Linux 3.12.5
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blob62176ad89846173e4d4987da257166fb90b971ff
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 struct extent_io_tree *dirty_pages,
71 int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
82 struct end_io_wq {
83 struct bio *bio;
84 bio_end_io_t *end_io;
85 void *private;
86 struct btrfs_fs_info *info;
87 int error;
88 int metadata;
89 struct list_head list;
90 struct btrfs_work work;
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
98 struct async_submit_bio {
99 struct inode *inode;
100 struct bio *bio;
101 struct list_head list;
102 extent_submit_bio_hook_t *submit_bio_start;
103 extent_submit_bio_hook_t *submit_bio_done;
104 int rw;
105 int mirror_num;
106 unsigned long bio_flags;
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
111 u64 bio_offset;
112 struct btrfs_work work;
113 int error;
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 # error
142 # endif
144 static struct btrfs_lockdep_keyset {
145 u64 id; /* root objectid */
146 const char *name_stem; /* lock name stem */
147 char names[BTRFS_MAX_LEVEL + 1][20];
148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
160 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
161 { .id = 0, .name_stem = "tree" },
164 void __init btrfs_init_lockdep(void)
166 int i, j;
168 /* initialize lockdep class names */
169 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
172 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173 snprintf(ks->names[j], sizeof(ks->names[j]),
174 "btrfs-%s-%02d", ks->name_stem, j);
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 int level)
181 struct btrfs_lockdep_keyset *ks;
183 BUG_ON(level >= ARRAY_SIZE(ks->keys));
185 /* find the matching keyset, id 0 is the default entry */
186 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187 if (ks->id == objectid)
188 break;
190 lockdep_set_class_and_name(&eb->lock,
191 &ks->keys[level], ks->names[level]);
194 #endif
197 * extents on the btree inode are pretty simple, there's one extent
198 * that covers the entire device
200 static struct extent_map *btree_get_extent(struct inode *inode,
201 struct page *page, size_t pg_offset, u64 start, u64 len,
202 int create)
204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205 struct extent_map *em;
206 int ret;
208 read_lock(&em_tree->lock);
209 em = lookup_extent_mapping(em_tree, start, len);
210 if (em) {
211 em->bdev =
212 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213 read_unlock(&em_tree->lock);
214 goto out;
216 read_unlock(&em_tree->lock);
218 em = alloc_extent_map();
219 if (!em) {
220 em = ERR_PTR(-ENOMEM);
221 goto out;
223 em->start = 0;
224 em->len = (u64)-1;
225 em->block_len = (u64)-1;
226 em->block_start = 0;
227 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
229 write_lock(&em_tree->lock);
230 ret = add_extent_mapping(em_tree, em, 0);
231 if (ret == -EEXIST) {
232 free_extent_map(em);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (!em)
235 em = ERR_PTR(-EIO);
236 } else if (ret) {
237 free_extent_map(em);
238 em = ERR_PTR(ret);
240 write_unlock(&em_tree->lock);
242 out:
243 return em;
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
248 return crc32c(seed, data, len);
251 void btrfs_csum_final(u32 crc, char *result)
253 put_unaligned_le32(~crc, result);
257 * compute the csum for a btree block, and either verify it or write it
258 * into the csum field of the block.
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 int verify)
263 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264 char *result = NULL;
265 unsigned long len;
266 unsigned long cur_len;
267 unsigned long offset = BTRFS_CSUM_SIZE;
268 char *kaddr;
269 unsigned long map_start;
270 unsigned long map_len;
271 int err;
272 u32 crc = ~(u32)0;
273 unsigned long inline_result;
275 len = buf->len - offset;
276 while (len > 0) {
277 err = map_private_extent_buffer(buf, offset, 32,
278 &kaddr, &map_start, &map_len);
279 if (err)
280 return 1;
281 cur_len = min(len, map_len - (offset - map_start));
282 crc = btrfs_csum_data(kaddr + offset - map_start,
283 crc, cur_len);
284 len -= cur_len;
285 offset += cur_len;
287 if (csum_size > sizeof(inline_result)) {
288 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 if (!result)
290 return 1;
291 } else {
292 result = (char *)&inline_result;
295 btrfs_csum_final(crc, result);
297 if (verify) {
298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 u32 val;
300 u32 found = 0;
301 memcpy(&found, result, csum_size);
303 read_extent_buffer(buf, &val, 0, csum_size);
304 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
305 "failed on %llu wanted %X found %X "
306 "level %d\n",
307 root->fs_info->sb->s_id, buf->start,
308 val, found, btrfs_header_level(buf));
309 if (result != (char *)&inline_result)
310 kfree(result);
311 return 1;
313 } else {
314 write_extent_buffer(buf, result, 0, csum_size);
316 if (result != (char *)&inline_result)
317 kfree(result);
318 return 0;
322 * we can't consider a given block up to date unless the transid of the
323 * block matches the transid in the parent node's pointer. This is how we
324 * detect blocks that either didn't get written at all or got written
325 * in the wrong place.
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328 struct extent_buffer *eb, u64 parent_transid,
329 int atomic)
331 struct extent_state *cached_state = NULL;
332 int ret;
334 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335 return 0;
337 if (atomic)
338 return -EAGAIN;
340 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341 0, &cached_state);
342 if (extent_buffer_uptodate(eb) &&
343 btrfs_header_generation(eb) == parent_transid) {
344 ret = 0;
345 goto out;
347 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348 "found %llu\n",
349 eb->start, parent_transid, btrfs_header_generation(eb));
350 ret = 1;
351 clear_extent_buffer_uptodate(eb);
352 out:
353 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 &cached_state, GFP_NOFS);
355 return ret;
359 * Return 0 if the superblock checksum type matches the checksum value of that
360 * algorithm. Pass the raw disk superblock data.
362 static int btrfs_check_super_csum(char *raw_disk_sb)
364 struct btrfs_super_block *disk_sb =
365 (struct btrfs_super_block *)raw_disk_sb;
366 u16 csum_type = btrfs_super_csum_type(disk_sb);
367 int ret = 0;
369 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370 u32 crc = ~(u32)0;
371 const int csum_size = sizeof(crc);
372 char result[csum_size];
375 * The super_block structure does not span the whole
376 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377 * is filled with zeros and is included in the checkum.
379 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
380 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
381 btrfs_csum_final(crc, result);
383 if (memcmp(raw_disk_sb, result, csum_size))
384 ret = 1;
386 if (ret && btrfs_super_generation(disk_sb) < 10) {
387 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
388 ret = 0;
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
394 csum_type);
395 ret = 1;
398 return ret;
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
407 u64 start, u64 parent_transid)
409 struct extent_io_tree *io_tree;
410 int failed = 0;
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
414 int failed_mirror = 0;
416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
421 btree_get_extent, mirror_num);
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
424 parent_transid, 0))
425 break;
426 else
427 ret = -EIO;
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436 break;
438 num_copies = btrfs_num_copies(root->fs_info,
439 eb->start, eb->len);
440 if (num_copies == 1)
441 break;
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
448 mirror_num++;
449 if (mirror_num == failed_mirror)
450 mirror_num++;
452 if (mirror_num > num_copies)
453 break;
456 if (failed && !ret && failed_mirror)
457 repair_eb_io_failure(root, eb, failed_mirror);
459 return ret;
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 struct extent_io_tree *tree;
470 u64 start = page_offset(page);
471 u64 found_start;
472 struct extent_buffer *eb;
474 tree = &BTRFS_I(page->mapping->host)->io_tree;
476 eb = (struct extent_buffer *)page->private;
477 if (page != eb->pages[0])
478 return 0;
479 found_start = btrfs_header_bytenr(eb);
480 if (found_start != start) {
481 WARN_ON(1);
482 return 0;
484 if (!PageUptodate(page)) {
485 WARN_ON(1);
486 return 0;
488 csum_tree_block(root, eb, 0);
489 return 0;
492 static int check_tree_block_fsid(struct btrfs_root *root,
493 struct extent_buffer *eb)
495 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
496 u8 fsid[BTRFS_UUID_SIZE];
497 int ret = 1;
499 read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
500 while (fs_devices) {
501 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
502 ret = 0;
503 break;
505 fs_devices = fs_devices->seed;
507 return ret;
510 #define CORRUPT(reason, eb, root, slot) \
511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512 "root=%llu, slot=%d\n", reason, \
513 btrfs_header_bytenr(eb), root->objectid, slot)
515 static noinline int check_leaf(struct btrfs_root *root,
516 struct extent_buffer *leaf)
518 struct btrfs_key key;
519 struct btrfs_key leaf_key;
520 u32 nritems = btrfs_header_nritems(leaf);
521 int slot;
523 if (nritems == 0)
524 return 0;
526 /* Check the 0 item */
527 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
528 BTRFS_LEAF_DATA_SIZE(root)) {
529 CORRUPT("invalid item offset size pair", leaf, root, 0);
530 return -EIO;
534 * Check to make sure each items keys are in the correct order and their
535 * offsets make sense. We only have to loop through nritems-1 because
536 * we check the current slot against the next slot, which verifies the
537 * next slot's offset+size makes sense and that the current's slot
538 * offset is correct.
540 for (slot = 0; slot < nritems - 1; slot++) {
541 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
542 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
544 /* Make sure the keys are in the right order */
545 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
546 CORRUPT("bad key order", leaf, root, slot);
547 return -EIO;
551 * Make sure the offset and ends are right, remember that the
552 * item data starts at the end of the leaf and grows towards the
553 * front.
555 if (btrfs_item_offset_nr(leaf, slot) !=
556 btrfs_item_end_nr(leaf, slot + 1)) {
557 CORRUPT("slot offset bad", leaf, root, slot);
558 return -EIO;
562 * Check to make sure that we don't point outside of the leaf,
563 * just incase all the items are consistent to eachother, but
564 * all point outside of the leaf.
566 if (btrfs_item_end_nr(leaf, slot) >
567 BTRFS_LEAF_DATA_SIZE(root)) {
568 CORRUPT("slot end outside of leaf", leaf, root, slot);
569 return -EIO;
573 return 0;
576 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
577 u64 phy_offset, struct page *page,
578 u64 start, u64 end, int mirror)
580 struct extent_io_tree *tree;
581 u64 found_start;
582 int found_level;
583 struct extent_buffer *eb;
584 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
585 int ret = 0;
586 int reads_done;
588 if (!page->private)
589 goto out;
591 tree = &BTRFS_I(page->mapping->host)->io_tree;
592 eb = (struct extent_buffer *)page->private;
594 /* the pending IO might have been the only thing that kept this buffer
595 * in memory. Make sure we have a ref for all this other checks
597 extent_buffer_get(eb);
599 reads_done = atomic_dec_and_test(&eb->io_pages);
600 if (!reads_done)
601 goto err;
603 eb->read_mirror = mirror;
604 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
605 ret = -EIO;
606 goto err;
609 found_start = btrfs_header_bytenr(eb);
610 if (found_start != eb->start) {
611 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
612 "%llu %llu\n",
613 found_start, eb->start);
614 ret = -EIO;
615 goto err;
617 if (check_tree_block_fsid(root, eb)) {
618 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
619 eb->start);
620 ret = -EIO;
621 goto err;
623 found_level = btrfs_header_level(eb);
624 if (found_level >= BTRFS_MAX_LEVEL) {
625 btrfs_info(root->fs_info, "bad tree block level %d\n",
626 (int)btrfs_header_level(eb));
627 ret = -EIO;
628 goto err;
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632 eb, found_level);
634 ret = csum_tree_block(root, eb, 1);
635 if (ret) {
636 ret = -EIO;
637 goto err;
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
643 * return -EIO.
