2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
32 #include "print-tree.h"
33 #include "transaction.h"
37 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_root
*root
,
78 u64 bytenr
, u64 num_bytes
, int alloc
);
79 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
80 struct btrfs_root
*root
,
81 u64 bytenr
, u64 num_bytes
, u64 parent
,
82 u64 root_objectid
, u64 owner_objectid
,
83 u64 owner_offset
, int refs_to_drop
,
84 struct btrfs_delayed_extent_op
*extra_op
);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
86 struct extent_buffer
*leaf
,
87 struct btrfs_extent_item
*ei
);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
89 struct btrfs_root
*root
,
90 u64 parent
, u64 root_objectid
,
91 u64 flags
, u64 owner
, u64 offset
,
92 struct btrfs_key
*ins
, int ref_mod
);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
94 struct btrfs_root
*root
,
95 u64 parent
, u64 root_objectid
,
96 u64 flags
, struct btrfs_disk_key
*key
,
97 int level
, struct btrfs_key
*ins
);
98 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
99 struct btrfs_root
*extent_root
, u64 flags
,
101 static int find_next_key(struct btrfs_path
*path
, int level
,
102 struct btrfs_key
*key
);
103 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
104 int dump_block_groups
);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
106 u64 num_bytes
, int reserve
);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
109 int btrfs_pin_extent(struct btrfs_root
*root
,
110 u64 bytenr
, u64 num_bytes
, int reserved
);
113 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
116 return cache
->cached
== BTRFS_CACHE_FINISHED
||
117 cache
->cached
== BTRFS_CACHE_ERROR
;
120 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
122 return (cache
->flags
& bits
) == bits
;
125 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
127 atomic_inc(&cache
->count
);
130 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
132 if (atomic_dec_and_test(&cache
->count
)) {
133 WARN_ON(cache
->pinned
> 0);
134 WARN_ON(cache
->reserved
> 0);
135 kfree(cache
->free_space_ctl
);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
145 struct btrfs_block_group_cache
*block_group
)
148 struct rb_node
*parent
= NULL
;
149 struct btrfs_block_group_cache
*cache
;
151 spin_lock(&info
->block_group_cache_lock
);
152 p
= &info
->block_group_cache_tree
.rb_node
;
156 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
158 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
160 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
163 spin_unlock(&info
->block_group_cache_lock
);
168 rb_link_node(&block_group
->cache_node
, parent
, p
);
169 rb_insert_color(&block_group
->cache_node
,
170 &info
->block_group_cache_tree
);
172 if (info
->first_logical_byte
> block_group
->key
.objectid
)
173 info
->first_logical_byte
= block_group
->key
.objectid
;
175 spin_unlock(&info
->block_group_cache_lock
);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache
*
185 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
188 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
192 spin_lock(&info
->block_group_cache_lock
);
193 n
= info
->block_group_cache_tree
.rb_node
;
196 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
198 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
199 start
= cache
->key
.objectid
;
201 if (bytenr
< start
) {
202 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
205 } else if (bytenr
> start
) {
206 if (contains
&& bytenr
<= end
) {
217 btrfs_get_block_group(ret
);
218 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
219 info
->first_logical_byte
= ret
->key
.objectid
;
221 spin_unlock(&info
->block_group_cache_lock
);
226 static int add_excluded_extent(struct btrfs_root
*root
,
227 u64 start
, u64 num_bytes
)
229 u64 end
= start
+ num_bytes
- 1;
230 set_extent_bits(&root
->fs_info
->freed_extents
[0],
231 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
232 set_extent_bits(&root
->fs_info
->freed_extents
[1],
233 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
237 static void free_excluded_extents(struct btrfs_root
*root
,
238 struct btrfs_block_group_cache
*cache
)
242 start
= cache
->key
.objectid
;
243 end
= start
+ cache
->key
.offset
- 1;
245 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
246 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
247 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
248 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
251 static int exclude_super_stripes(struct btrfs_root
*root
,
252 struct btrfs_block_group_cache
*cache
)
259 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
260 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
268 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
269 bytenr
= btrfs_sb_offset(i
);
270 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
271 cache
->key
.objectid
, bytenr
,
272 0, &logical
, &nr
, &stripe_len
);
279 if (logical
[nr
] > cache
->key
.objectid
+
283 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
287 if (start
< cache
->key
.objectid
) {
288 start
= cache
->key
.objectid
;
289 len
= (logical
[nr
] + stripe_len
) - start
;
291 len
= min_t(u64
, stripe_len
,
292 cache
->key
.objectid
+
293 cache
->key
.offset
- start
);
296 cache
->bytes_super
+= len
;
297 ret
= add_excluded_extent(root
, start
, len
);
309 static struct btrfs_caching_control
*
310 get_caching_control(struct btrfs_block_group_cache
*cache
)
312 struct btrfs_caching_control
*ctl
;
314 spin_lock(&cache
->lock
);
315 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
316 spin_unlock(&cache
->lock
);
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache
->caching_ctl
) {
322 spin_unlock(&cache
->lock
);
326 ctl
= cache
->caching_ctl
;
327 atomic_inc(&ctl
->count
);
328 spin_unlock(&cache
->lock
);
332 static void put_caching_control(struct btrfs_caching_control
*ctl
)
334 if (atomic_dec_and_test(&ctl
->count
))
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
343 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
344 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
346 u64 extent_start
, extent_end
, size
, total_added
= 0;
349 while (start
< end
) {
350 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
351 &extent_start
, &extent_end
,
352 EXTENT_DIRTY
| EXTENT_UPTODATE
,
357 if (extent_start
<= start
) {
358 start
= extent_end
+ 1;
359 } else if (extent_start
> start
&& extent_start
< end
) {
360 size
= extent_start
- start
;
362 ret
= btrfs_add_free_space(block_group
, start
,
364 BUG_ON(ret
); /* -ENOMEM or logic error */
365 start
= extent_end
+ 1;
374 ret
= btrfs_add_free_space(block_group
, start
, size
);
375 BUG_ON(ret
); /* -ENOMEM or logic error */
381 static noinline
void caching_thread(struct btrfs_work
*work
)
383 struct btrfs_block_group_cache
*block_group
;
384 struct btrfs_fs_info
*fs_info
;
385 struct btrfs_caching_control
*caching_ctl
;
386 struct btrfs_root
*extent_root
;
387 struct btrfs_path
*path
;
388 struct extent_buffer
*leaf
;
389 struct btrfs_key key
;
395 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
396 block_group
= caching_ctl
->block_group
;
397 fs_info
= block_group
->fs_info
;
398 extent_root
= fs_info
->extent_root
;
400 path
= btrfs_alloc_path();
404 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
412 path
->skip_locking
= 1;
413 path
->search_commit_root
= 1;
418 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
420 mutex_lock(&caching_ctl
->mutex
);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info
->extent_commit_sem
);
425 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
429 leaf
= path
->nodes
[0];
430 nritems
= btrfs_header_nritems(leaf
);
433 if (btrfs_fs_closing(fs_info
) > 1) {
438 if (path
->slots
[0] < nritems
) {
439 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
441 ret
= find_next_key(path
, 0, &key
);
445 if (need_resched()) {
446 caching_ctl
->progress
= last
;
447 btrfs_release_path(path
);
448 up_read(&fs_info
->extent_commit_sem
);
449 mutex_unlock(&caching_ctl
->mutex
);
454 ret
= btrfs_next_leaf(extent_root
, path
);
459 leaf
= path
->nodes
[0];
460 nritems
= btrfs_header_nritems(leaf
);
464 if (key
.objectid
< last
) {
467 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
469 caching_ctl
->progress
= last
;
470 btrfs_release_path(path
);
474 if (key
.objectid
< block_group
->key
.objectid
) {
479 if (key
.objectid
>= block_group
->key
.objectid
+
480 block_group
->key
.offset
)
483 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
484 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
485 total_found
+= add_new_free_space(block_group
,
488 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
489 last
= key
.objectid
+
490 fs_info
->tree_root
->leafsize
;
492 last
= key
.objectid
+ key
.offset
;
494 if (total_found
> (1024 * 1024 * 2)) {
496 wake_up(&caching_ctl
->wait
);
503 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
504 block_group
->key
.objectid
+
505 block_group
->key
.offset
);
506 caching_ctl
->progress
= (u64
)-1;
508 spin_lock(&block_group
->lock
);
509 block_group
->caching_ctl
= NULL
;
510 block_group
->cached
= BTRFS_CACHE_FINISHED
;
511 spin_unlock(&block_group
->lock
);
514 btrfs_free_path(path
);
515 up_read(&fs_info
->extent_commit_sem
);
517 free_excluded_extents(extent_root
, block_group
);
519 mutex_unlock(&caching_ctl
->mutex
);
522 spin_lock(&block_group
->lock
);
523 block_group
->caching_ctl
= NULL
;
524 block_group
->cached
= BTRFS_CACHE_ERROR
;
525 spin_unlock(&block_group
->lock
);
527 wake_up(&caching_ctl
->wait
);
529 put_caching_control(caching_ctl
);
530 btrfs_put_block_group(block_group
);
533 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
537 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
538 struct btrfs_caching_control
*caching_ctl
;
541 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
545 INIT_LIST_HEAD(&caching_ctl
->list
);
546 mutex_init(&caching_ctl
->mutex
);
547 init_waitqueue_head(&caching_ctl
->wait
);
548 caching_ctl
->block_group
= cache
;
549 caching_ctl
->progress
= cache
->key
.objectid
;
550 atomic_set(&caching_ctl
->count
, 1);
551 caching_ctl
->work
.func
= caching_thread
;
553 spin_lock(&cache
->lock
);
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
566 while (cache
->cached
== BTRFS_CACHE_FAST
) {
567 struct btrfs_caching_control
*ctl
;
569 ctl
= cache
->caching_ctl
;
570 atomic_inc(&ctl
->count
);
571 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
572 spin_unlock(&cache
->lock
);
576 finish_wait(&ctl
->wait
, &wait
);
577 put_caching_control(ctl
);
578 spin_lock(&cache
->lock
);
581 if (cache
->cached
!= BTRFS_CACHE_NO
) {
582 spin_unlock(&cache
->lock
);
586 WARN_ON(cache
->caching_ctl
);
587 cache
->caching_ctl
= caching_ctl
;
588 cache
->cached
= BTRFS_CACHE_FAST
;
589 spin_unlock(&cache
->lock
);
591 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
592 ret
= load_free_space_cache(fs_info
, cache
);
594 spin_lock(&cache
->lock
);
596 cache
->caching_ctl
= NULL
;
597 cache
->cached
= BTRFS_CACHE_FINISHED
;
598 cache
->last_byte_to_unpin
= (u64
)-1;
600 if (load_cache_only
) {
601 cache
->caching_ctl
= NULL
;
602 cache
->cached
= BTRFS_CACHE_NO
;
604 cache
->cached
= BTRFS_CACHE_STARTED
;
607 spin_unlock(&cache
->lock
);
608 wake_up(&caching_ctl
->wait
);
610 put_caching_control(caching_ctl
);
611 free_excluded_extents(fs_info
->extent_root
, cache
);
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
619 spin_lock(&cache
->lock
);
620 if (load_cache_only
) {
621 cache
->caching_ctl
= NULL
;
622 cache
->cached
= BTRFS_CACHE_NO
;
624 cache
->cached
= BTRFS_CACHE_STARTED
;
626 spin_unlock(&cache
->lock
);
627 wake_up(&caching_ctl
->wait
);
630 if (load_cache_only
) {
631 put_caching_control(caching_ctl
);
635 down_write(&fs_info
->extent_commit_sem
);
636 atomic_inc(&caching_ctl
->count
);
637 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
638 up_write(&fs_info
->extent_commit_sem
);
640 btrfs_get_block_group(cache
);
642 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
648 * return the block group that starts at or after bytenr
650 static struct btrfs_block_group_cache
*
651 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
653 struct btrfs_block_group_cache
*cache
;
655 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
661 * return the block group that contains the given bytenr
663 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
664 struct btrfs_fs_info
*info
,
667 struct btrfs_block_group_cache
*cache
;
669 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
674 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
677 struct list_head
*head
= &info
->space_info
;
678 struct btrfs_space_info
*found
;
680 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
683 list_for_each_entry_rcu(found
, head
, list
) {
684 if (found
->flags
& flags
) {
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
697 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
699 struct list_head
*head
= &info
->space_info
;
700 struct btrfs_space_info
*found
;
703 list_for_each_entry_rcu(found
, head
, list
)
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
712 struct btrfs_key key
;
713 struct btrfs_path
*path
;
715 path
= btrfs_alloc_path();
719 key
.objectid
= start
;
721 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
722 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
725 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
726 if (key
.objectid
== start
&&
727 key
.type
== BTRFS_METADATA_ITEM_KEY
)
730 btrfs_free_path(path
);
735 * helper function to lookup reference count and flags of a tree block.
