2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
39 #include "transaction.h"
40 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
54 #include <asm/cpufeature.h>
57 static struct extent_io_ops btree_extent_io_ops
;
58 static void end_workqueue_fn(struct btrfs_work
*work
);
59 static void free_fs_root(struct btrfs_root
*root
);
60 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
63 struct btrfs_root
*root
);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
66 struct btrfs_root
*root
);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
69 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
70 struct extent_io_tree
*dirty_pages
,
72 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
73 struct extent_io_tree
*pinned_extents
);
74 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
75 static void btrfs_error_commit_super(struct btrfs_root
*root
);
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
86 struct btrfs_fs_info
*info
;
89 struct list_head list
;
90 struct btrfs_work work
;
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
98 struct async_submit_bio
{
101 struct list_head list
;
102 extent_submit_bio_hook_t
*submit_bio_start
;
103 extent_submit_bio_hook_t
*submit_bio_done
;
106 unsigned long bio_flags
;
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
112 struct btrfs_work work
;
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
144 static struct btrfs_lockdep_keyset
{
145 u64 id
; /* root objectid */
146 const char *name_stem
; /* lock name stem */
147 char names
[BTRFS_MAX_LEVEL
+ 1][20];
148 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
149 } btrfs_lockdep_keysets
[] = {
150 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
151 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
152 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
153 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
154 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
155 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
156 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
157 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
158 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
159 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
160 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
161 { .id
= 0, .name_stem
= "tree" },
164 void __init
btrfs_init_lockdep(void)
168 /* initialize lockdep class names */
169 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
170 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
172 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
173 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
174 "btrfs-%s-%02d", ks
->name_stem
, j
);
178 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
181 struct btrfs_lockdep_keyset
*ks
;
183 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
185 /* find the matching keyset, id 0 is the default entry */
186 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
187 if (ks
->id
== objectid
)
190 lockdep_set_class_and_name(&eb
->lock
,
191 &ks
->keys
[level
], ks
->names
[level
]);
197 * extents on the btree inode are pretty simple, there's one extent
198 * that covers the entire device
200 static struct extent_map
*btree_get_extent(struct inode
*inode
,
201 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
204 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
205 struct extent_map
*em
;
208 read_lock(&em_tree
->lock
);
209 em
= lookup_extent_mapping(em_tree
, start
, len
);
212 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
213 read_unlock(&em_tree
->lock
);
216 read_unlock(&em_tree
->lock
);
218 em
= alloc_extent_map();
220 em
= ERR_PTR(-ENOMEM
);
225 em
->block_len
= (u64
)-1;
227 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
229 write_lock(&em_tree
->lock
);
230 ret
= add_extent_mapping(em_tree
, em
, 0);
231 if (ret
== -EEXIST
) {
233 em
= lookup_extent_mapping(em_tree
, start
, len
);
240 write_unlock(&em_tree
->lock
);
246 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
248 return crc32c(seed
, data
, len
);
251 void btrfs_csum_final(u32 crc
, char *result
)
253 put_unaligned_le32(~crc
, result
);
257 * compute the csum for a btree block, and either verify it or write it
258 * into the csum field of the block.
260 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
263 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
266 unsigned long cur_len
;
267 unsigned long offset
= BTRFS_CSUM_SIZE
;
269 unsigned long map_start
;
270 unsigned long map_len
;
273 unsigned long inline_result
;
275 len
= buf
->len
- offset
;
277 err
= map_private_extent_buffer(buf
, offset
, 32,
278 &kaddr
, &map_start
, &map_len
);
281 cur_len
= min(len
, map_len
- (offset
- map_start
));
282 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
287 if (csum_size
> sizeof(inline_result
)) {
288 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
292 result
= (char *)&inline_result
;
295 btrfs_csum_final(crc
, result
);
298 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
301 memcpy(&found
, result
, csum_size
);
303 read_extent_buffer(buf
, &val
, 0, csum_size
);
304 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
305 "failed on %llu wanted %X found %X "
307 root
->fs_info
->sb
->s_id
, buf
->start
,
308 val
, found
, btrfs_header_level(buf
));
309 if (result
!= (char *)&inline_result
)
314 write_extent_buffer(buf
, result
, 0, csum_size
);
316 if (result
!= (char *)&inline_result
)
322 * we can't consider a given block up to date unless the transid of the
323 * block matches the transid in the parent node's pointer. This is how we
324 * detect blocks that either didn't get written at all or got written
325 * in the wrong place.
327 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
328 struct extent_buffer
*eb
, u64 parent_transid
,
331 struct extent_state
*cached_state
= NULL
;
334 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
340 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
342 if (extent_buffer_uptodate(eb
) &&
343 btrfs_header_generation(eb
) == parent_transid
) {
347 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
349 eb
->start
, parent_transid
, btrfs_header_generation(eb
));
351 clear_extent_buffer_uptodate(eb
);
353 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
354 &cached_state
, GFP_NOFS
);
359 * Return 0 if the superblock checksum type matches the checksum value of that
360 * algorithm. Pass the raw disk superblock data.
362 static int btrfs_check_super_csum(char *raw_disk_sb
)
364 struct btrfs_super_block
*disk_sb
=
365 (struct btrfs_super_block
*)raw_disk_sb
;
366 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
369 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
371 const int csum_size
= sizeof(crc
);
372 char result
[csum_size
];
375 * The super_block structure does not span the whole
376 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377 * is filled with zeros and is included in the checkum.
379 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
380 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
381 btrfs_csum_final(crc
, result
);
383 if (memcmp(raw_disk_sb
, result
, csum_size
))
386 if (ret
&& btrfs_super_generation(disk_sb
) < 10) {
387 printk(KERN_WARNING
"btrfs: super block crcs don't match, older mkfs detected\n");
392 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
393 printk(KERN_ERR
"btrfs: unsupported checksum algorithm %u\n",
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
405 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
406 struct extent_buffer
*eb
,
407 u64 start
, u64 parent_transid
)
409 struct extent_io_tree
*io_tree
;
414 int failed_mirror
= 0;
416 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
417 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
419 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
421 btree_get_extent
, mirror_num
);
423 if (!verify_parent_transid(io_tree
, eb
,
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
435 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
438 num_copies
= btrfs_num_copies(root
->fs_info
,
443 if (!failed_mirror
) {
445 failed_mirror
= eb
->read_mirror
;
449 if (mirror_num
== failed_mirror
)
452 if (mirror_num
> num_copies
)
456 if (failed
&& !ret
&& failed_mirror
)
457 repair_eb_io_failure(root
, eb
, failed_mirror
);
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
467 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
469 struct extent_io_tree
*tree
;
470 u64 start
= page_offset(page
);
472 struct extent_buffer
*eb
;
474 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
476 eb
= (struct extent_buffer
*)page
->private;
477 if (page
!= eb
->pages
[0])
479 found_start
= btrfs_header_bytenr(eb
);
480 if (found_start
!= start
) {
484 if (!PageUptodate(page
)) {
488 csum_tree_block(root
, eb
, 0);
492 static int check_tree_block_fsid(struct btrfs_root
*root
,
493 struct extent_buffer
*eb
)
495 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
496 u8 fsid
[BTRFS_UUID_SIZE
];
499 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(eb
), BTRFS_FSID_SIZE
);
501 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
505 fs_devices
= fs_devices
->seed
;
510 #define CORRUPT(reason, eb, root, slot) \
511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512 "root=%llu, slot=%d\n", reason, \
513 btrfs_header_bytenr(eb), root->objectid, slot)
515 static noinline
int check_leaf(struct btrfs_root
*root
,
516 struct extent_buffer
*leaf
)
518 struct btrfs_key key
;
519 struct btrfs_key leaf_key
;
520 u32 nritems
= btrfs_header_nritems(leaf
);
526 /* Check the 0 item */
527 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
528 BTRFS_LEAF_DATA_SIZE(root
)) {
529 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
534 * Check to make sure each items keys are in the correct order and their
535 * offsets make sense. We only have to loop through nritems-1 because
536 * we check the current slot against the next slot, which verifies the
537 * next slot's offset+size makes sense and that the current's slot
540 for (slot
= 0; slot
< nritems
- 1; slot
++) {
541 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
542 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
544 /* Make sure the keys are in the right order */
545 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
546 CORRUPT("bad key order", leaf
, root
, slot
);
551 * Make sure the offset and ends are right, remember that the
552 * item data starts at the end of the leaf and grows towards the
555 if (btrfs_item_offset_nr(leaf
, slot
) !=
556 btrfs_item_end_nr(leaf
, slot
+ 1)) {
557 CORRUPT("slot offset bad", leaf
, root
, slot
);
562 * Check to make sure that we don't point outside of the leaf,
563 * just incase all the items are consistent to eachother, but
564 * all point outside of the leaf.