645 if (found_level == 0 && check_leaf(root, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 ret = -EIO;
650 if (!ret)
651 set_extent_buffer_uptodate(eb);
652 err:
653 if (reads_done &&
654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
655 btree_readahead_hook(root, eb, eb->start, ret);
657 if (ret) {
659 * our io error hook is going to dec the io pages
660 * again, we have to make sure it has something
661 * to decrement
663 atomic_inc(&eb->io_pages);
664 clear_extent_buffer_uptodate(eb);
666 free_extent_buffer(eb);
667 out:
668 return ret;
671 static int btree_io_failed_hook(struct page *page, int failed_mirror)
673 struct extent_buffer *eb;
674 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
676 eb = (struct extent_buffer *)page->private;
677 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
678 eb->read_mirror = failed_mirror;
679 atomic_dec(&eb->io_pages);
680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681 btree_readahead_hook(root, eb, eb->start, -EIO);
682 return -EIO; /* we fixed nothing */
685 static void end_workqueue_bio(struct bio *bio, int err)
687 struct end_io_wq *end_io_wq = bio->bi_private;
688 struct btrfs_fs_info *fs_info;
690 fs_info = end_io_wq->info;
691 end_io_wq->error = err;
692 end_io_wq->work.func = end_workqueue_fn;
693 end_io_wq->work.flags = 0;
695 if (bio->bi_rw & REQ_WRITE) {
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
697 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698 &end_io_wq->work);
699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
700 btrfs_queue_worker(&fs_info->endio_freespace_worker,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703 btrfs_queue_worker(&fs_info->endio_raid56_workers,
704 &end_io_wq->work);
705 else
706 btrfs_queue_worker(&fs_info->endio_write_workers,
707 &end_io_wq->work);
708 } else {
709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710 btrfs_queue_worker(&fs_info->endio_raid56_workers,
711 &end_io_wq->work);
712 else if (end_io_wq->metadata)
713 btrfs_queue_worker(&fs_info->endio_meta_workers,
714 &end_io_wq->work);
715 else
716 btrfs_queue_worker(&fs_info->endio_workers,
717 &end_io_wq->work);
722 * For the metadata arg you want
724 * 0 - if data
725 * 1 - if normal metadta
726 * 2 - if writing to the free space cache area
727 * 3 - raid parity work
729 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
730 int metadata)
732 struct end_io_wq *end_io_wq;
733 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
734 if (!end_io_wq)
735 return -ENOMEM;
737 end_io_wq->private = bio->bi_private;
738 end_io_wq->end_io = bio->bi_end_io;
739 end_io_wq->info = info;
740 end_io_wq->error = 0;
741 end_io_wq->bio = bio;
742 end_io_wq->metadata = metadata;
744 bio->bi_private = end_io_wq;
745 bio->bi_end_io = end_workqueue_bio;
746 return 0;
749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
751 unsigned long limit = min_t(unsigned long,
752 info->workers.max_workers,
753 info->fs_devices->open_devices);
754 return 256 * limit;
757 static void run_one_async_start(struct btrfs_work *work)
759 struct async_submit_bio *async;
760 int ret;
762 async = container_of(work, struct async_submit_bio, work);
763 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
764 async->mirror_num, async->bio_flags,
765 async->bio_offset);
766 if (ret)
767 async->error = ret;
770 static void run_one_async_done(struct btrfs_work *work)
772 struct btrfs_fs_info *fs_info;
773 struct async_submit_bio *async;
774 int limit;
776 async = container_of(work, struct async_submit_bio, work);
777 fs_info = BTRFS_I(async->inode)->root->fs_info;
779 limit = btrfs_async_submit_limit(fs_info);
780 limit = limit * 2 / 3;
782 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
783 waitqueue_active(&fs_info->async_submit_wait))
784 wake_up(&fs_info->async_submit_wait);
786 /* If an error occured we just want to clean up the bio and move on */
787 if (async->error) {
788 bio_endio(async->bio, async->error);
789 return;
792 async->submit_bio_done(async->inode, async->rw, async->bio,
793 async->mirror_num, async->bio_flags,
794 async->bio_offset);
797 static void run_one_async_free(struct btrfs_work *work)
799 struct async_submit_bio *async;
801 async = container_of(work, struct async_submit_bio, work);
802 kfree(async);
805 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
806 int rw, struct bio *bio, int mirror_num,
807 unsigned long bio_flags,
808 u64 bio_offset,
809 extent_submit_bio_hook_t *submit_bio_start,
810 extent_submit_bio_hook_t *submit_bio_done)
812 struct async_submit_bio *async;
814 async = kmalloc(sizeof(*async), GFP_NOFS);
815 if (!async)
816 return -ENOMEM;
818 async->inode = inode;
819 async->rw = rw;
820 async->bio = bio;
821 async->mirror_num = mirror_num;
822 async->submit_bio_start = submit_bio_start;
823 async->submit_bio_done = submit_bio_done;
825 async->work.func = run_one_async_start;
826 async->work.ordered_func = run_one_async_done;
827 async->work.ordered_free = run_one_async_free;
829 async->work.flags = 0;
830 async->bio_flags = bio_flags;
831 async->bio_offset = bio_offset;
833 async->error = 0;
835 atomic_inc(&fs_info->nr_async_submits);
837 if (rw & REQ_SYNC)
838 btrfs_set_work_high_prio(&async->work);
840 btrfs_queue_worker(&fs_info->workers, &async->work);
842 while (atomic_read(&fs_info->async_submit_draining) &&
843 atomic_read(&fs_info->nr_async_submits)) {
844 wait_event(fs_info->async_submit_wait,
845 (atomic_read(&fs_info->nr_async_submits) == 0));
848 return 0;
851 static int btree_csum_one_bio(struct bio *bio)
853 struct bio_vec *bvec = bio->bi_io_vec;
854 int bio_index = 0;
855 struct btrfs_root *root;
856 int ret = 0;
858 WARN_ON(bio->bi_vcnt <= 0);
859 while (bio_index < bio->bi_vcnt) {
860 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
861 ret = csum_dirty_buffer(root, bvec->bv_page);
862 if (ret)
863 break;
864 bio_index++;
865 bvec++;
867 return ret;
870 static int __btree_submit_bio_start(struct inode *inode, int rw,
871 struct bio *bio, int mirror_num,
872 unsigned long bio_flags,
873 u64 bio_offset)
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
879 return btree_csum_one_bio(bio);
882 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
883 int mirror_num, unsigned long bio_flags,
884 u64 bio_offset)
886 int ret;
889 * when we're called for a write, we're already in the async
890 * submission context. Just jump into btrfs_map_bio
892 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
893 if (ret)
894 bio_endio(bio, ret);
895 return ret;
898 static int check_async_write(struct inode *inode, unsigned long bio_flags)
900 if (bio_flags & EXTENT_BIO_TREE_LOG)
901 return 0;
902 #ifdef CONFIG_X86
903 if (cpu_has_xmm4_2)
904 return 0;
905 #endif
906 return 1;
909 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
910 int mirror_num, unsigned long bio_flags,
911 u64 bio_offset)
913 int async = check_async_write(inode, bio_flags);
914 int ret;
916 if (!(rw & REQ_WRITE)) {
918 * called for a read, do the setup so that checksum validation
919 * can happen in the async kernel threads
921 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
922 bio, 1);
923 if (ret)
924 goto out_w_error;
925 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
926 mirror_num, 0);
927 } else if (!async) {
928 ret = btree_csum_one_bio(bio);
929 if (ret)
930 goto out_w_error;
931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 mirror_num, 0);
933 } else {
935 * kthread helpers are used to submit writes so that
936 * checksumming can happen in parallel across all CPUs
938 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
939 inode, rw, bio, mirror_num, 0,
940 bio_offset,
941 __btree_submit_bio_start,
942 __btree_submit_bio_done);
945 if (ret) {
946 out_w_error:
947 bio_endio(bio, ret);
949 return ret;
952 #ifdef CONFIG_MIGRATION
953 static int btree_migratepage(struct address_space *mapping,
954 struct page *newpage, struct page *page,
955 enum migrate_mode mode)
958 * we can't safely write a btree page from here,
959 * we haven't done the locking hook
961 if (PageDirty(page))
962 return -EAGAIN;
964 * Buffers may be managed in a filesystem specific way.
965 * We must have no buffers or drop them.
967 if (page_has_private(page) &&
968 !try_to_release_page(page, GFP_KERNEL))
969 return -EAGAIN;
970 return migrate_page(mapping, newpage, page, mode);
972 #endif
975 static int btree_writepages(struct address_space *mapping,
976 struct writeback_control *wbc)
978 struct extent_io_tree *tree;
979 struct btrfs_fs_info *fs_info;
980 int ret;
982 tree = &BTRFS_I(mapping->host)->io_tree;
983 if (wbc->sync_mode == WB_SYNC_NONE) {
985 if (wbc->for_kupdate)
986 return 0;
988 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989 /* this is a bit racy, but that's ok */
990 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991 BTRFS_DIRTY_METADATA_THRESH);
992 if (ret < 0)
993 return 0;
995 return btree_write_cache_pages(mapping, wbc);
998 static int btree_readpage(struct file *file, struct page *page)
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
1002 return extent_read_full_page(tree, page, btree_get_extent, 0);
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1007 if (PageWriteback(page) || PageDirty(page))
1008 return 0;
1010 return try_release_extent_buffer(page);
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014 unsigned int length)
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 extent_invalidatepage(tree, page, offset);
1019 btree_releasepage(page, GFP_NOFS);
1020 if (PagePrivate(page)) {
1021 printk(KERN_WARNING "btrfs warning page private not zero "
1022 "on page %llu\n", (unsigned long long)page_offset(page));
1023 ClearPagePrivate(page);
1024 set_page_private(page, 0);
1025 page_cache_release(page);
1029 static int btree_set_page_dirty(struct page *page)
1031 #ifdef DEBUG
1032 struct extent_buffer *eb;
1034 BUG_ON(!PagePrivate(page));
1035 eb = (struct extent_buffer *)page->private;
1036 BUG_ON(!eb);
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 BUG_ON(!atomic_read(&eb->refs));
1039 btrfs_assert_tree_locked(eb);
1040 #endif
1041 return __set_page_dirty_nobuffers(page);
1044 static const struct address_space_operations btree_aops = {
1045 .readpage = btree_readpage,
1046 .writepages = btree_writepages,
1047 .releasepage = btree_releasepage,
1048 .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050 .migratepage = btree_migratepage,
1051 #endif
1052 .set_page_dirty = btree_set_page_dirty,
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056 u64 parent_transid)
1058 struct extent_buffer *buf = NULL;
1059 struct inode *btree_inode = root->fs_info->btree_inode;
1060 int ret = 0;
1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063 if (!buf)
1064 return 0;
1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067 free_extent_buffer(buf);
1068 return ret;
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072 int mirror_num, struct extent_buffer **eb)
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077 int ret;
1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080 if (!buf)
1081 return 0;
1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086 btree_get_extent, mirror_num);
1087 if (ret) {
1088 free_extent_buffer(buf);
1089 return ret;
1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093 free_extent_buffer(buf);
1094 return -EIO;
1095 } else if (extent_buffer_uptodate(buf)) {
1096 *eb = buf;
1097 } else {
1098 free_extent_buffer(buf);
1100 return 0;
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104 u64 bytenr, u32 blocksize)
1106 struct inode *btree_inode = root->fs_info->btree_inode;
1107 struct extent_buffer *eb;
1108 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1109 bytenr, blocksize);
1110 return eb;
1113 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1114 u64 bytenr, u32 blocksize)
1116 struct inode *btree_inode = root->fs_info->btree_inode;
1117 struct extent_buffer *eb;
1119 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1120 bytenr, blocksize);
1121 return eb;
1125 int btrfs_write_tree_block(struct extent_buffer *buf)
1127 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1128 buf->start + buf->len - 1);
1131 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1133 return filemap_fdatawait_range(buf->pages[0]->mapping,
1134 buf->start, buf->start + buf->len - 1);
1137 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1138 u32 blocksize, u64 parent_transid)
1140 struct extent_buffer *buf = NULL;
1141 int ret;
1143 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1144 if (!buf)
1145 return NULL;
1147 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1148 if (ret) {
1149 free_extent_buffer(buf);
1150 return NULL;
1152 return buf;
1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157 struct extent_buffer *buf)
1159 struct btrfs_fs_info *fs_info = root->fs_info;
1161 if (btrfs_header_generation(buf) ==
1162 fs_info->running_transaction->transid) {
1163 btrfs_assert_tree_locked(buf);
1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1166 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167 -buf->len,
1168 fs_info->dirty_metadata_batch);
1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170 btrfs_set_lock_blocking(buf);
1171 clear_extent_buffer_dirty(buf);
1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177 u32 stripesize, struct btrfs_root *root,
1178 struct btrfs_fs_info *fs_info,
1179 u64 objectid)
1181 root->node = NULL;
1182 root->commit_root = NULL;
1183 root->sectorsize = sectorsize;
1184 root->nodesize = nodesize;
1185 root->leafsize = leafsize;
1186 root->stripesize = stripesize;
1187 root->ref_cows = 0;
1188 root->track_dirty = 0;
1189 root->in_radix = 0;
1190 root->orphan_item_inserted = 0;
1191 root->orphan_cleanup_state = 0;
1193 root->objectid = objectid;
1194 root->last_trans = 0;
1195 root->highest_objectid = 0;
1196 root->nr_delalloc_inodes = 0;
1197 root->nr_ordered_extents = 0;
1198 root->name = NULL;
1199 root->inode_tree = RB_ROOT;
1200 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1201 root->block_rsv = NULL;
1202 root->orphan_block_rsv = NULL;
1204 INIT_LIST_HEAD(&root->dirty_list);
1205 INIT_LIST_HEAD(&root->root_list);
1206 INIT_LIST_HEAD(&root->delalloc_inodes);
1207 INIT_LIST_HEAD(&root->delalloc_root);
1208 INIT_LIST_HEAD(&root->ordered_extents);
1209 INIT_LIST_HEAD(&root->ordered_root);
1210 INIT_LIST_HEAD(&root->logged_list[0]);
1211 INIT_LIST_HEAD(&root->logged_list[1]);
1212 spin_lock_init(&root->orphan_lock);
1213 spin_lock_init(&root->inode_lock);
1214 spin_lock_init(&root->delalloc_lock);
1215 spin_lock_init(&root->ordered_extent_lock);
1216 spin_lock_init(&root->accounting_lock);
1217 spin_lock_init(&root->log_extents_lock[0]);
1218 spin_lock_init(&root->log_extents_lock[1]);
1219 mutex_init(&root->objectid_mutex);
1220 mutex_init(&root->log_mutex);
1221 init_waitqueue_head(&root->log_writer_wait);