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
744 struct btrfs_root
*root
, u64 bytenr
,
745 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
747 struct btrfs_delayed_ref_head
*head
;
748 struct btrfs_delayed_ref_root
*delayed_refs
;
749 struct btrfs_path
*path
;
750 struct btrfs_extent_item
*ei
;
751 struct extent_buffer
*leaf
;
752 struct btrfs_key key
;
759 * If we don't have skinny metadata, don't bother doing anything
762 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
763 offset
= root
->leafsize
;
767 path
= btrfs_alloc_path();
772 key
.objectid
= bytenr
;
773 key
.type
= BTRFS_METADATA_ITEM_KEY
;
776 key
.objectid
= bytenr
;
777 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
782 path
->skip_locking
= 1;
783 path
->search_commit_root
= 1;
786 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
791 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
793 if (path
->slots
[0]) {
795 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
797 if (key
.objectid
== bytenr
&&
798 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
799 key
.offset
== root
->leafsize
)
803 key
.objectid
= bytenr
;
804 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
805 key
.offset
= root
->leafsize
;
806 btrfs_release_path(path
);
812 leaf
= path
->nodes
[0];
813 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
814 if (item_size
>= sizeof(*ei
)) {
815 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
816 struct btrfs_extent_item
);
817 num_refs
= btrfs_extent_refs(leaf
, ei
);
818 extent_flags
= btrfs_extent_flags(leaf
, ei
);
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 struct btrfs_extent_item_v0
*ei0
;
822 BUG_ON(item_size
!= sizeof(*ei0
));
823 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
824 struct btrfs_extent_item_v0
);
825 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
826 /* FIXME: this isn't correct for data */
827 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
832 BUG_ON(num_refs
== 0);
842 delayed_refs
= &trans
->transaction
->delayed_refs
;
843 spin_lock(&delayed_refs
->lock
);
844 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
846 if (!mutex_trylock(&head
->mutex
)) {
847 atomic_inc(&head
->node
.refs
);
848 spin_unlock(&delayed_refs
->lock
);
850 btrfs_release_path(path
);
853 * Mutex was contended, block until it's released and try
856 mutex_lock(&head
->mutex
);
857 mutex_unlock(&head
->mutex
);
858 btrfs_put_delayed_ref(&head
->node
);
861 if (head
->extent_op
&& head
->extent_op
->update_flags
)
862 extent_flags
|= head
->extent_op
->flags_to_set
;
864 BUG_ON(num_refs
== 0);
866 num_refs
+= head
->node
.ref_mod
;
867 mutex_unlock(&head
->mutex
);
869 spin_unlock(&delayed_refs
->lock
);
871 WARN_ON(num_refs
== 0);
875 *flags
= extent_flags
;
877 btrfs_free_path(path
);
882 * Back reference rules. Back refs have three main goals:
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
913 * When a tree block is COW'd through a tree, there are four cases:
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
933 * Back Reference Key composing:
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
940 * File extents can be referenced by:
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
946 * The extent ref structure for the implicit back refs has fields for:
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
953 * The key offset for the implicit back refs is hash of the first
956 * The extent ref structure for the full back refs has field for:
958 * - number of pointers in the tree leaf
960 * The key offset for the implicit back refs is the first byte of
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
966 * (root_key.objectid, inode objectid, offset in file, 1)
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
973 * Btree extents can be referenced by:
975 * - Different subvolumes
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
989 struct btrfs_root
*root
,
990 struct btrfs_path
*path
,
991 u64 owner
, u32 extra_size
)
993 struct btrfs_extent_item
*item
;
994 struct btrfs_extent_item_v0
*ei0
;
995 struct btrfs_extent_ref_v0
*ref0
;
996 struct btrfs_tree_block_info
*bi
;
997 struct extent_buffer
*leaf
;
998 struct btrfs_key key
;
999 struct btrfs_key found_key
;
1000 u32 new_size
= sizeof(*item
);
1004 leaf
= path
->nodes
[0];
1005 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1007 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1008 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1009 struct btrfs_extent_item_v0
);
1010 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1012 if (owner
== (u64
)-1) {
1014 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1015 ret
= btrfs_next_leaf(root
, path
);
1018 BUG_ON(ret
> 0); /* Corruption */
1019 leaf
= path
->nodes
[0];
1021 btrfs_item_key_to_cpu(leaf
, &found_key
,
1023 BUG_ON(key
.objectid
!= found_key
.objectid
);
1024 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1028 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1029 struct btrfs_extent_ref_v0
);
1030 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1034 btrfs_release_path(path
);
1036 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1037 new_size
+= sizeof(*bi
);
1039 new_size
-= sizeof(*ei0
);
1040 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1041 new_size
+ extra_size
, 1);
1044 BUG_ON(ret
); /* Corruption */
1046 btrfs_extend_item(root
, path
, new_size
);
1048 leaf
= path
->nodes
[0];
1049 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1050 btrfs_set_extent_refs(leaf
, item
, refs
);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf
, item
, 0);
1053 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1054 btrfs_set_extent_flags(leaf
, item
,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1057 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1060 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1062 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1064 btrfs_mark_buffer_dirty(leaf
);
1069 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1071 u32 high_crc
= ~(u32
)0;
1072 u32 low_crc
= ~(u32
)0;
1075 lenum
= cpu_to_le64(root_objectid
);
1076 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
1077 lenum
= cpu_to_le64(owner
);
1078 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1079 lenum
= cpu_to_le64(offset
);
1080 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1082 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1085 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1086 struct btrfs_extent_data_ref
*ref
)
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1089 btrfs_extent_data_ref_objectid(leaf
, ref
),
1090 btrfs_extent_data_ref_offset(leaf
, ref
));
1093 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1094 struct btrfs_extent_data_ref
*ref
,
1095 u64 root_objectid
, u64 owner
, u64 offset
)
1097 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1098 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1099 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1104 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1105 struct btrfs_root
*root
,
1106 struct btrfs_path
*path
,
1107 u64 bytenr
, u64 parent
,
1109 u64 owner
, u64 offset
)
1111 struct btrfs_key key
;
1112 struct btrfs_extent_data_ref
*ref
;
1113 struct extent_buffer
*leaf
;
1119 key
.objectid
= bytenr
;
1121 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1122 key
.offset
= parent
;
1124 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1125 key
.offset
= hash_extent_data_ref(root_objectid
,
1130 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1141 btrfs_release_path(path
);
1142 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1153 leaf
= path
->nodes
[0];
1154 nritems
= btrfs_header_nritems(leaf
);
1156 if (path
->slots
[0] >= nritems
) {
1157 ret
= btrfs_next_leaf(root
, path
);
1163 leaf
= path
->nodes
[0];
1164 nritems
= btrfs_header_nritems(leaf
);
1168 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1169 if (key
.objectid
!= bytenr
||
1170 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1173 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1174 struct btrfs_extent_data_ref
);
1176 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1179 btrfs_release_path(path
);
1191 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1192 struct btrfs_root
*root
,
1193 struct btrfs_path
*path
,
1194 u64 bytenr
, u64 parent
,
1195 u64 root_objectid
, u64 owner
,
1196 u64 offset
, int refs_to_add
)
1198 struct btrfs_key key
;
1199 struct extent_buffer
*leaf
;
1204 key
.objectid
= bytenr
;
1206 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1207 key
.offset
= parent
;
1208 size
= sizeof(struct btrfs_shared_data_ref
);
1210 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1211 key
.offset
= hash_extent_data_ref(root_objectid
,
1213 size
= sizeof(struct btrfs_extent_data_ref
);
1216 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1217 if (ret
&& ret
!= -EEXIST
)
1220 leaf
= path
->nodes
[0];
1222 struct btrfs_shared_data_ref
*ref
;
1223 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1224 struct btrfs_shared_data_ref
);
1226 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1228 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1229 num_refs
+= refs_to_add
;
1230 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1233 struct btrfs_extent_data_ref
*ref
;
1234 while (ret
== -EEXIST
) {
1235 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1236 struct btrfs_extent_data_ref
);
1237 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1240 btrfs_release_path(path
);
1242 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1244 if (ret
&& ret
!= -EEXIST
)
1247 leaf
= path
->nodes
[0];
1249 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1250 struct btrfs_extent_data_ref
);
1252 btrfs_set_extent_data_ref_root(leaf
, ref
,
1254 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1255 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1256 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1258 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1259 num_refs
+= refs_to_add
;
1260 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1263 btrfs_mark_buffer_dirty(leaf
);
1266 btrfs_release_path(path
);
1270 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1271 struct btrfs_root
*root
,
1272 struct btrfs_path
*path
,
1275 struct btrfs_key key
;
1276 struct btrfs_extent_data_ref
*ref1
= NULL
;
1277 struct btrfs_shared_data_ref
*ref2
= NULL
;
1278 struct extent_buffer
*leaf
;
1282 leaf
= path
->nodes
[0];
1283 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1285 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1286 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1287 struct btrfs_extent_data_ref
);
1288 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1289 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1290 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1291 struct btrfs_shared_data_ref
);
1292 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1295 struct btrfs_extent_ref_v0
*ref0
;
1296 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1297 struct btrfs_extent_ref_v0
);
1298 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1304 BUG_ON(num_refs
< refs_to_drop
);
1305 num_refs
-= refs_to_drop
;
1307 if (num_refs
== 0) {
1308 ret
= btrfs_del_item(trans
, root
, path
);
1310 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1311 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1312 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1313 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 struct btrfs_extent_ref_v0
*ref0
;
1317 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1318 struct btrfs_extent_ref_v0
);
1319 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1322 btrfs_mark_buffer_dirty(leaf
);
1327 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1328 struct btrfs_path
*path
,
1329 struct btrfs_extent_inline_ref
*iref
)
1331 struct btrfs_key key
;
1332 struct extent_buffer
*leaf
;
1333 struct btrfs_extent_data_ref
*ref1
;
1334 struct btrfs_shared_data_ref
*ref2
;
1337 leaf
= path
->nodes
[0];
1338 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1340 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1341 BTRFS_EXTENT_DATA_REF_KEY
) {
1342 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1343 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1345 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1346 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1348 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1349 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1350 struct btrfs_extent_data_ref
