_ICI_RECLAIM_TAG
);
772 if (!pag
->pag_ici_reclaimable
) {
773 /* propagate the reclaim tag up into the perag radix tree */
774 spin_lock(&ip
->i_mount
->m_perag_lock
);
775 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
776 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
777 XFS_ICI_RECLAIM_TAG
);
778 spin_unlock(&ip
->i_mount
->m_perag_lock
);
780 /* schedule periodic background inode reclaim */
781 xfs_reclaim_work_queue(ip
->i_mount
);
783 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
786 pag
->pag_ici_reclaimable
++;
790 * We set the inode flag atomically with the radix tree tag.
791 * Once we get tag lookups on the radix tree, this inode flag
795 xfs_inode_set_reclaim_tag(
798 struct xfs_mount
*mp
= ip
->i_mount
;
799 struct xfs_perag
*pag
;
801 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
802 spin_lock(&pag
->pag_ici_lock
);
803 spin_lock(&ip
->i_flags_lock
);
804 __xfs_inode_set_reclaim_tag(pag
, ip
);
805 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
806 spin_unlock(&ip
->i_flags_lock
);
807 spin_unlock(&pag
->pag_ici_lock
);
812 __xfs_inode_clear_reclaim(
816 pag
->pag_ici_reclaimable
--;
817 if (!pag
->pag_ici_reclaimable
) {
818 /* clear the reclaim tag from the perag radix tree */
819 spin_lock(&ip
->i_mount
->m_perag_lock
);
820 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
821 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
822 XFS_ICI_RECLAIM_TAG
);
823 spin_unlock(&ip
->i_mount
->m_perag_lock
);
824 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
830 __xfs_inode_clear_reclaim_tag(
835 radix_tree_tag_clear(&pag
->pag_ici_root
,
836 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
837 __xfs_inode_clear_reclaim(pag
, ip
);
841 * Grab the inode for reclaim exclusively.
842 * Return 0 if we grabbed it, non-zero otherwise.
845 xfs_reclaim_inode_grab(
846 struct xfs_inode
*ip
,
849 ASSERT(rcu_read_lock_held());
851 /* quick check for stale RCU freed inode */
856 * If we are asked for non-blocking operation, do unlocked checks to
857 * see if the inode already is being flushed or in reclaim to avoid
860 if ((flags
& SYNC_TRYLOCK
) &&
861 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
865 * The radix tree lock here protects a thread in xfs_iget from racing
866 * with us starting reclaim on the inode. Once we have the
867 * XFS_IRECLAIM flag set it will not touch us.
869 * Due to RCU lookup, we may find inodes that have been freed and only
870 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
871 * aren't candidates for reclaim at all, so we must check the
872 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
874 spin_lock(&ip
->i_flags_lock
);
875 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
876 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
877 /* not a reclaim candidate. */
878 spin_unlock(&ip
->i_flags_lock
);
881 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
882 spin_unlock(&ip
->i_flags_lock
);
887 * Inodes in different states need to be treated differently. The following
888 * table lists the inode states and the reclaim actions necessary:
890 * inode state iflush ret required action
891 * --------------- ---------- ---------------
893 * shutdown EIO unpin and reclaim
894 * clean, unpinned 0 reclaim
895 * stale, unpinned 0 reclaim
896 * clean, pinned(*) 0 requeue
897 * stale, pinned EAGAIN requeue
898 * dirty, async - requeue
899 * dirty, sync 0 reclaim
901 * (*) dgc: I don't think the clean, pinned state is possible but it gets
902 * handled anyway given the order of checks implemented.
904 * Also, because we get the flush lock first, we know that any inode that has
905 * been flushed delwri has had the flush completed by the time we check that
906 * the inode is clean.
908 * Note that because the inode is flushed delayed write by AIL pushing, the
909 * flush lock may already be held here and waiting on it can result in very
910 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
911 * the caller should push the AIL first before trying to reclaim inodes to
912 * minimise the amount of time spent waiting. For background relaim, we only
913 * bother to reclaim clean inodes anyway.
915 * Hence the order of actions after gaining the locks should be:
917 * shutdown => unpin and reclaim
918 * pinned, async => requeue
919 * pinned, sync => unpin
922 * dirty, async => requeue
923 * dirty, sync => flush, wait and reclaim
927 struct xfs_inode
*ip
,
928 struct xfs_perag
*pag
,
931 struct xfs_buf
*bp
= NULL
;
936 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
937 if (!xfs_iflock_nowait(ip
)) {
938 if (!(sync_mode
& SYNC_WAIT
))
943 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
945 xfs_iflush_abort(ip
, false);
948 if (xfs_ipincount(ip
)) {
949 if (!(sync_mode
& SYNC_WAIT
))
953 if (xfs_iflags_test(ip
, XFS_ISTALE
))
955 if (xfs_inode_clean(ip
))
959 * Never flush out dirty data during non-blocking reclaim, as it would
960 * just contend with AIL pushing trying to do the same job.