1222 init_waitqueue_head(&root->log_commit_wait[0]);
1223 init_waitqueue_head(&root->log_commit_wait[1]);
1224 atomic_set(&root->log_commit[0], 0);
1225 atomic_set(&root->log_commit[1], 0);
1226 atomic_set(&root->log_writers, 0);
1227 atomic_set(&root->log_batch, 0);
1228 atomic_set(&root->orphan_inodes, 0);
1229 atomic_set(&root->refs, 1);
1230 root->log_transid = 0;
1231 root->last_log_commit = 0;
1232 extent_io_tree_init(&root->dirty_log_pages,
1233 fs_info->btree_inode->i_mapping);
1235 memset(&root->root_key, 0, sizeof(root->root_key));
1236 memset(&root->root_item, 0, sizeof(root->root_item));
1237 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1238 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1239 root->defrag_trans_start = fs_info->generation;
1240 init_completion(&root->kobj_unregister);
1241 root->defrag_running = 0;
1242 root->root_key.objectid = objectid;
1243 root->anon_dev = 0;
1245 spin_lock_init(&root->root_item_lock);
1248 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1250 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1251 if (root)
1252 root->fs_info = fs_info;
1253 return root;
1256 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 u64 objectid)
1260 struct extent_buffer *leaf;
1261 struct btrfs_root *tree_root = fs_info->tree_root;
1262 struct btrfs_root *root;
1263 struct btrfs_key key;
1264 int ret = 0;
1265 u64 bytenr;
1266 uuid_le uuid;
1268 root = btrfs_alloc_root(fs_info);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1272 __setup_root(tree_root->nodesize, tree_root->leafsize,
1273 tree_root->sectorsize, tree_root->stripesize,
1274 root, fs_info, objectid);
1275 root->root_key.objectid = objectid;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = 0;
1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280 0, objectid, NULL, 0, 0, 0);
1281 if (IS_ERR(leaf)) {
1282 ret = PTR_ERR(leaf);
1283 leaf = NULL;
1284 goto fail;
1287 bytenr = leaf->start;
1288 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289 btrfs_set_header_bytenr(leaf, leaf->start);
1290 btrfs_set_header_generation(leaf, trans->transid);
1291 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292 btrfs_set_header_owner(leaf, objectid);
1293 root->node = leaf;
1295 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1296 BTRFS_FSID_SIZE);
1297 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298 btrfs_header_chunk_tree_uuid(leaf),
1299 BTRFS_UUID_SIZE);
1300 btrfs_mark_buffer_dirty(leaf);
1302 root->commit_root = btrfs_root_node(root);
1303 root->track_dirty = 1;
1306 root->root_item.flags = 0;
1307 root->root_item.byte_limit = 0;
1308 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309 btrfs_set_root_generation(&root->root_item, trans->transid);
1310 btrfs_set_root_level(&root->root_item, 0);
1311 btrfs_set_root_refs(&root->root_item, 1);
1312 btrfs_set_root_used(&root->root_item, leaf->len);
1313 btrfs_set_root_last_snapshot(&root->root_item, 0);
1314 btrfs_set_root_dirid(&root->root_item, 0);
1315 uuid_le_gen(&uuid);
1316 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1317 root->root_item.drop_level = 0;
1319 key.objectid = objectid;
1320 key.type = BTRFS_ROOT_ITEM_KEY;
1321 key.offset = 0;
1322 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323 if (ret)
1324 goto fail;
1326 btrfs_tree_unlock(leaf);
1328 return root;
1330 fail:
1331 if (leaf) {
1332 btrfs_tree_unlock(leaf);
1333 free_extent_buffer(leaf);
1335 kfree(root);
1337 return ERR_PTR(ret);
1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341 struct btrfs_fs_info *fs_info)
1343 struct btrfs_root *root;
1344 struct btrfs_root *tree_root = fs_info->tree_root;
1345 struct extent_buffer *leaf;
1347 root = btrfs_alloc_root(fs_info);
1348 if (!root)
1349 return ERR_PTR(-ENOMEM);
1351 __setup_root(tree_root->nodesize, tree_root->leafsize,
1352 tree_root->sectorsize, tree_root->stripesize,
1353 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1355 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1364 root->ref_cows = 0;
1366 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1367 BTRFS_TREE_LOG_OBJECTID, NULL,
1368 0, 0, 0);
1369 if (IS_ERR(leaf)) {
1370 kfree(root);
1371 return ERR_CAST(leaf);
1374 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375 btrfs_set_header_bytenr(leaf, leaf->start);
1376 btrfs_set_header_generation(leaf, trans->transid);
1377 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1379 root->node = leaf;
1381 write_extent_buffer(root->node, root->fs_info->fsid,
1382 btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1383 btrfs_mark_buffer_dirty(root->node);
1384 btrfs_tree_unlock(root->node);
1385 return root;
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389 struct btrfs_fs_info *fs_info)
1391 struct btrfs_root *log_root;
1393 log_root = alloc_log_tree(trans, fs_info);
1394 if (IS_ERR(log_root))
1395 return PTR_ERR(log_root);
1396 WARN_ON(fs_info->log_root_tree);
1397 fs_info->log_root_tree = log_root;
1398 return 0;
1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root)
1404 struct btrfs_root *log_root;
1405 struct btrfs_inode_item *inode_item;
1407 log_root = alloc_log_tree(trans, root->fs_info);
1408 if (IS_ERR(log_root))
1409 return PTR_ERR(log_root);
1411 log_root->last_trans = trans->transid;
1412 log_root->root_key.offset = root->root_key.objectid;
1414 inode_item = &log_root->root_item.inode;
1415 btrfs_set_stack_inode_generation(inode_item, 1);
1416 btrfs_set_stack_inode_size(inode_item, 3);
1417 btrfs_set_stack_inode_nlink(inode_item, 1);
1418 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1421 btrfs_set_root_node(&log_root->root_item, log_root->node);
1423 WARN_ON(root->log_root);
1424 root->log_root = log_root;
1425 root->log_transid = 0;
1426 root->last_log_commit = 0;
1427 return 0;
1430 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431 struct btrfs_key *key)
1433 struct btrfs_root *root;
1434 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1435 struct btrfs_path *path;
1436 u64 generation;
1437 u32 blocksize;
1438 int ret;
1440 path = btrfs_alloc_path();
1441 if (!path)
1442 return ERR_PTR(-ENOMEM);
1444 root = btrfs_alloc_root(fs_info);
1445 if (!root) {
1446 ret = -ENOMEM;
1447 goto alloc_fail;
1450 __setup_root(tree_root->nodesize, tree_root->leafsize,
1451 tree_root->sectorsize, tree_root->stripesize,
1452 root, fs_info, key->objectid);
1454 ret = btrfs_find_root(tree_root, key, path,
1455 &root->root_item, &root->root_key);
1456 if (ret) {
1457 if (ret > 0)
1458 ret = -ENOENT;
1459 goto find_fail;
1462 generation = btrfs_root_generation(&root->root_item);
1463 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1465 blocksize, generation);
1466 if (!root->node) {
1467 ret = -ENOMEM;
1468 goto find_fail;
1469 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470 ret = -EIO;
1471 goto read_fail;
1473 root->commit_root = btrfs_root_node(root);
1474 out:
1475 btrfs_free_path(path);
1476 return root;
1478 read_fail:
1479 free_extent_buffer(root->node);
1480 find_fail:
1481 kfree(root);
1482 alloc_fail:
1483 root = ERR_PTR(ret);
1484 goto out;
1487 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *location)
1490 struct btrfs_root *root;
1492 root = btrfs_read_tree_root(tree_root, location);
1493 if (IS_ERR(root))
1494 return root;
1496 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1497 root->ref_cows = 1;
1498 btrfs_check_and_init_root_item(&root->root_item);
1501 return root;
1504 int btrfs_init_fs_root(struct btrfs_root *root)
1506 int ret;
1508 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510 GFP_NOFS);
1511 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512 ret = -ENOMEM;
1513 goto fail;
1516 btrfs_init_free_ino_ctl(root);
1517 mutex_init(&root->fs_commit_mutex);
1518 spin_lock_init(&root->cache_lock);
1519 init_waitqueue_head(&root->cache_wait);
1521 ret = get_anon_bdev(&root->anon_dev);
1522 if (ret)
1523 goto fail;
1524 return 0;
1525 fail:
1526 kfree(root->free_ino_ctl);
1527 kfree(root->free_ino_pinned);
1528 return ret;
1531 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532 u64 root_id)
1534 struct btrfs_root *root;
1536 spin_lock(&fs_info->fs_roots_radix_lock);
1537 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538 (unsigned long)root_id);
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 return root;
1543 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544 struct btrfs_root *root)
1546 int ret;
1548 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549 if (ret)
1550 return ret;
1552 spin_lock(&fs_info->fs_roots_radix_lock);
1553 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554 (unsigned long)root->root_key.objectid,
1555 root);
1556 if (ret == 0)
1557 root->in_radix = 1;
1558 spin_unlock(&fs_info->fs_roots_radix_lock);
1559 radix_tree_preload_end();
1561 return ret;
1564 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1565 struct btrfs_key *location,
1566 bool check_ref)
1568 struct btrfs_root *root;
1569 int ret;
1571 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1572 return fs_info->tree_root;
1573 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1574 return fs_info->extent_root;
1575 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1576 return fs_info->chunk_root;
1577 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1578 return fs_info->dev_root;
1579 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1580 return fs_info->csum_root;
1581 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1582 return fs_info->quota_root ? fs_info->quota_root :
1583 ERR_PTR(-ENOENT);
1584 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1585 return fs_info->uuid_root ? fs_info->uuid_root :
1586 ERR_PTR(-ENOENT);
1587 again:
1588 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1589 if (root) {
1590 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1591 return ERR_PTR(-ENOENT);
1592 return root;
1595 root = btrfs_read_fs_root(fs_info->tree_root, location);
1596 if (IS_ERR(root))
1597 return root;
1599 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1600 ret = -ENOENT;
1601 goto fail;
1604 ret = btrfs_init_fs_root(root);
1605 if (ret)
1606 goto fail;
1608 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1609 if (ret < 0)
1610 goto fail;
1611 if (ret == 0)
1612 root->orphan_item_inserted = 1;
1614 ret = btrfs_insert_fs_root(fs_info, root);
1615 if (ret) {
1616 if (ret == -EEXIST) {
1617 free_fs_root(root);
1618 goto again;
1620 goto fail;
1622 return root;
1623 fail:
1624 free_fs_root(root);
1625 return ERR_PTR(ret);
1628 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1630 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1631 int ret = 0;
1632 struct btrfs_device *device;
1633 struct backing_dev_info *bdi;
1635 rcu_read_lock();
1636 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1637 if (!device->bdev)
1638 continue;
1639 bdi = blk_get_backing_dev_info(device->bdev);
1640 if (bdi && bdi_congested(bdi, bdi_bits)) {
1641 ret = 1;
1642 break;
1645 rcu_read_unlock();
1646 return ret;
1650 * If this fails, caller must call bdi_destroy() to get rid of the
1651 * bdi again.
1653 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1655 int err;
1657 bdi->capabilities = BDI_CAP_MAP_COPY;
1658 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1659 if (err)
1660 return err;
1662 bdi->ra_pages = default_backing_dev_info.ra_pages;
1663 bdi->congested_fn = btrfs_congested_fn;
1664 bdi->congested_data = info;
1665 return 0;
1669 * called by the kthread helper functions to finally call the bio end_io
1670 * functions. This is where read checksum verification actually happens
1672 static void end_workqueue_fn(struct btrfs_work *work)
1674 struct bio *bio;
1675 struct end_io_wq *end_io_wq;
1676 struct btrfs_fs_info *fs_info;
1677 int error;
1679 end_io_wq = container_of(work, struct end_io_wq, work);
1680 bio = end_io_wq->bio;
1681 fs_info = end_io_wq->info;
1683 error = end_io_wq->error;
1684 bio->bi_private = end_io_wq->private;
1685 bio->bi_end_io = end_io_wq->end_io;
1686 kfree(end_io_wq);
1687 bio_endio(bio, error);
1690 static int cleaner_kthread(void *arg)
1692 struct btrfs_root *root = arg;
1693 int again;
1695 do {
1696 again = 0;
1698 /* Make the cleaner go to sleep early. */
1699 if (btrfs_need_cleaner_sleep(root))
1700 goto sleep;
1702 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1703 goto sleep;
1706 * Avoid the problem that we change the status of the fs
1707 * during the above check and trylock.
1709 if (btrfs_need_cleaner_sleep(root)) {
1710 mutex_unlock(&root->fs_info->cleaner_mutex);
1711 goto sleep;
1714 btrfs_run_delayed_iputs(root);
1715 again = btrfs_clean_one_deleted_snapshot(root);
1716 mutex_unlock(&root->fs_info->cleaner_mutex);
1719 * The defragger has dealt with the R/O remount and umount,
1720 * needn't do anything special here.
1722 btrfs_run_defrag_inodes(root->fs_info);
1723 sleep:
1724 if (!try_to_freeze() && !again) {
1725 set_current_state(TASK_INTERRUPTIBLE);
1726 if (!kthread_should_stop())
1727 schedule();
1728 __set_current_state(TASK_RUNNING);
1730 } while (!kthread_should_stop());
1731 return 0;
1734 static int transaction_kthread(void *arg)
1736 struct btrfs_root *root = arg;
1737 struct btrfs_trans_handle *trans;
1738 struct btrfs_transaction *cur;
1739 u64 transid;
1740 unsigned long now;
1741 unsigned long delay;
1742 bool cannot_commit;
1744 do {
1745 cannot_commit = false;
1746 delay = HZ * root->fs_info->commit_interval;
1747 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1749 spin_lock(&root->fs_info->trans_lock);
1750 cur = root->fs_info->running_transaction;
1751 if (!cur) {
1752 spin_unlock(&root->fs_info->trans_lock);
1753 goto sleep;
1756 now = get_seconds();
1757 if (cur->state < TRANS_STATE_BLOCKED &&
1758 (now < cur->start_time ||
1759 now - cur->start_time < root->fs_info->commit_interval)) {
1760 spin_unlock(&root->fs_info->trans_lock);
1761 delay = HZ * 5;
1762 goto sleep;
1764 transid = cur->transid;
1765 spin_unlock(&root->fs_info->trans_lock);
1767 /* If the file system is aborted, this will always fail. */
1768 trans = btrfs_attach_transaction(root);
1769 if (IS_ERR(trans)) {
1770 if (PTR_ERR(trans) != -ENOENT)
1771 cannot_commit = true;
1772 goto sleep;
1774 if (transid == trans->transid) {
1775 btrfs_commit_transaction(trans, root);
1776 } else {
1777 btrfs_end_transaction(trans, root);
1779 sleep:
1780 wake_up_process(root->fs_info->cleaner_kthread);
1781 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1783 if (!try_to_freeze()) {
1784 set_current_state(TASK_INTERRUPTIBLE);
1785 if (!kthread_should_stop() &&
1786 (!btrfs_transaction_blocked(root->fs_info) ||
1787 cannot_commit))
1788 schedule_timeout(delay);
1789 __set_current_state(TASK_RUNNING);
1791 } while (!kthread_should_stop());
1792 return 0;
1796 * this will find the highest generation in the array of
1797 * root backups. The index of the highest array is returned,
1798 * or -1 if we can't find anything.