);
1351 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1352 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1353 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1354 struct btrfs_shared_data_ref
);
1355 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1358 struct btrfs_extent_ref_v0
*ref0
;
1359 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1360 struct btrfs_extent_ref_v0
);
1361 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1369 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1370 struct btrfs_root
*root
,
1371 struct btrfs_path
*path
,
1372 u64 bytenr
, u64 parent
,
1375 struct btrfs_key key
;
1378 key
.objectid
= bytenr
;
1380 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1381 key
.offset
= parent
;
1383 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1384 key
.offset
= root_objectid
;
1387 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret
== -ENOENT
&& parent
) {
1392 btrfs_release_path(path
);
1393 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1394 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1402 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1403 struct btrfs_root
*root
,
1404 struct btrfs_path
*path
,
1405 u64 bytenr
, u64 parent
,
1408 struct btrfs_key key
;
1411 key
.objectid
= bytenr
;
1413 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1414 key
.offset
= parent
;
1416 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1417 key
.offset
= root_objectid
;
1420 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1421 btrfs_release_path(path
);
1425 static inline int extent_ref_type(u64 parent
, u64 owner
)
1428 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1430 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1432 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1435 type
= BTRFS_SHARED_DATA_REF_KEY
;
1437 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1442 static int find_next_key(struct btrfs_path
*path
, int level
,
1443 struct btrfs_key
*key
)
1446 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1447 if (!path
->nodes
[level
])
1449 if (path
->slots
[level
] + 1 >=
1450 btrfs_header_nritems(path
->nodes
[level
]))
1453 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1454 path
->slots
[level
] + 1);
1456 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1457 path
->slots
[level
] + 1);
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1478 struct btrfs_root
*root
,
1479 struct btrfs_path
*path
,
1480 struct btrfs_extent_inline_ref
**ref_ret
,
1481 u64 bytenr
, u64 num_bytes
,
1482 u64 parent
, u64 root_objectid
,
1483 u64 owner
, u64 offset
, int insert
)
1485 struct btrfs_key key
;
1486 struct extent_buffer
*leaf
;
1487 struct btrfs_extent_item
*ei
;
1488 struct btrfs_extent_inline_ref
*iref
;
1498 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1501 key
.objectid
= bytenr
;
1502 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1503 key
.offset
= num_bytes
;
1505 want
= extent_ref_type(parent
, owner
);
1507 extra_size
= btrfs_extent_inline_ref_size(want
);
1508 path
->keep_locks
= 1;
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1516 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1517 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1522 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1532 if (ret
> 0 && skinny_metadata
) {
1533 skinny_metadata
= false;
1534 if (path
->slots
[0]) {
1536 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1538 if (key
.objectid
== bytenr
&&
1539 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1540 key
.offset
== num_bytes
)
1544 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1545 key
.offset
= num_bytes
;
1546 btrfs_release_path(path
);
1551 if (ret
&& !insert
) {
1560 leaf
= path
->nodes
[0];
1561 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size
< sizeof(*ei
)) {
1568 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1574 leaf
= path
->nodes
[0];
1575 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1578 BUG_ON(item_size
< sizeof(*ei
));
1580 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1581 flags
= btrfs_extent_flags(leaf
, ei
);
1583 ptr
= (unsigned long)(ei
+ 1);
1584 end
= (unsigned long)ei
+ item_size
;
1586 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1587 ptr
+= sizeof(struct btrfs_tree_block_info
);
1597 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1598 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1602 ptr
+= btrfs_extent_inline_ref_size(type
);
1606 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1607 struct btrfs_extent_data_ref
*dref
;
1608 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1609 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1614 if (hash_extent_data_ref_item(leaf
, dref
) <
1615 hash_extent_data_ref(root_objectid
, owner
, offset
))
1619 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1621 if (parent
== ref_offset
) {
1625 if (ref_offset
< parent
)
1628 if (root_objectid
== ref_offset
) {
1632 if (ref_offset
< root_objectid
)
1636 ptr
+= btrfs_extent_inline_ref_size(type
);
1638 if (err
== -ENOENT
&& insert
) {
1639 if (item_size
+ extra_size
>=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1650 if (find_next_key(path
, 0, &key
) == 0 &&
1651 key
.objectid
== bytenr
&&
1652 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1657 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1660 path
->keep_locks
= 0;
1661 btrfs_unlock_up_safe(path
, 1);
1667 * helper to add new inline back ref
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root
*root
,
1671 struct btrfs_path
*path
,
1672 struct btrfs_extent_inline_ref
*iref
,
1673 u64 parent
, u64 root_objectid
,
1674 u64 owner
, u64 offset
, int refs_to_add
,
1675 struct btrfs_delayed_extent_op
*extent_op
)
1677 struct extent_buffer
*leaf
;
1678 struct btrfs_extent_item
*ei
;
1681 unsigned long item_offset
;
1686 leaf
= path
->nodes
[0];
1687 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1688 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1690 type
= extent_ref_type(parent
, owner
);
1691 size
= btrfs_extent_inline_ref_size(type
);
1693 btrfs_extend_item(root
, path
, size
);
1695 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1696 refs
= btrfs_extent_refs(leaf
, ei
);
1697 refs
+= refs_to_add
;
1698 btrfs_set_extent_refs(leaf
, ei
, refs
);
1700 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1702 ptr
= (unsigned long)ei
+ item_offset
;
1703 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1704 if (ptr
< end
- size
)
1705 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1708 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1709 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1710 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1711 struct btrfs_extent_data_ref
*dref
;
1712 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1713 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1714 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1715 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1716 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1717 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1718 struct btrfs_shared_data_ref
*sref
;
1719 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1720 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1721 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1722 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1723 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1725 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1727 btrfs_mark_buffer_dirty(leaf
);
1730 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1731 struct btrfs_root
*root
,
1732 struct btrfs_path
*path
,
1733 struct btrfs_extent_inline_ref
**ref_ret
,
1734 u64 bytenr
, u64 num_bytes
, u64 parent
,
1735 u64 root_objectid
, u64 owner
, u64 offset
)
1739 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1740 bytenr
, num_bytes
, parent
,
1741 root_objectid
, owner
, offset
, 0);
1745 btrfs_release_path(path
);
1748 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1749 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1752 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1753 root_objectid
, owner
, offset
);
1759 * helper to update/remove inline back ref
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root
*root
,
1763 struct btrfs_path
*path
,
1764 struct btrfs_extent_inline_ref
*iref
,
1766 struct btrfs_delayed_extent_op
*extent_op
)
1768 struct extent_buffer
*leaf
;
1769 struct btrfs_extent_item
*ei
;
1770 struct btrfs_extent_data_ref
*dref
= NULL
;
1771 struct btrfs_shared_data_ref
*sref
= NULL
;
1779 leaf
= path
->nodes
[0];
1780 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1781 refs
= btrfs_extent_refs(leaf
, ei
);
1782 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1783 refs
+= refs_to_mod
;
1784 btrfs_set_extent_refs(leaf
, ei
, refs
);
1786 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1788 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1790 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1791 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1792 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1793 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1794 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1795 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1798 BUG_ON(refs_to_mod
!= -1);
1801 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1802 refs
+= refs_to_mod
;
1805 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1806 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1808 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1810 size
= btrfs_extent_inline_ref_size(type
);
1811 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1812 ptr
= (unsigned long)iref
;
1813 end
= (unsigned long)ei
+ item_size
;
1814 if (ptr
+ size
< end
)
1815 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1818 btrfs_truncate_item(root
, path
, item_size
, 1);
1820 btrfs_mark_buffer_dirty(leaf
);
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1825 struct btrfs_root
*root
,
1826 struct btrfs_path
*path
,
1827 u64 bytenr
, u64 num_bytes
, u64 parent
,
1828 u64 root_objectid
, u64 owner
,
1829 u64 offset
, int refs_to_add
,
1830 struct btrfs_delayed_extent_op
*extent_op
)
1832 struct btrfs_extent_inline_ref
*iref
;
1835 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1836 bytenr
, num_bytes
, parent
,
1837 root_objectid
, owner
, offset
, 1);
1839 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1840 update_inline_extent_backref(root
, path
, iref
,
1841 refs_to_add
, extent_op
);
1842 } else if (ret
== -ENOENT
) {
1843 setup_inline_extent_backref(root
, path
, iref
, parent
,
1844 root_objectid
, owner
, offset
,
1845 refs_to_add
, extent_op
);
1851 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1852 struct btrfs_root
*root
,
1853 struct btrfs_path
*path
,
1854 u64 bytenr
, u64 parent
, u64 root_objectid
,
1855 u64 owner
, u64 offset
, int refs_to_add
)
1858 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1859 BUG_ON(refs_to_add
!= 1);
1860 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1861 parent
, root_objectid
);
1863 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1864 parent
, root_objectid
,
1865 owner
, offset
, refs_to_add
);
1870 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1871 struct btrfs_root
*root
,
1872 struct btrfs_path
*path
,
1873 struct btrfs_extent_inline_ref
*iref
,
1874 int refs_to_drop
, int is_data
)
1878 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1880 update_inline_extent_backref(root
, path
, iref
,
1881 -refs_to_drop
, NULL
);
1882 } else if (is_data
) {
1883 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1885 ret
= btrfs_del_item(trans
, root
, path
);
1890 static int btrfs_issue_discard(struct block_device
*bdev
,
1893 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1896 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1897 u64 num_bytes
, u64
*actual_bytes
)
1900 u64 discarded_bytes
= 0;
1901 struct btrfs_bio
*bbio
= NULL
;
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1906 bytenr
, &num_bytes
, &bbio
, 0);
1907 /* Error condition is -ENOMEM */
1909 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1913 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1914 if (!stripe
->dev
->can_discard
)
