2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
71 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow
= 2;
75 module_param(halt_poll_ns_grow
, uint
, S_IRUGO
| S_IWUSR
);
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink
;
79 module_param(halt_poll_ns_shrink
, uint
, S_IRUGO
| S_IWUSR
);
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
87 DEFINE_SPINLOCK(kvm_lock
);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
91 static cpumask_var_t cpus_hardware_enabled
;
92 static int kvm_usage_count
;
93 static atomic_t hardware_enable_failed
;
95 struct kmem_cache
*kvm_vcpu_cache
;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
98 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
100 struct dentry
*kvm_debugfs_dir
;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
103 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
112 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
117 __visible
bool kvm_rebooting
;
118 EXPORT_SYMBOL_GPL(kvm_rebooting
);
120 static bool largepages_enabled
= true;
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
125 return PageReserved(pfn_to_page(pfn
));
131 * Switches to specified vcpu, until a matching vcpu_put()
133 int vcpu_load(struct kvm_vcpu
*vcpu
)
137 if (mutex_lock_killable(&vcpu
->mutex
))
140 preempt_notifier_register(&vcpu
->preempt_notifier
);
141 kvm_arch_vcpu_load(vcpu
, cpu
);
146 void vcpu_put(struct kvm_vcpu
*vcpu
)
149 kvm_arch_vcpu_put(vcpu
);
150 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
152 mutex_unlock(&vcpu
->mutex
);
155 static void ack_flush(void *_completed
)
159 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
164 struct kvm_vcpu
*vcpu
;
166 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
169 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
170 kvm_make_request(req
, vcpu
);
173 /* Set ->requests bit before we read ->mode. */
174 smp_mb__after_atomic();
176 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
177 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
178 cpumask_set_cpu(cpu
, cpus
);
180 if (unlikely(cpus
== NULL
))
181 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
182 else if (!cpumask_empty(cpus
))
183 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
187 free_cpumask_var(cpus
);
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
195 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
196 * kvm_make_all_cpus_request.
198 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
201 * We want to publish modifications to the page tables before reading
202 * mode. Pairs with a memory barrier in arch-specific code.
203 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
204 * and smp_mb in walk_shadow_page_lockless_begin/end.
205 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
207 * There is already an smp_mb__after_atomic() before
208 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
211 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
212 ++kvm
->stat
.remote_tlb_flush
;
213 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
215 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
218 void kvm_reload_remote_mmus(struct kvm
*kvm
)
220 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
223 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
228 mutex_init(&vcpu
->mutex
);
233 init_swait_queue_head(&vcpu
->wq
);
234 kvm_async_pf_vcpu_init(vcpu
);
237 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
239 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
244 vcpu
->run
= page_address(page
);
246 kvm_vcpu_set_in_spin_loop(vcpu
, false);
247 kvm_vcpu_set_dy_eligible(vcpu
, false);
248 vcpu
->preempted
= false;
250 r
= kvm_arch_vcpu_init(vcpu
);
256 free_page((unsigned long)vcpu
->run
);
260 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
262 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
265 kvm_arch_vcpu_uninit(vcpu
);
266 free_page((unsigned long)vcpu
->run
);
268 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
270 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
271 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
273 return container_of(mn
, struct kvm
, mmu_notifier
);
276 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
277 struct mm_struct
*mm
,
278 unsigned long address
)
280 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
281 int need_tlb_flush
, idx
;
284 * When ->invalidate_page runs, the linux pte has been zapped
285 * already but the page is still allocated until
286 * ->invalidate_page returns. So if we increase the sequence
287 * here the kvm page fault will notice if the spte can't be
288 * established because the page is going to be freed. If
289 * instead the kvm page fault establishes the spte before
290 * ->invalidate_page runs, kvm_unmap_hva will release it
293 * The sequence increase only need to be seen at spin_unlock
294 * time, and not at spin_lock time.
296 * Increasing the sequence after the spin_unlock would be
297 * unsafe because the kvm page fault could then establish the
298 * pte after kvm_unmap_hva returned, without noticing the page
299 * is going to be freed.
301 idx
= srcu_read_lock(&kvm
->srcu
);
302 spin_lock(&kvm
->mmu_lock
);
304 kvm
->mmu_notifier_seq
++;
305 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
306 /* we've to flush the tlb before the pages can be freed */
308 kvm_flush_remote_tlbs(kvm
);
310 spin_unlock(&kvm
->mmu_lock
);
312 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
314 srcu_read_unlock(&kvm
->srcu
, idx
);
317 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
318 struct mm_struct
*mm
,
319 unsigned long address
,
322 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
325 idx
= srcu_read_lock(&kvm
->srcu
);
326 spin_lock(&kvm
->mmu_lock
);
327 kvm
->mmu_notifier_seq
++;
328 kvm_set_spte_hva(kvm
, address
, pte
);
329 spin_unlock(&kvm
->mmu_lock
);
330 srcu_read_unlock(&kvm
->srcu
, idx
);
333 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
334 struct mm_struct
*mm
,
338 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
339 int need_tlb_flush
= 0, idx
;
341 idx
= srcu_read_lock(&kvm
->srcu
);
342 spin_lock(&kvm
->mmu_lock
);
344 * The count increase must become visible at unlock time as no
345 * spte can be established without taking the mmu_lock and
346 * count is also read inside the mmu_lock critical section.
348 kvm
->mmu_notifier_count
++;
349 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
350 need_tlb_flush
|= kvm
->tlbs_dirty
;
351 /* we've to flush the tlb before the pages can be freed */
353 kvm_flush_remote_tlbs(kvm
);
355 spin_unlock(&kvm
->mmu_lock
);
356 srcu_read_unlock(&kvm
->srcu
, idx
);
359 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
360 struct mm_struct
*mm
,
364 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
366 spin_lock(&kvm
->mmu_lock
);
368 * This sequence increase will notify the kvm page fault that
369 * the page that is going to be mapped in the spte could have
372 kvm
->mmu_notifier_seq
++;
375 * The above sequence increase must be visible before the
376 * below count decrease, which is ensured by the smp_wmb above
377 * in conjunction with the smp_rmb in mmu_notifier_retry().
379 kvm
->mmu_notifier_count
--;
380 spin_unlock(&kvm
->mmu_lock
);
382 BUG_ON(kvm
->mmu_notifier_count
< 0);
385 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
386 struct mm_struct
*mm
,
390 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
393 idx
= srcu_read_lock(&kvm
->srcu
);
394 spin_lock(&kvm
->mmu_lock
);
396 young
= kvm_age_hva(kvm
, start
, end
);
398 kvm_flush_remote_tlbs(kvm
);
400 spin_unlock(&kvm
->mmu_lock
);
401 srcu_read_unlock(&kvm
->srcu
, idx
);
406 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
407 struct mm_struct
*mm
,
411 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
414 idx
= srcu_read_lock(&kvm
->srcu
);
415 spin_lock(&kvm
->mmu_lock
);
417 * Even though we do not flush TLB, this will still adversely
418 * affect performance on pre-Haswell Intel EPT, where there is
419 * no EPT Access Bit to clear so that we have to tear down EPT
420 * tables instead. If we find this unacceptable, we can always
421 * add a parameter to kvm_age_hva so that it effectively doesn't
422 * do anything on clear_young.
424 * Also note that currently we never issue secondary TLB flushes
425 * from clear_young, leaving this job up to the regular system
426 * cadence. If we find this inaccurate, we might come up with a
427 * more sophisticated heuristic later.