1800 * We check to make sure the array is valid by comparing the
1801 * generation of the latest root in the array with the generation
1802 * in the super block. If they don't match we pitch it.
1804 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1806 u64 cur;
1807 int newest_index = -1;
1808 struct btrfs_root_backup *root_backup;
1809 int i;
1811 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1812 root_backup = info->super_copy->super_roots + i;
1813 cur = btrfs_backup_tree_root_gen(root_backup);
1814 if (cur == newest_gen)
1815 newest_index = i;
1818 /* check to see if we actually wrapped around */
1819 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1820 root_backup = info->super_copy->super_roots;
1821 cur = btrfs_backup_tree_root_gen(root_backup);
1822 if (cur == newest_gen)
1823 newest_index = 0;
1825 return newest_index;
1830 * find the oldest backup so we know where to store new entries
1831 * in the backup array. This will set the backup_root_index
1832 * field in the fs_info struct
1834 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1835 u64 newest_gen)
1837 int newest_index = -1;
1839 newest_index = find_newest_super_backup(info, newest_gen);
1840 /* if there was garbage in there, just move along */
1841 if (newest_index == -1) {
1842 info->backup_root_index = 0;
1843 } else {
1844 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1849 * copy all the root pointers into the super backup array.
1850 * this will bump the backup pointer by one when it is
1851 * done
1853 static void backup_super_roots(struct btrfs_fs_info *info)
1855 int next_backup;
1856 struct btrfs_root_backup *root_backup;
1857 int last_backup;
1859 next_backup = info->backup_root_index;
1860 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1861 BTRFS_NUM_BACKUP_ROOTS;
1864 * just overwrite the last backup if we're at the same generation
1865 * this happens only at umount
1867 root_backup = info->super_for_commit->super_roots + last_backup;
1868 if (btrfs_backup_tree_root_gen(root_backup) ==
1869 btrfs_header_generation(info->tree_root->node))
1870 next_backup = last_backup;
1872 root_backup = info->super_for_commit->super_roots + next_backup;
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1878 memset(root_backup, 0, sizeof(*root_backup));
1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 btrfs_set_backup_tree_root_gen(root_backup,
1884 btrfs_header_generation(info->tree_root->node));
1886 btrfs_set_backup_tree_root_level(root_backup,
1887 btrfs_header_level(info->tree_root->node));
1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 btrfs_set_backup_chunk_root_gen(root_backup,
1891 btrfs_header_generation(info->chunk_root->node));
1892 btrfs_set_backup_chunk_root_level(root_backup,
1893 btrfs_header_level(info->chunk_root->node));
1895 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1896 btrfs_set_backup_extent_root_gen(root_backup,
1897 btrfs_header_generation(info->extent_root->node));
1898 btrfs_set_backup_extent_root_level(root_backup,
1899 btrfs_header_level(info->extent_root->node));
1902 * we might commit during log recovery, which happens before we set
1903 * the fs_root. Make sure it is valid before we fill it in.
1905 if (info->fs_root && info->fs_root->node) {
1906 btrfs_set_backup_fs_root(root_backup,
1907 info->fs_root->node->start);
1908 btrfs_set_backup_fs_root_gen(root_backup,
1909 btrfs_header_generation(info->fs_root->node));
1910 btrfs_set_backup_fs_root_level(root_backup,
1911 btrfs_header_level(info->fs_root->node));
1914 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1915 btrfs_set_backup_dev_root_gen(root_backup,
1916 btrfs_header_generation(info->dev_root->node));
1917 btrfs_set_backup_dev_root_level(root_backup,
1918 btrfs_header_level(info->dev_root->node));
1920 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1921 btrfs_set_backup_csum_root_gen(root_backup,
1922 btrfs_header_generation(info->csum_root->node));
1923 btrfs_set_backup_csum_root_level(root_backup,
1924 btrfs_header_level(info->csum_root->node));
1926 btrfs_set_backup_total_bytes(root_backup,
1927 btrfs_super_total_bytes(info->super_copy));
1928 btrfs_set_backup_bytes_used(root_backup,
1929 btrfs_super_bytes_used(info->super_copy));
1930 btrfs_set_backup_num_devices(root_backup,
1931 btrfs_super_num_devices(info->super_copy));
1934 * if we don't copy this out to the super_copy, it won't get remembered
1935 * for the next commit
1937 memcpy(&info->super_copy->super_roots,
1938 &info->super_for_commit->super_roots,
1939 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1943 * this copies info out of the root backup array and back into
1944 * the in-memory super block. It is meant to help iterate through
1945 * the array, so you send it the number of backups you've already
1946 * tried and the last backup index you used.
1948 * this returns -1 when it has tried all the backups
1950 static noinline int next_root_backup(struct btrfs_fs_info *info,
1951 struct btrfs_super_block *super,
1952 int *num_backups_tried, int *backup_index)
1954 struct btrfs_root_backup *root_backup;
1955 int newest = *backup_index;
1957 if (*num_backups_tried == 0) {
1958 u64 gen = btrfs_super_generation(super);
1960 newest = find_newest_super_backup(info, gen);
1961 if (newest == -1)
1962 return -1;
1964 *backup_index = newest;
1965 *num_backups_tried = 1;
1966 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1967 /* we've tried all the backups, all done */
1968 return -1;
1969 } else {
1970 /* jump to the next oldest backup */
1971 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1972 BTRFS_NUM_BACKUP_ROOTS;
1973 *backup_index = newest;
1974 *num_backups_tried += 1;
1976 root_backup = super->super_roots + newest;
1978 btrfs_set_super_generation(super,
1979 btrfs_backup_tree_root_gen(root_backup));
1980 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1981 btrfs_set_super_root_level(super,
1982 btrfs_backup_tree_root_level(root_backup));
1983 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1986 * fixme: the total bytes and num_devices need to match or we should
1987 * need a fsck
1989 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1990 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1991 return 0;
1994 /* helper to cleanup workers */
1995 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1997 btrfs_stop_workers(&fs_info->generic_worker);
1998 btrfs_stop_workers(&fs_info->fixup_workers);
1999 btrfs_stop_workers(&fs_info->delalloc_workers);
2000 btrfs_stop_workers(&fs_info->workers);
2001 btrfs_stop_workers(&fs_info->endio_workers);
2002 btrfs_stop_workers(&fs_info->endio_meta_workers);
2003 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2004 btrfs_stop_workers(&fs_info->rmw_workers);
2005 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2006 btrfs_stop_workers(&fs_info->endio_write_workers);
2007 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2008 btrfs_stop_workers(&fs_info->submit_workers);
2009 btrfs_stop_workers(&fs_info->delayed_workers);
2010 btrfs_stop_workers(&fs_info->caching_workers);
2011 btrfs_stop_workers(&fs_info->readahead_workers);
2012 btrfs_stop_workers(&fs_info->flush_workers);
2013 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2016 /* helper to cleanup tree roots */
2017 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2019 free_extent_buffer(info->tree_root->node);
2020 free_extent_buffer(info->tree_root->commit_root);
2021 info->tree_root->node = NULL;
2022 info->tree_root->commit_root = NULL;
2024 if (info->dev_root) {
2025 free_extent_buffer(info->dev_root->node);
2026 free_extent_buffer(info->dev_root->commit_root);
2027 info->dev_root->node = NULL;
2028 info->dev_root->commit_root = NULL;
2030 if (info->extent_root) {
2031 free_extent_buffer(info->extent_root->node);
2032 free_extent_buffer(info->extent_root->commit_root);
2033 info->extent_root->node = NULL;
2034 info->extent_root->commit_root = NULL;
2036 if (info->csum_root) {
2037 free_extent_buffer(info->csum_root->node);
2038 free_extent_buffer(info->csum_root->commit_root);
2039 info->csum_root->node = NULL;
2040 info->csum_root->commit_root = NULL;
2042 if (info->quota_root) {
2043 free_extent_buffer(info->quota_root->node);
2044 free_extent_buffer(info->quota_root->commit_root);
2045 info->quota_root->node = NULL;
2046 info->quota_root->commit_root = NULL;
2048 if (info->uuid_root) {
2049 free_extent_buffer(info->uuid_root->node);
2050 free_extent_buffer(info->uuid_root->commit_root);
2051 info->uuid_root->node = NULL;
2052 info->uuid_root->commit_root = NULL;
2054 if (chunk_root) {
2055 free_extent_buffer(info->chunk_root->node);
2056 free_extent_buffer(info->chunk_root->commit_root);
2057 info->chunk_root->node = NULL;
2058 info->chunk_root->commit_root = NULL;
2062 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2064 int ret;
2065 struct btrfs_root *gang[8];
2066 int i;
2068 while (!list_empty(&fs_info->dead_roots)) {
2069 gang[0] = list_entry(fs_info->dead_roots.next,
2070 struct btrfs_root, root_list);
2071 list_del(&gang[0]->root_list);
2073 if (gang[0]->in_radix) {
2074 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2075 } else {
2076 free_extent_buffer(gang[0]->node);
2077 free_extent_buffer(gang[0]->commit_root);
2078 btrfs_put_fs_root(gang[0]);
2082 while (1) {
2083 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2084 (void **)gang, 0,
2085 ARRAY_SIZE(gang));
2086 if (!ret)
2087 break;
2088 for (i = 0; i < ret; i++)
2089 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2093 int open_ctree(struct super_block *sb,
2094 struct btrfs_fs_devices *fs_devices,
2095 char *options)
2097 u32 sectorsize;
2098 u32 nodesize;
2099 u32 leafsize;
2100 u32 blocksize;
2101 u32 stripesize;
2102 u64 generation;
2103 u64 features;
2104 struct btrfs_key location;
2105 struct buffer_head *bh;
2106 struct btrfs_super_block *disk_super;
2107 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2108 struct btrfs_root *tree_root;
2109 struct btrfs_root *extent_root;
2110 struct btrfs_root *csum_root;
2111 struct btrfs_root *chunk_root;
2112 struct btrfs_root *dev_root;
2113 struct btrfs_root *quota_root;
2114 struct btrfs_root *uuid_root;
2115 struct btrfs_root *log_tree_root;
2116 int ret;
2117 int err = -EINVAL;
2118 int num_backups_tried = 0;
2119 int backup_index = 0;
2120 bool create_uuid_tree;
2121 bool check_uuid_tree;
2123 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2124 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2125 if (!tree_root || !chunk_root) {
2126 err = -ENOMEM;
2127 goto fail;
2130 ret = init_srcu_struct(&fs_info->subvol_srcu);
2131 if (ret) {
2132 err = ret;
2133 goto fail;
2136 ret = setup_bdi(fs_info, &fs_info->bdi);
2137 if (ret) {
2138 err = ret;
2139 goto fail_srcu;
2142 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2143 if (ret) {
2144 err = ret;
2145 goto fail_bdi;
2147 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2148 (1 + ilog2(nr_cpu_ids));
2150 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2151 if (ret) {
2152 err = ret;
2153 goto fail_dirty_metadata_bytes;
2156 fs_info->btree_inode = new_inode(sb);
2157 if (!fs_info->btree_inode) {
2158 err = -ENOMEM;
2159 goto fail_delalloc_bytes;
2162 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2164 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2165 INIT_LIST_HEAD(&fs_info->trans_list);
2166 INIT_LIST_HEAD(&fs_info->dead_roots);
2167 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2168 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2169 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2170 spin_lock_init(&fs_info->delalloc_root_lock);
2171 spin_lock_init(&fs_info->trans_lock);
2172 spin_lock_init(&fs_info->fs_roots_radix_lock);
2173 spin_lock_init(&fs_info->delayed_iput_lock);
2174 spin_lock_init(&fs_info->defrag_inodes_lock);
2175 spin_lock_init(&fs_info->free_chunk_lock);
2176 spin_lock_init(&fs_info->tree_mod_seq_lock);
2177 spin_lock_init(&fs_info->super_lock);
2178 rwlock_init(&fs_info->tree_mod_log_lock);
2179 mutex_init(&fs_info->reloc_mutex);
2180 seqlock_init(&fs_info->profiles_lock);
2182 init_completion(&fs_info->kobj_unregister);
2183 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2184 INIT_LIST_HEAD(&fs_info->space_info);
2185 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2186 btrfs_mapping_init(&fs_info->mapping_tree);
2187 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2188 BTRFS_BLOCK_RSV_GLOBAL);
2189 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2190 BTRFS_BLOCK_RSV_DELALLOC);
2191 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2192 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2193 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2194 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2195 BTRFS_BLOCK_RSV_DELOPS);
2196 atomic_set(&fs_info->nr_async_submits, 0);
2197 atomic_set(&fs_info->async_delalloc_pages, 0);
2198 atomic_set(&fs_info->async_submit_draining, 0);
2199 atomic_set(&fs_info->nr_async_bios, 0);
2200 atomic_set(&fs_info->defrag_running, 0);
2201 atomic64_set(&fs_info->tree_mod_seq, 0);
2202 fs_info->sb = sb;
2203 fs_info->max_inline = 8192 * 1024;
2204 fs_info->metadata_ratio = 0;
2205 fs_info->defrag_inodes = RB_ROOT;
2206 fs_info->free_chunk_space = 0;
2207 fs_info->tree_mod_log = RB_ROOT;
2208 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2210 /* readahead state */
2211 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2212 spin_lock_init(&fs_info->reada_lock);
2214 fs_info->thread_pool_size = min_t(unsigned long,
2215 num_online_cpus() + 2, 8);
2217 INIT_LIST_HEAD(&fs_info->ordered_roots);
2218 spin_lock_init(&fs_info->ordered_root_lock);
2219 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2220 GFP_NOFS);
2221 if (!fs_info->delayed_root) {
2222 err = -ENOMEM;
2223 goto fail_iput;
2225 btrfs_init_delayed_root(fs_info->delayed_root);
2227 mutex_init(&fs_info->scrub_lock);
2228 atomic_set(&fs_info->scrubs_running, 0);
2229 atomic_set(&fs_info->scrub_pause_req, 0);
2230 atomic_set(&fs_info->scrubs_paused, 0);
2231 atomic_set(&fs_info->scrub_cancel_req, 0);
2232 init_waitqueue_head(&fs_info->scrub_pause_wait);
2233 init_rwsem(&fs_info->scrub_super_lock);
2234 fs_info->scrub_workers_refcnt = 0;
2235 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2236 fs_info->check_integrity_print_mask = 0;
2237 #endif
2239 spin_lock_init(&fs_info->balance_lock);
2240 mutex_init(&fs_info->balance_mutex);
2241 atomic_set(&fs_info->balance_running, 0);
2242 atomic_set(&fs_info->balance_pause_req, 0);
2243 atomic_set(&fs_info->balance_cancel_req, 0);
2244 fs_info->balance_ctl = NULL;
2245 init_waitqueue_head(&fs_info->balance_wait_q);
2247 sb->s_blocksize = 4096;
2248 sb->s_blocksize_bits = blksize_bits(4096);
2249 sb->s_bdi = &fs_info->bdi;
2251 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2252 set_nlink(fs_info->btree_inode, 1);
2254 * we set the i_size on the btree inode to the max possible int.