1917 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1921 discarded_bytes
+= stripe
->length
;
1922 else if (ret
!= -EOPNOTSUPP
)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1936 *actual_bytes
= discarded_bytes
;
1939 if (ret
== -EOPNOTSUPP
)
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1946 struct btrfs_root
*root
,
1947 u64 bytenr
, u64 num_bytes
, u64 parent
,
1948 u64 root_objectid
, u64 owner
, u64 offset
, int for_cow
)
1951 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1953 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1954 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1956 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1957 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1959 parent
, root_objectid
, (int)owner
,
1960 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1962 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1964 parent
, root_objectid
, owner
, offset
,
1965 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1971 struct btrfs_root
*root
,
1972 u64 bytenr
, u64 num_bytes
,
1973 u64 parent
, u64 root_objectid
,
1974 u64 owner
, u64 offset
, int refs_to_add
,
1975 struct btrfs_delayed_extent_op
*extent_op
)
1977 struct btrfs_path
*path
;
1978 struct extent_buffer
*leaf
;
1979 struct btrfs_extent_item
*item
;
1984 path
= btrfs_alloc_path();
1989 path
->leave_spinning
= 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1992 path
, bytenr
, num_bytes
, parent
,
1993 root_objectid
, owner
, offset
,
1994 refs_to_add
, extent_op
);
1998 if (ret
!= -EAGAIN
) {
2003 leaf
= path
->nodes
[0];
2004 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2005 refs
= btrfs_extent_refs(leaf
, item
);
2006 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2008 __run_delayed_extent_op(extent_op
, leaf
, item
);
2010 btrfs_mark_buffer_dirty(leaf
);
2011 btrfs_release_path(path
);
2014 path
->leave_spinning
= 1;
2016 /* now insert the actual backref */
2017 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2018 path
, bytenr
, parent
, root_objectid
,
2019 owner
, offset
, refs_to_add
);
2021 btrfs_abort_transaction(trans
, root
, ret
);
2023 btrfs_free_path(path
);
2027 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2028 struct btrfs_root
*root
,
2029 struct btrfs_delayed_ref_node
*node
,
2030 struct btrfs_delayed_extent_op
*extent_op
,
2031 int insert_reserved
)
2034 struct btrfs_delayed_data_ref
*ref
;
2035 struct btrfs_key ins
;
2040 ins
.objectid
= node
->bytenr
;
2041 ins
.offset
= node
->num_bytes
;
2042 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2044 ref
= btrfs_delayed_node_to_data_ref(node
);
2045 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2047 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2048 parent
= ref
->parent
;
2050 ref_root
= ref
->root
;
2052 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2054 flags
|= extent_op
->flags_to_set
;
2055 ret
= alloc_reserved_file_extent(trans
, root
,
2056 parent
, ref_root
, flags
,
2057 ref
->objectid
, ref
->offset
,
2058 &ins
, node
->ref_mod
);
2059 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2060 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2061 node
->num_bytes
, parent
,
2062 ref_root
, ref
->objectid
,
2063 ref
->offset
, node
->ref_mod
,
2065 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2066 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2067 node
->num_bytes
, parent
,
2068 ref_root
, ref
->objectid
,
2069 ref
->offset
, node
->ref_mod
,
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2078 struct extent_buffer
*leaf
,
2079 struct btrfs_extent_item
*ei
)
2081 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2082 if (extent_op
->update_flags
) {
2083 flags
|= extent_op
->flags_to_set
;
2084 btrfs_set_extent_flags(leaf
, ei
, flags
);
2087 if (extent_op
->update_key
) {
2088 struct btrfs_tree_block_info
*bi
;
2089 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2090 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2091 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2095 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2096 struct btrfs_root
*root
,
2097 struct btrfs_delayed_ref_node
*node
,
2098 struct btrfs_delayed_extent_op
*extent_op
)
2100 struct btrfs_key key
;
2101 struct btrfs_path
*path
;
2102 struct btrfs_extent_item
*ei
;
2103 struct extent_buffer
*leaf
;
2107 int metadata
= !extent_op
->is_data
;
2112 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2115 path
= btrfs_alloc_path();
2119 key
.objectid
= node
->bytenr
;
2122 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2123 key
.offset
= extent_op
->level
;
2125 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2126 key
.offset
= node
->num_bytes
;
2131 path
->leave_spinning
= 1;
2132 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2140 btrfs_release_path(path
);
2143 key
.offset
= node
->num_bytes
;
2144 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2151 leaf
= path
->nodes
[0];
2152 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 if (item_size
< sizeof(*ei
)) {
2155 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2161 leaf
= path
->nodes
[0];
2162 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2165 BUG_ON(item_size
< sizeof(*ei
));
2166 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2167 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2169 btrfs_mark_buffer_dirty(leaf
);
2171 btrfs_free_path(path
);
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2176 struct btrfs_root
*root
,
2177 struct btrfs_delayed_ref_node
*node
,
2178 struct btrfs_delayed_extent_op
*extent_op
,
2179 int insert_reserved
)
2182 struct btrfs_delayed_tree_ref
*ref
;
2183 struct btrfs_key ins
;
2186 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2189 ref
= btrfs_delayed_node_to_tree_ref(node
);
2190 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2192 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2193 parent
= ref
->parent
;
2195 ref_root
= ref
->root
;
2197 ins
.objectid
= node
->bytenr
;
2198 if (skinny_metadata
) {
2199 ins
.offset
= ref
->level
;
2200 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2202 ins
.offset
= node
->num_bytes
;
2203 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2206 BUG_ON(node
->ref_mod
!= 1);
2207 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2208 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2209 ret
= alloc_reserved_tree_block(trans
, root
,
2211 extent_op
->flags_to_set
,
2214 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2215 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2216 node
->num_bytes
, parent
, ref_root
,
2217 ref
->level
, 0, 1, extent_op
);
2218 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2219 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2220 node
->num_bytes
, parent
, ref_root
,
2221 ref
->level
, 0, 1, extent_op
);
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2230 struct btrfs_root
*root
,
2231 struct btrfs_delayed_ref_node
*node
,
2232 struct btrfs_delayed_extent_op
*extent_op
,
2233 int insert_reserved
)
2240 if (btrfs_delayed_ref_is_head(node
)) {
2241 struct btrfs_delayed_ref_head
*head
;
2243 * we've hit the end of the chain and we were supposed
2244 * to insert this extent into the tree. But, it got
2245 * deleted before we ever needed to insert it, so all
2246 * we have to do is clean up the accounting
2249 head
= btrfs_delayed_node_to_head(node
);
2250 trace_run_delayed_ref_head(node
, head
, node
->action
);
2252 if (insert_reserved
) {
2253 btrfs_pin_extent(root
, node
->bytenr
,
2254 node
->num_bytes
, 1);
2255 if (head
->is_data
) {
2256 ret
= btrfs_del_csums(trans
, root
,
2264 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2265 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2266 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2268 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2269 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2270 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2277 static noinline
struct btrfs_delayed_ref_node
*
2278 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2280 struct rb_node
*node
;
2281 struct btrfs_delayed_ref_node
*ref
;
2282 int action
= BTRFS_ADD_DELAYED_REF
;
2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 * this prevents ref count from going down to zero when
2287 * there still are pending delayed ref.
2289 node
= rb_prev(&head
->node
.rb_node
);
2293 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2295 if (ref
->bytenr
!= head
->node
.bytenr
)
2297 if (ref
->action
== action
)
2299 node
= rb_prev(node
);
2301 if (action
== BTRFS_ADD_DELAYED_REF
) {
2302 action
= BTRFS_DROP_DELAYED_REF
;
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2312 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2313 struct btrfs_root
*root
,
2314 struct list_head
*cluster
)
2316 struct btrfs_delayed_ref_root
*delayed_refs
;
2317 struct btrfs_delayed_ref_node
*ref
;
2318 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2319 struct btrfs_delayed_extent_op
*extent_op
;
2320 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2323 int must_insert_reserved
= 0;
2325 delayed_refs
= &trans
->transaction
->delayed_refs
;
2328 /* pick a new head ref from the cluster list */
2329 if (list_empty(cluster
))
2332 locked_ref
= list_entry(cluster
->next
,
2333 struct btrfs_delayed_ref_head
, cluster
);
2335 /* grab the lock that says we are going to process
2336 * all the refs for this head */
2337 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2340 * we may have dropped the spin lock to get the head
2341 * mutex lock, and that might have given someone else
2342 * time to free the head. If that's true, it has been
2343 * removed from our list and we can move on.
2345 if (ret
== -EAGAIN
) {
2353 * We need to try and merge add/drops of the same ref since we
2354 * can run into issues with relocate dropping the implicit ref
2355 * and then it being added back again before the drop can
2356 * finish. If we merged anything we need to re-loop so we can
2359 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2363 * locked_ref is the head node, so we have to go one
2364 * node back for any delayed ref updates
2366 ref
= select_delayed_ref(locked_ref
);
2368 if (ref
&& ref
->seq
&&
2369 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2371 * there are still refs with lower seq numbers in the
2372 * process of being added. Don't run this ref yet.
2374 list_del_init(&locked_ref
->cluster
);
2375 btrfs_delayed_ref_unlock(locked_ref
);
2377 delayed_refs
->num_heads_ready
++;
2378 spin_unlock(&delayed_refs
->lock
);
2380 spin_lock(&delayed_refs
->lock
);
2385 * record the must insert reserved flag before we
2386 * drop the spin lock.
2388 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2389 locked_ref
->must_insert_reserved
= 0;
2391 extent_op
= locked_ref
->extent_op
;
2392 locked_ref
->extent_op
= NULL
;
2395 /* All delayed refs have been processed, Go ahead
2396 * and send the head node to run_one_delayed_ref,
2397 * so that any accounting fixes can happen
2399 ref
= &locked_ref
->node
;
2401 if (extent_op
&& must_insert_reserved
) {
2402 btrfs_free_delayed_extent_op(extent_op
);
2407 spin_unlock(&delayed_refs
->lock
);
2409 ret
= run_delayed_extent_op(trans
, root
,
2411 btrfs_free_delayed_extent_op(extent_op
);
2414 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2415 spin_lock(&delayed_refs
->lock
);
2416 btrfs_delayed_ref_unlock(locked_ref
);
2425 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2426 delayed_refs
->num_entries
--;
2427 if (!btrfs_delayed_ref_is_head(ref
)) {
2429 * when we play the delayed ref, also correct the
2432 switch (ref
->action
) {
2433 case BTRFS_ADD_DELAYED_REF
:
2434 case BTRFS_ADD_DELAYED_EXTENT
:
2435 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2437 case BTRFS_DROP_DELAYED_REF
:
2438 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2444 list_del_init(&locked_ref
->cluster
);
2446 spin_unlock(&delayed_refs
->lock
);
2448 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2449 must_insert_reserved
);
2451 btrfs_free_delayed_extent_op(extent_op
);
2453 btrfs_delayed_ref_unlock(locked_ref
);
2454 btrfs_put_delayed_ref(ref
);
2455 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2456 spin_lock(&delayed_refs
->lock
);
2461 * If this node is a head, that means all the refs in this head
2462 * have been dealt with, and we will pick the next head to deal
2463 * with, so we must unlock the head and drop it from the cluster
2464 * list before we release it.