429 young
= kvm_age_hva(kvm
, start
, end
);
430 spin_unlock(&kvm
->mmu_lock
);
431 srcu_read_unlock(&kvm
->srcu
, idx
);
436 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
437 struct mm_struct
*mm
,
438 unsigned long address
)
440 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
443 idx
= srcu_read_lock(&kvm
->srcu
);
444 spin_lock(&kvm
->mmu_lock
);
445 young
= kvm_test_age_hva(kvm
, address
);
446 spin_unlock(&kvm
->mmu_lock
);
447 srcu_read_unlock(&kvm
->srcu
, idx
);
452 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
453 struct mm_struct
*mm
)
455 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
458 idx
= srcu_read_lock(&kvm
->srcu
);
459 kvm_arch_flush_shadow_all(kvm
);
460 srcu_read_unlock(&kvm
->srcu
, idx
);
463 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
464 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
465 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
466 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
467 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
468 .clear_young
= kvm_mmu_notifier_clear_young
,
469 .test_young
= kvm_mmu_notifier_test_young
,
470 .change_pte
= kvm_mmu_notifier_change_pte
,
471 .release
= kvm_mmu_notifier_release
,
474 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
476 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
477 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
480 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
482 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
487 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
489 static struct kvm_memslots
*kvm_alloc_memslots(void)
492 struct kvm_memslots
*slots
;
494 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
499 * Init kvm generation close to the maximum to easily test the
500 * code of handling generation number wrap-around.
502 slots
->generation
= -150;
503 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
504 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
509 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
511 if (!memslot
->dirty_bitmap
)
514 kvfree(memslot
->dirty_bitmap
);
515 memslot
->dirty_bitmap
= NULL
;
519 * Free any memory in @free but not in @dont.
521 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
522 struct kvm_memory_slot
*dont
)
524 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
525 kvm_destroy_dirty_bitmap(free
);
527 kvm_arch_free_memslot(kvm
, free
, dont
);
532 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
534 struct kvm_memory_slot
*memslot
;
539 kvm_for_each_memslot(memslot
, slots
)
540 kvm_free_memslot(kvm
, memslot
, NULL
);
545 static struct kvm
*kvm_create_vm(unsigned long type
)
548 struct kvm
*kvm
= kvm_arch_alloc_vm();
551 return ERR_PTR(-ENOMEM
);
553 spin_lock_init(&kvm
->mmu_lock
);
554 atomic_inc(¤t
->mm
->mm_count
);
555 kvm
->mm
= current
->mm
;
556 kvm_eventfd_init(kvm
);
557 mutex_init(&kvm
->lock
);
558 mutex_init(&kvm
->irq_lock
);
559 mutex_init(&kvm
->slots_lock
);
560 atomic_set(&kvm
->users_count
, 1);
561 INIT_LIST_HEAD(&kvm
->devices
);
563 r
= kvm_arch_init_vm(kvm
, type
);
565 goto out_err_no_disable
;
567 r
= hardware_enable_all();
569 goto out_err_no_disable
;
571 #ifdef CONFIG_HAVE_KVM_IRQFD
572 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
575 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
578 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
579 kvm
->memslots
[i
] = kvm_alloc_memslots();
580 if (!kvm
->memslots
[i
])
581 goto out_err_no_srcu
;
584 if (init_srcu_struct(&kvm
->srcu
))
585 goto out_err_no_srcu
;
586 if (init_srcu_struct(&kvm
->irq_srcu
))
587 goto out_err_no_irq_srcu
;
588 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
589 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
595 r
= kvm_init_mmu_notifier(kvm
);
599 spin_lock(&kvm_lock
);
600 list_add(&kvm
->vm_list
, &vm_list
);
601 spin_unlock(&kvm_lock
);
603 preempt_notifier_inc();
608 cleanup_srcu_struct(&kvm
->irq_srcu
);
610 cleanup_srcu_struct(&kvm
->srcu
);
612 hardware_disable_all();
614 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
615 kfree(kvm
->buses
[i
]);
616 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
617 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
618 kvm_arch_free_vm(kvm
);
624 * Avoid using vmalloc for a small buffer.
625 * Should not be used when the size is statically known.
627 void *kvm_kvzalloc(unsigned long size
)
629 if (size
> PAGE_SIZE
)
630 return vzalloc(size
);
632 return kzalloc(size
, GFP_KERNEL
);
635 static void kvm_destroy_devices(struct kvm
*kvm
)
637 struct kvm_device
*dev
, *tmp
;
639 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
640 list_del(&dev
->vm_node
);
641 dev
->ops
->destroy(dev
);
645 static void kvm_destroy_vm(struct kvm
*kvm
)
648 struct mm_struct
*mm
= kvm
->mm
;
650 kvm_arch_sync_events(kvm
);
651 spin_lock(&kvm_lock
);
652 list_del(&kvm
->vm_list
);
653 spin_unlock(&kvm_lock
);
654 kvm_free_irq_routing(kvm
);
655 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
656 kvm_io_bus_destroy(kvm
->buses
[i
]);
657 kvm_coalesced_mmio_free(kvm
);
658 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
661 kvm_arch_flush_shadow_all(kvm
);
663 kvm_arch_destroy_vm(kvm
);
664 kvm_destroy_devices(kvm
);
665 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
666 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
667 cleanup_srcu_struct(&kvm
->irq_srcu
);
668 cleanup_srcu_struct(&kvm
->srcu
);
669 kvm_arch_free_vm(kvm
);
670 preempt_notifier_dec();
671 hardware_disable_all();
675 void kvm_get_kvm(struct kvm
*kvm
)
677 atomic_inc(&kvm
->users_count
);
679 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
681 void kvm_put_kvm(struct kvm
*kvm
)
683 if (atomic_dec_and_test(&kvm
->users_count
))
686 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
689 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
691 struct kvm
*kvm
= filp
->private_data
;
693 kvm_irqfd_release(kvm
);
700 * Allocation size is twice as large as the actual dirty bitmap size.
701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
703 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
705 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
707 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
708 if (!memslot
->dirty_bitmap
)
715 * Insert memslot and re-sort memslots based on their GFN,
716 * so binary search could be used to lookup GFN.
717 * Sorting algorithm takes advantage of having initially
718 * sorted array and known changed memslot position.
720 static void update_memslots(struct kvm_memslots
*slots
,
721 struct kvm_memory_slot
*new)
724 int i
= slots
->id_to_index
[id
];
725 struct kvm_memory_slot
*mslots
= slots
->memslots
;
727 WARN_ON(mslots
[i
].id
!= id
);
729 WARN_ON(!mslots
[i
].npages
);
730 if (mslots
[i
].npages
)
733 if (!mslots
[i
].npages
)
737 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
738 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
739 if (!mslots
[i
+ 1].npages
)
741 mslots
[i
] = mslots
[i
+ 1];
742 slots
->id_to_index
[mslots
[i
].id
] = i
;
747 * The ">=" is needed when creating a slot with base_gfn == 0,
748 * so that it moves before all those with base_gfn == npages == 0.
750 * On the other hand, if new->npages is zero, the above loop has
751 * already left i pointing to the beginning of the empty part of
752 * mslots, and the ">=" would move the hole backwards in this
753 * case---which is wrong. So skip the loop when deleting a slot.
757 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
758 mslots
[i
] = mslots
[i
- 1];
759 slots
->id_to_index
[mslots
[i
].id
] = i
;
763 WARN_ON_ONCE(i
!= slots
->used_slots
);
766 slots
->id_to_index
[mslots
[i
].id
] = i
;
769 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
771 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
773 #ifdef __KVM_HAVE_READONLY_MEM
774 valid_flags
|= KVM_MEM_READONLY
;
777 if (mem
->flags
& ~valid_flags
)
783 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
784 int as_id
, struct kvm_memslots
*slots
)
786 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
789 * Set the low bit in the generation, which disables SPTE caching
790 * until the end of synchronize_srcu_expedited.
