2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
46 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
47 static int xfs_uuid_table_size
;
48 static uuid_t
*xfs_uuid_table
;
51 xfs_uuid_table_free(void)
53 if (xfs_uuid_table_size
== 0)
55 kmem_free(xfs_uuid_table
);
56 xfs_uuid_table
= NULL
;
57 xfs_uuid_table_size
= 0;
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
71 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
74 if (uuid_is_nil(uuid
)) {
75 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
79 mutex_lock(&xfs_uuid_table_mutex
);
80 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
81 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
85 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
90 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
91 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
92 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
94 hole
= xfs_uuid_table_size
++;
96 xfs_uuid_table
[hole
] = *uuid
;
97 mutex_unlock(&xfs_uuid_table_mutex
);
102 mutex_unlock(&xfs_uuid_table_mutex
);
103 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
109 struct xfs_mount
*mp
)
111 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
114 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
117 mutex_lock(&xfs_uuid_table_mutex
);
118 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
119 if (uuid_is_nil(&xfs_uuid_table
[i
]))
121 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
123 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
126 ASSERT(i
< xfs_uuid_table_size
);
127 mutex_unlock(&xfs_uuid_table_mutex
);
133 struct rcu_head
*head
)
135 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
137 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
142 * Free up the per-ag resources associated with the mount structure.
149 struct xfs_perag
*pag
;
151 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
152 spin_lock(&mp
->m_perag_lock
);
153 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
154 spin_unlock(&mp
->m_perag_lock
);
156 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
157 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
166 xfs_sb_validate_fsb_count(
170 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
171 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
173 /* Limited by ULONG_MAX of page cache index */
174 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
180 xfs_initialize_perag(
182 xfs_agnumber_t agcount
,
183 xfs_agnumber_t
*maxagi
)
185 xfs_agnumber_t index
;
186 xfs_agnumber_t first_initialised
= 0;
191 * Walk the current per-ag tree so we don't try to initialise AGs
192 * that already exist (growfs case). Allocate and insert all the
193 * AGs we don't find ready for initialisation.
195 for (index
= 0; index
< agcount
; index
++) {
196 pag
= xfs_perag_get(mp
, index
);
201 if (!first_initialised
)
202 first_initialised
= index
;
204 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
207 pag
->pag_agno
= index
;
209 spin_lock_init(&pag
->pag_ici_lock
);
210 mutex_init(&pag
->pag_ici_reclaim_lock
);
211 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
212 spin_lock_init(&pag
->pag_buf_lock
);
213 pag
->pag_buf_tree
= RB_ROOT
;
215 if (radix_tree_preload(GFP_NOFS
))
218 spin_lock(&mp
->m_perag_lock
);
219 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
221 spin_unlock(&mp
->m_perag_lock
);
222 radix_tree_preload_end();
226 spin_unlock(&mp
->m_perag_lock
);
227 radix_tree_preload_end();
230 index
= xfs_set_inode_alloc(mp
, agcount
);
238 for (; index
> first_initialised
; index
--) {
239 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
248 * Does the initial read of the superblock.
252 struct xfs_mount
*mp
,
255 unsigned int sector_size
;
257 struct xfs_sb
*sbp
= &mp
->m_sb
;
259 int loud
= !(flags
& XFS_MFSI_QUIET
);
260 const struct xfs_buf_ops
*buf_ops
;
262 ASSERT(mp
->m_sb_bp
== NULL
);
263 ASSERT(mp
->m_ddev_targp
!= NULL
);
266 * For the initial read, we must guess at the sector
267 * size based on the block device. It's enough to
268 * get the sb_sectsize out of the superblock and
269 * then reread with the proper length.
270 * We don't verify it yet, because it may not be complete.
272 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
276 * Allocate a (locked) buffer to hold the superblock.
277 * This will be kept around at all times to optimize
278 * access to the superblock.
281 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
282 BTOBB(sector_size
), 0, &bp
, buf_ops
);
285 xfs_warn(mp
, "SB validate failed with error %d.", error
);
286 /* bad CRC means corrupted metadata */
287 if (error
== -EFSBADCRC
)
288 error
= -EFSCORRUPTED
;
293 * Initialize the mount structure from the superblock.