2466 if (btrfs_delayed_ref_is_head(ref
)) {
2467 btrfs_delayed_ref_unlock(locked_ref
);
2470 btrfs_put_delayed_ref(ref
);
2474 spin_lock(&delayed_refs
->lock
);
2479 #ifdef SCRAMBLE_DELAYED_REFS
2481 * Normally delayed refs get processed in ascending bytenr order. This
2482 * correlates in most cases to the order added. To expose dependencies on this
2483 * order, we start to process the tree in the middle instead of the beginning
2485 static u64
find_middle(struct rb_root
*root
)
2487 struct rb_node
*n
= root
->rb_node
;
2488 struct btrfs_delayed_ref_node
*entry
;
2491 u64 first
= 0, last
= 0;
2495 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2496 first
= entry
->bytenr
;
2500 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2501 last
= entry
->bytenr
;
2506 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2507 WARN_ON(!entry
->in_tree
);
2509 middle
= entry
->bytenr
;
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle
*trans
,
2523 struct btrfs_fs_info
*fs_info
)
2525 struct qgroup_update
*qgroup_update
;
2528 if (list_empty(&trans
->qgroup_ref_list
) !=
2529 !trans
->delayed_ref_elem
.seq
) {
2530 /* list without seq or seq without list */
2532 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533 list_empty(&trans
->qgroup_ref_list
) ? "" : " not",
2534 (u32
)(trans
->delayed_ref_elem
.seq
>> 32),
2535 (u32
)trans
->delayed_ref_elem
.seq
);
2539 if (!trans
->delayed_ref_elem
.seq
)
2542 while (!list_empty(&trans
->qgroup_ref_list
)) {
2543 qgroup_update
= list_first_entry(&trans
->qgroup_ref_list
,
2544 struct qgroup_update
, list
);
2545 list_del(&qgroup_update
->list
);
2547 ret
= btrfs_qgroup_account_ref(
2548 trans
, fs_info
, qgroup_update
->node
,
2549 qgroup_update
->extent_op
);
2550 kfree(qgroup_update
);
2553 btrfs_put_tree_mod_seq(fs_info
, &trans
->delayed_ref_elem
);
2558 static int refs_newer(struct btrfs_delayed_ref_root
*delayed_refs
, int seq
,
2561 int val
= atomic_read(&delayed_refs
->ref_seq
);
2563 if (val
< seq
|| val
>= seq
+ count
)
2568 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2572 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2573 sizeof(struct btrfs_extent_inline_ref
));
2574 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2575 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2578 * We don't ever fill up leaves all the way so multiply by 2 just to be
2579 * closer to what we're really going to want to ouse.
2581 return div64_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2585 struct btrfs_root
*root
)
2587 struct btrfs_block_rsv
*global_rsv
;
2588 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2592 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2593 num_heads
= heads_to_leaves(root
, num_heads
);
2595 num_bytes
+= (num_heads
- 1) * root
->leafsize
;
2597 global_rsv
= &root
->fs_info
->global_block_rsv
;
2600 * If we can't allocate any more chunks lets make sure we have _lots_ of
2601 * wiggle room since running delayed refs can create more delayed refs.
2603 if (global_rsv
->space_info
->full
)
2606 spin_lock(&global_rsv
->lock
);
2607 if (global_rsv
->reserved
<= num_bytes
)
2609 spin_unlock(&global_rsv
->lock
);
2614 * this starts processing the delayed reference count updates and
2615 * extent insertions we have queued up so far. count can be
2616 * 0, which means to process everything in the tree at the start
2617 * of the run (but not newly added entries), or it can be some target
2618 * number you'd like to process.
2620 * Returns 0 on success or if called with an aborted transaction
2621 * Returns <0 on error and aborts the transaction
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2624 struct btrfs_root
*root
, unsigned long count
)
2626 struct rb_node
*node
;
2627 struct btrfs_delayed_ref_root
*delayed_refs
;
2628 struct btrfs_delayed_ref_node
*ref
;
2629 struct list_head cluster
;
2632 int run_all
= count
== (unsigned long)-1;
2636 /* We'll clean this up in btrfs_cleanup_transaction */
2640 if (root
== root
->fs_info
->extent_root
)
2641 root
= root
->fs_info
->tree_root
;
2643 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
2645 delayed_refs
= &trans
->transaction
->delayed_refs
;
2646 INIT_LIST_HEAD(&cluster
);
2648 count
= delayed_refs
->num_entries
* 2;
2652 if (!run_all
&& !run_most
) {
2654 int seq
= atomic_read(&delayed_refs
->ref_seq
);
2657 old
= atomic_cmpxchg(&delayed_refs
->procs_running_refs
, 0, 1);
2659 DEFINE_WAIT(__wait
);
2660 if (delayed_refs
->flushing
||
2661 !btrfs_should_throttle_delayed_refs(trans
, root
))
2664 prepare_to_wait(&delayed_refs
->wait
, &__wait
,
2665 TASK_UNINTERRUPTIBLE
);
2667 old
= atomic_cmpxchg(&delayed_refs
->procs_running_refs
, 0, 1);
2670 finish_wait(&delayed_refs
->wait
, &__wait
);
2672 if (!refs_newer(delayed_refs
, seq
, 256))
2677 finish_wait(&delayed_refs
->wait
, &__wait
);
2683 atomic_inc(&delayed_refs
->procs_running_refs
);
2688 spin_lock(&delayed_refs
->lock
);
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2695 if (!(run_all
|| run_most
) &&
2696 !btrfs_should_throttle_delayed_refs(trans
, root
))
2700 * go find something we can process in the rbtree. We start at
2701 * the beginning of the tree, and then build a cluster
2702 * of refs to process starting at the first one we are able to
2705 delayed_start
= delayed_refs
->run_delayed_start
;
2706 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2707 delayed_refs
->run_delayed_start
);
2711 ret
= run_clustered_refs(trans
, root
, &cluster
);
2713 btrfs_release_ref_cluster(&cluster
);
2714 spin_unlock(&delayed_refs
->lock
);
2715 btrfs_abort_transaction(trans
, root
, ret
);
2716 atomic_dec(&delayed_refs
->procs_running_refs
);
2717 wake_up(&delayed_refs
->wait
);
2721 atomic_add(ret
, &delayed_refs
->ref_seq
);
2723 count
-= min_t(unsigned long, ret
, count
);
2728 if (delayed_start
>= delayed_refs
->run_delayed_start
) {
2731 * btrfs_find_ref_cluster looped. let's do one
2732 * more cycle. if we don't run any delayed ref
2733 * during that cycle (because we can't because
2734 * all of them are blocked), bail out.
2739 * no runnable refs left, stop trying
2746 /* refs were run, let's reset staleness detection */
2752 if (!list_empty(&trans
->new_bgs
)) {
2753 spin_unlock(&delayed_refs
->lock
);
2754 btrfs_create_pending_block_groups(trans
, root
);
2755 spin_lock(&delayed_refs
->lock
);
2758 node
= rb_first(&delayed_refs
->root
);
2761 count
= (unsigned long)-1;
2764 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2766 if (btrfs_delayed_ref_is_head(ref
)) {
2767 struct btrfs_delayed_ref_head
*head
;
2769 head
= btrfs_delayed_node_to_head(ref
);
2770 atomic_inc(&ref
->refs
);
2772 spin_unlock(&delayed_refs
->lock
);
2774 * Mutex was contended, block until it's
2775 * released and try again
2777 mutex_lock(&head
->mutex
);
2778 mutex_unlock(&head
->mutex
);
2780 btrfs_put_delayed_ref(ref
);
2784 node
= rb_next(node
);
2786 spin_unlock(&delayed_refs
->lock
);
2787 schedule_timeout(1);
2791 atomic_dec(&delayed_refs
->procs_running_refs
);
2793 if (waitqueue_active(&delayed_refs
->wait
))
2794 wake_up(&delayed_refs
->wait
);
2796 spin_unlock(&delayed_refs
->lock
);
2797 assert_qgroups_uptodate(trans
);
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2802 struct btrfs_root
*root
,
2803 u64 bytenr
, u64 num_bytes
, u64 flags
,
2804 int level
, int is_data
)
2806 struct btrfs_delayed_extent_op
*extent_op
;
2809 extent_op
= btrfs_alloc_delayed_extent_op();
2813 extent_op
->flags_to_set
= flags
;
2814 extent_op
->update_flags
= 1;
2815 extent_op
->update_key
= 0;
2816 extent_op
->is_data
= is_data
? 1 : 0;
2817 extent_op
->level
= level
;
2819 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2820 num_bytes
, extent_op
);
2822 btrfs_free_delayed_extent_op(extent_op
);
2826 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2827 struct btrfs_root
*root
,
2828 struct btrfs_path
*path
,
2829 u64 objectid
, u64 offset
, u64 bytenr
)
2831 struct btrfs_delayed_ref_head
*head
;
2832 struct btrfs_delayed_ref_node
*ref
;
2833 struct btrfs_delayed_data_ref
*data_ref
;
2834 struct btrfs_delayed_ref_root
*delayed_refs
;
2835 struct rb_node
*node
;
2839 delayed_refs
= &trans
->transaction
->delayed_refs
;
2840 spin_lock(&delayed_refs
->lock
);
2841 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2845 if (!mutex_trylock(&head
->mutex
)) {
2846 atomic_inc(&head
->node
.refs
);
2847 spin_unlock(&delayed_refs
->lock
);
2849 btrfs_release_path(path
);
2852 * Mutex was contended, block until it's released and let
2855 mutex_lock(&head
->mutex
);
2856 mutex_unlock(&head
->mutex
);
2857 btrfs_put_delayed_ref(&head
->node
);
2861 node
= rb_prev(&head
->node
.rb_node
);
2865 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2867 if (ref
->bytenr
!= bytenr
)
2871 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2874 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2876 node
= rb_prev(node
);
2880 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2881 if (ref
->bytenr
== bytenr
&& ref
->seq
== seq
)
2885 if (data_ref
->root
!= root
->root_key
.objectid
||
2886 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2891 mutex_unlock(&head
->mutex
);
2893 spin_unlock(&delayed_refs
->lock
);
2897 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2898 struct btrfs_root
*root
,
2899 struct btrfs_path
*path
,
2900 u64 objectid
, u64 offset
, u64 bytenr
)
2902 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2903 struct extent_buffer
*leaf
;
2904 struct btrfs_extent_data_ref
*ref
;
2905 struct btrfs_extent_inline_ref
*iref
;
2906 struct btrfs_extent_item
*ei
;
2907 struct btrfs_key key
;
2911 key
.objectid
= bytenr
;
2912 key
.offset
= (u64
)-1;
2913 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2915 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2918 BUG_ON(ret
== 0); /* Corruption */
2921 if (path
->slots
[0] == 0)
2925 leaf
= path
->nodes
[0];
2926 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2928 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2932 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934 if (item_size
< sizeof(*ei
)) {
2935 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2939 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2941 if (item_size
!= sizeof(*ei
) +
2942 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2945 if (btrfs_extent_generation(leaf
, ei
) <=
2946 btrfs_root_last_snapshot(&root
->root_item
))
2949 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2950 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2951 BTRFS_EXTENT_DATA_REF_KEY
)
2954 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2955 if (btrfs_extent_refs(leaf
, ei
) !=
2956 btrfs_extent_data_ref_count(leaf
, ref
) ||
2957 btrfs_extent_data_ref_root(leaf
, ref
) !=
2958 root
->root_key
.objectid
||
2959 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2960 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2969 struct btrfs_root
*root
,
2970 u64 objectid
, u64 offset
, u64 bytenr
)
2972 struct btrfs_path
*path
;
2976 path
= btrfs_alloc_path();
2981 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2983 if (ret
&& ret
!= -ENOENT
)
2986 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2988 } while (ret2
== -EAGAIN
);
2990 if (ret2
&& ret2
!= -ENOENT
) {
2995 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2998 btrfs_free_path(path
);
2999 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3005 struct btrfs_root
*root
,
3006 struct extent_buffer
*buf
,
3007 int full_backref
, int inc
, int for_cow
)
3014 struct btrfs_key key
;
3015 struct btrfs_file_extent_item
*fi
;
3019 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3020 u64
, u64
, u64
, u64
, u64
, u64
, int);
3022 ref_root
= btrfs_header_owner(buf
);
3023 nritems
= btrfs_header_nritems(buf
);
3024 level
= btrfs_header_level(buf
);
3026 if (!root
->ref_cows
&& level
== 0)
3030 process_func
= btrfs_inc_extent_ref
;
3032 process_func
= btrfs_free_extent
;
3035 parent
= buf
->start
;
3039 for (i
= 0; i
< nritems
; i
++) {
3041 btrfs_item_key_to_cpu(buf
, &key
, i
);
3042 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
3044 fi
= btrfs_item_ptr(buf
, i
,
3045 struct btrfs_file_extent_item
);
3046 if (btrfs_file_extent_type(buf
, fi
) ==
3047 BTRFS_FILE_EXTENT_INLINE
)
3049 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3053 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3054 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3055 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3056 parent
, ref_root
, key
.objectid
,
3057 key
.offset
, for_cow
);
3061 bytenr
= btrfs_node_blockptr(buf
, i
);
3062 num_bytes
= btrfs_level_size(root
, level
- 1);
3063 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3064 parent