792 WARN_ON(old_memslots
->generation
& 1);
793 slots
->generation
= old_memslots
->generation
+ 1;
795 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
796 synchronize_srcu_expedited(&kvm
->srcu
);
799 * Increment the new memslot generation a second time. This prevents
800 * vm exits that race with memslot updates from caching a memslot
801 * generation that will (potentially) be valid forever.
805 kvm_arch_memslots_updated(kvm
, slots
);
811 * Allocate some memory and give it an address in the guest physical address
814 * Discontiguous memory is allowed, mostly for framebuffers.
816 * Must be called holding kvm->slots_lock for write.
818 int __kvm_set_memory_region(struct kvm
*kvm
,
819 const struct kvm_userspace_memory_region
*mem
)
823 unsigned long npages
;
824 struct kvm_memory_slot
*slot
;
825 struct kvm_memory_slot old
, new;
826 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
828 enum kvm_mr_change change
;
830 r
= check_memory_region_flags(mem
);
835 as_id
= mem
->slot
>> 16;
838 /* General sanity checks */
839 if (mem
->memory_size
& (PAGE_SIZE
- 1))
841 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
843 /* We can read the guest memory with __xxx_user() later on. */
844 if ((id
< KVM_USER_MEM_SLOTS
) &&
845 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
846 !access_ok(VERIFY_WRITE
,
847 (void __user
*)(unsigned long)mem
->userspace_addr
,
850 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
852 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
855 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
856 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
857 npages
= mem
->memory_size
>> PAGE_SHIFT
;
859 if (npages
> KVM_MEM_MAX_NR_PAGES
)
865 new.base_gfn
= base_gfn
;
867 new.flags
= mem
->flags
;
871 change
= KVM_MR_CREATE
;
872 else { /* Modify an existing slot. */
873 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
874 (npages
!= old
.npages
) ||
875 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
878 if (base_gfn
!= old
.base_gfn
)
879 change
= KVM_MR_MOVE
;
880 else if (new.flags
!= old
.flags
)
881 change
= KVM_MR_FLAGS_ONLY
;
882 else { /* Nothing to change. */
891 change
= KVM_MR_DELETE
;
896 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
897 /* Check for overlaps */
899 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
900 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
903 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
904 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
909 /* Free page dirty bitmap if unneeded */
910 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
911 new.dirty_bitmap
= NULL
;
914 if (change
== KVM_MR_CREATE
) {
915 new.userspace_addr
= mem
->userspace_addr
;
917 if (kvm_arch_create_memslot(kvm
, &new, npages
))
921 /* Allocate page dirty bitmap if needed */
922 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
923 if (kvm_create_dirty_bitmap(&new) < 0)
927 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
930 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
932 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
933 slot
= id_to_memslot(slots
, id
);
934 slot
->flags
|= KVM_MEMSLOT_INVALID
;
936 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
938 /* slot was deleted or moved, clear iommu mapping */
939 kvm_iommu_unmap_pages(kvm
, &old
);
940 /* From this point no new shadow pages pointing to a deleted,
941 * or moved, memslot will be created.
943 * validation of sp->gfn happens in:
944 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945 * - kvm_is_visible_gfn (mmu_check_roots)
947 kvm_arch_flush_shadow_memslot(kvm
, slot
);
950 * We can re-use the old_memslots from above, the only difference
951 * from the currently installed memslots is the invalid flag. This
952 * will get overwritten by update_memslots anyway.
954 slots
= old_memslots
;
957 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
961 /* actual memory is freed via old in kvm_free_memslot below */
962 if (change
== KVM_MR_DELETE
) {
963 new.dirty_bitmap
= NULL
;
964 memset(&new.arch
, 0, sizeof(new.arch
));
967 update_memslots(slots
, &new);
968 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
970 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
972 kvm_free_memslot(kvm
, &old
, &new);
973 kvfree(old_memslots
);
976 * IOMMU mapping: New slots need to be mapped. Old slots need to be
977 * un-mapped and re-mapped if their base changes. Since base change
978 * unmapping is handled above with slot deletion, mapping alone is
979 * needed here. Anything else the iommu might care about for existing
980 * slots (size changes, userspace addr changes and read-only flag
981 * changes) is disallowed above, so any other attribute changes getting
982 * here can be skipped.
984 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
985 r
= kvm_iommu_map_pages(kvm
, &new);
994 kvm_free_memslot(kvm
, &new, &old
);
998 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1000 int kvm_set_memory_region(struct kvm
*kvm
,
1001 const struct kvm_userspace_memory_region
*mem
)
1005 mutex_lock(&kvm
->slots_lock
);
1006 r
= __kvm_set_memory_region(kvm
, mem
);
1007 mutex_unlock(&kvm
->slots_lock
);
1010 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1012 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1013 struct kvm_userspace_memory_region
*mem
)
1015 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1018 return kvm_set_memory_region(kvm
, mem
);
1021 int kvm_get_dirty_log(struct kvm
*kvm
,
1022 struct kvm_dirty_log
*log
, int *is_dirty
)
1024 struct kvm_memslots
*slots
;
1025 struct kvm_memory_slot
*memslot
;
1026 int r
, i
, as_id
, id
;
1028 unsigned long any
= 0;
1031 as_id
= log
->slot
>> 16;
1032 id
= (u16
)log
->slot
;
1033 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1036 slots
= __kvm_memslots(kvm
, as_id
);
1037 memslot
= id_to_memslot(slots
, id
);
1039 if (!memslot
->dirty_bitmap
)
1042 n
= kvm_dirty_bitmap_bytes(memslot
);
1044 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1045 any
= memslot
->dirty_bitmap
[i
];
1048 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1058 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1060 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 * are dirty write protect them for next write.
1064 * @kvm: pointer to kvm instance
1065 * @log: slot id and address to which we copy the log
1066 * @is_dirty: flag set if any page is dirty
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1072 * 1. Take a snapshot of the bit and clear it if needed.
1073 * 2. Write protect the corresponding page.
1074 * 3. Copy the snapshot to the userspace.
1075 * 4. Upon return caller flushes TLB's if needed.
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry. This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1083 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1084 struct kvm_dirty_log
*log
, bool *is_dirty
)
1086 struct kvm_memslots
*slots
;
1087 struct kvm_memory_slot
*memslot
;
1088 int r
, i
, as_id
, id
;
1090 unsigned long *dirty_bitmap
;
1091 unsigned long *dirty_bitmap_buffer
;
1094 as_id
= log
->slot
>> 16;
1095 id
= (u16
)log
->slot
;
1096 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1099 slots
= __kvm_memslots(kvm
, as_id
);
1100 memslot
= id_to_memslot(slots
, id
);
1102 dirty_bitmap
= memslot
->dirty_bitmap
;
1107 n
= kvm_dirty_bitmap_bytes(memslot
);
1109 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1110 memset(dirty_bitmap_buffer
, 0, n
);
1112 spin_lock(&kvm
->mmu_lock
);
1114 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1118 if (!dirty_bitmap
[i
])
1123 mask
= xchg(&dirty_bitmap
[i
], 0);
1124 dirty_bitmap_buffer
[i
] = mask
;
1127 offset
= i
* BITS_PER_LONG
;
1128 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1133 spin_unlock(&kvm
->mmu_lock
);
1136 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1143 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1146 bool kvm_largepages_enabled(void)
1148 return largepages_enabled
;
1151 void kvm_disable_largepages(void)
1153 largepages_enabled
= false;
1155 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1157 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1159 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1161 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1163 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1165 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1168 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1170 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1172 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1173 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1178 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1180 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1182 struct vm_area_struct
*vma
;
1183 unsigned long addr
, size
;
1187 addr
= gfn_to_hva(kvm
, gfn
);
1188 if (kvm_is_error_hva(addr
))
1191 down_read(¤t
->mm
->mmap_sem
);
1192 vma
= find_vma(current
->mm
, addr
);
1196 size
= vma_kernel_pagesize(vma
);
1199 up_read(¤t
->mm
->mmap_sem
);
1204 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1206 return slot
->flags
& KVM_MEM_READONLY
;
1209 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1210 gfn_t
*nr_pages
, bool write
)
1212 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1213 return KVM_HVA_ERR_BAD
;
1215 if (memslot_is_readonly(slot
) && write
)
1216 return KVM_HVA_ERR_RO_BAD
;
1219 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1221 return __gfn_to_hva_memslot(slot
, gfn
);
1224 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1227 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1230 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1233 return gfn_to_hva_many(slot
, gfn
, NULL
);
1235 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1237 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1239 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1241 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1243 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1245 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1247 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1253 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1254 gfn_t gfn
, bool *writable
)
1256 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1258 if (!kvm_is_error_hva(hva
) && writable
)
1259 *writable
= !memslot_is_readonly(slot
);
1264 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1266 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1268 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1271 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1273 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1275 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1278 static int get_user_page_nowait(unsigned long start
, int write
,
1281 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1284 flags
|= FOLL_WRITE
;
1286 return __get_user_pages(current
, current
->mm
, start
, 1, flags
, page
,
1290 static inline int check_user_page_hwpoison(unsigned long addr
)
1292 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1294 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1295 flags
, NULL
, NULL
, NULL
);
1296 return rc
== -EHWPOISON
;
1300 * The atomic path to get the writable pfn which will be stored in @pfn,
1301 * true indicates success, otherwise false is returned.