2255 * the real end of the address space is determined by all of
2256 * the devices in the system
2258 fs_info->btree_inode->i_size = OFFSET_MAX;
2259 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2260 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2263 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2264 fs_info->btree_inode->i_mapping);
2265 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2268 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2270 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2271 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2272 sizeof(struct btrfs_key));
2273 set_bit(BTRFS_INODE_DUMMY,
2274 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2275 insert_inode_hash(fs_info->btree_inode);
2277 spin_lock_init(&fs_info->block_group_cache_lock);
2278 fs_info->block_group_cache_tree = RB_ROOT;
2279 fs_info->first_logical_byte = (u64)-1;
2281 extent_io_tree_init(&fs_info->freed_extents[0],
2282 fs_info->btree_inode->i_mapping);
2283 extent_io_tree_init(&fs_info->freed_extents[1],
2284 fs_info->btree_inode->i_mapping);
2285 fs_info->pinned_extents = &fs_info->freed_extents[0];
2286 fs_info->do_barriers = 1;
2289 mutex_init(&fs_info->ordered_operations_mutex);
2290 mutex_init(&fs_info->ordered_extent_flush_mutex);
2291 mutex_init(&fs_info->tree_log_mutex);
2292 mutex_init(&fs_info->chunk_mutex);
2293 mutex_init(&fs_info->transaction_kthread_mutex);
2294 mutex_init(&fs_info->cleaner_mutex);
2295 mutex_init(&fs_info->volume_mutex);
2296 init_rwsem(&fs_info->extent_commit_sem);
2297 init_rwsem(&fs_info->cleanup_work_sem);
2298 init_rwsem(&fs_info->subvol_sem);
2299 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2300 fs_info->dev_replace.lock_owner = 0;
2301 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2302 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2303 mutex_init(&fs_info->dev_replace.lock_management_lock);
2304 mutex_init(&fs_info->dev_replace.lock);
2306 spin_lock_init(&fs_info->qgroup_lock);
2307 mutex_init(&fs_info->qgroup_ioctl_lock);
2308 fs_info->qgroup_tree = RB_ROOT;
2309 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2310 fs_info->qgroup_seq = 1;
2311 fs_info->quota_enabled = 0;
2312 fs_info->pending_quota_state = 0;
2313 fs_info->qgroup_ulist = NULL;
2314 mutex_init(&fs_info->qgroup_rescan_lock);
2316 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2317 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2319 init_waitqueue_head(&fs_info->transaction_throttle);
2320 init_waitqueue_head(&fs_info->transaction_wait);
2321 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2322 init_waitqueue_head(&fs_info->async_submit_wait);
2324 ret = btrfs_alloc_stripe_hash_table(fs_info);
2325 if (ret) {
2326 err = ret;
2327 goto fail_alloc;
2330 __setup_root(4096, 4096, 4096, 4096, tree_root,
2331 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2333 invalidate_bdev(fs_devices->latest_bdev);
2336 * Read super block and check the signature bytes only
2338 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2339 if (!bh) {
2340 err = -EINVAL;
2341 goto fail_alloc;
2345 * We want to check superblock checksum, the type is stored inside.
2346 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2348 if (btrfs_check_super_csum(bh->b_data)) {
2349 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2350 err = -EINVAL;
2351 goto fail_alloc;
2355 * super_copy is zeroed at allocation time and we never touch the
2356 * following bytes up to INFO_SIZE, the checksum is calculated from
2357 * the whole block of INFO_SIZE
2359 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2360 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2361 sizeof(*fs_info->super_for_commit));
2362 brelse(bh);
2364 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2366 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2367 if (ret) {
2368 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2369 err = -EINVAL;
2370 goto fail_alloc;
2373 disk_super = fs_info->super_copy;
2374 if (!btrfs_super_root(disk_super))
2375 goto fail_alloc;
2377 /* check FS state, whether FS is broken. */
2378 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2379 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2382 * run through our array of backup supers and setup
2383 * our ring pointer to the oldest one
2385 generation = btrfs_super_generation(disk_super);
2386 find_oldest_super_backup(fs_info, generation);
2389 * In the long term, we'll store the compression type in the super
2390 * block, and it'll be used for per file compression control.
2392 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2394 ret = btrfs_parse_options(tree_root, options);
2395 if (ret) {
2396 err = ret;
2397 goto fail_alloc;
2400 features = btrfs_super_incompat_flags(disk_super) &
2401 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2402 if (features) {
2403 printk(KERN_ERR "BTRFS: couldn't mount because of "
2404 "unsupported optional features (%Lx).\n",
2405 features);
2406 err = -EINVAL;
2407 goto fail_alloc;
2410 if (btrfs_super_leafsize(disk_super) !=
2411 btrfs_super_nodesize(disk_super)) {
2412 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2413 "blocksizes don't match. node %d leaf %d\n",
2414 btrfs_super_nodesize(disk_super),
2415 btrfs_super_leafsize(disk_super));
2416 err = -EINVAL;
2417 goto fail_alloc;
2419 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2421 "blocksize (%d) was too large\n",
2422 btrfs_super_leafsize(disk_super));
2423 err = -EINVAL;
2424 goto fail_alloc;
2427 features = btrfs_super_incompat_flags(disk_super);
2428 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2429 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2430 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2432 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2433 printk(KERN_ERR "btrfs: has skinny extents\n");
2436 * flag our filesystem as having big metadata blocks if
2437 * they are bigger than the page size
2439 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2440 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2441 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2442 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2445 nodesize = btrfs_super_nodesize(disk_super);
2446 leafsize = btrfs_super_leafsize(disk_super);
2447 sectorsize = btrfs_super_sectorsize(disk_super);
2448 stripesize = btrfs_super_stripesize(disk_super);
2449 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2450 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2453 * mixed block groups end up with duplicate but slightly offset
2454 * extent buffers for the same range. It leads to corruptions
2456 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2457 (sectorsize != leafsize)) {
2458 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2459 "are not allowed for mixed block groups on %s\n",
2460 sb->s_id);
2461 goto fail_alloc;
2465 * Needn't use the lock because there is no other task which will
2466 * update the flag.
2468 btrfs_set_super_incompat_flags(disk_super, features);
2470 features = btrfs_super_compat_ro_flags(disk_super) &
2471 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2472 if (!(sb->s_flags & MS_RDONLY) && features) {
2473 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2474 "unsupported option features (%Lx).\n",
2475 features);
2476 err = -EINVAL;
2477 goto fail_alloc;
2480 btrfs_init_workers(&fs_info->generic_worker,
2481 "genwork", 1, NULL);
2483 btrfs_init_workers(&fs_info->workers, "worker",
2484 fs_info->thread_pool_size,
2485 &fs_info->generic_worker);
2487 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2488 fs_info->thread_pool_size, NULL);
2490 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2491 fs_info->thread_pool_size, NULL);
2493 btrfs_init_workers(&fs_info->submit_workers, "submit",
2494 min_t(u64, fs_devices->num_devices,
2495 fs_info->thread_pool_size), NULL);
2497 btrfs_init_workers(&fs_info->caching_workers, "cache",
2498 fs_info->thread_pool_size, NULL);
2500 /* a higher idle thresh on the submit workers makes it much more
2501 * likely that bios will be send down in a sane order to the
2502 * devices
2504 fs_info->submit_workers.idle_thresh = 64;
2506 fs_info->workers.idle_thresh = 16;
2507 fs_info->workers.ordered = 1;
2509 fs_info->delalloc_workers.idle_thresh = 2;
2510 fs_info->delalloc_workers.ordered = 1;
2512 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2513 &fs_info->generic_worker);
2514 btrfs_init_workers(&fs_info->endio_workers, "endio",
2515 fs_info->thread_pool_size,
2516 &fs_info->generic_worker);
2517 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2518 fs_info->thread_pool_size,
2519 &fs_info->generic_worker);
2520 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2521 "endio-meta-write", fs_info->thread_pool_size,
2522 &fs_info->generic_worker);
2523 btrfs_init_workers(&fs_info->endio_raid56_workers,
2524 "endio-raid56", fs_info->thread_pool_size,
2525 &fs_info->generic_worker);
2526 btrfs_init_workers(&fs_info->rmw_workers,
2527 "rmw", fs_info->thread_pool_size,
2528 &fs_info->generic_worker);
2529 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2530 fs_info->thread_pool_size,
2531 &fs_info->generic_worker);
2532 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2533 1, &fs_info->generic_worker);
2534 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2535 fs_info->thread_pool_size,
2536 &fs_info->generic_worker);
2537 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2538 fs_info->thread_pool_size,
2539 &fs_info->generic_worker);
2540 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2541 &fs_info->generic_worker);
2544 * endios are largely parallel and should have a very
2545 * low idle thresh
2547 fs_info->endio_workers.idle_thresh = 4;
2548 fs_info->endio_meta_workers.idle_thresh = 4;
2549 fs_info->endio_raid56_workers.idle_thresh = 4;
2550 fs_info->rmw_workers.idle_thresh = 2;
2552 fs_info->endio_write_workers.idle_thresh = 2;
2553 fs_info->endio_meta_write_workers.idle_thresh = 2;
2554 fs_info->readahead_workers.idle_thresh = 2;
2557 * btrfs_start_workers can really only fail because of ENOMEM so just
2558 * return -ENOMEM if any of these fail.