, ref_root
, level
- 1, 0,
3075 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3076 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
3078 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1, for_cow
);
3081 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3082 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
3084 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0, for_cow
);
3087 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3088 struct btrfs_root
*root
,
3089 struct btrfs_path
*path
,
3090 struct btrfs_block_group_cache
*cache
)
3093 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3095 struct extent_buffer
*leaf
;
3097 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3100 BUG_ON(ret
); /* Corruption */
3102 leaf
= path
->nodes
[0];
3103 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3104 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3105 btrfs_mark_buffer_dirty(leaf
);
3106 btrfs_release_path(path
);
3109 btrfs_abort_transaction(trans
, root
, ret
);
3116 static struct btrfs_block_group_cache
*
3117 next_block_group(struct btrfs_root
*root
,
3118 struct btrfs_block_group_cache
*cache
)
3120 struct rb_node
*node
;
3121 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3122 node
= rb_next(&cache
->cache_node
);
3123 btrfs_put_block_group(cache
);
3125 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3127 btrfs_get_block_group(cache
);
3130 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3134 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3135 struct btrfs_trans_handle
*trans
,
3136 struct btrfs_path
*path
)
3138 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3139 struct inode
*inode
= NULL
;
3141 int dcs
= BTRFS_DC_ERROR
;
3147 * If this block group is smaller than 100 megs don't bother caching the
3150 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3151 spin_lock(&block_group
->lock
);
3152 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3153 spin_unlock(&block_group
->lock
);
3158 inode
= lookup_free_space_inode(root
, block_group
, path
);
3159 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3160 ret
= PTR_ERR(inode
);
3161 btrfs_release_path(path
);
3165 if (IS_ERR(inode
)) {
3169 if (block_group
->ro
)
3172 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3178 /* We've already setup this transaction, go ahead and exit */
3179 if (block_group
->cache_generation
== trans
->transid
&&
3180 i_size_read(inode
)) {
3181 dcs
= BTRFS_DC_SETUP
;
3186 * We want to set the generation to 0, that way if anything goes wrong
3187 * from here on out we know not to trust this cache when we load up next
3190 BTRFS_I(inode
)->generation
= 0;
3191 ret
= btrfs_update_inode(trans
, root
, inode
);
3194 if (i_size_read(inode
) > 0) {
3195 ret
= btrfs_check_trunc_cache_free_space(root
,
3196 &root
->fs_info
->global_block_rsv
);
3200 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
3206 spin_lock(&block_group
->lock
);
3207 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3208 !btrfs_test_opt(root
, SPACE_CACHE
)) {
3210 * don't bother trying to write stuff out _if_
3211 * a) we're not cached,
3212 * b) we're with nospace_cache mount option.
3214 dcs
= BTRFS_DC_WRITTEN
;
3215 spin_unlock(&block_group
->lock
);
3218 spin_unlock(&block_group
->lock
);
3221 * Try to preallocate enough space based on how big the block group is.
3222 * Keep in mind this has to include any pinned space which could end up
3223 * taking up quite a bit since it's not folded into the other space
3226 num_pages
= (int)div64_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3231 num_pages
*= PAGE_CACHE_SIZE
;
3233 ret
= btrfs_check_data_free_space(inode
, num_pages
);
3237 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3238 num_pages
, num_pages
,
3241 dcs
= BTRFS_DC_SETUP
;
3242 btrfs_free_reserved_data_space(inode
, num_pages
);
3247 btrfs_release_path(path
);
3249 spin_lock(&block_group
->lock
);
3250 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3251 block_group
->cache_generation
= trans
->transid
;
3252 block_group
->disk_cache_state
= dcs
;
3253 spin_unlock(&block_group
->lock
);
3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3259 struct btrfs_root
*root
)
3261 struct btrfs_block_group_cache
*cache
;
3263 struct btrfs_path
*path
;
3266 path
= btrfs_alloc_path();
3272 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3274 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3276 cache
= next_block_group(root
, cache
);
3284 err
= cache_save_setup(cache
, trans
, path
);
3285 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3286 btrfs_put_block_group(cache
);
3291 err
= btrfs_run_delayed_refs(trans
, root
,
3293 if (err
) /* File system offline */
3297 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3299 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
3300 btrfs_put_block_group(cache
);
3306 cache
= next_block_group(root
, cache
);
3315 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3316 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
3318 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3320 err
= write_one_cache_group(trans
, root
, path
, cache
);
3321 if (err
) /* File system offline */
3324 btrfs_put_block_group(cache
);
3329 * I don't think this is needed since we're just marking our
3330 * preallocated extent as written, but just in case it can't
3334 err
= btrfs_run_delayed_refs(trans
, root
,
3336 if (err
) /* File system offline */
3340 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3343 * Really this shouldn't happen, but it could if we
3344 * couldn't write the entire preallocated extent and
3345 * splitting the extent resulted in a new block.
3348 btrfs_put_block_group(cache
);
3351 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3353 cache
= next_block_group(root
, cache
);
3362 err
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3365 * If we didn't have an error then the cache state is still
3366 * NEED_WRITE, so we can set it to WRITTEN.
3368 if (!err
&& cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3369 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3370 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3371 btrfs_put_block_group(cache
);
3375 btrfs_free_path(path
);
3379 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3381 struct btrfs_block_group_cache
*block_group
;
3384 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3385 if (!block_group
|| block_group
->ro
)
3388 btrfs_put_block_group(block_group
);
3392 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3393 u64 total_bytes
, u64 bytes_used
,
3394 struct btrfs_space_info
**space_info
)
3396 struct btrfs_space_info
*found
;
3401 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3402 BTRFS_BLOCK_GROUP_RAID10
))
3407 found
= __find_space_info(info
, flags
);
3409 spin_lock(&found
->lock
);
3410 found
->total_bytes
+= total_bytes
;
3411 found
->disk_total
+= total_bytes
* factor
;
3412 found
->bytes_used
+= bytes_used
;
3413 found
->disk_used
+= bytes_used
* factor
;
3415 spin_unlock(&found
->lock
);
3416 *space_info
= found
;
3419 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3423 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0);
3429 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3430 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3431 init_rwsem(&found
->groups_sem
);
3432 spin_lock_init(&found
->lock
);
3433 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3434 found
->total_bytes
= total_bytes
;
3435 found
->disk_total
= total_bytes
* factor
;
3436 found
->bytes_used
= bytes_used
;
3437 found
->disk_used
= bytes_used
* factor
;
3438 found
->bytes_pinned
= 0;
3439 found
->bytes_reserved
= 0;
3440 found
->bytes_readonly
= 0;
3441 found
->bytes_may_use
= 0;
3443 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3444 found
->chunk_alloc
= 0;
3446 init_waitqueue_head(&found
->wait
);
3447 *space_info
= found
;
3448 list_add_rcu(&found
->list
, &info
->space_info
);
3449 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3450 info
->data_sinfo
= found
;
3454 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3456 u64 extra_flags
= chunk_to_extended(flags
) &
3457 BTRFS_EXTENDED_PROFILE_MASK
;
3459 write_seqlock(&fs_info
->profiles_lock
);
3460 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3461 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3462 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3463 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3464 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3465 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3466 write_sequnlock(&fs_info
->profiles_lock
);
3470 * returns target flags in extended format or 0 if restripe for this
3471 * chunk_type is not in progress
3473 * should be called with either volume_mutex or balance_lock held
3475 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3477 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3483 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3484 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3485 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3486 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3487 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3488 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3489 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3490 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3491 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3498 * @flags: available profiles in extended format (see ctree.h)
3500 * Returns reduced profile in chunk format. If profile changing is in
3501 * progress (either running or paused) picks the target profile (if it's
3502 * already available), otherwise falls back to plain reducing.
3504 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3507 * we add in the count of missing devices because we want
3508 * to make sure that any RAID levels on a degraded FS
3509 * continue to be honored.
3511 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3512 root
->fs_info
->fs_devices
->missing_devices
;
3517 * see if restripe for this chunk_type is in progress, if so
3518 * try to reduce to the target profile
3520 spin_lock(&root
->fs_info
->balance_lock
);
3521 target
= get_restripe_target(root
->fs_info
, flags
);
3523 /* pick target profile only if it's already available */
3524 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3525 spin_unlock(&root
->fs_info
->balance_lock
);
3526 return extended_to_chunk(target
);
3529 spin_unlock(&root
->fs_info
->balance_lock
);
3531 /* First, mask out the RAID levels which aren't possible */
3532 if (num_devices
== 1)
3533 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3534 BTRFS_BLOCK_GROUP_RAID5
);
3535 if (num_devices
< 3)
3536 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3537 if (num_devices
< 4)
3538 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3540 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3541 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3542 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3545 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3546 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3547 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3548 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3549 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3550 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3551 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3552 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3553 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3554 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3556 return extended_to_chunk(flags
| tmp
);
3559 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3564 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3566 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3567 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3568 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3569 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3570 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3571 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3572 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3574 return btrfs_reduce_alloc_profile(root
, flags
);
3577 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3583 flags
= BTRFS_BLOCK_GROUP_DATA
;
3584 else if (root
== root
->fs_info
->chunk_root
)
3585 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3587 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3589 ret
= get_alloc_profile(root
, flags
);
3594 * This will check the space that the inode allocates from to make sure we have
3595 * enough space for bytes.