1303 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1304 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1306 struct page
*page
[1];
1309 if (!(async
|| atomic
))
1313 * Fast pin a writable pfn only if it is a write fault request
1314 * or the caller allows to map a writable pfn for a read fault
1317 if (!(write_fault
|| writable
))
1320 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1322 *pfn
= page_to_pfn(page
[0]);
1333 * The slow path to get the pfn of the specified host virtual address,
1334 * 1 indicates success, -errno is returned if error is detected.
1336 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1337 bool *writable
, kvm_pfn_t
*pfn
)
1339 struct page
*page
[1];
1345 *writable
= write_fault
;
1348 down_read(¤t
->mm
->mmap_sem
);
1349 npages
= get_user_page_nowait(addr
, write_fault
, page
);
1350 up_read(¤t
->mm
->mmap_sem
);
1352 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1353 write_fault
, 0, page
,
1354 FOLL_TOUCH
|FOLL_HWPOISON
);
1358 /* map read fault as writable if possible */
1359 if (unlikely(!write_fault
) && writable
) {
1360 struct page
*wpage
[1];
1362 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1371 *pfn
= page_to_pfn(page
[0]);
1375 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1377 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1380 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 * host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 * whether the mapping is writable.
1400 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1401 bool write_fault
, bool *writable
)
1403 struct vm_area_struct
*vma
;
1407 /* we can do it either atomically or asynchronously, not both */
1408 BUG_ON(atomic
&& async
);
1410 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1414 return KVM_PFN_ERR_FAULT
;
1416 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1420 down_read(¤t
->mm
->mmap_sem
);
1421 if (npages
== -EHWPOISON
||
1422 (!async
&& check_user_page_hwpoison(addr
))) {
1423 pfn
= KVM_PFN_ERR_HWPOISON
;
1427 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1430 pfn
= KVM_PFN_ERR_FAULT
;
1431 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1432 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1434 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1436 if (async
&& vma_is_valid(vma
, write_fault
))
1438 pfn
= KVM_PFN_ERR_FAULT
;
1441 up_read(¤t
->mm
->mmap_sem
);
1445 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1446 bool atomic
, bool *async
, bool write_fault
,
1449 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1451 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1454 return KVM_PFN_ERR_RO_FAULT
;
1457 if (kvm_is_error_hva(addr
)) {
1460 return KVM_PFN_NOSLOT
;
1463 /* Do not map writable pfn in the readonly memslot. */
1464 if (writable
&& memslot_is_readonly(slot
)) {
1469 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1472 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1474 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1477 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1478 write_fault
, writable
);
1480 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1482 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1484 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1486 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1488 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1490 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1492 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1494 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1496 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1498 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1500 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1502 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1504 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1506 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1508 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1510 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1512 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1514 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1516 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1518 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1519 struct page
**pages
, int nr_pages
)
1524 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1525 if (kvm_is_error_hva(addr
))
1528 if (entry
< nr_pages
)
1531 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1533 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1535 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1537 if (is_error_noslot_pfn(pfn
))
1538 return KVM_ERR_PTR_BAD_PAGE
;
1540 if (kvm_is_reserved_pfn(pfn
)) {
1542 return KVM_ERR_PTR_BAD_PAGE
;
1545 return pfn_to_page(pfn
);
1548 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1552 pfn
= gfn_to_pfn(kvm
, gfn
);
1554 return kvm_pfn_to_page(pfn
);
1556 EXPORT_SYMBOL_GPL(gfn_to_page
);
1558 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1562 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1564 return kvm_pfn_to_page(pfn
);
1566 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1568 void kvm_release_page_clean(struct page
*page
)
1570 WARN_ON(is_error_page(page
));
1572 kvm_release_pfn_clean(page_to_pfn(page
));
1574 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1576 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1578 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1579 put_page(pfn_to_page(pfn
));
1581 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1583 void kvm_release_page_dirty(struct page
*page
)
1585 WARN_ON(is_error_page(page
));
1587 kvm_release_pfn_dirty(page_to_pfn(page
));
1589 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1591 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1593 kvm_set_pfn_dirty(pfn
);
1594 kvm_release_pfn_clean(pfn
);
1597 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1599 if (!kvm_is_reserved_pfn(pfn
)) {
1600 struct page
*page
= pfn_to_page(pfn
);
1602 if (!PageReserved(page
))
1606 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1608 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1610 if (!kvm_is_reserved_pfn(pfn
))
1611 mark_page_accessed(pfn_to_page(pfn
));
1613 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1615 void kvm_get_pfn(kvm_pfn_t pfn
)
1617 if (!kvm_is_reserved_pfn(pfn
))
1618 get_page(pfn_to_page(pfn
));
1620 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1622 static int next_segment(unsigned long len
, int offset
)
1624 if (len
> PAGE_SIZE
- offset
)
1625 return PAGE_SIZE
- offset
;
1630 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1631 void *data
, int offset
, int len
)
1636 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1637 if (kvm_is_error_hva(addr
))
1639 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1645 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1648 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1650 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1652 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1654 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1655 int offset
, int len
)
1657 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1659 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1661 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1663 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1665 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1667 int offset
= offset_in_page(gpa
);
1670 while ((seg
= next_segment(len
, offset
)) != 0) {
1671 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1681 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1683 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1685 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1687 int offset
= offset_in_page(gpa
);
1690 while ((seg
= next_segment(len
, offset
)) != 0) {
1691 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1703 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1704 void *data
, int offset
, unsigned long len
)
1709 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1710 if (kvm_is_error_hva(addr
))
1712 pagefault_disable();
1713 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1720 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1723 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1724 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1725 int offset
= offset_in_page(gpa
);
1727 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1729 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1731 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1732 void *data
, unsigned long len
)
1734 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1735 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1736 int offset
= offset_in_page(gpa
);
1738 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1740 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1742 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1743 const void *data
, int offset
, int len
)
1748 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1749 if (kvm_is_error_hva(addr
))
1751 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1754 mark_page_dirty_in_slot(memslot
, gfn
);
1758 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1759 const void *data
, int offset
, int len
)
1761 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1763 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1765 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1767 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1768 const void *data
, int offset
, int len
)
1770 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1772 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1776 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1779 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1781 int offset
= offset_in_page(gpa
);
1784 while ((seg
= next_segment(len
, offset
)) != 0) {
1785 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1795 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1797 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1800 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1802 int offset
= offset_in_page(gpa
);
1805 while ((seg
= next_segment(len
, offset
)) != 0) {
1806 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1818 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1819 gpa_t gpa
, unsigned long len
)
1821 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1822 int offset
= offset_in_page(gpa
);
1823 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1824 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1825 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1826 gfn_t nr_pages_avail
;
1829 ghc
->generation
= slots
->generation
;
1831 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1832 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1833 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1837 * If the requested region crosses two memslots, we still
1838 * verify that the entire region is valid here.