566 if (btrfs_item_end_nr(leaf
, slot
) >
567 BTRFS_LEAF_DATA_SIZE(root
)) {
568 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
576 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
577 u64 phy_offset
, struct page
*page
,
578 u64 start
, u64 end
, int mirror
)
580 struct extent_io_tree
*tree
;
583 struct extent_buffer
*eb
;
584 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
591 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
592 eb
= (struct extent_buffer
*)page
->private;
594 /* the pending IO might have been the only thing that kept this buffer
595 * in memory. Make sure we have a ref for all this other checks
597 extent_buffer_get(eb
);
599 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
603 eb
->read_mirror
= mirror
;
604 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
609 found_start
= btrfs_header_bytenr(eb
);
610 if (found_start
!= eb
->start
) {
611 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
613 found_start
, eb
->start
);
617 if (check_tree_block_fsid(root
, eb
)) {
618 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
623 found_level
= btrfs_header_level(eb
);
624 if (found_level
>= BTRFS_MAX_LEVEL
) {
625 btrfs_info(root
->fs_info
, "bad tree block level %d\n",
626 (int)btrfs_header_level(eb
));
631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
634 ret
= csum_tree_block(root
, eb
, 1);
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
645 if (found_level
== 0 && check_leaf(root
, eb
)) {
646 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
651 set_extent_buffer_uptodate(eb
);
654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
655 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
659 * our io error hook is going to dec the io pages
660 * again, we have to make sure it has something
663 atomic_inc(&eb
->io_pages
);
664 clear_extent_buffer_uptodate(eb
);
666 free_extent_buffer(eb
);
671 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
673 struct extent_buffer
*eb
;
674 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
676 eb
= (struct extent_buffer
*)page
->private;
677 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
678 eb
->read_mirror
= failed_mirror
;
679 atomic_dec(&eb
->io_pages
);
680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
681 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
682 return -EIO
; /* we fixed nothing */
685 static void end_workqueue_bio(struct bio
*bio
, int err
)
687 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
688 struct btrfs_fs_info
*fs_info
;
690 fs_info
= end_io_wq
->info
;
691 end_io_wq
->error
= err
;
692 end_io_wq
->work
.func
= end_workqueue_fn
;
693 end_io_wq
->work
.flags
= 0;
695 if (bio
->bi_rw
& REQ_WRITE
) {
696 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
697 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
699 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
700 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
702 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
703 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
706 btrfs_queue_worker(&fs_info
->endio_write_workers
,
709 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
710 btrfs_queue_worker(&fs_info
->endio_raid56_workers
,
712 else if (end_io_wq
->metadata
)
713 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
716 btrfs_queue_worker(&fs_info
->endio_workers
,
722 * For the metadata arg you want
725 * 1 - if normal metadta
726 * 2 - if writing to the free space cache area
727 * 3 - raid parity work
729 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
732 struct end_io_wq
*end_io_wq
;
733 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
737 end_io_wq
->private = bio
->bi_private
;
738 end_io_wq
->end_io
= bio
->bi_end_io
;
739 end_io_wq
->info
= info
;
740 end_io_wq
->error
= 0;
741 end_io_wq
->bio
= bio
;
742 end_io_wq
->metadata
= metadata
;
744 bio
->bi_private
= end_io_wq
;
745 bio
->bi_end_io
= end_workqueue_bio
;
749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
751 unsigned long limit
= min_t(unsigned long,
752 info
->workers
.max_workers
,
753 info
->fs_devices
->open_devices
);
757 static void run_one_async_start(struct btrfs_work
*work
)
759 struct async_submit_bio
*async
;
762 async
= container_of(work
, struct async_submit_bio
, work
);
763 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
764 async
->mirror_num
, async
->bio_flags
,
770 static void run_one_async_done(struct btrfs_work
*work
)
772 struct btrfs_fs_info
*fs_info
;
773 struct async_submit_bio
*async
;
776 async
= container_of(work
, struct async_submit_bio
, work
);
777 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
779 limit
= btrfs_async_submit_limit(fs_info
);
780 limit
= limit
* 2 / 3;
782 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
783 waitqueue_active(&fs_info
->async_submit_wait
))
784 wake_up(&fs_info
->async_submit_wait
);
786 /* If an error occured we just want to clean up the bio and move on */
788 bio_endio(async
->bio
, async
->error
);
792 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
793 async
->mirror_num
, async
->bio_flags
,
797 static void run_one_async_free(struct btrfs_work
*work
)
799 struct async_submit_bio
*async
;
801 async
= container_of(work
, struct async_submit_bio
, work
);
805 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
806 int rw
, struct bio
*bio
, int mirror_num
,
807 unsigned long bio_flags
,
809 extent_submit_bio_hook_t
*submit_bio_start
,
810 extent_submit_bio_hook_t
*submit_bio_done
)
812 struct async_submit_bio
*async
;
814 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
818 async
->inode
= inode
;
821 async
->mirror_num
= mirror_num
;
822 async
->submit_bio_start
= submit_bio_start
;
823 async
->submit_bio_done
= submit_bio_done
;
825 async
->work
.func
= run_one_async_start
;
826 async
->work
.ordered_func
= run_one_async_done
;
827 async
->work
.ordered_free
= run_one_async_free
;
829 async
->work
.flags
= 0;
830 async
->bio_flags
= bio_flags
;
831 async
->bio_offset
= bio_offset
;
835 atomic_inc(&fs_info
->nr_async_submits
);
838 btrfs_set_work_high_prio(&async
->work
);
840 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
842 while (atomic_read(&fs_info
->async_submit_draining
) &&
843 atomic_read(&fs_info
->nr_async_submits
)) {
844 wait_event(fs_info
->async_submit_wait
,
845 (atomic_read(&fs_info
->nr_async_submits
) == 0));
851 static int btree_csum_one_bio(struct bio
*bio
)
853 struct bio_vec
*bvec
= bio
->bi_io_vec
;
855 struct btrfs_root
*root
;
858 WARN_ON(bio
->bi_vcnt
<= 0);
859 while (bio_index
< bio
->bi_vcnt
) {
860 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
861 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
870 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
871 struct bio
*bio
, int mirror_num
,
872 unsigned long bio_flags
,
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
879 return btree_csum_one_bio(bio
);
882 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
883 int mirror_num
, unsigned long bio_flags
,
889 * when we're called for a write, we're already in the async
890 * submission context. Just jump into btrfs_map_bio
892 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
898 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
900 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
909 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
910 int mirror_num
, unsigned long bio_flags
,
913 int async
= check_async_write(inode
, bio_flags
);
916 if (!(rw
& REQ_WRITE
)) {
918 * called for a read, do the setup so that checksum validation
919 * can happen in the async kernel threads
921 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
925 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
928 ret
= btree_csum_one_bio(bio
);
931 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
935 * kthread helpers are used to submit writes so that
936 * checksumming can happen in parallel across all CPUs
938 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
939 inode
, rw
, bio
, mirror_num
, 0,
941 __btree_submit_bio_start
,
942 __btree_submit_bio_done
);
952 #ifdef CONFIG_MIGRATION
953 static int btree_migratepage(struct address_space
*mapping
,
954 struct page
*newpage
, struct page
*page
,
955 enum migrate_mode mode
)
958 * we can't safely write a btree page from here,
959 * we haven't done the locking hook
964 * Buffers may be managed in a filesystem specific way.
965 * We must have no buffers or drop them.
967 if (page_has_private(page
) &&
968 !try_to_release_page(page
, GFP_KERNEL
))
970 return migrate_page(mapping
, newpage
, page
, mode
);
975 static int btree_writepages(struct address_space
*mapping
,
976 struct writeback_control
*wbc
)
978 struct extent_io_tree
*tree
;
979 struct btrfs_fs_info
*fs_info
;
982 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
983 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
985 if (wbc
->for_kupdate
)
988 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
989 /* this is a bit racy, but that's ok */
990 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
991 BTRFS_DIRTY_METADATA_THRESH
);
995 return btree_write_cache_pages(mapping
, wbc
);
998 static int btree_readpage(struct file
*file
, struct page
*page
)
1000 struct extent_io_tree
*tree
;
1001 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1002 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1005 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1007 if (PageWriteback(page
) || PageDirty(page
))
1010 return try_release_extent_buffer(page
);
1013 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1014 unsigned int length
)
1016 struct extent_io_tree
*tree
;
1017 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1018 extent_invalidatepage(tree
, page
, offset
);
1019 btree_releasepage(page
, GFP_NOFS
);
1020 if (PagePrivate(page
)) {
1021 printk(KERN_WARNING
"btrfs warning page private not zero "
1022 "on page %llu\n", (unsigned long long)page_offset(page
));
1023 ClearPagePrivate(page
);
1024 set_page_private(page
, 0);
1025 page_cache_release(page
);
1029 static int btree_set_page_dirty(struct page
*page
)
1032 struct extent_buffer
*eb
;
1034 BUG_ON(!PagePrivate(page
));
1035 eb
= (struct extent_buffer
*)page
->private;
1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1038 BUG_ON(!atomic_read(&eb
->refs
));
1039 btrfs_assert_tree_locked(eb
);
1041 return __set_page_dirty_nobuffers(page
);
1044 static const struct address_space_operations btree_aops
= {
1045 .readpage
= btree_readpage
,
1046 .writepages
= btree_writepages
,
1047 .releasepage
= btree_releasepage
,
1048 .invalidatepage
= btree_invalidatepage
,
1049 #ifdef CONFIG_MIGRATION
1050 .migratepage
= btree_migratepage
,
1052 .set_page_dirty
= btree_set_page_dirty
,
1055 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1058 struct extent_buffer
*buf
= NULL
;
1059 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1062 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1065 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1066 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1067 free_extent_buffer(buf
);
1071 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1072 int mirror_num
, struct extent_buffer
**eb
)
1074 struct extent_buffer
*buf
= NULL
;
1075 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1076 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1079 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1083 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1085 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1086 btree_get_extent
, mirror_num
);
1088 free_extent_buffer(buf
);
1092 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1093 free_extent_buffer(buf
);
1095 } else if (extent_buffer_uptodate(buf
)) {
1098 free_extent_buffer(buf
);
1103 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1104 u64 bytenr
, u32 blocksize
)
1106 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1107 struct extent_buffer
*eb
;
1108 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1113 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1114 u64 bytenr
, u32 blocksize
)
1116 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1117 struct extent_buffer
*eb
;
1119 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1125 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1127 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1128 buf
->start
+ buf
->len
- 1);
1131 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1133 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1134 buf
->start
, buf
->start
+ buf
->len
- 1);
1137 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1138 u32 blocksize
, u64 parent_transid
)
1140 struct extent_buffer
*buf
= NULL
;
1143 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1147 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1149 free_extent_buffer(buf
);
1156 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1157 struct extent_buffer
*buf
)
1159 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1161 if (btrfs_header_generation(buf
) ==
1162 fs_info
->running_transaction
->transid
) {
1163 btrfs_assert_tree_locked(buf
);
1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1166 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1168 fs_info
->dirty_metadata_batch
);
1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170 btrfs_set_lock_blocking(buf
);
1171 clear_extent_buffer_dirty(buf
);
1176 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1177 u32 stripesize
, struct btrfs_root
*root
,
1178 struct btrfs_fs_info
*fs_info
,
1182 root
->commit_root
= NULL
;
1183 root
->sectorsize
= sectorsize
;
1184 root
->nodesize
= nodesize
;
1185 root
->leafsize
= leafsize
;
1186 root
->stripesize
= stripesize
;
1188 root
->track_dirty
= 0;
1190 root
->orphan_item_inserted
= 0;
1191 root
->orphan_cleanup_state
= 0;
1193 root
->objectid
= objectid
;
1194 root
->last_trans
= 0;
1195 root
->highest_objectid
= 0;
1196 root
->nr_delalloc_inodes
= 0;
1197 root
->nr_ordered_extents
= 0;
1199 root
->inode_tree
= RB_ROOT
;
1200 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1201 root
->block_rsv
= NULL
;
1202 root
->orphan_block_rsv
= NULL
;
1204 INIT_LIST_HEAD(&root
->dirty_list
);
1205 INIT_LIST_HEAD(&root
->root_list
);
1206 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1207 INIT_LIST_HEAD(&root
->delalloc_root
);
1208 INIT_LIST_HEAD(&root
->ordered_extents
);
1209 INIT_LIST_HEAD(&root
->ordered_root
);
1210 INIT_LIST_HEAD(&root
->logged_list
[0]);
1211 INIT_LIST_HEAD(&root
->logged_list
[1]);
1212 spin_lock_init(&root
->orphan_lock
);
1213 spin_lock_init(&root
->inode_lock
);
1214 spin_lock_init(&root
->delalloc_lock
);
1215 spin_lock_init(&root
->ordered_extent_lock
);
1216 spin_lock_init(&root
->accounting_lock
);
1217 spin_lock_init(&root
->log_extents_lock
[0]);
1218 spin_lock_init(&root
->log_extents_lock
[1]);
1219 mutex_init(&root
->objectid_mutex
);
1220 mutex_init(&root
->log_mutex
);
1221 init_waitqueue_head(&root
->log_writer_wait
);
1222 init_waitqueue_head(&root
->log_commit_wait
[0]);
1223 init_waitqueue_head(&root
->log_commit_wait
[1]);
1224 atomic_set(&root
->log_commit
[0], 0);
1225 atomic_set(&root
->log_commit
[1], 0);
1226 atomic_set(&root
->log_writers
, 0);
1227 atomic_set(&root
->log_batch
, 0);
1228 atomic_set(&root
->orphan_inodes
, 0);
1229 atomic_set(&root
->refs
, 1);
1230 root
->log_transid
= 0;
1231 root
->last_log_commit
= 0;
1232 extent_io_tree_init(&root
->dirty_log_pages
,
1233 fs_info
->btree_inode
->i_mapping
);
1235 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1236 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1237 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1238 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1239 root
->defrag_trans_start
= fs_info
->generation
;
1240 init_completion(&root
->kobj_unregister
);
1241 root
->defrag_running
= 0;
1242 root
->root_key
.objectid
= objectid
;
1245 spin_lock_init(&root
->root_item_lock
);
1248 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1250 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1252 root
->fs_info
= fs_info
;
1256 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1257 struct btrfs_fs_info
*fs_info
,
1260 struct extent_buffer
*leaf
;
1261 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1262 struct btrfs_root
*root
;
1263 struct btrfs_key key
;
1268 root
= btrfs_alloc_root(fs_info
);
1270 return ERR_PTR(-ENOMEM
);
1272 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1273 tree_root
->sectorsize
, tree_root
->stripesize
,
1274 root
, fs_info
, objectid
);
1275 root
->root_key
.objectid
= objectid
;
1276 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1277 root
->root_key
.offset
= 0;
1279 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1280 0, objectid
, NULL
, 0, 0, 0);
1282 ret
= PTR_ERR(leaf
);
1287 bytenr
= leaf
->start
;
1288 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1289 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1290 btrfs_set_header_generation(leaf
, trans
->transid
);
1291 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1292 btrfs_set_header_owner(leaf
, objectid
);
1295 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(leaf
),
1297 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1298 btrfs_header_chunk_tree_uuid(leaf
),
1300 btrfs_mark_buffer_dirty(leaf
);
1302 root
->commit_root
= btrfs_root_node(root
);
1303 root
->track_dirty
= 1;
1306 root
->root_item
.flags
= 0;
1307 root
->root_item
.byte_limit
= 0;
1308 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1309 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1310 btrfs_set_root_level(&root
->root_item
, 0);
1311 btrfs_set_root_refs(&root
->root_item
, 1);
1312 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1313 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1314 btrfs_set_root_dirid(&root
->root_item
, 0);
1316 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1317 root
->root_item
.drop_level
= 0;
1319 key
.objectid
= objectid
;
1320 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1322 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1326 btrfs_tree_unlock(leaf
);
1332 btrfs_tree_unlock(leaf
);
1333 free_extent_buffer(leaf
);
1337 return ERR_PTR(ret
);
1340 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1341 struct btrfs_fs_info
*fs_info
)
1343 struct btrfs_root
*root
;
1344 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1345 struct extent_buffer
*leaf
;
1347 root
= btrfs_alloc_root(fs_info
);
1349 return ERR_PTR(-ENOMEM
);
1351 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1352 tree_root
->sectorsize
, tree_root
->stripesize
,
1353 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1355 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1356 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1357 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1359 * log trees do not get reference counted because they go away
1360 * before a real commit is actually done. They do store pointers
1361 * to file data extents, and those reference counts still get
1362 * updated (along with back refs to the log tree).