2560 ret = btrfs_start_workers(&fs_info->workers);
2561 ret |= btrfs_start_workers(&fs_info->generic_worker);
2562 ret |= btrfs_start_workers(&fs_info->submit_workers);
2563 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2564 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2565 ret |= btrfs_start_workers(&fs_info->endio_workers);
2566 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2567 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2568 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2569 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2570 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2571 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2572 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2573 ret |= btrfs_start_workers(&fs_info->caching_workers);
2574 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2575 ret |= btrfs_start_workers(&fs_info->flush_workers);
2576 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2577 if (ret) {
2578 err = -ENOMEM;
2579 goto fail_sb_buffer;
2582 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2583 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2584 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2586 tree_root->nodesize = nodesize;
2587 tree_root->leafsize = leafsize;
2588 tree_root->sectorsize = sectorsize;
2589 tree_root->stripesize = stripesize;
2591 sb->s_blocksize = sectorsize;
2592 sb->s_blocksize_bits = blksize_bits(sectorsize);
2594 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2595 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2596 goto fail_sb_buffer;
2599 if (sectorsize != PAGE_SIZE) {
2600 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2601 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2602 goto fail_sb_buffer;
2605 mutex_lock(&fs_info->chunk_mutex);
2606 ret = btrfs_read_sys_array(tree_root);
2607 mutex_unlock(&fs_info->chunk_mutex);
2608 if (ret) {
2609 printk(KERN_WARNING "btrfs: failed to read the system "
2610 "array on %s\n", sb->s_id);
2611 goto fail_sb_buffer;
2614 blocksize = btrfs_level_size(tree_root,
2615 btrfs_super_chunk_root_level(disk_super));
2616 generation = btrfs_super_chunk_root_generation(disk_super);
2618 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2619 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2621 chunk_root->node = read_tree_block(chunk_root,
2622 btrfs_super_chunk_root(disk_super),
2623 blocksize, generation);
2624 if (!chunk_root->node ||
2625 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2626 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2627 sb->s_id);
2628 goto fail_tree_roots;
2630 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2631 chunk_root->commit_root = btrfs_root_node(chunk_root);
2633 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2634 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2636 ret = btrfs_read_chunk_tree(chunk_root);
2637 if (ret) {
2638 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2639 sb->s_id);
2640 goto fail_tree_roots;
2644 * keep the device that is marked to be the target device for the
2645 * dev_replace procedure
2647 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2649 if (!fs_devices->latest_bdev) {
2650 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2651 sb->s_id);
2652 goto fail_tree_roots;
2655 retry_root_backup:
2656 blocksize = btrfs_level_size(tree_root,
2657 btrfs_super_root_level(disk_super));
2658 generation = btrfs_super_generation(disk_super);
2660 tree_root->node = read_tree_block(tree_root,
2661 btrfs_super_root(disk_super),
2662 blocksize, generation);
2663 if (!tree_root->node ||
2664 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2665 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2666 sb->s_id);
2668 goto recovery_tree_root;
2671 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2672 tree_root->commit_root = btrfs_root_node(tree_root);
2674 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2675 location.type = BTRFS_ROOT_ITEM_KEY;
2676 location.offset = 0;
2678 extent_root = btrfs_read_tree_root(tree_root, &location);
2679 if (IS_ERR(extent_root)) {
2680 ret = PTR_ERR(extent_root);
2681 goto recovery_tree_root;
2683 extent_root->track_dirty = 1;
2684 fs_info->extent_root = extent_root;
2686 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2687 dev_root = btrfs_read_tree_root(tree_root, &location);
2688 if (IS_ERR(dev_root)) {
2689 ret = PTR_ERR(dev_root);
2690 goto recovery_tree_root;
2692 dev_root->track_dirty = 1;
2693 fs_info->dev_root = dev_root;
2694 btrfs_init_devices_late(fs_info);
2696 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2697 csum_root = btrfs_read_tree_root(tree_root, &location);
2698 if (IS_ERR(csum_root)) {
2699 ret = PTR_ERR(csum_root);
2700 goto recovery_tree_root;
2702 csum_root->track_dirty = 1;
2703 fs_info->csum_root = csum_root;
2705 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2706 quota_root = btrfs_read_tree_root(tree_root, &location);
2707 if (!IS_ERR(quota_root)) {
2708 quota_root->track_dirty = 1;
2709 fs_info->quota_enabled = 1;
2710 fs_info->pending_quota_state = 1;
2711 fs_info->quota_root = quota_root;
2714 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2715 uuid_root = btrfs_read_tree_root(tree_root, &location);
2716 if (IS_ERR(uuid_root)) {
2717 ret = PTR_ERR(uuid_root);
2718 if (ret != -ENOENT)
2719 goto recovery_tree_root;
2720 create_uuid_tree = true;
2721 check_uuid_tree = false;
2722 } else {
2723 uuid_root->track_dirty = 1;
2724 fs_info->uuid_root = uuid_root;
2725 create_uuid_tree = false;
2726 check_uuid_tree =
2727 generation != btrfs_super_uuid_tree_generation(disk_super);
2730 fs_info->generation = generation;
2731 fs_info->last_trans_committed = generation;
2733 ret = btrfs_recover_balance(fs_info);
2734 if (ret) {
2735 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2736 goto fail_block_groups;
2739 ret = btrfs_init_dev_stats(fs_info);
2740 if (ret) {
2741 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2742 ret);
2743 goto fail_block_groups;
2746 ret = btrfs_init_dev_replace(fs_info);
2747 if (ret) {
2748 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2749 goto fail_block_groups;
2752 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2754 ret = btrfs_init_space_info(fs_info);
2755 if (ret) {
2756 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2757 goto fail_block_groups;
2760 ret = btrfs_read_block_groups(extent_root);
2761 if (ret) {
2762 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2763 goto fail_block_groups;
2765 fs_info->num_tolerated_disk_barrier_failures =
2766 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2767 if (fs_info->fs_devices->missing_devices >
2768 fs_info->num_tolerated_disk_barrier_failures &&
2769 !(sb->s_flags & MS_RDONLY)) {
2770 printk(KERN_WARNING
2771 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2772 goto fail_block_groups;
2775 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2776 "btrfs-cleaner");
2777 if (IS_ERR(fs_info->cleaner_kthread))
2778 goto fail_block_groups;
2780 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2781 tree_root,
2782 "btrfs-transaction");
2783 if (IS_ERR(fs_info->transaction_kthread))
2784 goto fail_cleaner;
2786 if (!btrfs_test_opt(tree_root, SSD) &&
2787 !btrfs_test_opt(tree_root, NOSSD) &&
2788 !fs_info->fs_devices->rotating) {
2789 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2790 "mode\n");
2791 btrfs_set_opt(fs_info->mount_opt, SSD);
2794 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2795 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2796 ret = btrfsic_mount(tree_root, fs_devices,
2797 btrfs_test_opt(tree_root,
2798 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2799 1 : 0,
2800 fs_info->check_integrity_print_mask);
2801 if (ret)
2802 printk(KERN_WARNING "btrfs: failed to initialize"
2803 " integrity check module %s\n", sb->s_id);
2805 #endif
2806 ret = btrfs_read_qgroup_config(fs_info);
2807 if (ret)
2808 goto fail_trans_kthread;
2810 /* do not make disk changes in broken FS */
2811 if (btrfs_super_log_root(disk_super) != 0) {
2812 u64 bytenr = btrfs_super_log_root(disk_super);
2814 if (fs_devices->rw_devices == 0) {
2815 printk(KERN_WARNING "Btrfs log replay required "
2816 "on RO media\n");
2817 err = -EIO;
2818 goto fail_qgroup;
2820 blocksize =
2821 btrfs_level_size(tree_root,
2822 btrfs_super_log_root_level(disk_super));
2824 log_tree_root = btrfs_alloc_root(fs_info);
2825 if (!log_tree_root) {
2826 err = -ENOMEM;
2827 goto fail_qgroup;
2830 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2831 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2833 log_tree_root->node = read_tree_block(tree_root, bytenr,
2834 blocksize,
2835 generation + 1);
2836 if (!log_tree_root->node ||
2837 !extent_buffer_uptodate(log_tree_root->node)) {
2838 printk(KERN_ERR "btrfs: failed to read log tree\n");
2839 free_extent_buffer(log_tree_root->node);
2840 kfree(log_tree_root);
2841 goto fail_trans_kthread;
2843 /* returns with log_tree_root freed on success */
2844 ret = btrfs_recover_log_trees(log_tree_root);
2845 if (ret) {
2846 btrfs_error(tree_root->fs_info, ret,
2847 "Failed to recover log tree");
2848 free_extent_buffer(log_tree_root->node);
2849 kfree(log_tree_root);
2850 goto fail_trans_kthread;
2853 if (sb->s_flags & MS_RDONLY) {
2854 ret = btrfs_commit_super(tree_root);
2855 if (ret)
2856 goto fail_trans_kthread;
2860 ret = btrfs_find_orphan_roots(tree_root);
2861 if (ret)
2862 goto fail_trans_kthread;
2864 if (!(sb->s_flags & MS_RDONLY)) {
2865 ret = btrfs_cleanup_fs_roots(fs_info);
2866 if (ret)
2867 goto fail_trans_kthread;
2869 ret = btrfs_recover_relocation(tree_root);
2870 if (ret < 0) {
2871 printk(KERN_WARNING
2872 "btrfs: failed to recover relocation\n");
2873 err = -EINVAL;
2874 goto fail_qgroup;
2878 location.objectid = BTRFS_FS_TREE_OBJECTID;
2879 location.type = BTRFS_ROOT_ITEM_KEY;
2880 location.offset = 0;
2882 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2883 if (IS_ERR(fs_info->fs_root)) {
2884 err = PTR_ERR(fs_info->fs_root);
2885 goto fail_qgroup;
2888 if (sb->s_flags & MS_RDONLY)
2889 return 0;
2891 down_read(&fs_info->cleanup_work_sem);
2892 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2893 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2894 up_read(&fs_info->cleanup_work_sem);
2895 close_ctree(tree_root);
2896 return ret;
2898 up_read(&fs_info->cleanup_work_sem);
2900 ret = btrfs_resume_balance_async(fs_info);
2901 if (ret) {
2902 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2903 close_ctree(tree_root);
2904 return ret;
2907 ret = btrfs_resume_dev_replace_async(fs_info);
2908 if (ret) {
2909 pr_warn("btrfs: failed to resume dev_replace\n");
2910 close_ctree(tree_root);
2911 return ret;
2914 btrfs_qgroup_rescan_resume(fs_info);
2916 if (create_uuid_tree) {
2917 pr_info("btrfs: creating UUID tree\n");
2918 ret = btrfs_create_uuid_tree(fs_info);
2919 if (ret) {
2920 pr_warn("btrfs: failed to create the UUID tree %d\n",
2921 ret);
2922 close_ctree(tree_root);
2923 return ret;
2925 } else if (check_uuid_tree ||
2926 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2927 pr_info("btrfs: checking UUID tree\n");
2928 ret = btrfs_check_uuid_tree(fs_info);
2929 if (ret) {
2930 pr_warn("btrfs: failed to check the UUID tree %d\n",
2931 ret);
2932 close_ctree(tree_root);
2933 return ret;
2935 } else {
2936 fs_info->update_uuid_tree_gen = 1;
2939 return 0;
2941 fail_qgroup:
2942 btrfs_free_qgroup_config(fs_info);
2943 fail_trans_kthread:
2944 kthread_stop(fs_info->transaction_kthread);
2945 btrfs_cleanup_transaction(fs_info->tree_root);
2946 del_fs_roots(fs_info);
2947 fail_cleaner:
2948 kthread_stop(fs_info->cleaner_kthread);
2951 * make sure we're done with the btree inode before we stop our
2952 * kthreads
2954 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2956 fail_block_groups:
2957 btrfs_put_block_group_cache(fs_info);
2958 btrfs_free_block_groups(fs_info);
2960 fail_tree_roots:
2961 free_root_pointers(fs_info, 1);
2962 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2964 fail_sb_buffer:
2965 btrfs_stop_all_workers(fs_info);
2966 fail_alloc:
2967 fail_iput:
2968 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2970 iput(fs_info->btree_inode);
2971 fail_delalloc_bytes:
2972 percpu_counter_destroy(&fs_info->delalloc_bytes);
2973 fail_dirty_metadata_bytes:
2974 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2975 fail_bdi:
2976 bdi_destroy(&fs_info->bdi);
2977 fail_srcu:
2978 cleanup_srcu_struct(&fs_info->subvol_srcu);
2979 fail:
2980 btrfs_free_stripe_hash_table(fs_info);
2981 btrfs_close_devices(fs_info->fs_devices);
2982 return err;
2984 recovery_tree_root:
2985 if (!btrfs_test_opt(tree_root, RECOVERY))
2986 goto fail_tree_roots;
2988 free_root_pointers(fs_info, 0);
2990 /* don't use the log in recovery mode, it won't be valid */
2991 btrfs_set_super_log_root(disk_super, 0);
2993 /* we can't trust the free space cache either */
2994 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2996 ret = next_root_backup(fs_info, fs_info->super_copy,
2997 &num_backups_tried, &backup_index);
2998 if (ret == -1)
2999 goto fail_block_groups;
3000 goto retry_root_backup;
3003 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3005 if (uptodate) {
3006 set_buffer_uptodate(bh);
3007 } else {
3008 struct btrfs_device *device = (struct btrfs_device *)
3009 bh->b_private;
3011 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3012 "I/O error on %s\n",
3013 rcu_str_deref(device->name));
3014 /* note, we dont' set_buffer_write_io_error because we have
3015 * our own ways of dealing with the IO errors
3017 clear_buffer_uptodate(bh);
3018 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3020 unlock_buffer(bh);
3021 put_bh(bh);
3024 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3026 struct buffer_head *bh;
3027 struct buffer_head *latest = NULL;
3028 struct btrfs_super_block *super;
3029 int i;
3030 u64 transid = 0;
3031 u64 bytenr;
3033 /* we would like to check all the supers, but that would make
3034 * a btrfs mount succeed after a mkfs from a different FS.
3035 * So, we need to add a special mount option to scan for
3036 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3038 for (i = 0; i < 1; i++) {
3039 bytenr = btrfs_sb_offset(i);
3040 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3041 i_size_read(bdev->bd_inode))
3042 break;
3043 bh = __bread(bdev, bytenr / 4096,
3044 BTRFS_SUPER_INFO_SIZE);
3045 if (!bh)
3046 continue;
3048 super = (struct btrfs_super_block *)bh->b_data;
3049 if (btrfs_super_bytenr(super) != bytenr ||
3050 btrfs_super_magic(super) != BTRFS_MAGIC) {
3051 brelse(bh);
3052 continue;
3055 if (!latest || btrfs_super_generation(super) > transid) {
3056 brelse(latest);
3057 latest = bh;
3058 transid = btrfs_super_generation(super);
3059 } else {
3060 brelse(bh);
3063 return latest;
3067 * this should be called twice, once with wait == 0 and
3068 * once with wait == 1. When wait == 0 is done, all the buffer heads
3069 * we write are pinned.
3071 * They are released when wait == 1 is done.
3072 * max_mirrors must be the same for both runs, and it indicates how
3073 * many supers on this one device should be written.
3075 * max_mirrors == 0 means to write them all.
3077 static int write_dev_supers(struct btrfs_device *device,
3078 struct btrfs_super_block *sb,
3079 int do_barriers, int wait, int max_mirrors)
3081 struct buffer_head *bh;
3082 int i;
3083 int ret;
3084 int errors = 0;
3085 u32 crc;
3086 u64 bytenr;
3088 if (max_mirrors == 0)
3089 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3091 for (i = 0; i < max_mirrors; i++) {
3092 bytenr = btrfs_sb_offset(i);
3093 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3094 break;
3096 if (wait) {
3097 bh = __find_get_block(device->bdev, bytenr / 4096,
3098 BTRFS_SUPER_INFO_SIZE);
3099 if (!bh) {
3100 errors++;
3101 continue;
3103 wait_on_buffer(bh);
3104 if (!buffer_uptodate(bh))
3105 errors++;
3107 /* drop our reference */
3108 brelse(bh);
3110 /* drop the reference from the wait == 0 run */
3111 brelse(bh);
3112 continue;
3113 } else {
3114 btrfs_set_super_bytenr(sb, bytenr);
3116 crc = ~(u32)0;
3117 crc = btrfs_csum_data((char *)sb +
3118 BTRFS_CSUM_SIZE, crc,
3119 BTRFS_SUPER_INFO_SIZE -
3120 BTRFS_CSUM_SIZE);
3121 btrfs_csum_final(crc, sb->csum);
3124 * one reference for us, and we leave it for the
3125 * caller
3127 bh = __getblk(device->bdev, bytenr / 4096,
3128 BTRFS_SUPER_INFO_SIZE);
3129 if (!bh) {
3130 printk(KERN_ERR "btrfs: couldn't get super "
3131 "buffer head for bytenr %Lu\n", bytenr);
3132 errors++;
3133 continue;
3136 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3138 /* one reference for submit_bh */
3139 get_bh(bh);
3141 set_buffer_uptodate(bh);
3142 lock_buffer(bh);
3143 bh->b_end_io = btrfs_end_buffer_write_sync;
3144 bh->b_private = device;
3148 * we fua the first super. The others we allow
3149 * to go down lazy.