295 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
298 * If we haven't validated the superblock, do so now before we try
299 * to check the sector size and reread the superblock appropriately.
301 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
303 xfs_warn(mp
, "Invalid superblock magic number");
309 * We must be able to do sector-sized and sector-aligned IO.
311 if (sector_size
> sbp
->sb_sectsize
) {
313 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
314 sector_size
, sbp
->sb_sectsize
);
319 if (buf_ops
== NULL
) {
321 * Re-read the superblock so the buffer is correctly sized,
322 * and properly verified.
325 sector_size
= sbp
->sb_sectsize
;
326 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
330 xfs_reinit_percpu_counters(mp
);
332 /* no need to be quiet anymore, so reset the buf ops */
333 bp
->b_ops
= &xfs_sb_buf_ops
;
345 * Update alignment values based on mount options and sb values
348 xfs_update_alignment(xfs_mount_t
*mp
)
350 xfs_sb_t
*sbp
= &(mp
->m_sb
);
354 * If stripe unit and stripe width are not multiples
355 * of the fs blocksize turn off alignment.
357 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
358 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
360 "alignment check failed: sunit/swidth vs. blocksize(%d)",
365 * Convert the stripe unit and width to FSBs.
367 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
368 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
370 "alignment check failed: sunit/swidth vs. agsize(%d)",
373 } else if (mp
->m_dalign
) {
374 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
377 "alignment check failed: sunit(%d) less than bsize(%d)",
378 mp
->m_dalign
, sbp
->sb_blocksize
);
384 * Update superblock with new values
387 if (xfs_sb_version_hasdalign(sbp
)) {
388 if (sbp
->sb_unit
!= mp
->m_dalign
) {
389 sbp
->sb_unit
= mp
->m_dalign
;
390 mp
->m_update_sb
= true;
392 if (sbp
->sb_width
!= mp
->m_swidth
) {
393 sbp
->sb_width
= mp
->m_swidth
;
394 mp
->m_update_sb
= true;
398 "cannot change alignment: superblock does not support data alignment");
401 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
402 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
403 mp
->m_dalign
= sbp
->sb_unit
;
404 mp
->m_swidth
= sbp
->sb_width
;
411 * Set the maximum inode count for this filesystem
414 xfs_set_maxicount(xfs_mount_t
*mp
)
416 xfs_sb_t
*sbp
= &(mp
->m_sb
);
419 if (sbp
->sb_imax_pct
) {
421 * Make sure the maximum inode count is a multiple
422 * of the units we allocate inodes in.
424 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
426 do_div(icount
, mp
->m_ialloc_blks
);
427 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
435 * Set the default minimum read and write sizes unless
436 * already specified in a mount option.
437 * We use smaller I/O sizes when the file system
438 * is being used for NFS service (wsync mount option).
441 xfs_set_rw_sizes(xfs_mount_t
*mp
)
443 xfs_sb_t
*sbp
= &(mp
->m_sb
);
444 int readio_log
, writeio_log
;
446 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
447 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
448 readio_log
= XFS_WSYNC_READIO_LOG
;
449 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
451 readio_log
= XFS_READIO_LOG_LARGE
;
452 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
455 readio_log
= mp
->m_readio_log
;
456 writeio_log
= mp
->m_writeio_log
;
459 if (sbp
->sb_blocklog
> readio_log
) {
460 mp
->m_readio_log
= sbp
->sb_blocklog
;
462 mp
->m_readio_log
= readio_log
;
464 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
465 if (sbp
->sb_blocklog
> writeio_log
) {
466 mp
->m_writeio_log
= sbp
->sb_blocklog
;
468 mp
->m_writeio_log
= writeio_log
;
470 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
474 * precalculate the low space thresholds for dynamic speculative preallocation.
477 xfs_set_low_space_thresholds(
478 struct xfs_mount
*mp
)
482 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
483 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
486 mp
->m_low_space
[i
] = space
* (i
+ 1);
492 * Set whether we're using inode alignment.
495 xfs_set_inoalignment(xfs_mount_t
*mp
)
497 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
498 mp
->m_sb
.sb_inoalignmt
>=
499 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
500 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
502 mp
->m_inoalign_mask
= 0;
504 * If we are using stripe alignment, check whether
505 * the stripe unit is a multiple of the inode alignment
507 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
508 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
509 mp
->m_sinoalign
= mp
->m_dalign
;
515 * Check that the data (and log if separate) is an ok size.