1366 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1367 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1371 return ERR_CAST(leaf
);
1374 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1375 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1376 btrfs_set_header_generation(leaf
, trans
->transid
);
1377 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1378 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1381 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1382 btrfs_header_fsid(root
->node
), BTRFS_FSID_SIZE
);
1383 btrfs_mark_buffer_dirty(root
->node
);
1384 btrfs_tree_unlock(root
->node
);
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1389 struct btrfs_fs_info
*fs_info
)
1391 struct btrfs_root
*log_root
;
1393 log_root
= alloc_log_tree(trans
, fs_info
);
1394 if (IS_ERR(log_root
))
1395 return PTR_ERR(log_root
);
1396 WARN_ON(fs_info
->log_root_tree
);
1397 fs_info
->log_root_tree
= log_root
;
1401 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1402 struct btrfs_root
*root
)
1404 struct btrfs_root
*log_root
;
1405 struct btrfs_inode_item
*inode_item
;
1407 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1408 if (IS_ERR(log_root
))
1409 return PTR_ERR(log_root
);
1411 log_root
->last_trans
= trans
->transid
;
1412 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1414 inode_item
= &log_root
->root_item
.inode
;
1415 btrfs_set_stack_inode_generation(inode_item
, 1);
1416 btrfs_set_stack_inode_size(inode_item
, 3);
1417 btrfs_set_stack_inode_nlink(inode_item
, 1);
1418 btrfs_set_stack_inode_nbytes(inode_item
, root
->leafsize
);
1419 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1421 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1423 WARN_ON(root
->log_root
);
1424 root
->log_root
= log_root
;
1425 root
->log_transid
= 0;
1426 root
->last_log_commit
= 0;
1430 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1431 struct btrfs_key
*key
)
1433 struct btrfs_root
*root
;
1434 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1435 struct btrfs_path
*path
;
1440 path
= btrfs_alloc_path();
1442 return ERR_PTR(-ENOMEM
);
1444 root
= btrfs_alloc_root(fs_info
);
1450 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1451 tree_root
->sectorsize
, tree_root
->stripesize
,
1452 root
, fs_info
, key
->objectid
);
1454 ret
= btrfs_find_root(tree_root
, key
, path
,
1455 &root
->root_item
, &root
->root_key
);
1462 generation
= btrfs_root_generation(&root
->root_item
);
1463 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1464 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1465 blocksize
, generation
);
1469 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1473 root
->commit_root
= btrfs_root_node(root
);
1475 btrfs_free_path(path
);
1479 free_extent_buffer(root
->node
);
1483 root
= ERR_PTR(ret
);
1487 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1488 struct btrfs_key
*location
)
1490 struct btrfs_root
*root
;
1492 root
= btrfs_read_tree_root(tree_root
, location
);
1496 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1498 btrfs_check_and_init_root_item(&root
->root_item
);
1504 int btrfs_init_fs_root(struct btrfs_root
*root
)
1508 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1509 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1511 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1516 btrfs_init_free_ino_ctl(root
);
1517 mutex_init(&root
->fs_commit_mutex
);
1518 spin_lock_init(&root
->cache_lock
);
1519 init_waitqueue_head(&root
->cache_wait
);
1521 ret
= get_anon_bdev(&root
->anon_dev
);
1526 kfree(root
->free_ino_ctl
);
1527 kfree(root
->free_ino_pinned
);
1531 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1534 struct btrfs_root
*root
;
1536 spin_lock(&fs_info
->fs_roots_radix_lock
);
1537 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1538 (unsigned long)root_id
);
1539 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1543 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1544 struct btrfs_root
*root
)
1548 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1552 spin_lock(&fs_info
->fs_roots_radix_lock
);
1553 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1554 (unsigned long)root
->root_key
.objectid
,
1558 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1559 radix_tree_preload_end();
1564 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1565 struct btrfs_key
*location
,
1568 struct btrfs_root
*root
;
1571 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1572 return fs_info
->tree_root
;
1573 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1574 return fs_info
->extent_root
;
1575 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1576 return fs_info
->chunk_root
;
1577 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1578 return fs_info
->dev_root
;
1579 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1580 return fs_info
->csum_root
;
1581 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1582 return fs_info
->quota_root
? fs_info
->quota_root
:
1584 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1585 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1588 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1590 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1591 return ERR_PTR(-ENOENT
);
1595 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1599 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1604 ret
= btrfs_init_fs_root(root
);
1608 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1612 root
->orphan_item_inserted
= 1;
1614 ret
= btrfs_insert_fs_root(fs_info
, root
);
1616 if (ret
== -EEXIST
) {
1625 return ERR_PTR(ret
);
1628 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1630 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1632 struct btrfs_device
*device
;
1633 struct backing_dev_info
*bdi
;
1636 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1639 bdi
= blk_get_backing_dev_info(device
->bdev
);
1640 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1650 * If this fails, caller must call bdi_destroy() to get rid of the
1653 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1657 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1658 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1662 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1663 bdi
->congested_fn
= btrfs_congested_fn
;
1664 bdi
->congested_data
= info
;
1669 * called by the kthread helper functions to finally call the bio end_io
1670 * functions. This is where read checksum verification actually happens
1672 static void end_workqueue_fn(struct btrfs_work
*work
)
1675 struct end_io_wq
*end_io_wq
;
1676 struct btrfs_fs_info
*fs_info
;
1679 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1680 bio
= end_io_wq
->bio
;
1681 fs_info
= end_io_wq
->info
;
1683 error
= end_io_wq
->error
;
1684 bio
->bi_private
= end_io_wq
->private;
1685 bio
->bi_end_io
= end_io_wq
->end_io
;
1687 bio_endio(bio
, error
);
1690 static int cleaner_kthread(void *arg
)
1692 struct btrfs_root
*root
= arg
;
1698 /* Make the cleaner go to sleep early. */
1699 if (btrfs_need_cleaner_sleep(root
))
1702 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1706 * Avoid the problem that we change the status of the fs
1707 * during the above check and trylock.
1709 if (btrfs_need_cleaner_sleep(root
)) {
1710 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1714 btrfs_run_delayed_iputs(root
);
1715 again
= btrfs_clean_one_deleted_snapshot(root
);
1716 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1719 * The defragger has dealt with the R/O remount and umount,
1720 * needn't do anything special here.
1722 btrfs_run_defrag_inodes(root
->fs_info
);
1724 if (!try_to_freeze() && !again
) {
1725 set_current_state(TASK_INTERRUPTIBLE
);
1726 if (!kthread_should_stop())
1728 __set_current_state(TASK_RUNNING
);
1730 } while (!kthread_should_stop());
1734 static int transaction_kthread(void *arg
)
1736 struct btrfs_root
*root
= arg
;
1737 struct btrfs_trans_handle
*trans
;
1738 struct btrfs_transaction
*cur
;
1741 unsigned long delay
;
1745 cannot_commit
= false;
1746 delay
= HZ
* root
->fs_info
->commit_interval
;
1747 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1749 spin_lock(&root
->fs_info
->trans_lock
);
1750 cur
= root
->fs_info
->running_transaction
;
1752 spin_unlock(&root
->fs_info
->trans_lock
);
1756 now
= get_seconds();
1757 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1758 (now
< cur
->start_time
||
1759 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1760 spin_unlock(&root
->fs_info
->trans_lock
);
1764 transid
= cur
->transid
;
1765 spin_unlock(&root
->fs_info
->trans_lock
);
1767 /* If the file system is aborted, this will always fail. */
1768 trans
= btrfs_attach_transaction(root
);
1769 if (IS_ERR(trans
)) {
1770 if (PTR_ERR(trans
) != -ENOENT
)
1771 cannot_commit
= true;
1774 if (transid
== trans
->transid
) {
1775 btrfs_commit_transaction(trans
, root
);
1777 btrfs_end_transaction(trans
, root
);
1780 wake_up_process(root
->fs_info
->cleaner_kthread
);
1781 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1783 if (!try_to_freeze()) {
1784 set_current_state(TASK_INTERRUPTIBLE
);
1785 if (!kthread_should_stop() &&
1786 (!btrfs_transaction_blocked(root
->fs_info
) ||
1788 schedule_timeout(delay
);
1789 __set_current_state(TASK_RUNNING
);
1791 } while (!kthread_should_stop());
1796 * this will find the highest generation in the array of
1797 * root backups. The index of the highest array is returned,
1798 * or -1 if we can't find anything.
1800 * We check to make sure the array is valid by comparing the
1801 * generation of the latest root in the array with the generation
1802 * in the super block. If they don't match we pitch it.
1804 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1807 int newest_index
= -1;
1808 struct btrfs_root_backup
*root_backup
;
1811 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1812 root_backup
= info
->super_copy
->super_roots
+ i
;
1813 cur
= btrfs_backup_tree_root_gen(root_backup
);
1814 if (cur
== newest_gen
)
1818 /* check to see if we actually wrapped around */
1819 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1820 root_backup
= info
->super_copy
->super_roots
;
1821 cur
= btrfs_backup_tree_root_gen(root_backup
);
1822 if (cur
== newest_gen
)
1825 return newest_index
;
1830 * find the oldest backup so we know where to store new entries
1831 * in the backup array. This will set the backup_root_index
1832 * field in the fs_info struct
1834 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1837 int newest_index
= -1;
1839 newest_index
= find_newest_super_backup(info
, newest_gen
);
1840 /* if there was garbage in there, just move along */
1841 if (newest_index
== -1) {
1842 info
->backup_root_index
= 0;
1844 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1849 * copy all the root pointers into the super backup array.