1840 while (start_gfn
<= end_gfn
) {
1841 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1842 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1844 if (kvm_is_error_hva(ghc
->hva
))
1846 start_gfn
+= nr_pages_avail
;
1848 /* Use the slow path for cross page reads and writes. */
1849 ghc
->memslot
= NULL
;
1853 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1855 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1856 void *data
, unsigned long len
)
1858 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1861 BUG_ON(len
> ghc
->len
);
1863 if (slots
->generation
!= ghc
->generation
)
1864 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1866 if (unlikely(!ghc
->memslot
))
1867 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1869 if (kvm_is_error_hva(ghc
->hva
))
1872 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1875 mark_page_dirty_in_slot(ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1879 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1881 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1882 void *data
, unsigned long len
)
1884 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1887 BUG_ON(len
> ghc
->len
);
1889 if (slots
->generation
!= ghc
->generation
)
1890 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1892 if (unlikely(!ghc
->memslot
))
1893 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1895 if (kvm_is_error_hva(ghc
->hva
))
1898 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1904 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1906 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1908 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1910 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1912 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1914 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1916 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1918 int offset
= offset_in_page(gpa
);
1921 while ((seg
= next_segment(len
, offset
)) != 0) {
1922 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1931 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1933 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
1936 if (memslot
&& memslot
->dirty_bitmap
) {
1937 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1939 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1943 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1945 struct kvm_memory_slot
*memslot
;
1947 memslot
= gfn_to_memslot(kvm
, gfn
);
1948 mark_page_dirty_in_slot(memslot
, gfn
);
1950 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1952 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1954 struct kvm_memory_slot
*memslot
;
1956 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1957 mark_page_dirty_in_slot(memslot
, gfn
);
1959 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
1961 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1963 unsigned int old
, val
, grow
;
1965 old
= val
= vcpu
->halt_poll_ns
;
1966 grow
= READ_ONCE(halt_poll_ns_grow
);
1968 if (val
== 0 && grow
)
1973 if (val
> halt_poll_ns
)
1976 vcpu
->halt_poll_ns
= val
;
1977 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
1980 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1982 unsigned int old
, val
, shrink
;
1984 old
= val
= vcpu
->halt_poll_ns
;
1985 shrink
= READ_ONCE(halt_poll_ns_shrink
);
1991 vcpu
->halt_poll_ns
= val
;
1992 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
1995 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
1997 if (kvm_arch_vcpu_runnable(vcpu
)) {
1998 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2001 if (kvm_cpu_has_pending_timer(vcpu
))
2003 if (signal_pending(current
))
2010 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2012 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2015 DECLARE_SWAITQUEUE(wait
);
2016 bool waited
= false;
2019 start
= cur
= ktime_get();
2020 if (vcpu
->halt_poll_ns
) {
2021 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2023 ++vcpu
->stat
.halt_attempted_poll
;
2026 * This sets KVM_REQ_UNHALT if an interrupt
2029 if (kvm_vcpu_check_block(vcpu
) < 0) {
2030 ++vcpu
->stat
.halt_successful_poll
;
2034 } while (single_task_running() && ktime_before(cur
, stop
));
2037 kvm_arch_vcpu_blocking(vcpu
);
2040 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2042 if (kvm_vcpu_check_block(vcpu
) < 0)
2049 finish_swait(&vcpu
->wq
, &wait
);
2052 kvm_arch_vcpu_unblocking(vcpu
);
2054 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2057 if (block_ns
<= vcpu
->halt_poll_ns
)
2059 /* we had a long block, shrink polling */
2060 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2061 shrink_halt_poll_ns(vcpu
);
2062 /* we had a short halt and our poll time is too small */
2063 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2064 block_ns
< halt_poll_ns
)
2065 grow_halt_poll_ns(vcpu
);
2067 vcpu
->halt_poll_ns
= 0;
2069 trace_kvm_vcpu_wakeup(block_ns
, waited
);
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2075 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2077 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2080 int cpu
= vcpu
->cpu
;
2081 struct swait_queue_head
*wqp
;
2083 wqp
= kvm_arch_vcpu_wq(vcpu
);
2084 if (swait_active(wqp
)) {
2086 ++vcpu
->stat
.halt_wakeup
;
2090 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2091 if (kvm_arch_vcpu_should_kick(vcpu
))
2092 smp_send_reschedule(cpu
);
2095 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2096 #endif /* !CONFIG_S390 */
2098 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2101 struct task_struct
*task
= NULL
;
2105 pid
= rcu_dereference(target
->pid
);
2107 task
= get_pid_task(pid
, PIDTYPE_PID
);
2111 ret
= yield_to(task
, 1);
2112 put_task_struct(task
);
2116 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2119 * Helper that checks whether a VCPU is eligible for directed yield.
2120 * Most eligible candidate to yield is decided by following heuristics:
2122 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2123 * (preempted lock holder), indicated by @in_spin_loop.
2124 * Set at the beiginning and cleared at the end of interception/PLE handler.
2126 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2127 * chance last time (mostly it has become eligible now since we have probably
2128 * yielded to lockholder in last iteration. This is done by toggling
2129 * @dy_eligible each time a VCPU checked for eligibility.)
2131 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2132 * to preempted lock-holder could result in wrong VCPU selection and CPU
2133 * burning. Giving priority for a potential lock-holder increases lock
2136 * Since algorithm is based on heuristics, accessing another VCPU data without
2137 * locking does not harm. It may result in trying to yield to same VCPU, fail
2138 * and continue with next VCPU and so on.
2140 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2142 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2145 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2146 vcpu
->spin_loop
.dy_eligible
;
2148 if (vcpu
->spin_loop
.in_spin_loop
)
2149 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2157 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2159 struct kvm
*kvm
= me
->kvm
;
2160 struct kvm_vcpu
*vcpu
;
2161 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2167 kvm_vcpu_set_in_spin_loop(me
, true);
2169 * We boost the priority of a VCPU that is runnable but not
2170 * currently running, because it got preempted by something
2171 * else and called schedule in __vcpu_run. Hopefully that
2172 * VCPU is holding the lock that we need and will release it.
2173 * We approximate round-robin by starting at the last boosted VCPU.
2175 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2176 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2177 if (!pass
&& i
<= last_boosted_vcpu
) {
2178 i
= last_boosted_vcpu
;
2180 } else if (pass
&& i
> last_boosted_vcpu
)
2182 if (!ACCESS_ONCE(vcpu
->preempted
))
2186 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2188 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2191 yielded
= kvm_vcpu_yield_to(vcpu
);
2193 kvm
->last_boosted_vcpu
= i
;
2195 } else if (yielded
< 0) {
2202 kvm_vcpu_set_in_spin_loop(me
, false);
2204 /* Ensure vcpu is not eligible during next spinloop */
2205 kvm_vcpu_set_dy_eligible(me
, false);
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2209 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2211 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2214 if (vmf
->pgoff
== 0)
2215 page
= virt_to_page(vcpu
->run
);
2217 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2218 page
= virt_to_page(vcpu
->arch
.pio_data
);
2220 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2221 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2222 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2225 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2231 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2232 .fault
= kvm_vcpu_fault
,
2235 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2237 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2241 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2243 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2245 kvm_put_kvm(vcpu
->kvm
);
2249 static struct file_operations kvm_vcpu_fops
= {
2250 .release
= kvm_vcpu_release
,
2251 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2252 #ifdef CONFIG_KVM_COMPAT
2253 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2255 .mmap
= kvm_vcpu_mmap
,
2256 .llseek
= noop_llseek
,
2260 * Allocates an inode for the vcpu.