519 struct xfs_mount
*mp
)
525 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
526 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
527 xfs_warn(mp
, "filesystem size mismatch detected");
530 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
531 d
- XFS_FSS_TO_BB(mp
, 1),
532 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
534 xfs_warn(mp
, "last sector read failed");
539 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
542 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
543 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
544 xfs_warn(mp
, "log size mismatch detected");
547 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
548 d
- XFS_FSB_TO_BB(mp
, 1),
549 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
551 xfs_warn(mp
, "log device read failed");
559 * Clear the quotaflags in memory and in the superblock.
562 xfs_mount_reset_sbqflags(
563 struct xfs_mount
*mp
)
567 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
568 if (mp
->m_sb
.sb_qflags
== 0)
570 spin_lock(&mp
->m_sb_lock
);
571 mp
->m_sb
.sb_qflags
= 0;
572 spin_unlock(&mp
->m_sb_lock
);
574 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
577 return xfs_sync_sb(mp
, false);
581 xfs_default_resblks(xfs_mount_t
*mp
)
586 * We default to 5% or 8192 fsbs of space reserved, whichever is
587 * smaller. This is intended to cover concurrent allocation
588 * transactions when we initially hit enospc. These each require a 4
589 * block reservation. Hence by default we cover roughly 2000 concurrent
590 * allocation reservations.
592 resblks
= mp
->m_sb
.sb_dblocks
;
594 resblks
= min_t(__uint64_t
, resblks
, 8192);
599 * This function does the following on an initial mount of a file system:
600 * - reads the superblock from disk and init the mount struct
601 * - if we're a 32-bit kernel, do a size check on the superblock
602 * so we don't mount terabyte filesystems
603 * - init mount struct realtime fields
604 * - allocate inode hash table for fs
605 * - init directory manager
606 * - perform recovery and init the log manager
610 struct xfs_mount
*mp
)
612 struct xfs_sb
*sbp
= &(mp
->m_sb
);
613 struct xfs_inode
*rip
;
619 xfs_sb_mount_common(mp
, sbp
);
622 * Check for a mismatched features2 values. Older kernels read & wrote
623 * into the wrong sb offset for sb_features2 on some platforms due to
624 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
625 * which made older superblock reading/writing routines swap it as a
628 * For backwards compatibility, we make both slots equal.
630 * If we detect a mismatched field, we OR the set bits into the existing
631 * features2 field in case it has already been modified; we don't want
632 * to lose any features. We then update the bad location with the ORed
633 * value so that older kernels will see any features2 flags. The
634 * superblock writeback code ensures the new sb_features2 is copied to
635 * sb_bad_features2 before it is logged or written to disk.
637 if (xfs_sb_has_mismatched_features2(sbp
)) {
638 xfs_warn(mp
, "correcting sb_features alignment problem");
639 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
640 mp
->m_update_sb
= true;
643 * Re-check for ATTR2 in case it was found in bad_features2
646 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
647 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
648 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
651 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
652 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
653 xfs_sb_version_removeattr2(&mp
->m_sb
);
654 mp
->m_update_sb
= true;
656 /* update sb_versionnum for the clearing of the morebits */
657 if (!sbp
->sb_features2
)
658 mp
->m_update_sb
= true;
661 /* always use v2 inodes by default now */
662 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
663 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
664 mp
->m_update_sb
= true;
668 * Check if sb_agblocks is aligned at stripe boundary
669 * If sb_agblocks is NOT aligned turn off m_dalign since
670 * allocator alignment is within an ag, therefore ag has
671 * to be aligned at stripe boundary.
673 error
= xfs_update_alignment(mp
);
677 xfs_alloc_compute_maxlevels(mp
);
678 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
679 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
680 xfs_ialloc_compute_maxlevels(mp
);
682 xfs_set_maxicount(mp
);
684 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
688 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
689 &mp
->m_kobj
, "stats");
691 goto out_remove_sysfs
;
693 error
= xfs_uuid_mount(mp
);
698 * Set the minimum read and write sizes
700 xfs_set_rw_sizes(mp
);
702 /* set the low space thresholds for dynamic preallocation */
703 xfs_set_low_space_thresholds(mp
);
706 * Set the inode cluster size.