1850 * this will bump the backup pointer by one when it is
1853 static void backup_super_roots(struct btrfs_fs_info
*info
)
1856 struct btrfs_root_backup
*root_backup
;
1859 next_backup
= info
->backup_root_index
;
1860 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1861 BTRFS_NUM_BACKUP_ROOTS
;
1864 * just overwrite the last backup if we're at the same generation
1865 * this happens only at umount
1867 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1868 if (btrfs_backup_tree_root_gen(root_backup
) ==
1869 btrfs_header_generation(info
->tree_root
->node
))
1870 next_backup
= last_backup
;
1872 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1878 memset(root_backup
, 0, sizeof(*root_backup
));
1880 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1882 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1883 btrfs_set_backup_tree_root_gen(root_backup
,
1884 btrfs_header_generation(info
->tree_root
->node
));
1886 btrfs_set_backup_tree_root_level(root_backup
,
1887 btrfs_header_level(info
->tree_root
->node
));
1889 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1890 btrfs_set_backup_chunk_root_gen(root_backup
,
1891 btrfs_header_generation(info
->chunk_root
->node
));
1892 btrfs_set_backup_chunk_root_level(root_backup
,
1893 btrfs_header_level(info
->chunk_root
->node
));
1895 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1896 btrfs_set_backup_extent_root_gen(root_backup
,
1897 btrfs_header_generation(info
->extent_root
->node
));
1898 btrfs_set_backup_extent_root_level(root_backup
,
1899 btrfs_header_level(info
->extent_root
->node
));
1902 * we might commit during log recovery, which happens before we set
1903 * the fs_root. Make sure it is valid before we fill it in.
1905 if (info
->fs_root
&& info
->fs_root
->node
) {
1906 btrfs_set_backup_fs_root(root_backup
,
1907 info
->fs_root
->node
->start
);
1908 btrfs_set_backup_fs_root_gen(root_backup
,
1909 btrfs_header_generation(info
->fs_root
->node
));
1910 btrfs_set_backup_fs_root_level(root_backup
,
1911 btrfs_header_level(info
->fs_root
->node
));
1914 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1915 btrfs_set_backup_dev_root_gen(root_backup
,
1916 btrfs_header_generation(info
->dev_root
->node
));
1917 btrfs_set_backup_dev_root_level(root_backup
,
1918 btrfs_header_level(info
->dev_root
->node
));
1920 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1921 btrfs_set_backup_csum_root_gen(root_backup
,
1922 btrfs_header_generation(info
->csum_root
->node
));
1923 btrfs_set_backup_csum_root_level(root_backup
,
1924 btrfs_header_level(info
->csum_root
->node
));
1926 btrfs_set_backup_total_bytes(root_backup
,
1927 btrfs_super_total_bytes(info
->super_copy
));
1928 btrfs_set_backup_bytes_used(root_backup
,
1929 btrfs_super_bytes_used(info
->super_copy
));
1930 btrfs_set_backup_num_devices(root_backup
,
1931 btrfs_super_num_devices(info
->super_copy
));
1934 * if we don't copy this out to the super_copy, it won't get remembered
1935 * for the next commit
1937 memcpy(&info
->super_copy
->super_roots
,
1938 &info
->super_for_commit
->super_roots
,
1939 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1943 * this copies info out of the root backup array and back into
1944 * the in-memory super block. It is meant to help iterate through
1945 * the array, so you send it the number of backups you've already
1946 * tried and the last backup index you used.
1948 * this returns -1 when it has tried all the backups
1950 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1951 struct btrfs_super_block
*super
,
1952 int *num_backups_tried
, int *backup_index
)
1954 struct btrfs_root_backup
*root_backup
;
1955 int newest
= *backup_index
;
1957 if (*num_backups_tried
== 0) {
1958 u64 gen
= btrfs_super_generation(super
);
1960 newest
= find_newest_super_backup(info
, gen
);
1964 *backup_index
= newest
;
1965 *num_backups_tried
= 1;
1966 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1967 /* we've tried all the backups, all done */
1970 /* jump to the next oldest backup */
1971 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1972 BTRFS_NUM_BACKUP_ROOTS
;
1973 *backup_index
= newest
;
1974 *num_backups_tried
+= 1;
1976 root_backup
= super
->super_roots
+ newest
;
1978 btrfs_set_super_generation(super
,
1979 btrfs_backup_tree_root_gen(root_backup
));
1980 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1981 btrfs_set_super_root_level(super
,
1982 btrfs_backup_tree_root_level(root_backup
));
1983 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1986 * fixme: the total bytes and num_devices need to match or we should
1989 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1990 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1994 /* helper to cleanup workers */
1995 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1997 btrfs_stop_workers(&fs_info
->generic_worker
);
1998 btrfs_stop_workers(&fs_info
->fixup_workers
);
1999 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2000 btrfs_stop_workers(&fs_info
->workers
);
2001 btrfs_stop_workers(&fs_info
->endio_workers
);
2002 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2003 btrfs_stop_workers(&fs_info
->endio_raid56_workers
);
2004 btrfs_stop_workers(&fs_info
->rmw_workers
);
2005 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2006 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2007 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2008 btrfs_stop_workers(&fs_info
->submit_workers
);
2009 btrfs_stop_workers(&fs_info
->delayed_workers
);
2010 btrfs_stop_workers(&fs_info
->caching_workers
);
2011 btrfs_stop_workers(&fs_info
->readahead_workers
);
2012 btrfs_stop_workers(&fs_info
->flush_workers
);
2013 btrfs_stop_workers(&fs_info
->qgroup_rescan_workers
);
2016 /* helper to cleanup tree roots */
2017 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2019 free_extent_buffer(info
->tree_root
->node
);
2020 free_extent_buffer(info
->tree_root
->commit_root
);
2021 info
->tree_root
->node
= NULL
;
2022 info
->tree_root
->commit_root
= NULL
;
2024 if (info
->dev_root
) {
2025 free_extent_buffer(info
->dev_root
->node
);
2026 free_extent_buffer(info
->dev_root
->commit_root
);
2027 info
->dev_root
->node
= NULL
;
2028 info
->dev_root
->commit_root
= NULL
;
2030 if (info
->extent_root
) {
2031 free_extent_buffer(info
->extent_root
->node
);
2032 free_extent_buffer(info
->extent_root
->commit_root
);
2033 info
->extent_root
->node
= NULL
;
2034 info
->extent_root
->commit_root
= NULL
;
2036 if (info
->csum_root
) {
2037 free_extent_buffer(info
->csum_root
->node
);
2038 free_extent_buffer(info
->csum_root
->commit_root
);
2039 info
->csum_root
->node
= NULL
;
2040 info
->csum_root
->commit_root
= NULL
;
2042 if (info
->quota_root
) {
2043 free_extent_buffer(info
->quota_root
->node
);
2044 free_extent_buffer(info
->quota_root
->commit_root
);
2045 info
->quota_root
->node
= NULL
;
2046 info
->quota_root
->commit_root
= NULL
;
2048 if (info
->uuid_root
) {
2049 free_extent_buffer(info
->uuid_root
->node
);
2050 free_extent_buffer(info
->uuid_root
->commit_root
);
2051 info
->uuid_root
->node
= NULL
;
2052 info
->uuid_root
->commit_root
= NULL
;
2055 free_extent_buffer(info
->chunk_root
->node
);
2056 free_extent_buffer(info
->chunk_root
->commit_root
);
2057 info
->chunk_root
->node
= NULL
;
2058 info
->chunk_root
->commit_root
= NULL
;
2062 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
2065 struct btrfs_root
*gang
[8];
2068 while (!list_empty(&fs_info
->dead_roots
)) {
2069 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2070 struct btrfs_root
, root_list
);
2071 list_del(&gang
[0]->root_list
);
2073 if (gang
[0]->in_radix
) {
2074 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2076 free_extent_buffer(gang
[0]->node
);
2077 free_extent_buffer(gang
[0]->commit_root
);
2078 btrfs_put_fs_root(gang
[0]);
2083 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2088 for (i
= 0; i
< ret
; i
++)
2089 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2093 int open_ctree(struct super_block
*sb
,
2094 struct btrfs_fs_devices
*fs_devices
,
2104 struct btrfs_key location
;
2105 struct buffer_head
*bh
;
2106 struct btrfs_super_block
*disk_super
;
2107 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2108 struct btrfs_root
*tree_root
;
2109 struct btrfs_root
*extent_root
;
2110 struct btrfs_root
*csum_root
;
2111 struct btrfs_root
*chunk_root
;
2112 struct btrfs_root
*dev_root
;
2113 struct btrfs_root
*quota_root
;
2114 struct btrfs_root
*uuid_root
;
2115 struct btrfs_root
*log_tree_root
;
2118 int num_backups_tried
= 0;
2119 int backup_index
= 0;
2120 bool create_uuid_tree
;
2121 bool check_uuid_tree
;
2123 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2124 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2125 if (!tree_root
|| !chunk_root
) {
2130 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2136 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2142 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0);
2147 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2148 (1 + ilog2(nr_cpu_ids
));
2150 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0);
2153 goto fail_dirty_metadata_bytes
;
2156 fs_info
->btree_inode
= new_inode(sb
);
2157 if (!fs_info
->btree_inode
) {
2159 goto fail_delalloc_bytes
;
2162 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2164 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2165 INIT_LIST_HEAD(&fs_info
->trans_list
);
2166 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2167 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2168 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2169 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2170 spin_lock_init(&fs_info
->delalloc_root_lock
);
2171 spin_lock_init(&fs_info
->trans_lock
);
2172 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2173 spin_lock_init(&fs_info
->delayed_iput_lock
);
2174 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2175 spin_lock_init(&fs_info
->free_chunk_lock
);
2176 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2177 spin_lock_init(&fs_info
->super_lock
);
2178 rwlock_init(&fs_info
->tree_mod_log_lock
);
2179 mutex_init(&fs_info
->reloc_mutex
);
2180 seqlock_init(&fs_info
->profiles_lock
);
2182 init_completion(&fs_info
->kobj_unregister
);
2183 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2184 INIT_LIST_HEAD(&fs_info
->space_info
);
2185 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2186 btrfs_mapping_init(&fs_info
->mapping_tree
);
2187 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2188 BTRFS_BLOCK_RSV_GLOBAL
);
2189 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2190 BTRFS_BLOCK_RSV_DELALLOC
);
2191 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2192 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2193 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2194 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2195 BTRFS_BLOCK_RSV_DELOPS
);
2196 atomic_set(&fs_info
->nr_async_submits
, 0);
2197 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2198 atomic_set(&fs_info
->async_submit_draining
, 0);
2199 atomic_set(&fs_info
->nr_async_bios
, 0);
2200 atomic_set(&fs_info
->defrag_running
, 0);
2201 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2203 fs_info
->max_inline
= 8192 * 1024;
2204 fs_info
->metadata_ratio
= 0;
2205 fs_info
->defrag_inodes
= RB_ROOT
;
2206 fs_info
->free_chunk_space
= 0;
2207 fs_info
->tree_mod_log
= RB_ROOT
;
2208 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2210 /* readahead state */
2211 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2212 spin_lock_init(&fs_info
->reada_lock
);
2214 fs_info
->thread_pool_size
= min_t(unsigned long,
2215 num_online_cpus() + 2, 8);
2217 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2218 spin_lock_init(&fs_info
->ordered_root_lock
);
2219 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2221 if (!fs_info
->delayed_root
) {
2225 btrfs_init_delayed_root(fs_info
->delayed_root
);
2227 mutex_init(&fs_info
->scrub_lock
);
2228 atomic_set(&fs_info
->scrubs_running
, 0);
2229 atomic_set(&fs_info
->scrub_pause_req
, 0);
2230 atomic_set(&fs_info
->scrubs_paused
, 0);
2231 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2232 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2233 init_rwsem(&fs_info
->scrub_super_lock
);
2234 fs_info
->scrub_workers_refcnt
= 0;
2235 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2236 fs_info
->check_integrity_print_mask
= 0;
2239 spin_lock_init(&fs_info
->balance_lock
);
2240 mutex_init(&fs_info
->balance_mutex
);
2241 atomic_set(&fs_info
->balance_running
, 0);
2242 atomic_set(&fs_info
->balance_pause_req
, 0);
2243 atomic_set(&fs_info
->balance_cancel_req
, 0);
2244 fs_info
->balance_ctl
= NULL
;
2245 init_waitqueue_head(&fs_info
->balance_wait_q
);
2247 sb
->s_blocksize
= 4096;
2248 sb
->s_blocksize_bits
= blksize_bits(4096);
2249 sb
->s_bdi
= &fs_info
->bdi
;
2251 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2252 set_nlink(fs_info
->btree_inode
, 1);
2254 * we set the i_size on the btree inode to the max possible int.