2262 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2264 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2268 * Creates some virtual cpus. Good luck creating more than one.
2270 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2273 struct kvm_vcpu
*vcpu
;
2275 if (id
>= KVM_MAX_VCPUS
)
2278 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2280 return PTR_ERR(vcpu
);
2282 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2284 r
= kvm_arch_vcpu_setup(vcpu
);
2288 mutex_lock(&kvm
->lock
);
2289 if (!kvm_vcpu_compatible(vcpu
)) {
2291 goto unlock_vcpu_destroy
;
2293 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2295 goto unlock_vcpu_destroy
;
2297 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2299 goto unlock_vcpu_destroy
;
2302 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2304 /* Now it's all set up, let userspace reach it */
2306 r
= create_vcpu_fd(vcpu
);
2309 goto unlock_vcpu_destroy
;
2312 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2315 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2316 * before kvm->online_vcpu's incremented value.
2319 atomic_inc(&kvm
->online_vcpus
);
2321 mutex_unlock(&kvm
->lock
);
2322 kvm_arch_vcpu_postcreate(vcpu
);
2325 unlock_vcpu_destroy
:
2326 mutex_unlock(&kvm
->lock
);
2328 kvm_arch_vcpu_destroy(vcpu
);
2332 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2335 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2336 vcpu
->sigset_active
= 1;
2337 vcpu
->sigset
= *sigset
;
2339 vcpu
->sigset_active
= 0;
2343 static long kvm_vcpu_ioctl(struct file
*filp
,
2344 unsigned int ioctl
, unsigned long arg
)
2346 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2347 void __user
*argp
= (void __user
*)arg
;
2349 struct kvm_fpu
*fpu
= NULL
;
2350 struct kvm_sregs
*kvm_sregs
= NULL
;
2352 if (vcpu
->kvm
->mm
!= current
->mm
)
2355 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2358 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2360 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2361 * so vcpu_load() would break it.
2363 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2364 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2368 r
= vcpu_load(vcpu
);
2376 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2377 /* The thread running this VCPU changed. */
2378 struct pid
*oldpid
= vcpu
->pid
;
2379 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2381 rcu_assign_pointer(vcpu
->pid
, newpid
);
2386 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2387 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2389 case KVM_GET_REGS
: {
2390 struct kvm_regs
*kvm_regs
;
2393 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2396 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2400 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2407 case KVM_SET_REGS
: {
2408 struct kvm_regs
*kvm_regs
;
2411 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2412 if (IS_ERR(kvm_regs
)) {
2413 r
= PTR_ERR(kvm_regs
);
2416 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2420 case KVM_GET_SREGS
: {
2421 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2425 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2429 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2434 case KVM_SET_SREGS
: {
2435 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2436 if (IS_ERR(kvm_sregs
)) {
2437 r
= PTR_ERR(kvm_sregs
);
2441 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2444 case KVM_GET_MP_STATE
: {
2445 struct kvm_mp_state mp_state
;
2447 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2451 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2456 case KVM_SET_MP_STATE
: {
2457 struct kvm_mp_state mp_state
;
2460 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2462 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2465 case KVM_TRANSLATE
: {
2466 struct kvm_translation tr
;
2469 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2471 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2475 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2480 case KVM_SET_GUEST_DEBUG
: {
2481 struct kvm_guest_debug dbg
;
2484 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2486 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2489 case KVM_SET_SIGNAL_MASK
: {
2490 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2491 struct kvm_signal_mask kvm_sigmask
;
2492 sigset_t sigset
, *p
;
2497 if (copy_from_user(&kvm_sigmask
, argp
,
2498 sizeof(kvm_sigmask
)))
2501 if (kvm_sigmask
.len
!= sizeof(sigset
))
2504 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2509 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2513 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2517 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2521 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2527 fpu
= memdup_user(argp
, sizeof(*fpu
));
2533 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2537 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2546 #ifdef CONFIG_KVM_COMPAT
2547 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2548 unsigned int ioctl
, unsigned long arg
)
2550 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2551 void __user
*argp
= compat_ptr(arg
);
2554 if (vcpu
->kvm
->mm
!= current
->mm
)
2558 case KVM_SET_SIGNAL_MASK
: {
2559 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2560 struct kvm_signal_mask kvm_sigmask
;
2561 compat_sigset_t csigset
;
2566 if (copy_from_user(&kvm_sigmask
, argp
,
2567 sizeof(kvm_sigmask
)))
2570 if (kvm_sigmask
.len
!= sizeof(csigset
))
2573 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2576 sigset_from_compat(&sigset
, &csigset
);
2577 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2579 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2583 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2591 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2592 int (*accessor
)(struct kvm_device
*dev
,
2593 struct kvm_device_attr
*attr
),
2596 struct kvm_device_attr attr
;
2601 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2604 return accessor(dev
, &attr
);
2607 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2610 struct kvm_device
*dev
= filp
->private_data
;
2613 case KVM_SET_DEVICE_ATTR
:
2614 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2615 case KVM_GET_DEVICE_ATTR
:
2616 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2617 case KVM_HAS_DEVICE_ATTR
:
2618 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2620 if (dev
->ops
->ioctl
)
2621 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2627 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2629 struct kvm_device
*dev
= filp
->private_data
;
2630 struct kvm
*kvm
= dev
->kvm
;
2636 static const struct file_operations kvm_device_fops
= {
2637 .unlocked_ioctl
= kvm_device_ioctl
,
2638 #ifdef CONFIG_KVM_COMPAT
2639 .compat_ioctl
= kvm_device_ioctl
,
2641 .release
= kvm_device_release
,
2644 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2646 if (filp
->f_op
!= &kvm_device_fops
)
2649 return filp
->private_data
;
2652 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2653 #ifdef CONFIG_KVM_MPIC
2654 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2655 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2658 #ifdef CONFIG_KVM_XICS
2659 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2663 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2665 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2668 if (kvm_device_ops_table
[type
] != NULL
)
2671 kvm_device_ops_table
[type
] = ops
;
2675 void kvm_unregister_device_ops(u32 type
)
2677 if (kvm_device_ops_table
[type
] != NULL
)
2678 kvm_device_ops_table
[type
] = NULL
;
2681 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2682 struct kvm_create_device
*cd
)
2684 struct kvm_device_ops
*ops
= NULL
;
2685 struct kvm_device
*dev
;
2686 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2689 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2692 ops
= kvm_device_ops_table
[cd
->type
];
2699 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2706 ret
= ops
->create(dev
, cd
->type
);
2712 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2718 list_add(&dev
->vm_node
, &kvm
->devices
);
2724 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2727 case KVM_CAP_USER_MEMORY
:
2728 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2729 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2730 case KVM_CAP_INTERNAL_ERROR_DATA
:
2731 #ifdef CONFIG_HAVE_KVM_MSI