707 * This may still be overridden by the file system
708 * block size if it is larger than the chosen cluster size.
710 * For v5 filesystems, scale the cluster size with the inode size to
711 * keep a constant ratio of inode per cluster buffer, but only if mkfs
712 * has set the inode alignment value appropriately for larger cluster
715 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
716 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
717 int new_size
= mp
->m_inode_cluster_size
;
719 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
720 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
721 mp
->m_inode_cluster_size
= new_size
;
725 * If enabled, sparse inode chunk alignment is expected to match the
726 * cluster size. Full inode chunk alignment must match the chunk size,
727 * but that is checked on sb read verification...
729 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
730 mp
->m_sb
.sb_spino_align
!=
731 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
733 "Sparse inode block alignment (%u) must match cluster size (%llu).",
734 mp
->m_sb
.sb_spino_align
,
735 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
737 goto out_remove_uuid
;
741 * Set inode alignment fields
743 xfs_set_inoalignment(mp
);
746 * Check that the data (and log if separate) is an ok size.
748 error
= xfs_check_sizes(mp
);
750 goto out_remove_uuid
;
753 * Initialize realtime fields in the mount structure
755 error
= xfs_rtmount_init(mp
);
757 xfs_warn(mp
, "RT mount failed");
758 goto out_remove_uuid
;
762 * Copies the low order bits of the timestamp and the randomly
763 * set "sequence" number out of a UUID.
765 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
767 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
769 error
= xfs_da_mount(mp
);
771 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
772 goto out_remove_uuid
;
776 * Initialize the precomputed transaction reservations values.
781 * Allocate and initialize the per-ag data.
783 spin_lock_init(&mp
->m_perag_lock
);
784 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
785 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
787 xfs_warn(mp
, "Failed per-ag init: %d", error
);
791 if (!sbp
->sb_logblocks
) {
792 xfs_warn(mp
, "no log defined");
793 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
794 error
= -EFSCORRUPTED
;
799 * Log's mount-time initialization. The first part of recovery can place
800 * some items on the AIL, to be handled when recovery is finished or
803 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
804 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
805 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
807 xfs_warn(mp
, "log mount failed");
812 * Now the log is mounted, we know if it was an unclean shutdown or
813 * not. If it was, with the first phase of recovery has completed, we
814 * have consistent AG blocks on disk. We have not recovered EFIs yet,
815 * but they are recovered transactionally in the second recovery phase
818 * Hence we can safely re-initialise incore superblock counters from
819 * the per-ag data. These may not be correct if the filesystem was not
820 * cleanly unmounted, so we need to wait for recovery to finish before
823 * If the filesystem was cleanly unmounted, then we can trust the
824 * values in the superblock to be correct and we don't need to do
827 * If we are currently making the filesystem, the initialisation will
828 * fail as the perag data is in an undefined state.
830 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
831 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
832 !mp
->m_sb
.sb_inprogress
) {
833 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
835 goto out_log_dealloc
;
839 * Get and sanity-check the root inode.
840 * Save the pointer to it in the mount structure.
842 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
844 xfs_warn(mp
, "failed to read root inode");
845 goto out_log_dealloc
;
850 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
851 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
852 (unsigned long long)rip
->i_ino
);
853 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
854 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
856 error
= -EFSCORRUPTED
;
859 mp
->m_rootip
= rip
; /* save it */
861 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
864 * Initialize realtime inode pointers in the mount structure
866 error
= xfs_rtmount_inodes(mp
);
869 * Free up the root inode.
871 xfs_warn(mp
, "failed to read RT inodes");
876 * If this is a read-only mount defer the superblock updates until
877 * the next remount into writeable mode. Otherwise we would never
878 * perform the update e.g. for the root filesystem.
880 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
881 error
= xfs_sync_sb(mp
, false);
883 xfs_warn(mp
, "failed to write sb changes");
889 * Initialise the XFS quota management subsystem for this mount
891 if (XFS_IS_QUOTA_RUNNING(mp
)) {
892 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
896 ASSERT(!XFS_IS_QUOTA_ON(mp
));
899 * If a file system had quotas running earlier, but decided to
900 * mount without -o uquota/pquota/gquota options, revoke the
901 * quotachecked license.