2255 * the real end of the address space is determined by all of
2256 * the devices in the system
2258 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2259 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2260 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2263 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2264 fs_info
->btree_inode
->i_mapping
);
2265 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2268 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2270 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2271 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2272 sizeof(struct btrfs_key
));
2273 set_bit(BTRFS_INODE_DUMMY
,
2274 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2275 insert_inode_hash(fs_info
->btree_inode
);
2277 spin_lock_init(&fs_info
->block_group_cache_lock
);
2278 fs_info
->block_group_cache_tree
= RB_ROOT
;
2279 fs_info
->first_logical_byte
= (u64
)-1;
2281 extent_io_tree_init(&fs_info
->freed_extents
[0],
2282 fs_info
->btree_inode
->i_mapping
);
2283 extent_io_tree_init(&fs_info
->freed_extents
[1],
2284 fs_info
->btree_inode
->i_mapping
);
2285 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2286 fs_info
->do_barriers
= 1;
2289 mutex_init(&fs_info
->ordered_operations_mutex
);
2290 mutex_init(&fs_info
->ordered_extent_flush_mutex
);
2291 mutex_init(&fs_info
->tree_log_mutex
);
2292 mutex_init(&fs_info
->chunk_mutex
);
2293 mutex_init(&fs_info
->transaction_kthread_mutex
);
2294 mutex_init(&fs_info
->cleaner_mutex
);
2295 mutex_init(&fs_info
->volume_mutex
);
2296 init_rwsem(&fs_info
->extent_commit_sem
);
2297 init_rwsem(&fs_info
->cleanup_work_sem
);
2298 init_rwsem(&fs_info
->subvol_sem
);
2299 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2300 fs_info
->dev_replace
.lock_owner
= 0;
2301 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2302 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2303 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2304 mutex_init(&fs_info
->dev_replace
.lock
);
2306 spin_lock_init(&fs_info
->qgroup_lock
);
2307 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2308 fs_info
->qgroup_tree
= RB_ROOT
;
2309 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2310 fs_info
->qgroup_seq
= 1;
2311 fs_info
->quota_enabled
= 0;
2312 fs_info
->pending_quota_state
= 0;
2313 fs_info
->qgroup_ulist
= NULL
;
2314 mutex_init(&fs_info
->qgroup_rescan_lock
);
2316 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2317 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2319 init_waitqueue_head(&fs_info
->transaction_throttle
);
2320 init_waitqueue_head(&fs_info
->transaction_wait
);
2321 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2322 init_waitqueue_head(&fs_info
->async_submit_wait
);
2324 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2330 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2331 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2333 invalidate_bdev(fs_devices
->latest_bdev
);
2336 * Read super block and check the signature bytes only
2338 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2345 * We want to check superblock checksum, the type is stored inside.
2346 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2348 if (btrfs_check_super_csum(bh
->b_data
)) {
2349 printk(KERN_ERR
"btrfs: superblock checksum mismatch\n");
2355 * super_copy is zeroed at allocation time and we never touch the
2356 * following bytes up to INFO_SIZE, the checksum is calculated from
2357 * the whole block of INFO_SIZE
2359 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2360 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2361 sizeof(*fs_info
->super_for_commit
));
2364 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2366 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2368 printk(KERN_ERR
"btrfs: superblock contains fatal errors\n");
2373 disk_super
= fs_info
->super_copy
;
2374 if (!btrfs_super_root(disk_super
))
2377 /* check FS state, whether FS is broken. */
2378 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2379 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2382 * run through our array of backup supers and setup
2383 * our ring pointer to the oldest one
2385 generation
= btrfs_super_generation(disk_super
);
2386 find_oldest_super_backup(fs_info
, generation
);
2389 * In the long term, we'll store the compression type in the super
2390 * block, and it'll be used for per file compression control.
2392 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2394 ret
= btrfs_parse_options(tree_root
, options
);
2400 features
= btrfs_super_incompat_flags(disk_super
) &
2401 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2403 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2404 "unsupported optional features (%Lx).\n",
2410 if (btrfs_super_leafsize(disk_super
) !=
2411 btrfs_super_nodesize(disk_super
)) {
2412 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2413 "blocksizes don't match. node %d leaf %d\n",
2414 btrfs_super_nodesize(disk_super
),
2415 btrfs_super_leafsize(disk_super
));
2419 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2420 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2421 "blocksize (%d) was too large\n",
2422 btrfs_super_leafsize(disk_super
));
2427 features
= btrfs_super_incompat_flags(disk_super
);
2428 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2429 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2430 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2432 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2433 printk(KERN_ERR
"btrfs: has skinny extents\n");
2436 * flag our filesystem as having big metadata blocks if
2437 * they are bigger than the page size
2439 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2440 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2441 printk(KERN_INFO
"btrfs flagging fs with big metadata feature\n");
2442 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2445 nodesize
= btrfs_super_nodesize(disk_super
);
2446 leafsize
= btrfs_super_leafsize(disk_super
);
2447 sectorsize
= btrfs_super_sectorsize(disk_super
);
2448 stripesize
= btrfs_super_stripesize(disk_super
);
2449 fs_info
->dirty_metadata_batch
= leafsize
* (1 + ilog2(nr_cpu_ids
));
2450 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2453 * mixed block groups end up with duplicate but slightly offset
2454 * extent buffers for the same range. It leads to corruptions
2456 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2457 (sectorsize
!= leafsize
)) {
2458 printk(KERN_WARNING
"btrfs: unequal leaf/node/sector sizes "
2459 "are not allowed for mixed block groups on %s\n",
2465 * Needn't use the lock because there is no other task which will
2468 btrfs_set_super_incompat_flags(disk_super
, features
);
2470 features
= btrfs_super_compat_ro_flags(disk_super
) &
2471 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2472 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2473 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2474 "unsupported option features (%Lx).\n",
2480 btrfs_init_workers(&fs_info
->generic_worker
,
2481 "genwork", 1, NULL
);
2483 btrfs_init_workers(&fs_info
->workers
, "worker",
2484 fs_info
->thread_pool_size
,
2485 &fs_info
->generic_worker
);
2487 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2488 fs_info
->thread_pool_size
, NULL
);
2490 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2491 fs_info
->thread_pool_size
, NULL
);
2493 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2494 min_t(u64
, fs_devices
->num_devices
,
2495 fs_info
->thread_pool_size
), NULL
);
2497 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2498 fs_info
->thread_pool_size
, NULL
);
2500 /* a higher idle thresh on the submit workers makes it much more
2501 * likely that bios will be send down in a sane order to the
2504 fs_info
->submit_workers
.idle_thresh
= 64;
2506 fs_info
->workers
.idle_thresh
= 16;
2507 fs_info
->workers
.ordered
= 1;
2509 fs_info
->delalloc_workers
.idle_thresh
= 2;
2510 fs_info
->delalloc_workers
.ordered
= 1;
2512 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2513 &fs_info
->generic_worker
);
2514 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2515 fs_info
->thread_pool_size
,
2516 &fs_info
->generic_worker
);
2517 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2518 fs_info
->thread_pool_size
,
2519 &fs_info
->generic_worker
);
2520 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2521 "endio-meta-write", fs_info
->thread_pool_size
,
2522 &fs_info
->generic_worker
);
2523 btrfs_init_workers(&fs_info
->endio_raid56_workers
,
2524 "endio-raid56", fs_info
->thread_pool_size
,
2525 &fs_info
->generic_worker
);
2526 btrfs_init_workers(&fs_info
->rmw_workers
,
2527 "rmw", fs_info
->thread_pool_size
,
2528 &fs_info
->generic_worker
);
2529 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2530 fs_info
->thread_pool_size
,
2531 &fs_info
->generic_worker
);
2532 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2533 1, &fs_info
->generic_worker
);
2534 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2535 fs_info
->thread_pool_size
,
2536 &fs_info
->generic_worker
);
2537 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2538 fs_info
->thread_pool_size
,
2539 &fs_info
->generic_worker
);
2540 btrfs_init_workers(&fs_info
->qgroup_rescan_workers
, "qgroup-rescan", 1,
2541 &fs_info
->generic_worker
);
2544 * endios are largely parallel and should have a very
2547 fs_info
->endio_workers
.idle_thresh
= 4;
2548 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2549 fs_info
->endio_raid56_workers
.idle_thresh
= 4;
2550 fs_info
->rmw_workers
.idle_thresh
= 2;
2552 fs_info
->endio_write_workers
.idle_thresh
= 2;
2553 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2554 fs_info
->readahead_workers
.idle_thresh
= 2;
2557 * btrfs_start_workers can really only fail because of ENOMEM so just
2558 * return -ENOMEM if any of these fail.