962 if (!(sync_mode
& SYNC_WAIT
))
966 * Now we have an inode that needs flushing.
968 * Note that xfs_iflush will never block on the inode buffer lock, as
969 * xfs_ifree_cluster() can lock the inode buffer before it locks the
970 * ip->i_lock, and we are doing the exact opposite here. As a result,
971 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
972 * result in an ABBA deadlock with xfs_ifree_cluster().
974 * As xfs_ifree_cluser() must gather all inodes that are active in the
975 * cache to mark them stale, if we hit this case we don't actually want
976 * to do IO here - we want the inode marked stale so we can simply
977 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
978 * inode, back off and try again. Hopefully the next pass through will
979 * see the stale flag set on the inode.
981 error
= xfs_iflush(ip
, &bp
);
982 if (error
== -EAGAIN
) {
983 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
984 /* backoff longer than in xfs_ifree_cluster */
990 error
= xfs_bwrite(bp
);
997 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
999 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1001 * Remove the inode from the per-AG radix tree.
1003 * Because radix_tree_delete won't complain even if the item was never
1004 * added to the tree assert that it's been there before to catch
1005 * problems with the inode life time early on.
1007 spin_lock(&pag
->pag_ici_lock
);
1008 if (!radix_tree_delete(&pag
->pag_ici_root
,
1009 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
1011 __xfs_inode_clear_reclaim(pag
, ip
);
1012 spin_unlock(&pag
->pag_ici_lock
);
1015 * Here we do an (almost) spurious inode lock in order to coordinate
1016 * with inode cache radix tree lookups. This is because the lookup
1017 * can reference the inodes in the cache without taking references.
1019 * We make that OK here by ensuring that we wait until the inode is
1020 * unlocked after the lookup before we go ahead and free it.
1022 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1023 xfs_qm_dqdetach(ip
);
1024 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1032 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1033 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1035 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1036 * a short while. However, this just burns CPU time scanning the tree
1037 * waiting for IO to complete and the reclaim work never goes back to
1038 * the idle state. Instead, return 0 to let the next scheduled
1039 * background reclaim attempt to reclaim the inode again.
1045 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1046 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1047 * then a shut down during filesystem unmount reclaim walk leak all the
1048 * unreclaimed inodes.
1051 xfs_reclaim_inodes_ag(
1052 struct xfs_mount
*mp
,
1056 struct xfs_perag
*pag
;
1060 int trylock
= flags
& SYNC_TRYLOCK
;
1066 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1067 unsigned long first_index
= 0;
1071 ag
= pag
->pag_agno
+ 1;
1074 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1079 first_index
= pag
->pag_ici_reclaim_cursor
;
1081 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1084 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1088 nr_found
= radix_tree_gang_lookup_tag(
1090 (void **)batch
, first_index
,
1092 XFS_ICI_RECLAIM_TAG
);
1100 * Grab the inodes before we drop the lock. if we found
1101 * nothing, nr == 0 and the loop will be skipped.
1103 for (i
= 0; i
< nr_found
; i
++) {
1104 struct xfs_inode
*ip
= batch
[i
];
1106 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1110 * Update the index for the next lookup. Catch
1111 * overflows into the next AG range which can
1112 * occur if we have inodes in the last block of
1113 * the AG and we are currently pointing to the
1116 * Because we may see inodes that are from the
1117 * wrong AG due to RCU freeing and
1118 * reallocation, only update the index if it
1119 * lies in this AG. It was a race that lead us
1120 * to see this inode, so another lookup from
1121 * the same index will not find it again.
1123 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1126 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1127 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1131 /* unlock now we've grabbed the inodes. */
1134 for (i
= 0; i
< nr_found
; i
++) {
1137 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1138 if (error
&& last_error
!= -EFSCORRUPTED
)
1142 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1146 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1148 if (trylock
&& !done
)
1149 pag
->pag_ici_reclaim_cursor
= first_index
;
1151 pag
->pag_ici_reclaim_cursor
= 0;
1152 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1157 * if we skipped any AG, and we still have scan count remaining, do
1158 * another pass this time using blocking reclaim semantics (i.e
1159 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1160 * ensure that when we get more reclaimers than AGs we block rather
1161 * than spin trying to execute reclaim.
1163 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1175 int nr_to_scan
= INT_MAX
;
1177 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1181 * Scan a certain number of inodes for reclaim.
1183 * When called we make sure that there is a background (fast) inode reclaim in
1184 * progress, while we will throttle the speed of reclaim via doing synchronous
1185 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1186 * them to be cleaned, which we hope will not be very long due to the
1187 * background walker having already kicked the IO off on those dirty inodes.
1190 xfs_reclaim_inodes_nr(
1191 struct xfs_mount
*mp
,
1194 /* kick background reclaimer and push the AIL */
1195 xfs_reclaim_work_queue(mp
);
1196 xfs_ail_push_all(mp
->m_ail
);
1198 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1202 * Return the number of reclaimable inodes in the filesystem for
1203 * the shrinker to determine how much to reclaim.