903 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
904 xfs_notice(mp
, "resetting quota flags");
905 error
= xfs_mount_reset_sbqflags(mp
);
912 * Finish recovering the file system. This part needed to be delayed
913 * until after the root and real-time bitmap inodes were consistently
916 error
= xfs_log_mount_finish(mp
);
918 xfs_warn(mp
, "log mount finish failed");
923 * Complete the quota initialisation, post-log-replay component.
926 ASSERT(mp
->m_qflags
== 0);
927 mp
->m_qflags
= quotaflags
;
929 xfs_qm_mount_quotas(mp
);
933 * Now we are mounted, reserve a small amount of unused space for
934 * privileged transactions. This is needed so that transaction
935 * space required for critical operations can dip into this pool
936 * when at ENOSPC. This is needed for operations like create with
937 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
938 * are not allowed to use this reserved space.
940 * This may drive us straight to ENOSPC on mount, but that implies
941 * we were already there on the last unmount. Warn if this occurs.
943 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
944 resblks
= xfs_default_resblks(mp
);
945 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
948 "Unable to allocate reserve blocks. Continuing without reserve pool.");
954 xfs_rtunmount_inodes(mp
);
957 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
958 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
960 xfs_log_mount_cancel(mp
);
962 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
963 xfs_wait_buftarg(mp
->m_logdev_targp
);
964 xfs_wait_buftarg(mp
->m_ddev_targp
);
970 xfs_uuid_unmount(mp
);
972 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
974 xfs_sysfs_del(&mp
->m_kobj
);
980 * This flushes out the inodes,dquots and the superblock, unmounts the
981 * log and makes sure that incore structures are freed.
985 struct xfs_mount
*mp
)
990 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
992 xfs_qm_unmount_quotas(mp
);
993 xfs_rtunmount_inodes(mp
);
997 * We can potentially deadlock here if we have an inode cluster
998 * that has been freed has its buffer still pinned in memory because
999 * the transaction is still sitting in a iclog. The stale inodes
1000 * on that buffer will have their flush locks held until the
1001 * transaction hits the disk and the callbacks run. the inode
1002 * flush takes the flush lock unconditionally and with nothing to
1003 * push out the iclog we will never get that unlocked. hence we
1004 * need to force the log first.
1006 xfs_log_force(mp
, XFS_LOG_SYNC
);
1009 * Flush all pending changes from the AIL.
1011 xfs_ail_push_all_sync(mp
->m_ail
);
1014 * And reclaim all inodes. At this point there should be no dirty
1015 * inodes and none should be pinned or locked, but use synchronous
1016 * reclaim just to be sure. We can stop background inode reclaim
1017 * here as well if it is still running.
1019 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1020 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1025 * Unreserve any blocks we have so that when we unmount we don't account
1026 * the reserved free space as used. This is really only necessary for
1027 * lazy superblock counting because it trusts the incore superblock
1028 * counters to be absolutely correct on clean unmount.
1030 * We don't bother correcting this elsewhere for lazy superblock
1031 * counting because on mount of an unclean filesystem we reconstruct the
1032 * correct counter value and this is irrelevant.
1034 * For non-lazy counter filesystems, this doesn't matter at all because
1035 * we only every apply deltas to the superblock and hence the incore
1036 * value does not matter....
1039 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1041 xfs_warn(mp
, "Unable to free reserved block pool. "
1042 "Freespace may not be correct on next mount.");
1044 error
= xfs_log_sbcount(mp
);
1046 xfs_warn(mp
, "Unable to update superblock counters. "
1047 "Freespace may not be correct on next mount.");
1050 xfs_log_unmount(mp
);
1052 xfs_uuid_unmount(mp
);
1055 xfs_errortag_clearall(mp
, 0);
1059 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1060 xfs_sysfs_del(&mp
->m_kobj
);
1064 * Determine whether modifications can proceed. The caller specifies the minimum
1065 * freeze level for which modifications should not be allowed. This allows
1066 * certain operations to proceed while the freeze sequence is in progress, if
1071 struct xfs_mount
*mp
,
1074 ASSERT(level
> SB_UNFROZEN
);
1075 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1076 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1085 * Sync the superblock counters to disk.