2560 ret
= btrfs_start_workers(&fs_info
->workers
);
2561 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2562 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2563 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2564 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2565 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2566 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2567 ret
|= btrfs_start_workers(&fs_info
->rmw_workers
);
2568 ret
|= btrfs_start_workers(&fs_info
->endio_raid56_workers
);
2569 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2570 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2571 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2572 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2573 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2574 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2575 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2576 ret
|= btrfs_start_workers(&fs_info
->qgroup_rescan_workers
);
2579 goto fail_sb_buffer
;
2582 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2583 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2584 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2586 tree_root
->nodesize
= nodesize
;
2587 tree_root
->leafsize
= leafsize
;
2588 tree_root
->sectorsize
= sectorsize
;
2589 tree_root
->stripesize
= stripesize
;
2591 sb
->s_blocksize
= sectorsize
;
2592 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2594 if (btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
2595 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2596 goto fail_sb_buffer
;
2599 if (sectorsize
!= PAGE_SIZE
) {
2600 printk(KERN_WARNING
"btrfs: Incompatible sector size(%lu) "
2601 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2602 goto fail_sb_buffer
;
2605 mutex_lock(&fs_info
->chunk_mutex
);
2606 ret
= btrfs_read_sys_array(tree_root
);
2607 mutex_unlock(&fs_info
->chunk_mutex
);
2609 printk(KERN_WARNING
"btrfs: failed to read the system "
2610 "array on %s\n", sb
->s_id
);
2611 goto fail_sb_buffer
;
2614 blocksize
= btrfs_level_size(tree_root
,
2615 btrfs_super_chunk_root_level(disk_super
));
2616 generation
= btrfs_super_chunk_root_generation(disk_super
);
2618 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2619 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2621 chunk_root
->node
= read_tree_block(chunk_root
,
2622 btrfs_super_chunk_root(disk_super
),
2623 blocksize
, generation
);
2624 if (!chunk_root
->node
||
2625 !test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2626 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2628 goto fail_tree_roots
;
2630 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2631 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2633 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2634 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2636 ret
= btrfs_read_chunk_tree(chunk_root
);
2638 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2640 goto fail_tree_roots
;
2644 * keep the device that is marked to be the target device for the
2645 * dev_replace procedure
2647 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2649 if (!fs_devices
->latest_bdev
) {
2650 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2652 goto fail_tree_roots
;
2656 blocksize
= btrfs_level_size(tree_root
,
2657 btrfs_super_root_level(disk_super
));
2658 generation
= btrfs_super_generation(disk_super
);
2660 tree_root
->node
= read_tree_block(tree_root
,
2661 btrfs_super_root(disk_super
),
2662 blocksize
, generation
);
2663 if (!tree_root
->node
||
2664 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2665 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2668 goto recovery_tree_root
;
2671 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2672 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2674 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2675 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2676 location
.offset
= 0;
2678 extent_root
= btrfs_read_tree_root(tree_root
, &location
);
2679 if (IS_ERR(extent_root
)) {
2680 ret
= PTR_ERR(extent_root
);
2681 goto recovery_tree_root
;
2683 extent_root
->track_dirty
= 1;
2684 fs_info
->extent_root
= extent_root
;
2686 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2687 dev_root
= btrfs_read_tree_root(tree_root
, &location
);
2688 if (IS_ERR(dev_root
)) {
2689 ret
= PTR_ERR(dev_root
);
2690 goto recovery_tree_root
;
2692 dev_root
->track_dirty
= 1;
2693 fs_info
->dev_root
= dev_root
;
2694 btrfs_init_devices_late(fs_info
);
2696 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2697 csum_root
= btrfs_read_tree_root(tree_root
, &location
);
2698 if (IS_ERR(csum_root
)) {
2699 ret
= PTR_ERR(csum_root
);
2700 goto recovery_tree_root
;
2702 csum_root
->track_dirty
= 1;
2703 fs_info
->csum_root
= csum_root
;
2705 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2706 quota_root
= btrfs_read_tree_root(tree_root
, &location
);
2707 if (!IS_ERR(quota_root
)) {
2708 quota_root
->track_dirty
= 1;
2709 fs_info
->quota_enabled
= 1;
2710 fs_info
->pending_quota_state
= 1;
2711 fs_info
->quota_root
= quota_root
;
2714 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2715 uuid_root
= btrfs_read_tree_root(tree_root
, &location
);
2716 if (IS_ERR(uuid_root
)) {
2717 ret
= PTR_ERR(uuid_root
);
2719 goto recovery_tree_root
;
2720 create_uuid_tree
= true;
2721 check_uuid_tree
= false;
2723 uuid_root
->track_dirty
= 1;
2724 fs_info
->uuid_root
= uuid_root
;
2725 create_uuid_tree
= false;
2727 generation
!= btrfs_super_uuid_tree_generation(disk_super
);
2730 fs_info
->generation
= generation
;
2731 fs_info
->last_trans_committed
= generation
;
2733 ret
= btrfs_recover_balance(fs_info
);
2735 printk(KERN_WARNING
"btrfs: failed to recover balance\n");
2736 goto fail_block_groups
;
2739 ret
= btrfs_init_dev_stats(fs_info
);
2741 printk(KERN_ERR
"btrfs: failed to init dev_stats: %d\n",
2743 goto fail_block_groups
;
2746 ret
= btrfs_init_dev_replace(fs_info
);
2748 pr_err("btrfs: failed to init dev_replace: %d\n", ret
);
2749 goto fail_block_groups
;
2752 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2754 ret
= btrfs_init_space_info(fs_info
);
2756 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2757 goto fail_block_groups
;
2760 ret
= btrfs_read_block_groups(extent_root
);
2762 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2763 goto fail_block_groups
;
2765 fs_info
->num_tolerated_disk_barrier_failures
=
2766 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2767 if (fs_info
->fs_devices
->missing_devices
>
2768 fs_info
->num_tolerated_disk_barrier_failures
&&
2769 !(sb
->s_flags
& MS_RDONLY
)) {
2771 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2772 goto fail_block_groups
;
2775 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2777 if (IS_ERR(fs_info
->cleaner_kthread
))
2778 goto fail_block_groups
;
2780 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2782 "btrfs-transaction");
2783 if (IS_ERR(fs_info
->transaction_kthread
))
2786 if (!btrfs_test_opt(tree_root
, SSD
) &&
2787 !btrfs_test_opt(tree_root
, NOSSD
) &&
2788 !fs_info
->fs_devices
->rotating
) {
2789 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2791 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2794 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2795 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2796 ret
= btrfsic_mount(tree_root
, fs_devices
,
2797 btrfs_test_opt(tree_root
,
2798 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2800 fs_info
->check_integrity_print_mask
);
2802 printk(KERN_WARNING
"btrfs: failed to initialize"
2803 " integrity check module %s\n", sb
->s_id
);
2806 ret
= btrfs_read_qgroup_config(fs_info
);
2808 goto fail_trans_kthread
;
2810 /* do not make disk changes in broken FS */
2811 if (btrfs_super_log_root(disk_super
) != 0) {
2812 u64 bytenr
= btrfs_super_log_root(disk_super
);
2814 if (fs_devices
->rw_devices
== 0) {
2815 printk(KERN_WARNING
"Btrfs log replay required "
2821 btrfs_level_size(tree_root
,
2822 btrfs_super_log_root_level(disk_super
));
2824 log_tree_root
= btrfs_alloc_root(fs_info
);
2825 if (!log_tree_root
) {
2830 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2831 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2833 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2836 if (!log_tree_root
->node
||
2837 !extent_buffer_uptodate(log_tree_root
->node
)) {
2838 printk(KERN_ERR
"btrfs: failed to read log tree\n");
2839 free_extent_buffer(log_tree_root
->node
);
2840 kfree(log_tree_root
);
2841 goto fail_trans_kthread
;
2843 /* returns with log_tree_root freed on success */
2844 ret
= btrfs_recover_log_trees(log_tree_root
);
2846 btrfs_error(tree_root
->fs_info
, ret
,
2847 "Failed to recover log tree");
2848 free_extent_buffer(log_tree_root
->node
);
2849 kfree(log_tree_root
);
2850 goto fail_trans_kthread
;
2853 if (sb
->s_flags
& MS_RDONLY
) {
2854 ret
= btrfs_commit_super(tree_root
);
2856 goto fail_trans_kthread
;
2860 ret
= btrfs_find_orphan_roots(tree_root
);
2862 goto fail_trans_kthread
;
2864 if (!(sb
->s_flags
& MS_RDONLY
)) {
2865 ret
= btrfs_cleanup_fs_roots(fs_info
);
2867 goto fail_trans_kthread
;
2869 ret
= btrfs_recover_relocation(tree_root
);
2872 "btrfs: failed to recover relocation\n");
2878 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2879 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2880 location
.offset
= 0;
2882 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2883 if (IS_ERR(fs_info
->fs_root
)) {
2884 err
= PTR_ERR(fs_info
->fs_root
);
2888 if (sb
->s_flags
& MS_RDONLY
)
2891 down_read(&fs_info
->cleanup_work_sem
);
2892 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2893 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2894 up_read(&fs_info
->cleanup_work_sem
);
2895 close_ctree(tree_root
);
2898 up_read(&fs_info
->cleanup_work_sem
);
2900 ret
= btrfs_resume_balance_async(fs_info
);
2902 printk(KERN_WARNING
"btrfs: failed to resume balance\n");
2903 close_ctree(tree_root
);
2907 ret
= btrfs_resume_dev_replace_async(fs_info
);
2909 pr_warn("btrfs: failed to resume dev_replace\n");
2910 close_ctree(tree_root
);
2914 btrfs_qgroup_rescan_resume(fs_info
);
2916 if (create_uuid_tree
) {
2917 pr_info("btrfs: creating UUID tree\n");
2918 ret
= btrfs_create_uuid_tree(fs_info
);
2920 pr_warn("btrfs: failed to create the UUID tree %d\n",
2922 close_ctree(tree_root
);
2925 } else if (check_uuid_tree
||
2926 btrfs_test_opt(tree_root
, RESCAN_UUID_TREE
)) {
2927 pr_info("btrfs: checking UUID tree\n");
2928 ret
= btrfs_check_uuid_tree(fs_info
);
2930 pr_warn("btrfs: failed to check the UUID tree %d\n",
2932 close_ctree(tree_root
);
2936 fs_info
->update_uuid_tree_gen
= 1;
2942 btrfs_free_qgroup_config(fs_info
);
2944 kthread_stop(fs_info
->transaction_kthread
);
2945 btrfs_cleanup_transaction(fs_info
->tree_root
);
2946 del_fs_roots(fs_info
);
2948 kthread_stop(fs_info
->cleaner_kthread
);
2951 * make sure we're done with the btree inode before we stop our
2954 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2957 btrfs_put_block_group_cache(fs_info
);
2958 btrfs_free_block_groups(fs_info
);
2961 free_root_pointers(fs_info
, 1);
2962 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2965 btrfs_stop_all_workers(fs_info
);
2968 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2970 iput(fs_info
->btree_inode
);
2971 fail_delalloc_bytes
:
2972 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
2973 fail_dirty_metadata_bytes
:
2974 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
2976 bdi_destroy(&fs_info
->bdi
);
2978 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2980 btrfs_free_stripe_hash_table(fs_info
);
2981 btrfs_close_devices(fs_info
->fs_devices
);
2985 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2986 goto fail_tree_roots
;
2988 free_root_pointers(fs_info
, 0);
2990 /* don't use the log in recovery mode, it won't be valid */
2991 btrfs_set_super_log_root(disk_super
, 0);
2993 /* we can't trust the free space cache either */
2994 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2996 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2997 &num_backups_tried
, &backup_index
);
2999 goto fail_block_groups
;
3000 goto retry_root_backup
;
3003 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3006 set_buffer_uptodate(bh
);
3008 struct btrfs_device
*device
= (struct btrfs_device
*)
3011 printk_ratelimited_in_rcu(KERN_WARNING
"lost page write due to "
3012 "I/O error on %s\n",
3013 rcu_str_deref(device
->name
));
3014 /* note, we dont' set_buffer_write_io_error because we have
3015 * our own ways of dealing with the IO errors
3017 clear_buffer_uptodate(bh
);
3018 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3024 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3026 struct buffer_head
*bh
;
3027 struct buffer_head
*latest
= NULL
;
3028 struct btrfs_super_block
*super
;
3033 /* we would like to check all the supers, but that would make
3034 * a btrfs mount succeed after a mkfs from a different FS.
3035 * So, we need to add a special mount option to scan for
3036 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3038 for (i
= 0; i
< 1; i
++) {
3039 bytenr
= btrfs_sb_offset(i
);
3040 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3041 i_size_read(bdev
->bd_inode
))
3043 bh
= __bread(bdev
, bytenr
/ 4096,
3044 BTRFS_SUPER_INFO_SIZE
);
3048 super
= (struct btrfs_super_block
*)bh
->b_data
;
3049 if (btrfs_super_bytenr(super
) != bytenr
||
3050 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3055 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3058 transid
= btrfs_super_generation(super
);
3067 * this should be called twice, once with wait == 0 and
3068 * once with wait == 1. When wait == 0 is done, all the buffer heads
3069 * we write are pinned.
3071 * They are released when wait == 1 is done.