3151 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3152 if (ret)
3153 errors++;
3155 return errors < i ? 0 : -1;
3159 * endio for the write_dev_flush, this will wake anyone waiting
3160 * for the barrier when it is done
3162 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3164 if (err) {
3165 if (err == -EOPNOTSUPP)
3166 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3167 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3169 if (bio->bi_private)
3170 complete(bio->bi_private);
3171 bio_put(bio);
3175 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3176 * sent down. With wait == 1, it waits for the previous flush.
3178 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3179 * capable
3181 static int write_dev_flush(struct btrfs_device *device, int wait)
3183 struct bio *bio;
3184 int ret = 0;
3186 if (device->nobarriers)
3187 return 0;
3189 if (wait) {
3190 bio = device->flush_bio;
3191 if (!bio)
3192 return 0;
3194 wait_for_completion(&device->flush_wait);
3196 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3197 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3198 rcu_str_deref(device->name));
3199 device->nobarriers = 1;
3200 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3201 ret = -EIO;
3202 btrfs_dev_stat_inc_and_print(device,
3203 BTRFS_DEV_STAT_FLUSH_ERRS);
3206 /* drop the reference from the wait == 0 run */
3207 bio_put(bio);
3208 device->flush_bio = NULL;
3210 return ret;
3214 * one reference for us, and we leave it for the
3215 * caller
3217 device->flush_bio = NULL;
3218 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3219 if (!bio)
3220 return -ENOMEM;
3222 bio->bi_end_io = btrfs_end_empty_barrier;
3223 bio->bi_bdev = device->bdev;
3224 init_completion(&device->flush_wait);
3225 bio->bi_private = &device->flush_wait;
3226 device->flush_bio = bio;
3228 bio_get(bio);
3229 btrfsic_submit_bio(WRITE_FLUSH, bio);
3231 return 0;
3235 * send an empty flush down to each device in parallel,
3236 * then wait for them
3238 static int barrier_all_devices(struct btrfs_fs_info *info)
3240 struct list_head *head;
3241 struct btrfs_device *dev;
3242 int errors_send = 0;
3243 int errors_wait = 0;
3244 int ret;
3246 /* send down all the barriers */
3247 head = &info->fs_devices->devices;
3248 list_for_each_entry_rcu(dev, head, dev_list) {
3249 if (!dev->bdev) {
3250 errors_send++;
3251 continue;
3253 if (!dev->in_fs_metadata || !dev->writeable)
3254 continue;
3256 ret = write_dev_flush(dev, 0);
3257 if (ret)
3258 errors_send++;
3261 /* wait for all the barriers */
3262 list_for_each_entry_rcu(dev, head, dev_list) {
3263 if (!dev->bdev) {
3264 errors_wait++;
3265 continue;
3267 if (!dev->in_fs_metadata || !dev->writeable)
3268 continue;
3270 ret = write_dev_flush(dev, 1);
3271 if (ret)
3272 errors_wait++;
3274 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3275 errors_wait > info->num_tolerated_disk_barrier_failures)
3276 return -EIO;
3277 return 0;
3280 int btrfs_calc_num_tolerated_disk_barrier_failures(
3281 struct btrfs_fs_info *fs_info)
3283 struct btrfs_ioctl_space_info space;
3284 struct btrfs_space_info *sinfo;
3285 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3286 BTRFS_BLOCK_GROUP_SYSTEM,
3287 BTRFS_BLOCK_GROUP_METADATA,
3288 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3289 int num_types = 4;
3290 int i;
3291 int c;
3292 int num_tolerated_disk_barrier_failures =
3293 (int)fs_info->fs_devices->num_devices;
3295 for (i = 0; i < num_types; i++) {
3296 struct btrfs_space_info *tmp;
3298 sinfo = NULL;
3299 rcu_read_lock();
3300 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3301 if (tmp->flags == types[i]) {
3302 sinfo = tmp;
3303 break;
3306 rcu_read_unlock();
3308 if (!sinfo)
3309 continue;
3311 down_read(&sinfo->groups_sem);
3312 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3313 if (!list_empty(&sinfo->block_groups[c])) {
3314 u64 flags;
3316 btrfs_get_block_group_info(
3317 &sinfo->block_groups[c], &space);
3318 if (space.total_bytes == 0 ||
3319 space.used_bytes == 0)
3320 continue;
3321 flags = space.flags;
3323 * return
3324 * 0: if dup, single or RAID0 is configured for
3325 * any of metadata, system or data, else
3326 * 1: if RAID5 is configured, or if RAID1 or
3327 * RAID10 is configured and only two mirrors
3328 * are used, else
3329 * 2: if RAID6 is configured, else
3330 * num_mirrors - 1: if RAID1 or RAID10 is
3331 * configured and more than
3332 * 2 mirrors are used.
3334 if (num_tolerated_disk_barrier_failures > 0 &&
3335 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3336 BTRFS_BLOCK_GROUP_RAID0)) ||
3337 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3338 == 0)))
3339 num_tolerated_disk_barrier_failures = 0;
3340 else if (num_tolerated_disk_barrier_failures > 1) {
3341 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3342 BTRFS_BLOCK_GROUP_RAID5 |
3343 BTRFS_BLOCK_GROUP_RAID10)) {
3344 num_tolerated_disk_barrier_failures = 1;
3345 } else if (flags &
3346 BTRFS_BLOCK_GROUP_RAID6) {
3347 num_tolerated_disk_barrier_failures = 2;
3352 up_read(&sinfo->groups_sem);
3355 return num_tolerated_disk_barrier_failures;
3358 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3360 struct list_head *head;
3361 struct btrfs_device *dev;
3362 struct btrfs_super_block *sb;
3363 struct btrfs_dev_item *dev_item;
3364 int ret;
3365 int do_barriers;
3366 int max_errors;
3367 int total_errors = 0;
3368 u64 flags;
3370 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3371 backup_super_roots(root->fs_info);
3373 sb = root->fs_info->super_for_commit;
3374 dev_item = &sb->dev_item;
3376 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3377 head = &root->fs_info->fs_devices->devices;
3378 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3380 if (do_barriers) {
3381 ret = barrier_all_devices(root->fs_info);
3382 if (ret) {
3383 mutex_unlock(
3384 &root->fs_info->fs_devices->device_list_mutex);
3385 btrfs_error(root->fs_info, ret,
3386 "errors while submitting device barriers.");
3387 return ret;
3391 list_for_each_entry_rcu(dev, head, dev_list) {
3392 if (!dev->bdev) {
3393 total_errors++;
3394 continue;
3396 if (!dev->in_fs_metadata || !dev->writeable)
3397 continue;
3399 btrfs_set_stack_device_generation(dev_item, 0);
3400 btrfs_set_stack_device_type(dev_item, dev->type);
3401 btrfs_set_stack_device_id(dev_item, dev->devid);
3402 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3403 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3404 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3405 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3406 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3407 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3408 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3410 flags = btrfs_super_flags(sb);
3411 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3413 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3414 if (ret)
3415 total_errors++;
3417 if (total_errors > max_errors) {
3418 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3419 total_errors);
3420 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3422 /* FUA is masked off if unsupported and can't be the reason */
3423 btrfs_error(root->fs_info, -EIO,
3424 "%d errors while writing supers", total_errors);
3425 return -EIO;
3428 total_errors = 0;
3429 list_for_each_entry_rcu(dev, head, dev_list) {
3430 if (!dev->bdev)
3431 continue;
3432 if (!dev->in_fs_metadata || !dev->writeable)
3433 continue;
3435 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3436 if (ret)
3437 total_errors++;
3439 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3440 if (total_errors > max_errors) {
3441 btrfs_error(root->fs_info, -EIO,
3442 "%d errors while writing supers", total_errors);
3443 return -EIO;
3445 return 0;
3448 int write_ctree_super(struct btrfs_trans_handle *trans,
3449 struct btrfs_root *root, int max_mirrors)
3451 int ret;
3453 ret = write_all_supers(root, max_mirrors);
3454 return ret;
3457 /* Drop a fs root from the radix tree and free it. */
3458 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3459 struct btrfs_root *root)
3461 spin_lock(&fs_info->fs_roots_radix_lock);
3462 radix_tree_delete(&fs_info->fs_roots_radix,
3463 (unsigned long)root->root_key.objectid);
3464 spin_unlock(&fs_info->fs_roots_radix_lock);
3466 if (btrfs_root_refs(&root->root_item) == 0)
3467 synchronize_srcu(&fs_info->subvol_srcu);
3469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3470 btrfs_free_log(NULL, root);
3471 btrfs_free_log_root_tree(NULL, fs_info);
3474 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3475 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3476 free_fs_root(root);
3479 static void free_fs_root(struct btrfs_root *root)
3481 iput(root->cache_inode);
3482 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3483 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3484 root->orphan_block_rsv = NULL;
3485 if (root->anon_dev)
3486 free_anon_bdev(root->anon_dev);
3487 free_extent_buffer(root->node);
3488 free_extent_buffer(root->commit_root);
3489 kfree(root->free_ino_ctl);
3490 kfree(root->free_ino_pinned);
3491 kfree(root->name);
3492 btrfs_put_fs_root(root);
3495 void btrfs_free_fs_root(struct btrfs_root *root)
3497 free_fs_root(root);
3500 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3502 u64 root_objectid = 0;
3503 struct btrfs_root *gang[8];
3504 int i;
3505 int ret;
3507 while (1) {
3508 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3509 (void **)gang, root_objectid,
3510 ARRAY_SIZE(gang));
3511 if (!ret)
3512 break;
3514 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3515 for (i = 0; i < ret; i++) {
3516 int err;
3518 root_objectid = gang[i]->root_key.objectid;
3519 err = btrfs_orphan_cleanup(gang[i]);
3520 if (err)
3521 return err;
3523 root_objectid++;
3525 return 0;
3528 int btrfs_commit_super(struct btrfs_root *root)
3530 struct btrfs_trans_handle *trans;
3531 int ret;
3533 mutex_lock(&root->fs_info->cleaner_mutex);
3534 btrfs_run_delayed_iputs(root);
3535 mutex_unlock(&root->fs_info->cleaner_mutex);
3536 wake_up_process(root->fs_info->cleaner_kthread);
3538 /* wait until ongoing cleanup work done */
3539 down_write(&root->fs_info->cleanup_work_sem);
3540 up_write(&root->fs_info->cleanup_work_sem);
3542 trans = btrfs_join_transaction(root);
3543 if (IS_ERR(trans))
3544 return PTR_ERR(trans);
3545 ret = btrfs_commit_transaction(trans, root);
3546 if (ret)
3547 return ret;
3548 /* run commit again to drop the original snapshot */
3549 trans = btrfs_join_transaction(root);
3550 if (IS_ERR(trans))
3551 return PTR_ERR(trans);
3552 ret = btrfs_commit_transaction(trans, root);
3553 if (ret)
3554 return ret;
3555 ret = btrfs_write_and_wait_transaction(NULL, root);
3556 if (ret) {
3557 btrfs_error(root->fs_info, ret,
3558 "Failed to sync btree inode to disk.");
3559 return ret;
3562 ret = write_ctree_super(NULL, root, 0);
3563 return ret;
3566 int close_ctree(struct btrfs_root *root)
3568 struct btrfs_fs_info *fs_info = root->fs_info;
3569 int ret;
3571 fs_info->closing = 1;
3572 smp_mb();
3574 /* wait for the uuid_scan task to finish */
3575 down(&fs_info->uuid_tree_rescan_sem);
3576 /* avoid complains from lockdep et al., set sem back to initial state */
3577 up(&fs_info->uuid_tree_rescan_sem);
3579 /* pause restriper - we want to resume on mount */
3580 btrfs_pause_balance(fs_info);
3582 btrfs_dev_replace_suspend_for_unmount(fs_info);
3584 btrfs_scrub_cancel(fs_info);
3586 /* wait for any defraggers to finish */
3587 wait_event(fs_info->transaction_wait,
3588 (atomic_read(&fs_info->defrag_running) == 0));
3590 /* clear out the rbtree of defraggable inodes */
3591 btrfs_cleanup_defrag_inodes(fs_info);
3593 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3594 ret = btrfs_commit_super(root);
3595 if (ret)
3596 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3599 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3600 btrfs_error_commit_super(root);
3602 btrfs_put_block_group_cache(fs_info);
3604 kthread_stop(fs_info->transaction_kthread);
3605 kthread_stop(fs_info->cleaner_kthread);
3607 fs_info->closing = 2;
3608 smp_mb();
3610 btrfs_free_qgroup_config(root->fs_info);
3612 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3613 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3614 percpu_counter_sum(&fs_info->delalloc_bytes));
3617 btrfs_free_block_groups(fs_info);
3619 btrfs_stop_all_workers(fs_info);
3621 del_fs_roots(fs_info);
3623 free_root_pointers(fs_info, 1);
3625 iput(fs_info->btree_inode);
3627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3628 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3629 btrfsic_unmount(root, fs_info->fs_devices);
3630 #endif
3632 btrfs_close_devices(fs_info->fs_devices);
3633 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3635 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3636 percpu_counter_destroy(&fs_info->delalloc_bytes);
3637 bdi_destroy(&fs_info->bdi);
3638 cleanup_srcu_struct(&fs_info->subvol_srcu);
3640 btrfs_free_stripe_hash_table(fs_info);
3642 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3643 root->orphan_block_rsv = NULL;
3645 return 0;
3648 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3649 int atomic)
3651 int ret;
3652 struct inode *btree_inode = buf->pages[0]->mapping->host;
3654 ret = extent_buffer_uptodate(buf);
3655 if (!ret)
3656 return ret;
3658 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3659 parent_transid, atomic);
3660 if (ret == -EAGAIN)
3661 return ret;
3662 return !ret;
3665 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3667 return set_extent_buffer_uptodate(buf);
3670 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3672 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3673 u64 transid = btrfs_header_generation(buf);
3674 int was_dirty;
3676 btrfs_assert_tree_locked(buf);
3677 if (transid != root->fs_info->generation)
3678 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3679 "found %llu running %llu\n",
3680 buf->start, transid, root->fs_info->generation);
3681 was_dirty = set_extent_buffer_dirty(buf);
3682 if (!was_dirty)
3683 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3684 buf->len,
3685 root->fs_info->dirty_metadata_batch);
3688 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3689 int flush_delayed)
3692 * looks as though older kernels can get into trouble with
3693 * this code, they end up stuck in balance_dirty_pages forever
3695 int ret;
3697 if (current->flags & PF_MEMALLOC)
3698 return;
3700 if (flush_delayed)
3701 btrfs_balance_delayed_items(root);
3703 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3704 BTRFS_DIRTY_METADATA_THRESH);
3705 if (ret > 0) {
3706 balance_dirty_pages_ratelimited(
3707 root->fs_info->btree_inode->i_mapping);
3709 return;
3712 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3714 __btrfs_btree_balance_dirty(root, 1);
3717 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3719 __btrfs_btree_balance_dirty(root, 0);
3722 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3724 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3725 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3728 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3729 int read_only)
3732 * Placeholder for checks
3734 return 0;
3737 static void btrfs_error_commit_super(struct btrfs_root *root)
3739 mutex_lock(&root->fs_info->cleaner_mutex);
3740 btrfs_run_delayed_iputs(root);
3741 mutex_unlock(&root->fs_info->cleaner_mutex);
3743 down_write(&root->fs_info->cleanup_work_sem);
3744 up_write(&root->fs_info->cleanup_work_sem);
3746 /* cleanup FS via transaction */
3747 btrfs_cleanup_transaction(root);
3750 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3751 struct btrfs_root *root)
3753 struct btrfs_inode *btrfs_inode;
3754 struct list_head splice;
3756 INIT_LIST_HEAD(&splice);
3758 mutex_lock(&root->fs_info->ordered_operations_mutex);
3759 spin_lock(&root->fs_info->ordered_root_lock);
3761 list_splice_init(&t->ordered_operations, &splice);
3762 while (!list_empty(&splice)) {
3763 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3764 ordered_operations);
3766 list_del_init(&btrfs_inode->ordered_operations);
3767 spin_unlock(&root->fs_info->ordered_root_lock);
3769 btrfs_invalidate_inodes(btrfs_inode->root);
3771 spin_lock(&root->fs_info->ordered_root_lock);
3774 spin_unlock(&root->fs_info->ordered_root_lock);
3775 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3778 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3780 struct btrfs_ordered_extent *ordered;
3782 spin_lock(&root->ordered_extent_lock);
3784 * This will just short circuit the ordered completion stuff which will
3785 * make sure the ordered extent gets properly cleaned up.