1206 xfs_reclaim_inodes_count(
1207 struct xfs_mount
*mp
)
1209 struct xfs_perag
*pag
;
1210 xfs_agnumber_t ag
= 0;
1211 int reclaimable
= 0;
1213 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1214 ag
= pag
->pag_agno
+ 1;
1215 reclaimable
+= pag
->pag_ici_reclaimable
;
1223 struct xfs_inode
*ip
,
1224 struct xfs_eofblocks
*eofb
)
1226 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1227 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1230 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1231 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1234 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1235 xfs_get_projid(ip
) != eofb
->eof_prid
)
1242 * A union-based inode filtering algorithm. Process the inode if any of the
1243 * criteria match. This is for global/internal scans only.
1246 xfs_inode_match_id_union(
1247 struct xfs_inode
*ip
,
1248 struct xfs_eofblocks
*eofb
)
1250 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1251 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1254 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1255 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1258 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1259 xfs_get_projid(ip
) == eofb
->eof_prid
)
1266 xfs_inode_free_eofblocks(
1267 struct xfs_inode
*ip
,
1272 struct xfs_eofblocks
*eofb
= args
;
1273 bool need_iolock
= true;
1276 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1278 if (!xfs_can_free_eofblocks(ip
, false)) {
1279 /* inode could be preallocated or append-only */
1280 trace_xfs_inode_free_eofblocks_invalid(ip
);
1281 xfs_inode_clear_eofblocks_tag(ip
);
1286 * If the mapping is dirty the operation can block and wait for some
1287 * time. Unless we are waiting, skip it.
1289 if (!(flags
& SYNC_WAIT
) &&
1290 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1294 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1295 match
= xfs_inode_match_id_union(ip
, eofb
);
1297 match
= xfs_inode_match_id(ip
, eofb
);
1301 /* skip the inode if the file size is too small */
1302 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1303 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1307 * A scan owner implies we already hold the iolock. Skip it in
1308 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1309 * the possibility of EAGAIN being returned.
1311 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1312 need_iolock
= false;
1315 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1317 /* don't revisit the inode if we're not waiting */
1318 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1325 xfs_icache_free_eofblocks(
1326 struct xfs_mount
*mp
,
1327 struct xfs_eofblocks
*eofb
)
1329 int flags
= SYNC_TRYLOCK
;
1331 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1334 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1335 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1339 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1340 * multiple quotas, we don't know exactly which quota caused an allocation
1341 * failure. We make a best effort by including each quota under low free space
1342 * conditions (less than 1% free space) in the scan.
1345 xfs_inode_free_quota_eofblocks(
1346 struct xfs_inode
*ip
)
1349 struct xfs_eofblocks eofb
= {0};
1350 struct xfs_dquot
*dq
;
1352 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1355 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1356 * can repeatedly trylock on the inode we're currently processing. We
1357 * run a sync scan to increase effectiveness and use the union filter to
1358 * cover all applicable quotas in a single scan.
1360 eofb
.eof_scan_owner
= ip
->i_ino
;
1361 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1363 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1364 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1365 if (dq
&& xfs_dquot_lowsp(dq
)) {
1366 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1367 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1372 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1373 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1374 if (dq
&& xfs_dquot_lowsp(dq
)) {
1375 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1376 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1382 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
1388 xfs_inode_set_eofblocks_tag(
1391 struct xfs_mount
*mp
= ip
->i_mount
;
1392 struct xfs_perag
*pag
;
1395 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1396 spin_lock(&pag
->pag_ici_lock
);
1397 trace_xfs_inode_set_eofblocks_tag(ip
);
1399 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1400 XFS_ICI_EOFBLOCKS_TAG
);
1401 radix_tree_tag_set(&pag
->pag_ici_root
,
1402 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1403 XFS_ICI_EOFBLOCKS_TAG
);
1405 /* propagate the eofblocks tag up into the perag radix tree */
1406 spin_lock(&ip
->i_mount
->m_perag_lock
);
1407 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1408 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1409 XFS_ICI_EOFBLOCKS_TAG
);
1410 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1412 /* kick off background trimming */
1413 xfs_queue_eofblocks(ip
->i_mount
);
1415 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1419 spin_unlock(&pag
->pag_ici_lock
);
1424 xfs_inode_clear_eofblocks_tag(
1427 struct xfs_mount
*mp
= ip
->i_mount
;
1428 struct xfs_perag
*pag
;
1430 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1431 spin_lock(&pag
->pag_ici_lock
);
1432 trace_xfs_inode_clear_eofblocks_tag(ip
);
1434 radix_tree_tag_clear(&pag
->pag_ici_root
,
1435 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1436 XFS_ICI_EOFBLOCKS_TAG
);
1437 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1438 /* clear the eofblocks tag from the perag radix tree */
1439 spin_lock(&ip
->i_mount
->m_perag_lock
);
1440 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1441 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1442 XFS_ICI_EOFBLOCKS_TAG
);
1443 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1444 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1448 spin_unlock(&pag
->pag_ici_lock
);