3072 * max_mirrors must be the same for both runs, and it indicates how
3073 * many supers on this one device should be written.
3075 * max_mirrors == 0 means to write them all.
3077 static int write_dev_supers(struct btrfs_device
*device
,
3078 struct btrfs_super_block
*sb
,
3079 int do_barriers
, int wait
, int max_mirrors
)
3081 struct buffer_head
*bh
;
3088 if (max_mirrors
== 0)
3089 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3091 for (i
= 0; i
< max_mirrors
; i
++) {
3092 bytenr
= btrfs_sb_offset(i
);
3093 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
3097 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3098 BTRFS_SUPER_INFO_SIZE
);
3104 if (!buffer_uptodate(bh
))
3107 /* drop our reference */
3110 /* drop the reference from the wait == 0 run */
3114 btrfs_set_super_bytenr(sb
, bytenr
);
3117 crc
= btrfs_csum_data((char *)sb
+
3118 BTRFS_CSUM_SIZE
, crc
,
3119 BTRFS_SUPER_INFO_SIZE
-
3121 btrfs_csum_final(crc
, sb
->csum
);
3124 * one reference for us, and we leave it for the
3127 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3128 BTRFS_SUPER_INFO_SIZE
);
3130 printk(KERN_ERR
"btrfs: couldn't get super "
3131 "buffer head for bytenr %Lu\n", bytenr
);
3136 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3138 /* one reference for submit_bh */
3141 set_buffer_uptodate(bh
);
3143 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3144 bh
->b_private
= device
;
3148 * we fua the first super. The others we allow
3151 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3155 return errors
< i
? 0 : -1;
3159 * endio for the write_dev_flush, this will wake anyone waiting
3160 * for the barrier when it is done
3162 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
3165 if (err
== -EOPNOTSUPP
)
3166 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
3167 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3169 if (bio
->bi_private
)
3170 complete(bio
->bi_private
);
3175 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3176 * sent down. With wait == 1, it waits for the previous flush.
3178 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3181 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3186 if (device
->nobarriers
)
3190 bio
= device
->flush_bio
;
3194 wait_for_completion(&device
->flush_wait
);
3196 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
3197 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3198 rcu_str_deref(device
->name
));
3199 device
->nobarriers
= 1;
3200 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
3202 btrfs_dev_stat_inc_and_print(device
,
3203 BTRFS_DEV_STAT_FLUSH_ERRS
);
3206 /* drop the reference from the wait == 0 run */
3208 device
->flush_bio
= NULL
;
3214 * one reference for us, and we leave it for the
3217 device
->flush_bio
= NULL
;
3218 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3222 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3223 bio
->bi_bdev
= device
->bdev
;
3224 init_completion(&device
->flush_wait
);
3225 bio
->bi_private
= &device
->flush_wait
;
3226 device
->flush_bio
= bio
;
3229 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3235 * send an empty flush down to each device in parallel,
3236 * then wait for them
3238 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3240 struct list_head
*head
;
3241 struct btrfs_device
*dev
;
3242 int errors_send
= 0;
3243 int errors_wait
= 0;
3246 /* send down all the barriers */
3247 head
= &info
->fs_devices
->devices
;
3248 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3253 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3256 ret
= write_dev_flush(dev
, 0);
3261 /* wait for all the barriers */
3262 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3267 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3270 ret
= write_dev_flush(dev
, 1);
3274 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3275 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3280 int btrfs_calc_num_tolerated_disk_barrier_failures(
3281 struct btrfs_fs_info
*fs_info
)
3283 struct btrfs_ioctl_space_info space
;
3284 struct btrfs_space_info
*sinfo
;
3285 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3286 BTRFS_BLOCK_GROUP_SYSTEM
,
3287 BTRFS_BLOCK_GROUP_METADATA
,
3288 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3292 int num_tolerated_disk_barrier_failures
=
3293 (int)fs_info
->fs_devices
->num_devices
;
3295 for (i
= 0; i
< num_types
; i
++) {
3296 struct btrfs_space_info
*tmp
;
3300 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3301 if (tmp
->flags
== types
[i
]) {
3311 down_read(&sinfo
->groups_sem
);
3312 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3313 if (!list_empty(&sinfo
->block_groups
[c
])) {
3316 btrfs_get_block_group_info(
3317 &sinfo
->block_groups
[c
], &space
);
3318 if (space
.total_bytes
== 0 ||
3319 space
.used_bytes
== 0)
3321 flags
= space
.flags
;
3324 * 0: if dup, single or RAID0 is configured for
3325 * any of metadata, system or data, else
3326 * 1: if RAID5 is configured, or if RAID1 or
3327 * RAID10 is configured and only two mirrors
3329 * 2: if RAID6 is configured, else
3330 * num_mirrors - 1: if RAID1 or RAID10 is
3331 * configured and more than
3332 * 2 mirrors are used.
3334 if (num_tolerated_disk_barrier_failures
> 0 &&
3335 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3336 BTRFS_BLOCK_GROUP_RAID0
)) ||
3337 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3339 num_tolerated_disk_barrier_failures
= 0;
3340 else if (num_tolerated_disk_barrier_failures
> 1) {
3341 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3342 BTRFS_BLOCK_GROUP_RAID5
|
3343 BTRFS_BLOCK_GROUP_RAID10
)) {
3344 num_tolerated_disk_barrier_failures
= 1;
3346 BTRFS_BLOCK_GROUP_RAID6
) {
3347 num_tolerated_disk_barrier_failures
= 2;
3352 up_read(&sinfo
->groups_sem
);
3355 return num_tolerated_disk_barrier_failures
;
3358 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3360 struct list_head
*head
;
3361 struct btrfs_device
*dev
;
3362 struct btrfs_super_block
*sb
;
3363 struct btrfs_dev_item
*dev_item
;
3367 int total_errors
= 0;
3370 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3371 backup_super_roots(root
->fs_info
);
3373 sb
= root
->fs_info
->super_for_commit
;
3374 dev_item
= &sb
->dev_item
;
3376 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3377 head
= &root
->fs_info
->fs_devices
->devices
;
3378 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3381 ret
= barrier_all_devices(root
->fs_info
);
3384 &root
->fs_info
->fs_devices
->device_list_mutex
);
3385 btrfs_error(root
->fs_info
, ret
,
3386 "errors while submitting device barriers.");
3391 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3396 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3399 btrfs_set_stack_device_generation(dev_item
, 0);
3400 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3401 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3402 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3403 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3404 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3405 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3406 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3407 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3408 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3410 flags
= btrfs_super_flags(sb
);
3411 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3413 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3417 if (total_errors
> max_errors
) {
3418 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
3420 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3422 /* FUA is masked off if unsupported and can't be the reason */
3423 btrfs_error(root
->fs_info
, -EIO
,
3424 "%d errors while writing supers", total_errors
);
3429 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3432 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3435 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3439 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3440 if (total_errors
> max_errors
) {
3441 btrfs_error(root
->fs_info
, -EIO
,
3442 "%d errors while writing supers", total_errors
);
3448 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3449 struct btrfs_root
*root
, int max_mirrors
)
3453 ret
= write_all_supers(root
, max_mirrors
);
3457 /* Drop a fs root from the radix tree and free it. */
3458 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3459 struct btrfs_root
*root
)
3461 spin_lock(&fs_info
->fs_roots_radix_lock
);
3462 radix_tree_delete(&fs_info
->fs_roots_radix
,
3463 (unsigned long)root
->root_key
.objectid
);
3464 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3466 if (btrfs_root_refs(&root
->root_item
) == 0)
3467 synchronize_srcu(&fs_info
->subvol_srcu
);
3469 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3470 btrfs_free_log(NULL
, root
);
3471 btrfs_free_log_root_tree(NULL
, fs_info
);
3474 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3475 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3479 static void free_fs_root(struct btrfs_root
*root
)
3481 iput(root
->cache_inode
);
3482 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3483 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3484 root
->orphan_block_rsv
= NULL
;
3486 free_anon_bdev(root
->anon_dev
);
3487 free_extent_buffer(root
->node
);
3488 free_extent_buffer(root
->commit_root
);
3489 kfree(root
->free_ino_ctl
);
3490 kfree(root
->free_ino_pinned
);
3492 btrfs_put_fs_root(root
);
3495 void btrfs_free_fs_root(struct btrfs_root
*root
)
3500 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3502 u64 root_objectid
= 0;
3503 struct btrfs_root
*gang
[8];
3508 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3509 (void **)gang
, root_objectid
,
3514 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3515 for (i
= 0; i
< ret
; i
++) {
3518 root_objectid
= gang
[i
]->root_key
.objectid
;
3519 err
= btrfs_orphan_cleanup(gang
[i
]);
3528 int btrfs_commit_super(struct btrfs_root
*root
)
3530 struct btrfs_trans_handle
*trans
;
3533 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3534 btrfs_run_delayed_iputs(root
);
3535 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3536 wake_up_process(root
->fs_info
->cleaner_kthread
);
3538 /* wait until ongoing cleanup work done */
3539 down_write(&root
->fs_info
->cleanup_work_sem
);
3540 up_write(&root
->fs_info
->cleanup_work_sem
);
3542 trans
= btrfs_join_transaction(root
);
3544 return PTR_ERR(trans
);
3545 ret
= btrfs_commit_transaction(trans
, root
);
3548 /* run commit again to drop the original snapshot */
3549 trans
= btrfs_join_transaction(root
);
3551 return PTR_ERR(trans
);
3552 ret
= btrfs_commit_transaction(trans
, root
);
3555 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3557 btrfs_error(root
->fs_info
, ret
,
3558 "Failed to sync btree inode to disk.");
3562 ret
= write_ctree_super(NULL
, root
, 0);
3566 int close_ctree(struct btrfs_root
*root
)
3568 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3571 fs_info
->closing
= 1;
3574 /* wait for the uuid_scan task to finish */
3575 down(&fs_info
->uuid_tree_rescan_sem
);
3576 /* avoid complains from lockdep et al., set sem back to initial state */
3577 up(&fs_info
->uuid_tree_rescan_sem
);
3579 /* pause restriper - we want to resume on mount */
3580 btrfs_pause_balance(fs_info
);
3582 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3584 btrfs_scrub_cancel(fs_info
);
3586 /* wait for any defraggers to finish */
3587 wait_event(fs_info
->transaction_wait
,
3588 (atomic_read(&fs_info
->defrag_running
) == 0));
3590 /* clear out the rbtree of defraggable inodes */
3591 btrfs_cleanup_defrag_inodes(fs_info
);
3593 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3594 ret
= btrfs_commit_super(root
);
3596 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3599 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3600 btrfs_error_commit_super(root
);
3602 btrfs_put_block_group_cache(fs_info
);
3604 kthread_stop(fs_info
->transaction_kthread
);
3605 kthread_stop(fs_info
->cleaner_kthread
);
3607 fs_info
->closing
= 2;
3610 btrfs_free_qgroup_config(root
->fs_info
);
3612 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3613 printk(KERN_INFO
"btrfs: at unmount delalloc count %lld\n",
3614 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3617 btrfs_free_block_groups(fs_info
);
3619 btrfs_stop_all_workers(fs_info
);
3621 del_fs_roots(fs_info
);
3623 free_root_pointers(fs_info
, 1);
3625 iput(fs_info
->btree_inode
);
3627 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3628 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3629 btrfsic_unmount(root
, fs_info
->fs_devices
);
3632 btrfs_close_devices(fs_info
->fs_devices
);
3633 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3635 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3636 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3637 bdi_destroy(&fs_info
->bdi
);
3638 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3640 btrfs_free_stripe_hash_table(fs_info
);
3642 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3643 root
->orphan_block_rsv
= NULL
;
3648 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3652 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3654 ret
= extent_buffer_uptodate(buf
);
3658 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3659 parent_transid
, atomic
);
3665 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3667 return set_extent_buffer_uptodate(buf
);
3670 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3672 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3673 u64 transid
= btrfs_header_generation(buf
);
3676 btrfs_assert_tree_locked(buf
);
3677 if (transid
!= root
->fs_info
->generation
)
3678 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3679 "found %llu running %llu\n",
3680 buf
->start
, transid
, root
->fs_info
->generation
);
3681 was_dirty
= set_extent_buffer_dirty(buf
);
3683 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3685 root
->fs_info
->dirty_metadata_batch
);
3688 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3692 * looks as though older kernels can get into trouble with
3693 * this code, they end up stuck in balance_dirty_pages forever
3697 if (current
->flags
& PF_MEMALLOC
)
3701 btrfs_balance_delayed_items(root
);
3703 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3704 BTRFS_DIRTY_METADATA_THRESH
);
3706 balance_dirty_pages_ratelimited(
3707 root
->fs_info
->btree_inode
->i_mapping
);
3712 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3714 __btrfs_btree_balance_dirty(root
, 1);
3717 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3719 __btrfs_btree_balance_dirty(root
, 0);
3722 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3724 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3725 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3728 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3732 * Placeholder for checks
3737 static void btrfs_error_commit_super(struct btrfs_root
*root
)
3739 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3740 btrfs_run_delayed_iputs(root
);
3741 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3743 down_write(&root
->fs_info
->cleanup_work_sem
);
3744 up_write(&root
->fs_info
->cleanup_work_sem
);
3746 /* cleanup FS via transaction */
3747 btrfs_cleanup_transaction(root
);
3750 static void btrfs_destroy_ordered_operations(struct btrfs_transaction
*t
,
3751 struct btrfs_root
*root
)
3753 struct btrfs_inode
*btrfs_inode
;
3754 struct list_head splice
;
3756 INIT_LIST_HEAD(&splice
);
3758 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3759 spin_lock(&root
->fs_info
->ordered_root_lock
);
3761 list_splice_init(&t
->ordered_operations
, &splice
);
3762 while (!list_empty(&splice
)) {
3763 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3764 ordered_operations
);
3766 list_del_init(&btrfs_inode
->ordered_operations
);
3767 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3769 btrfs_invalidate_inodes(btrfs_inode
->root
);
3771 spin_lock(&root
->fs_info
->ordered_root_lock
);
3774 spin_unlock(&root
->fs_info
->ordered_root_lock
);
3775 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3778 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3780 struct btrfs_ordered_extent
*ordered
;
3782 spin_lock(&root
->ordered_extent_lock
);
3784 * This will just short circuit the ordered completion stuff which will
3785 * make sure the ordered extent gets properly cleaned up.