1087 * Note this code can be called during the process of freezing, so we use the
1088 * transaction allocator that does not block when the transaction subsystem is
1089 * in its frozen state.
1092 xfs_log_sbcount(xfs_mount_t
*mp
)
1094 /* allow this to proceed during the freeze sequence... */
1095 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1099 * we don't need to do this if we are updating the superblock
1100 * counters on every modification.
1102 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1105 return xfs_sync_sb(mp
, true);
1109 * Deltas for the inode count are +/-64, hence we use a large batch size
1110 * of 128 so we don't need to take the counter lock on every update.
1112 #define XFS_ICOUNT_BATCH 128
1115 struct xfs_mount
*mp
,
1118 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1119 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1121 percpu_counter_add(&mp
->m_icount
, -delta
);
1129 struct xfs_mount
*mp
,
1132 percpu_counter_add(&mp
->m_ifree
, delta
);
1133 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1135 percpu_counter_add(&mp
->m_ifree
, -delta
);
1142 * Deltas for the block count can vary from 1 to very large, but lock contention
1143 * only occurs on frequent small block count updates such as in the delayed
1144 * allocation path for buffered writes (page a time updates). Hence we set
1145 * a large batch count (1024) to minimise global counter updates except when
1146 * we get near to ENOSPC and we have to be very accurate with our updates.
1148 #define XFS_FDBLOCKS_BATCH 1024
1151 struct xfs_mount
*mp
,
1161 * If the reserve pool is depleted, put blocks back into it
1162 * first. Most of the time the pool is full.
1164 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1165 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1169 spin_lock(&mp
->m_sb_lock
);
1170 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1172 if (res_used
> delta
) {
1173 mp
->m_resblks_avail
+= delta
;
1176 mp
->m_resblks_avail
= mp
->m_resblks
;
1177 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1179 spin_unlock(&mp
->m_sb_lock
);
1184 * Taking blocks away, need to be more accurate the closer we
1187 * If the counter has a value of less than 2 * max batch size,
1188 * then make everything serialise as we are real close to
1191 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1192 XFS_FDBLOCKS_BATCH
) < 0)
1195 batch
= XFS_FDBLOCKS_BATCH
;
1197 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1198 if (__percpu_counter_compare(&mp
->m_fdblocks
, XFS_ALLOC_SET_ASIDE(mp
),
1199 XFS_FDBLOCKS_BATCH
) >= 0) {
1205 * lock up the sb for dipping into reserves before releasing the space
1206 * that took us to ENOSPC.
1208 spin_lock(&mp
->m_sb_lock
);
1209 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1211 goto fdblocks_enospc
;
1213 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1214 if (lcounter
>= 0) {
1215 mp
->m_resblks_avail
= lcounter
;
1216 spin_unlock(&mp
->m_sb_lock
);
1219 printk_once(KERN_WARNING
1220 "Filesystem \"%s\": reserve blocks depleted! "
1221 "Consider increasing reserve pool size.",
1224 spin_unlock(&mp
->m_sb_lock
);
1230 struct xfs_mount
*mp
,
1236 spin_lock(&mp
->m_sb_lock
);
1237 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1241 mp
->m_sb
.sb_frextents
= lcounter
;
1242 spin_unlock(&mp
->m_sb_lock
);
1247 * xfs_getsb() is called to obtain the buffer for the superblock.
1248 * The buffer is returned locked and read in from disk.
1249 * The buffer should be released with a call to xfs_brelse().
1251 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1252 * the superblock buffer if it can be locked without sleeping.
1253 * If it can't then we'll return NULL.
1257 struct xfs_mount
*mp
,
1260 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1262 if (!xfs_buf_trylock(bp
)) {
1263 if (flags
& XBF_TRYLOCK
)
1269 ASSERT(bp
->b_flags
& XBF_DONE
);
1274 * Used to free the superblock along various error paths.
1278 struct xfs_mount
*mp
)
1280 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1288 * If the underlying (data/log/rt) device is readonly, there are some
1289 * operations that cannot proceed.
1292 xfs_dev_is_read_only(
1293 struct xfs_mount
*mp
,
1296 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1297 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1298 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1299 xfs_notice(mp
, "%s required on read-only device.", message
);
1300 xfs_notice(mp
, "write access unavailable, cannot proceed.");