2732 case KVM_CAP_SIGNAL_MSI
:
2734 #ifdef CONFIG_HAVE_KVM_IRQFD
2736 case KVM_CAP_IRQFD_RESAMPLE
:
2738 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2739 case KVM_CAP_CHECK_EXTENSION_VM
:
2741 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2742 case KVM_CAP_IRQ_ROUTING
:
2743 return KVM_MAX_IRQ_ROUTES
;
2745 #if KVM_ADDRESS_SPACE_NUM > 1
2746 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2747 return KVM_ADDRESS_SPACE_NUM
;
2752 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2755 static long kvm_vm_ioctl(struct file
*filp
,
2756 unsigned int ioctl
, unsigned long arg
)
2758 struct kvm
*kvm
= filp
->private_data
;
2759 void __user
*argp
= (void __user
*)arg
;
2762 if (kvm
->mm
!= current
->mm
)
2765 case KVM_CREATE_VCPU
:
2766 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2768 case KVM_SET_USER_MEMORY_REGION
: {
2769 struct kvm_userspace_memory_region kvm_userspace_mem
;
2772 if (copy_from_user(&kvm_userspace_mem
, argp
,
2773 sizeof(kvm_userspace_mem
)))
2776 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2779 case KVM_GET_DIRTY_LOG
: {
2780 struct kvm_dirty_log log
;
2783 if (copy_from_user(&log
, argp
, sizeof(log
)))
2785 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2788 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2789 case KVM_REGISTER_COALESCED_MMIO
: {
2790 struct kvm_coalesced_mmio_zone zone
;
2793 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2795 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2798 case KVM_UNREGISTER_COALESCED_MMIO
: {
2799 struct kvm_coalesced_mmio_zone zone
;
2802 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2804 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2809 struct kvm_irqfd data
;
2812 if (copy_from_user(&data
, argp
, sizeof(data
)))
2814 r
= kvm_irqfd(kvm
, &data
);
2817 case KVM_IOEVENTFD
: {
2818 struct kvm_ioeventfd data
;
2821 if (copy_from_user(&data
, argp
, sizeof(data
)))
2823 r
= kvm_ioeventfd(kvm
, &data
);
2826 #ifdef CONFIG_HAVE_KVM_MSI
2827 case KVM_SIGNAL_MSI
: {
2831 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2833 r
= kvm_send_userspace_msi(kvm
, &msi
);
2837 #ifdef __KVM_HAVE_IRQ_LINE
2838 case KVM_IRQ_LINE_STATUS
:
2839 case KVM_IRQ_LINE
: {
2840 struct kvm_irq_level irq_event
;
2843 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2846 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2847 ioctl
== KVM_IRQ_LINE_STATUS
);
2852 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2853 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2861 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2862 case KVM_SET_GSI_ROUTING
: {
2863 struct kvm_irq_routing routing
;
2864 struct kvm_irq_routing __user
*urouting
;
2865 struct kvm_irq_routing_entry
*entries
;
2868 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2871 if (routing
.nr
>= KVM_MAX_IRQ_ROUTES
)
2876 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2881 if (copy_from_user(entries
, urouting
->entries
,
2882 routing
.nr
* sizeof(*entries
)))
2883 goto out_free_irq_routing
;
2884 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2886 out_free_irq_routing
:
2890 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2891 case KVM_CREATE_DEVICE
: {
2892 struct kvm_create_device cd
;
2895 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2898 r
= kvm_ioctl_create_device(kvm
, &cd
);
2903 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2909 case KVM_CHECK_EXTENSION
:
2910 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2913 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2919 #ifdef CONFIG_KVM_COMPAT
2920 struct compat_kvm_dirty_log
{
2924 compat_uptr_t dirty_bitmap
; /* one bit per page */
2929 static long kvm_vm_compat_ioctl(struct file
*filp
,
2930 unsigned int ioctl
, unsigned long arg
)
2932 struct kvm
*kvm
= filp
->private_data
;
2935 if (kvm
->mm
!= current
->mm
)
2938 case KVM_GET_DIRTY_LOG
: {
2939 struct compat_kvm_dirty_log compat_log
;
2940 struct kvm_dirty_log log
;
2943 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2944 sizeof(compat_log
)))
2946 log
.slot
= compat_log
.slot
;
2947 log
.padding1
= compat_log
.padding1
;
2948 log
.padding2
= compat_log
.padding2
;
2949 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2951 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2955 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2963 static struct file_operations kvm_vm_fops
= {
2964 .release
= kvm_vm_release
,
2965 .unlocked_ioctl
= kvm_vm_ioctl
,
2966 #ifdef CONFIG_KVM_COMPAT
2967 .compat_ioctl
= kvm_vm_compat_ioctl
,
2969 .llseek
= noop_llseek
,
2972 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2977 kvm
= kvm_create_vm(type
);
2979 return PTR_ERR(kvm
);
2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981 r
= kvm_coalesced_mmio_init(kvm
);
2987 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2994 static long kvm_dev_ioctl(struct file
*filp
,
2995 unsigned int ioctl
, unsigned long arg
)
3000 case KVM_GET_API_VERSION
:
3003 r
= KVM_API_VERSION
;
3006 r
= kvm_dev_ioctl_create_vm(arg
);
3008 case KVM_CHECK_EXTENSION
:
3009 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3011 case KVM_GET_VCPU_MMAP_SIZE
:
3014 r
= PAGE_SIZE
; /* struct kvm_run */
3016 r
+= PAGE_SIZE
; /* pio data page */
3018 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3019 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3022 case KVM_TRACE_ENABLE
:
3023 case KVM_TRACE_PAUSE
:
3024 case KVM_TRACE_DISABLE
:
3028 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3034 static struct file_operations kvm_chardev_ops
= {
3035 .unlocked_ioctl
= kvm_dev_ioctl
,
3036 .compat_ioctl
= kvm_dev_ioctl
,
3037 .llseek
= noop_llseek
,
3040 static struct miscdevice kvm_dev
= {
3046 static void hardware_enable_nolock(void *junk
)
3048 int cpu
= raw_smp_processor_id();
3051 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3054 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3056 r
= kvm_arch_hardware_enable();
3059 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3060 atomic_inc(&hardware_enable_failed
);
3061 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3065 static void hardware_enable(void)
3067 raw_spin_lock(&kvm_count_lock
);
3068 if (kvm_usage_count
)
3069 hardware_enable_nolock(NULL
);
3070 raw_spin_unlock(&kvm_count_lock
);
3073 static void hardware_disable_nolock(void *junk
)
3075 int cpu
= raw_smp_processor_id();
3077 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3079 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3080 kvm_arch_hardware_disable();
3083 static void hardware_disable(void)
3085 raw_spin_lock(&kvm_count_lock
);
3086 if (kvm_usage_count
)
3087 hardware_disable_nolock(NULL
);
3088 raw_spin_unlock(&kvm_count_lock
);
3091 static void hardware_disable_all_nolock(void)
3093 BUG_ON(!kvm_usage_count
);
3096 if (!kvm_usage_count
)
3097 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3100 static void hardware_disable_all(void)
3102 raw_spin_lock(&kvm_count_lock
);
3103 hardware_disable_all_nolock();
3104 raw_spin_unlock(&kvm_count_lock
);
3107 static int hardware_enable_all(void)
3111 raw_spin_lock(&kvm_count_lock
);
3114 if (kvm_usage_count
== 1) {
3115 atomic_set(&hardware_enable_failed
, 0);
3116 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3118 if (atomic_read(&hardware_enable_failed
)) {
3119 hardware_disable_all_nolock();
3124 raw_spin_unlock(&kvm_count_lock
);
3129 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3132 val
&= ~CPU_TASKS_FROZEN
;
3144 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3148 * Some (well, at least mine) BIOSes hang on reboot if
3151 * And Intel TXT required VMX off for all cpu when system shutdown.
3153 pr_info("kvm: exiting hardware virtualization\n");
3154 kvm_rebooting
= true;
3155 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3159 static struct notifier_block kvm_reboot_notifier
= {
3160 .notifier_call
= kvm_reboot
,
3164 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3168 for (i
= 0; i
< bus
->dev_count
; i
++) {
3169 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3171 kvm_iodevice_destructor(pos
);
3176 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3177 const struct kvm_io_range
*r2
)
3179 gpa_t addr1
= r1
->addr
;
3180 gpa_t addr2
= r2
->addr
;
3185 /* If r2->len == 0, match the exact address. If r2->len != 0,
3186 * accept any overlapping write. Any order is acceptable for
3187 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3188 * we process all of them.