3787 list_for_each_entry(ordered
, &root
->ordered_extents
,
3789 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
3790 spin_unlock(&root
->ordered_extent_lock
);
3793 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
3795 struct btrfs_root
*root
;
3796 struct list_head splice
;
3798 INIT_LIST_HEAD(&splice
);
3800 spin_lock(&fs_info
->ordered_root_lock
);
3801 list_splice_init(&fs_info
->ordered_roots
, &splice
);
3802 while (!list_empty(&splice
)) {
3803 root
= list_first_entry(&splice
, struct btrfs_root
,
3805 list_del_init(&root
->ordered_root
);
3807 btrfs_destroy_ordered_extents(root
);
3809 cond_resched_lock(&fs_info
->ordered_root_lock
);
3811 spin_unlock(&fs_info
->ordered_root_lock
);
3814 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3815 struct btrfs_root
*root
)
3817 struct rb_node
*node
;
3818 struct btrfs_delayed_ref_root
*delayed_refs
;
3819 struct btrfs_delayed_ref_node
*ref
;
3822 delayed_refs
= &trans
->delayed_refs
;
3824 spin_lock(&delayed_refs
->lock
);
3825 if (delayed_refs
->num_entries
== 0) {
3826 spin_unlock(&delayed_refs
->lock
);
3827 printk(KERN_INFO
"delayed_refs has NO entry\n");
3831 while ((node
= rb_first(&delayed_refs
->root
)) != NULL
) {
3832 struct btrfs_delayed_ref_head
*head
= NULL
;
3833 bool pin_bytes
= false;
3835 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3836 atomic_set(&ref
->refs
, 1);
3837 if (btrfs_delayed_ref_is_head(ref
)) {
3839 head
= btrfs_delayed_node_to_head(ref
);
3840 if (!mutex_trylock(&head
->mutex
)) {
3841 atomic_inc(&ref
->refs
);
3842 spin_unlock(&delayed_refs
->lock
);
3844 /* Need to wait for the delayed ref to run */
3845 mutex_lock(&head
->mutex
);
3846 mutex_unlock(&head
->mutex
);
3847 btrfs_put_delayed_ref(ref
);
3849 spin_lock(&delayed_refs
->lock
);
3853 if (head
->must_insert_reserved
)
3855 btrfs_free_delayed_extent_op(head
->extent_op
);
3856 delayed_refs
->num_heads
--;
3857 if (list_empty(&head
->cluster
))
3858 delayed_refs
->num_heads_ready
--;
3859 list_del_init(&head
->cluster
);
3863 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3864 delayed_refs
->num_entries
--;
3865 spin_unlock(&delayed_refs
->lock
);
3868 btrfs_pin_extent(root
, ref
->bytenr
,
3870 mutex_unlock(&head
->mutex
);
3872 btrfs_put_delayed_ref(ref
);
3875 spin_lock(&delayed_refs
->lock
);
3878 spin_unlock(&delayed_refs
->lock
);
3883 static void btrfs_evict_pending_snapshots(struct btrfs_transaction
*t
)
3885 struct btrfs_pending_snapshot
*snapshot
;
3886 struct list_head splice
;
3888 INIT_LIST_HEAD(&splice
);
3890 list_splice_init(&t
->pending_snapshots
, &splice
);
3892 while (!list_empty(&splice
)) {
3893 snapshot
= list_entry(splice
.next
,
3894 struct btrfs_pending_snapshot
,
3896 snapshot
->error
= -ECANCELED
;
3897 list_del_init(&snapshot
->list
);
3901 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3903 struct btrfs_inode
*btrfs_inode
;
3904 struct list_head splice
;
3906 INIT_LIST_HEAD(&splice
);
3908 spin_lock(&root
->delalloc_lock
);
3909 list_splice_init(&root
->delalloc_inodes
, &splice
);
3911 while (!list_empty(&splice
)) {
3912 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
3915 list_del_init(&btrfs_inode
->delalloc_inodes
);
3916 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
3917 &btrfs_inode
->runtime_flags
);
3918 spin_unlock(&root
->delalloc_lock
);
3920 btrfs_invalidate_inodes(btrfs_inode
->root
);
3922 spin_lock(&root
->delalloc_lock
);
3925 spin_unlock(&root
->delalloc_lock
);
3928 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
3930 struct btrfs_root
*root
;
3931 struct list_head splice
;
3933 INIT_LIST_HEAD(&splice
);
3935 spin_lock(&fs_info
->delalloc_root_lock
);
3936 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
3937 while (!list_empty(&splice
)) {
3938 root
= list_first_entry(&splice
, struct btrfs_root
,
3940 list_del_init(&root
->delalloc_root
);
3941 root
= btrfs_grab_fs_root(root
);
3943 spin_unlock(&fs_info
->delalloc_root_lock
);
3945 btrfs_destroy_delalloc_inodes(root
);
3946 btrfs_put_fs_root(root
);
3948 spin_lock(&fs_info
->delalloc_root_lock
);
3950 spin_unlock(&fs_info
->delalloc_root_lock
);
3953 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3954 struct extent_io_tree
*dirty_pages
,
3958 struct extent_buffer
*eb
;
3963 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3968 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3969 while (start
<= end
) {
3970 eb
= btrfs_find_tree_block(root
, start
,
3972 start
+= root
->leafsize
;
3975 wait_on_extent_buffer_writeback(eb
);
3977 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3979 clear_extent_buffer_dirty(eb
);
3980 free_extent_buffer_stale(eb
);
3987 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3988 struct extent_io_tree
*pinned_extents
)
3990 struct extent_io_tree
*unpin
;
3996 unpin
= pinned_extents
;
3999 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4000 EXTENT_DIRTY
, NULL
);
4005 if (btrfs_test_opt(root
, DISCARD
))
4006 ret
= btrfs_error_discard_extent(root
, start
,
4010 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4011 btrfs_error_unpin_extent_range(root
, start
, end
);
4016 if (unpin
== &root
->fs_info
->freed_extents
[0])
4017 unpin
= &root
->fs_info
->freed_extents
[1];
4019 unpin
= &root
->fs_info
->freed_extents
[0];
4027 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4028 struct btrfs_root
*root
)
4030 btrfs_destroy_delayed_refs(cur_trans
, root
);
4031 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
4032 cur_trans
->dirty_pages
.dirty_bytes
);
4034 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4035 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4037 btrfs_evict_pending_snapshots(cur_trans
);
4039 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4040 wake_up(&root
->fs_info
->transaction_wait
);
4042 btrfs_destroy_delayed_inodes(root
);
4043 btrfs_assert_delayed_root_empty(root
);
4045 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4047 btrfs_destroy_pinned_extent(root
,
4048 root
->fs_info
->pinned_extents
);
4050 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4051 wake_up(&cur_trans
->commit_wait
);
4054 memset(cur_trans, 0, sizeof(*cur_trans));
4055 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4059 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4061 struct btrfs_transaction
*t
;
4064 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4066 spin_lock(&root
->fs_info
->trans_lock
);
4067 list_splice_init(&root
->fs_info
->trans_list
, &list
);
4068 root
->fs_info
->running_transaction
= NULL
;
4069 spin_unlock(&root
->fs_info
->trans_lock
);
4071 while (!list_empty(&list
)) {
4072 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
4074 btrfs_destroy_ordered_operations(t
, root
);
4076 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4078 btrfs_destroy_delayed_refs(t
, root
);
4081 * FIXME: cleanup wait for commit
4082 * We needn't acquire the lock here, because we are during
4083 * the umount, there is no other task which will change it.
4085 t
->state
= TRANS_STATE_COMMIT_START
;
4087 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
4088 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4090 btrfs_evict_pending_snapshots(t
);
4092 t
->state
= TRANS_STATE_UNBLOCKED
;
4094 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
4095 wake_up(&root
->fs_info
->transaction_wait
);
4097 btrfs_destroy_delayed_inodes(root
);
4098 btrfs_assert_delayed_root_empty(root
);
4100 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4102 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
4105 btrfs_destroy_pinned_extent(root
,
4106 root
->fs_info
->pinned_extents
);
4108 t
->state
= TRANS_STATE_COMPLETED
;
4110 if (waitqueue_active(&t
->commit_wait
))
4111 wake_up(&t
->commit_wait
);
4113 atomic_set(&t
->use_count
, 0);
4114 list_del_init(&t
->list
);
4115 memset(t
, 0, sizeof(*t
));
4116 kmem_cache_free(btrfs_transaction_cachep
, t
);
4119 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4124 static struct extent_io_ops btree_extent_io_ops
= {
4125 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4126 .readpage_io_failed_hook
= btree_io_failed_hook
,
4127 .submit_bio_hook
= btree_submit_bio_hook
,
4128 /* note we're sharing with inode.c for the merge bio hook */
4129 .merge_bio_hook
= btrfs_merge_bio_hook
,