3597 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3599 struct btrfs_space_info
*data_sinfo
;
3600 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3601 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3603 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3605 /* make sure bytes are sectorsize aligned */
3606 bytes
= ALIGN(bytes
, root
->sectorsize
);
3608 if (root
== root
->fs_info
->tree_root
||
3609 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3614 data_sinfo
= fs_info
->data_sinfo
;
3619 /* make sure we have enough space to handle the data first */
3620 spin_lock(&data_sinfo
->lock
);
3621 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3622 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3623 data_sinfo
->bytes_may_use
;
3625 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3626 struct btrfs_trans_handle
*trans
;
3629 * if we don't have enough free bytes in this space then we need
3630 * to alloc a new chunk.
3632 if (!data_sinfo
->full
&& alloc_chunk
) {
3635 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3636 spin_unlock(&data_sinfo
->lock
);
3638 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3639 trans
= btrfs_join_transaction(root
);
3641 return PTR_ERR(trans
);
3643 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3645 CHUNK_ALLOC_NO_FORCE
);
3646 btrfs_end_transaction(trans
, root
);
3655 data_sinfo
= fs_info
->data_sinfo
;
3661 * If we don't have enough pinned space to deal with this
3662 * allocation don't bother committing the transaction.
3664 if (percpu_counter_compare(&data_sinfo
->total_bytes_pinned
,
3667 spin_unlock(&data_sinfo
->lock
);
3669 /* commit the current transaction and try again */
3672 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3675 trans
= btrfs_join_transaction(root
);
3677 return PTR_ERR(trans
);
3678 ret
= btrfs_commit_transaction(trans
, root
);
3686 data_sinfo
->bytes_may_use
+= bytes
;
3687 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3688 data_sinfo
->flags
, bytes
, 1);
3689 spin_unlock(&data_sinfo
->lock
);
3695 * Called if we need to clear a data reservation for this inode.
3697 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3699 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3700 struct btrfs_space_info
*data_sinfo
;
3702 /* make sure bytes are sectorsize aligned */
3703 bytes
= ALIGN(bytes
, root
->sectorsize
);
3705 data_sinfo
= root
->fs_info
->data_sinfo
;
3706 spin_lock(&data_sinfo
->lock
);
3707 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
3708 data_sinfo
->bytes_may_use
-= bytes
;
3709 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3710 data_sinfo
->flags
, bytes
, 0);
3711 spin_unlock(&data_sinfo
->lock
);
3714 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3716 struct list_head
*head
= &info
->space_info
;
3717 struct btrfs_space_info
*found
;
3720 list_for_each_entry_rcu(found
, head
, list
) {
3721 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3722 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3727 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
3729 return (global
->size
<< 1);
3732 static int should_alloc_chunk(struct btrfs_root
*root
,
3733 struct btrfs_space_info
*sinfo
, int force
)
3735 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3736 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3737 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3740 if (force
== CHUNK_ALLOC_FORCE
)
3744 * We need to take into account the global rsv because for all intents
3745 * and purposes it's used space. Don't worry about locking the
3746 * global_rsv, it doesn't change except when the transaction commits.
3748 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3749 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
3752 * in limited mode, we want to have some free space up to
3753 * about 1% of the FS size.
3755 if (force
== CHUNK_ALLOC_LIMITED
) {
3756 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3757 thresh
= max_t(u64
, 64 * 1024 * 1024,
3758 div_factor_fine(thresh
, 1));
3760 if (num_bytes
- num_allocated
< thresh
)
3764 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
3769 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3773 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
3774 BTRFS_BLOCK_GROUP_RAID0
|
3775 BTRFS_BLOCK_GROUP_RAID5
|
3776 BTRFS_BLOCK_GROUP_RAID6
))
3777 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3778 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3781 num_dev
= 1; /* DUP or single */
3783 /* metadata for updaing devices and chunk tree */
3784 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3787 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3788 struct btrfs_root
*root
, u64 type
)
3790 struct btrfs_space_info
*info
;
3794 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3795 spin_lock(&info
->lock
);
3796 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3797 info
->bytes_reserved
- info
->bytes_readonly
;
3798 spin_unlock(&info
->lock
);
3800 thresh
= get_system_chunk_thresh(root
, type
);
3801 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3802 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
3803 left
, thresh
, type
);
3804 dump_space_info(info
, 0, 0);
3807 if (left
< thresh
) {
3810 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3811 btrfs_alloc_chunk(trans
, root
, flags
);
3815 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3816 struct btrfs_root
*extent_root
, u64 flags
, int force
)
3818 struct btrfs_space_info
*space_info
;
3819 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3820 int wait_for_alloc
= 0;
3823 /* Don't re-enter if we're already allocating a chunk */
3824 if (trans
->allocating_chunk
)
3827 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3829 ret
= update_space_info(extent_root
->fs_info
, flags
,
3831 BUG_ON(ret
); /* -ENOMEM */
3833 BUG_ON(!space_info
); /* Logic error */
3836 spin_lock(&space_info
->lock
);
3837 if (force
< space_info
->force_alloc
)
3838 force
= space_info
->force_alloc
;
3839 if (space_info
->full
) {
3840 if (should_alloc_chunk(extent_root
, space_info
, force
))
3844 spin_unlock(&space_info
->lock
);
3848 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
3849 spin_unlock(&space_info
->lock
);
3851 } else if (space_info
->chunk_alloc
) {
3854 space_info
->chunk_alloc
= 1;
3857 spin_unlock(&space_info
->lock
);
3859 mutex_lock(&fs_info
->chunk_mutex
);
3862 * The chunk_mutex is held throughout the entirety of a chunk
3863 * allocation, so once we've acquired the chunk_mutex we know that the
3864 * other guy is done and we need to recheck and see if we should
3867 if (wait_for_alloc
) {
3868 mutex_unlock(&fs_info
->chunk_mutex
);
3873 trans
->allocating_chunk
= true;
3876 * If we have mixed data/metadata chunks we want to make sure we keep
3877 * allocating mixed chunks instead of individual chunks.
3879 if (btrfs_mixed_space_info(space_info
))
3880 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3883 * if we're doing a data chunk, go ahead and make sure that
3884 * we keep a reasonable number of metadata chunks allocated in the
3887 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3888 fs_info
->data_chunk_allocations
++;
3889 if (!(fs_info
->data_chunk_allocations
%
3890 fs_info
->metadata_ratio
))
3891 force_metadata_allocation(fs_info
);
3895 * Check if we have enough space in SYSTEM chunk because we may need
3896 * to update devices.
3898 check_system_chunk(trans
, extent_root
, flags
);
3900 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3901 trans
->allocating_chunk
= false;
3903 spin_lock(&space_info
->lock
);
3904 if (ret
< 0 && ret
!= -ENOSPC
)
3907 space_info
->full
= 1;
3911 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3913 space_info
->chunk_alloc
= 0;
3914 spin_unlock(&space_info
->lock
);
3915 mutex_unlock(&fs_info
->chunk_mutex
);
3919 static int can_overcommit(struct btrfs_root
*root
,
3920 struct btrfs_space_info
*space_info
, u64 bytes
,
3921 enum btrfs_reserve_flush_enum flush
)
3923 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3924 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3929 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3930 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
3933 * We only want to allow over committing if we have lots of actual space
3934 * free, but if we don't have enough space to handle the global reserve
3935 * space then we could end up having a real enospc problem when trying
3936 * to allocate a chunk or some other such important allocation.
3938 spin_lock(&global_rsv
->lock
);
3939 space_size
= calc_global_rsv_need_space(global_rsv
);
3940 spin_unlock(&global_rsv
->lock
);
3941 if (used
+ space_size
>= space_info
->total_bytes
)
3944 used
+= space_info
->bytes_may_use
;
3946 spin_lock(&root
->fs_info
->free_chunk_lock
);
3947 avail
= root
->fs_info
->free_chunk_space
;
3948 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3951 * If we have dup, raid1 or raid10 then only half of the free
3952 * space is actually useable. For raid56, the space info used
3953 * doesn't include the parity drive, so we don't have to
3956 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3957 BTRFS_BLOCK_GROUP_RAID1
|
3958 BTRFS_BLOCK_GROUP_RAID10
))
3962 * If we aren't flushing all things, let us overcommit up to
3963 * 1/2th of the space. If we can flush, don't let us overcommit
3964 * too much, let it overcommit up to 1/8 of the space.
3966 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
3971 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
3977 unsigned long nr_pages
)
3979 struct super_block
*sb
= root
->fs_info
->sb
;
3981 if (down_read_trylock(&sb
->s_umount
)) {
3982 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
3983 up_read(&sb
->s_umount
);
3986 * We needn't worry the filesystem going from r/w to r/o though
3987 * we don't acquire ->s_umount mutex, because the filesystem
3988 * should guarantee the delalloc inodes list be empty after
3989 * the filesystem is readonly(all dirty pages are written to
3992 btrfs_start_all_delalloc_inodes(root
->fs_info
, 0);
3993 if (!current
->journal_info
)
3994 btrfs_wait_all_ordered_extents(root
->fs_info
);
3999 * shrink metadata reservation for delalloc
4001 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4004 struct btrfs_block_rsv
*block_rsv
;
4005 struct btrfs_space_info
*space_info
;
4006 struct btrfs_trans_handle
*trans
;
4010 unsigned long nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
4012 enum btrfs_reserve_flush_enum flush
;
4014 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4015 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4016 space_info
= block_rsv
->space_info
;
4019 delalloc_bytes
= percpu_counter_sum_positive(
4020 &root
->fs_info
->delalloc_bytes
);
4021 if (delalloc_bytes
== 0) {
4024 btrfs_wait_all_ordered_extents(root
->fs_info
);
4028 while (delalloc_bytes
&& loops
< 3) {
4029 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4030 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4031 btrfs_writeback_inodes_sb_nr(root
, nr_pages
);
4033 * We need to wait for the async pages to actually start before
4036 wait_event(root
->fs_info
->async_submit_wait
,
4037 !atomic_read(&root
->fs_info
->async_delalloc_pages
));
4040 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4042 flush
= BTRFS_RESERVE_NO_FLUSH
;
4043 spin_lock(&space_info
->lock
);
4044 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4045 spin_unlock(&space_info
->lock
);
4048 spin_unlock(&space_info
->lock
);
4051 if (wait_ordered
&& !trans
) {
4052 btrfs_wait_all_ordered_extents(root
->fs_info
);
4054 time_left
= schedule_timeout_killable(1);
4059 delalloc_bytes
= percpu_counter_sum_positive(
4060 &root
->fs_info
->delalloc_bytes
);
4065 * maybe_commit_transaction - possibly commit the transaction if its ok to
4066 * @root - the root we're allocating for
4067 * @bytes - the number of bytes we want to reserve
4068 * @force - force the commit
4070 * This will check to make sure that committing the transaction will actually
4071 * get us somewhere and then commit the transaction if it does. Otherwise it
4072 * will return -ENOSPC.