3201 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3203 return kvm_io_bus_cmp(p1
, p2
);
3206 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3207 gpa_t addr
, int len
)
3209 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3215 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3216 kvm_io_bus_sort_cmp
, NULL
);
3221 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3222 gpa_t addr
, int len
)
3224 struct kvm_io_range
*range
, key
;
3227 key
= (struct kvm_io_range
) {
3232 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3233 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3237 off
= range
- bus
->range
;
3239 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3245 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3246 struct kvm_io_range
*range
, const void *val
)
3250 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3254 while (idx
< bus
->dev_count
&&
3255 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3256 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3265 /* kvm_io_bus_write - called under kvm->slots_lock */
3266 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3267 int len
, const void *val
)
3269 struct kvm_io_bus
*bus
;
3270 struct kvm_io_range range
;
3273 range
= (struct kvm_io_range
) {
3278 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3279 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3280 return r
< 0 ? r
: 0;
3283 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3284 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3285 gpa_t addr
, int len
, const void *val
, long cookie
)
3287 struct kvm_io_bus
*bus
;
3288 struct kvm_io_range range
;
3290 range
= (struct kvm_io_range
) {
3295 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3297 /* First try the device referenced by cookie. */
3298 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3299 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3300 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3305 * cookie contained garbage; fall back to search and return the
3306 * correct cookie value.
3308 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3311 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3312 struct kvm_io_range
*range
, void *val
)
3316 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3320 while (idx
< bus
->dev_count
&&
3321 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3322 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3330 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3332 /* kvm_io_bus_read - called under kvm->slots_lock */
3333 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3336 struct kvm_io_bus
*bus
;
3337 struct kvm_io_range range
;
3340 range
= (struct kvm_io_range
) {
3345 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3346 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3347 return r
< 0 ? r
: 0;
3351 /* Caller must hold slots_lock. */
3352 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3353 int len
, struct kvm_io_device
*dev
)
3355 struct kvm_io_bus
*new_bus
, *bus
;
3357 bus
= kvm
->buses
[bus_idx
];
3358 /* exclude ioeventfd which is limited by maximum fd */
3359 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3362 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3363 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3366 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3367 sizeof(struct kvm_io_range
)));
3368 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3369 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3370 synchronize_srcu_expedited(&kvm
->srcu
);
3376 /* Caller must hold slots_lock. */
3377 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3378 struct kvm_io_device
*dev
)
3381 struct kvm_io_bus
*new_bus
, *bus
;
3383 bus
= kvm
->buses
[bus_idx
];
3385 for (i
= 0; i
< bus
->dev_count
; i
++)
3386 if (bus
->range
[i
].dev
== dev
) {
3394 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3395 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3399 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3400 new_bus
->dev_count
--;
3401 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3402 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3404 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3405 synchronize_srcu_expedited(&kvm
->srcu
);
3410 static struct notifier_block kvm_cpu_notifier
= {
3411 .notifier_call
= kvm_cpu_hotplug
,
3414 static int vm_stat_get(void *_offset
, u64
*val
)
3416 unsigned offset
= (long)_offset
;
3420 spin_lock(&kvm_lock
);
3421 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3422 *val
+= *(u32
*)((void *)kvm
+ offset
);
3423 spin_unlock(&kvm_lock
);
3427 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3429 static int vcpu_stat_get(void *_offset
, u64
*val
)
3431 unsigned offset
= (long)_offset
;
3433 struct kvm_vcpu
*vcpu
;
3437 spin_lock(&kvm_lock
);
3438 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3439 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3440 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3442 spin_unlock(&kvm_lock
);
3446 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3448 static const struct file_operations
*stat_fops
[] = {
3449 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3450 [KVM_STAT_VM
] = &vm_stat_fops
,
3453 static int kvm_init_debug(void)
3456 struct kvm_stats_debugfs_item
*p
;
3458 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3459 if (kvm_debugfs_dir
== NULL
)
3462 for (p
= debugfs_entries
; p
->name
; ++p
) {
3463 if (!debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3464 (void *)(long)p
->offset
,
3465 stat_fops
[p
->kind
]))
3472 debugfs_remove_recursive(kvm_debugfs_dir
);
3477 static int kvm_suspend(void)
3479 if (kvm_usage_count
)
3480 hardware_disable_nolock(NULL
);
3484 static void kvm_resume(void)
3486 if (kvm_usage_count
) {
3487 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3488 hardware_enable_nolock(NULL
);
3492 static struct syscore_ops kvm_syscore_ops
= {
3493 .suspend
= kvm_suspend
,
3494 .resume
= kvm_resume
,
3498 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3500 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3503 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3505 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3507 if (vcpu
->preempted
)
3508 vcpu
->preempted
= false;
3510 kvm_arch_sched_in(vcpu
, cpu
);
3512 kvm_arch_vcpu_load(vcpu
, cpu
);
3515 static void kvm_sched_out(struct preempt_notifier
*pn
,
3516 struct task_struct
*next
)
3518 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3520 if (current
->state
== TASK_RUNNING
)
3521 vcpu
->preempted
= true;
3522 kvm_arch_vcpu_put(vcpu
);
3525 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3526 struct module
*module
)
3531 r
= kvm_arch_init(opaque
);
3536 * kvm_arch_init makes sure there's at most one caller
3537 * for architectures that support multiple implementations,
3538 * like intel and amd on x86.
3539 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3540 * conflicts in case kvm is already setup for another implementation.
3542 r
= kvm_irqfd_init();
3546 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3551 r
= kvm_arch_hardware_setup();
3555 for_each_online_cpu(cpu
) {
3556 smp_call_function_single(cpu
,
3557 kvm_arch_check_processor_compat
,
3563 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3566 register_reboot_notifier(&kvm_reboot_notifier
);
3568 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3570 vcpu_align
= __alignof__(struct kvm_vcpu
);
3571 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3573 if (!kvm_vcpu_cache
) {
3578 r
= kvm_async_pf_init();
3582 kvm_chardev_ops
.owner
= module
;
3583 kvm_vm_fops
.owner
= module
;
3584 kvm_vcpu_fops
.owner
= module
;
3586 r
= misc_register(&kvm_dev
);
3588 pr_err("kvm: misc device register failed\n");
3592 register_syscore_ops(&kvm_syscore_ops
);
3594 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3595 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3597 r
= kvm_init_debug();
3599 pr_err("kvm: create debugfs files failed\n");
3603 r
= kvm_vfio_ops_init();
3609 unregister_syscore_ops(&kvm_syscore_ops
);
3610 misc_deregister(&kvm_dev
);
3612 kvm_async_pf_deinit();
3614 kmem_cache_destroy(kvm_vcpu_cache
);
3616 unregister_reboot_notifier(&kvm_reboot_notifier
);
3617 unregister_cpu_notifier(&kvm_cpu_notifier
);
3620 kvm_arch_hardware_unsetup();
3622 free_cpumask_var(cpus_hardware_enabled
);
3630 EXPORT_SYMBOL_GPL(kvm_init
);
3634 debugfs_remove_recursive(kvm_debugfs_dir
);
3635 misc_deregister(&kvm_dev
);
3636 kmem_cache_destroy(kvm_vcpu_cache
);
3637 kvm_async_pf_deinit();
3638 unregister_syscore_ops(&kvm_syscore_ops
);
3639 unregister_reboot_notifier(&kvm_reboot_notifier
);
3640 unregister_cpu_notifier(&kvm_cpu_notifier
);
3641 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3642 kvm_arch_hardware_unsetup();
3645 free_cpumask_var(cpus_hardware_enabled
);
3646 kvm_vfio_ops_exit();
3648 EXPORT_SYMBOL_GPL(kvm_exit
);