3787 list_for_each_entry(ordered, &root->ordered_extents,
3788 root_extent_list)
3789 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3790 spin_unlock(&root->ordered_extent_lock);
3793 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3795 struct btrfs_root *root;
3796 struct list_head splice;
3798 INIT_LIST_HEAD(&splice);
3800 spin_lock(&fs_info->ordered_root_lock);
3801 list_splice_init(&fs_info->ordered_roots, &splice);
3802 while (!list_empty(&splice)) {
3803 root = list_first_entry(&splice, struct btrfs_root,
3804 ordered_root);
3805 list_del_init(&root->ordered_root);
3807 btrfs_destroy_ordered_extents(root);
3809 cond_resched_lock(&fs_info->ordered_root_lock);
3811 spin_unlock(&fs_info->ordered_root_lock);
3814 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3815 struct btrfs_root *root)
3817 struct rb_node *node;
3818 struct btrfs_delayed_ref_root *delayed_refs;
3819 struct btrfs_delayed_ref_node *ref;
3820 int ret = 0;
3822 delayed_refs = &trans->delayed_refs;
3824 spin_lock(&delayed_refs->lock);
3825 if (delayed_refs->num_entries == 0) {
3826 spin_unlock(&delayed_refs->lock);
3827 printk(KERN_INFO "delayed_refs has NO entry\n");
3828 return ret;
3831 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3832 struct btrfs_delayed_ref_head *head = NULL;
3833 bool pin_bytes = false;
3835 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3836 atomic_set(&ref->refs, 1);
3837 if (btrfs_delayed_ref_is_head(ref)) {
3839 head = btrfs_delayed_node_to_head(ref);
3840 if (!mutex_trylock(&head->mutex)) {
3841 atomic_inc(&ref->refs);
3842 spin_unlock(&delayed_refs->lock);
3844 /* Need to wait for the delayed ref to run */
3845 mutex_lock(&head->mutex);
3846 mutex_unlock(&head->mutex);
3847 btrfs_put_delayed_ref(ref);
3849 spin_lock(&delayed_refs->lock);
3850 continue;
3853 if (head->must_insert_reserved)
3854 pin_bytes = true;
3855 btrfs_free_delayed_extent_op(head->extent_op);
3856 delayed_refs->num_heads--;
3857 if (list_empty(&head->cluster))
3858 delayed_refs->num_heads_ready--;
3859 list_del_init(&head->cluster);
3862 ref->in_tree = 0;
3863 rb_erase(&ref->rb_node, &delayed_refs->root);
3864 delayed_refs->num_entries--;
3865 spin_unlock(&delayed_refs->lock);
3866 if (head) {
3867 if (pin_bytes)
3868 btrfs_pin_extent(root, ref->bytenr,
3869 ref->num_bytes, 1);
3870 mutex_unlock(&head->mutex);
3872 btrfs_put_delayed_ref(ref);
3874 cond_resched();
3875 spin_lock(&delayed_refs->lock);
3878 spin_unlock(&delayed_refs->lock);
3880 return ret;
3883 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3885 struct btrfs_pending_snapshot *snapshot;
3886 struct list_head splice;
3888 INIT_LIST_HEAD(&splice);
3890 list_splice_init(&t->pending_snapshots, &splice);
3892 while (!list_empty(&splice)) {
3893 snapshot = list_entry(splice.next,
3894 struct btrfs_pending_snapshot,
3895 list);
3896 snapshot->error = -ECANCELED;
3897 list_del_init(&snapshot->list);
3901 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3903 struct btrfs_inode *btrfs_inode;
3904 struct list_head splice;
3906 INIT_LIST_HEAD(&splice);
3908 spin_lock(&root->delalloc_lock);
3909 list_splice_init(&root->delalloc_inodes, &splice);
3911 while (!list_empty(&splice)) {
3912 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3913 delalloc_inodes);
3915 list_del_init(&btrfs_inode->delalloc_inodes);
3916 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3917 &btrfs_inode->runtime_flags);
3918 spin_unlock(&root->delalloc_lock);
3920 btrfs_invalidate_inodes(btrfs_inode->root);
3922 spin_lock(&root->delalloc_lock);
3925 spin_unlock(&root->delalloc_lock);
3928 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3930 struct btrfs_root *root;
3931 struct list_head splice;
3933 INIT_LIST_HEAD(&splice);
3935 spin_lock(&fs_info->delalloc_root_lock);
3936 list_splice_init(&fs_info->delalloc_roots, &splice);
3937 while (!list_empty(&splice)) {
3938 root = list_first_entry(&splice, struct btrfs_root,
3939 delalloc_root);
3940 list_del_init(&root->delalloc_root);
3941 root = btrfs_grab_fs_root(root);
3942 BUG_ON(!root);
3943 spin_unlock(&fs_info->delalloc_root_lock);
3945 btrfs_destroy_delalloc_inodes(root);
3946 btrfs_put_fs_root(root);
3948 spin_lock(&fs_info->delalloc_root_lock);
3950 spin_unlock(&fs_info->delalloc_root_lock);
3953 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3954 struct extent_io_tree *dirty_pages,
3955 int mark)
3957 int ret;
3958 struct extent_buffer *eb;
3959 u64 start = 0;
3960 u64 end;
3962 while (1) {
3963 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3964 mark, NULL);
3965 if (ret)
3966 break;
3968 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3969 while (start <= end) {
3970 eb = btrfs_find_tree_block(root, start,
3971 root->leafsize);
3972 start += root->leafsize;
3973 if (!eb)
3974 continue;
3975 wait_on_extent_buffer_writeback(eb);
3977 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3978 &eb->bflags))
3979 clear_extent_buffer_dirty(eb);
3980 free_extent_buffer_stale(eb);
3984 return ret;
3987 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3988 struct extent_io_tree *pinned_extents)
3990 struct extent_io_tree *unpin;
3991 u64 start;
3992 u64 end;
3993 int ret;
3994 bool loop = true;
3996 unpin = pinned_extents;
3997 again:
3998 while (1) {
3999 ret = find_first_extent_bit(unpin, 0, &start, &end,
4000 EXTENT_DIRTY, NULL);
4001 if (ret)
4002 break;
4004 /* opt_discard */
4005 if (btrfs_test_opt(root, DISCARD))
4006 ret = btrfs_error_discard_extent(root, start,
4007 end + 1 - start,
4008 NULL);
4010 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4011 btrfs_error_unpin_extent_range(root, start, end);
4012 cond_resched();
4015 if (loop) {
4016 if (unpin == &root->fs_info->freed_extents[0])
4017 unpin = &root->fs_info->freed_extents[1];
4018 else
4019 unpin = &root->fs_info->freed_extents[0];
4020 loop = false;
4021 goto again;
4024 return 0;
4027 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4028 struct btrfs_root *root)
4030 btrfs_destroy_delayed_refs(cur_trans, root);
4031 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4032 cur_trans->dirty_pages.dirty_bytes);
4034 cur_trans->state = TRANS_STATE_COMMIT_START;
4035 wake_up(&root->fs_info->transaction_blocked_wait);
4037 btrfs_evict_pending_snapshots(cur_trans);
4039 cur_trans->state = TRANS_STATE_UNBLOCKED;
4040 wake_up(&root->fs_info->transaction_wait);
4042 btrfs_destroy_delayed_inodes(root);
4043 btrfs_assert_delayed_root_empty(root);
4045 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4046 EXTENT_DIRTY);
4047 btrfs_destroy_pinned_extent(root,
4048 root->fs_info->pinned_extents);
4050 cur_trans->state =TRANS_STATE_COMPLETED;
4051 wake_up(&cur_trans->commit_wait);
4054 memset(cur_trans, 0, sizeof(*cur_trans));
4055 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4059 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4061 struct btrfs_transaction *t;
4062 LIST_HEAD(list);
4064 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4066 spin_lock(&root->fs_info->trans_lock);
4067 list_splice_init(&root->fs_info->trans_list, &list);
4068 root->fs_info->running_transaction = NULL;
4069 spin_unlock(&root->fs_info->trans_lock);
4071 while (!list_empty(&list)) {
4072 t = list_entry(list.next, struct btrfs_transaction, list);
4074 btrfs_destroy_ordered_operations(t, root);
4076 btrfs_destroy_all_ordered_extents(root->fs_info);
4078 btrfs_destroy_delayed_refs(t, root);
4081 * FIXME: cleanup wait for commit
4082 * We needn't acquire the lock here, because we are during
4083 * the umount, there is no other task which will change it.
4085 t->state = TRANS_STATE_COMMIT_START;
4086 smp_mb();
4087 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4088 wake_up(&root->fs_info->transaction_blocked_wait);
4090 btrfs_evict_pending_snapshots(t);
4092 t->state = TRANS_STATE_UNBLOCKED;
4093 smp_mb();
4094 if (waitqueue_active(&root->fs_info->transaction_wait))
4095 wake_up(&root->fs_info->transaction_wait);
4097 btrfs_destroy_delayed_inodes(root);
4098 btrfs_assert_delayed_root_empty(root);
4100 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4102 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4103 EXTENT_DIRTY);
4105 btrfs_destroy_pinned_extent(root,
4106 root->fs_info->pinned_extents);
4108 t->state = TRANS_STATE_COMPLETED;
4109 smp_mb();
4110 if (waitqueue_active(&t->commit_wait))
4111 wake_up(&t->commit_wait);
4113 atomic_set(&t->use_count, 0);
4114 list_del_init(&t->list);
4115 memset(t, 0, sizeof(*t));
4116 kmem_cache_free(btrfs_transaction_cachep, t);
4119 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4121 return 0;
4124 static struct extent_io_ops btree_extent_io_ops = {
4125 .readpage_end_io_hook = btree_readpage_end_io_hook,
4126 .readpage_io_failed_hook = btree_io_failed_hook,
4127 .submit_bio_hook = btree_submit_bio_hook,
4128 /* note we're sharing with inode.c for the merge bio hook */
4129 .merge_bio_hook = btrfs_merge_bio_hook,