4074 static int may_commit_transaction(struct btrfs_root
*root
,
4075 struct btrfs_space_info
*space_info
,
4076 u64 bytes
, int force
)
4078 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4079 struct btrfs_trans_handle
*trans
;
4081 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4088 /* See if there is enough pinned space to make this reservation */
4089 spin_lock(&space_info
->lock
);
4090 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4092 spin_unlock(&space_info
->lock
);
4095 spin_unlock(&space_info
->lock
);
4098 * See if there is some space in the delayed insertion reservation for
4101 if (space_info
!= delayed_rsv
->space_info
)
4104 spin_lock(&space_info
->lock
);
4105 spin_lock(&delayed_rsv
->lock
);
4106 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4107 bytes
- delayed_rsv
->size
) >= 0) {
4108 spin_unlock(&delayed_rsv
->lock
);
4109 spin_unlock(&space_info
->lock
);
4112 spin_unlock(&delayed_rsv
->lock
);
4113 spin_unlock(&space_info
->lock
);
4116 trans
= btrfs_join_transaction(root
);
4120 return btrfs_commit_transaction(trans
, root
);
4124 FLUSH_DELAYED_ITEMS_NR
= 1,
4125 FLUSH_DELAYED_ITEMS
= 2,
4127 FLUSH_DELALLOC_WAIT
= 4,
4132 static int flush_space(struct btrfs_root
*root
,
4133 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4134 u64 orig_bytes
, int state
)
4136 struct btrfs_trans_handle
*trans
;
4141 case FLUSH_DELAYED_ITEMS_NR
:
4142 case FLUSH_DELAYED_ITEMS
:
4143 if (state
== FLUSH_DELAYED_ITEMS_NR
) {
4144 u64 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4146 nr
= (int)div64_u64(num_bytes
, bytes
);
4153 trans
= btrfs_join_transaction(root
);
4154 if (IS_ERR(trans
)) {
4155 ret
= PTR_ERR(trans
);
4158 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4159 btrfs_end_transaction(trans
, root
);
4161 case FLUSH_DELALLOC
:
4162 case FLUSH_DELALLOC_WAIT
:
4163 shrink_delalloc(root
, num_bytes
, orig_bytes
,
4164 state
== FLUSH_DELALLOC_WAIT
);
4167 trans
= btrfs_join_transaction(root
);
4168 if (IS_ERR(trans
)) {
4169 ret
= PTR_ERR(trans
);
4172 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4173 btrfs_get_alloc_profile(root
, 0),
4174 CHUNK_ALLOC_NO_FORCE
);
4175 btrfs_end_transaction(trans
, root
);
4180 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4190 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4191 * @root - the root we're allocating for
4192 * @block_rsv - the block_rsv we're allocating for
4193 * @orig_bytes - the number of bytes we want
4194 * @flush - whether or not we can flush to make our reservation
4196 * This will reserve orgi_bytes number of bytes from the space info associated
4197 * with the block_rsv. If there is not enough space it will make an attempt to
4198 * flush out space to make room. It will do this by flushing delalloc if
4199 * possible or committing the transaction. If flush is 0 then no attempts to
4200 * regain reservations will be made and this will fail if there is not enough
4203 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4204 struct btrfs_block_rsv
*block_rsv
,
4206 enum btrfs_reserve_flush_enum flush
)
4208 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4210 u64 num_bytes
= orig_bytes
;
4211 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4213 bool flushing
= false;
4217 spin_lock(&space_info
->lock
);
4219 * We only want to wait if somebody other than us is flushing and we
4220 * are actually allowed to flush all things.
4222 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4223 space_info
->flush
) {
4224 spin_unlock(&space_info
->lock
);
4226 * If we have a trans handle we can't wait because the flusher
4227 * may have to commit the transaction, which would mean we would
4228 * deadlock since we are waiting for the flusher to finish, but
4229 * hold the current transaction open.
4231 if (current
->journal_info
)
4233 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4234 /* Must have been killed, return */
4238 spin_lock(&space_info
->lock
);
4242 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4243 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4244 space_info
->bytes_may_use
;
4247 * The idea here is that we've not already over-reserved the block group
4248 * then we can go ahead and save our reservation first and then start
4249 * flushing if we need to. Otherwise if we've already overcommitted
4250 * lets start flushing stuff first and then come back and try to make
4253 if (used
<= space_info
->total_bytes
) {
4254 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4255 space_info
->bytes_may_use
+= orig_bytes
;
4256 trace_btrfs_space_reservation(root
->fs_info
,
4257 "space_info", space_info
->flags
, orig_bytes
, 1);
4261 * Ok set num_bytes to orig_bytes since we aren't
4262 * overocmmitted, this way we only try and reclaim what
4265 num_bytes
= orig_bytes
;
4269 * Ok we're over committed, set num_bytes to the overcommitted
4270 * amount plus the amount of bytes that we need for this
4273 num_bytes
= used
- space_info
->total_bytes
+
4277 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4278 space_info
->bytes_may_use
+= orig_bytes
;
4279 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4280 space_info
->flags
, orig_bytes
,
4286 * Couldn't make our reservation, save our place so while we're trying
4287 * to reclaim space we can actually use it instead of somebody else
4288 * stealing it from us.
4290 * We make the other tasks wait for the flush only when we can flush
4293 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4295 space_info
->flush
= 1;
4298 spin_unlock(&space_info
->lock
);
4300 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4303 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4308 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4309 * would happen. So skip delalloc flush.
4311 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4312 (flush_state
== FLUSH_DELALLOC
||
4313 flush_state
== FLUSH_DELALLOC_WAIT
))
4314 flush_state
= ALLOC_CHUNK
;
4318 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4319 flush_state
< COMMIT_TRANS
)
4321 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4322 flush_state
<= COMMIT_TRANS
)
4326 if (ret
== -ENOSPC
&&
4327 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4328 struct btrfs_block_rsv
*global_rsv
=
4329 &root
->fs_info
->global_block_rsv
;
4331 if (block_rsv
!= global_rsv
&&
4332 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4336 spin_lock(&space_info
->lock
);
4337 space_info
->flush
= 0;
4338 wake_up_all(&space_info
->wait
);
4339 spin_unlock(&space_info
->lock
);
4344 static struct btrfs_block_rsv
*get_block_rsv(
4345 const struct btrfs_trans_handle
*trans
,
4346 const struct btrfs_root
*root
)
4348 struct btrfs_block_rsv
*block_rsv
= NULL
;
4351 block_rsv
= trans
->block_rsv
;
4353 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4354 block_rsv
= trans
->block_rsv
;
4356 if (root
== root
->fs_info
->uuid_root
)
4357 block_rsv
= trans
->block_rsv
;
4360 block_rsv
= root
->block_rsv
;
4363 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4368 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4372 spin_lock(&block_rsv
->lock
);
4373 if (block_rsv
->reserved
>= num_bytes
) {
4374 block_rsv
->reserved
-= num_bytes
;
4375 if (block_rsv
->reserved
< block_rsv
->size
)
4376 block_rsv
->full
= 0;
4379 spin_unlock(&block_rsv
->lock
);
4383 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4384 u64 num_bytes
, int update_size
)
4386 spin_lock(&block_rsv
->lock
);
4387 block_rsv
->reserved
+= num_bytes
;
4389 block_rsv
->size
+= num_bytes
;
4390 else if (block_rsv
->reserved
>= block_rsv
->size
)
4391 block_rsv
->full
= 1;
4392 spin_unlock(&block_rsv
->lock
);
4395 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4396 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4399 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4402 if (global_rsv
->space_info
!= dest
->space_info
)
4405 spin_lock(&global_rsv
->lock
);
4406 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4407 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4408 spin_unlock(&global_rsv
->lock
);
4411 global_rsv
->reserved
-= num_bytes
;
4412 if (global_rsv
->reserved
< global_rsv
->size
)
4413 global_rsv
->full
= 0;
4414 spin_unlock(&global_rsv
->lock
);
4416 block_rsv_add_bytes(dest
, num_bytes
, 1);
4420 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4421 struct btrfs_block_rsv
*block_rsv
,
4422 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4424 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4426 spin_lock(&block_rsv
->lock
);
4427 if (num_bytes
== (u64
)-1)
4428 num_bytes
= block_rsv
->size
;
4429 block_rsv
->size
-= num_bytes
;
4430 if (block_rsv
->reserved
>= block_rsv
->size
) {
4431 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4432 block_rsv
->reserved
= block_rsv
->size
;
4433 block_rsv
->full
= 1;
4437 spin_unlock(&block_rsv
->lock
);
4439 if (num_bytes
> 0) {
4441 spin_lock(&dest
->lock
);
4445 bytes_to_add
= dest
->size
- dest
->reserved
;
4446 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4447 dest
->reserved
+= bytes_to_add
;
4448 if (dest
->reserved
>= dest
->size
)
4450 num_bytes
-= bytes_to_add
;
4452 spin_unlock(&dest
->lock
);
4455 spin_lock(&space_info
->lock
);
4456 space_info
->bytes_may_use
-= num_bytes
;
4457 trace_btrfs_space_reservation(fs_info
, "space_info",
4458 space_info
->flags
, num_bytes
, 0);
4459 spin_unlock(&space_info
->lock
);
4464 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4465 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4469 ret
= block_rsv_use_bytes(src
, num_bytes
);
4473 block_rsv_add_bytes(dst
, num_bytes
, 1);
4477 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4479 memset(rsv
, 0, sizeof(*rsv
));
4480 spin_lock_init(&rsv
->lock
);
4484 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4485 unsigned short type
)
4487 struct btrfs_block_rsv
*block_rsv
;
4488 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4490 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4494 btrfs_init_block_rsv(block_rsv
, type
);
4495 block_rsv
->space_info
= __find_space_info(fs_info
,
4496 BTRFS_BLOCK_GROUP_METADATA
);
4500 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4501 struct btrfs_block_rsv
*rsv
)
4505 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4509 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4510 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4511 enum btrfs_reserve_flush_enum flush
)
4518 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4520 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4527 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4528 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4536 spin_lock(&block_rsv
->lock
);
4537 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4538 if (block_rsv
->reserved
>= num_bytes
)
4540 spin_unlock(&block_rsv
->lock
);
4545 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4546 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
4547 enum btrfs_reserve_flush_enum flush
)
4555 spin_lock(&block_rsv
->lock
);
4556 num_bytes
= min_reserved
;
4557 if (block_rsv
->reserved
>= num_bytes
)
4560 num_bytes
-= block_rsv
->reserved
;
4561 spin_unlock(&block_rsv
->lock
);
4566 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4568 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4575 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4576 struct btrfs_block_rsv
*dst_rsv
,
4579 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4582 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4583 struct btrfs_block_rsv
*block_rsv
,
4586 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4587 if (global_rsv
->full
|| global_rsv
== block_rsv
||
4588 block_rsv
->space_info
!= global_rsv
->space_info
)
4590 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4595 * helper to calculate size of global block reservation.
4596 * the desired value is sum of space used by extent tree,
4597 * checksum tree and root tree
4599 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4601 struct btrfs_space_info
*sinfo
;
4605 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4607 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4608 spin_lock(&sinfo
->lock
);
4609 data_used
= sinfo
->bytes_used
;
4610 spin_unlock(&sinfo
->lock
);
4612 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4613 spin_lock(&sinfo
->lock
);
4614 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4616 meta_used
= sinfo
->bytes_used
;
4617 spin_unlock(&sinfo
->lock
);
4619 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4621 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4623 if (num_bytes
* 3 > meta_used
)
4624 num_bytes
= div64_u64(meta_used
, 3);
4626 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
4629 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4631 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4632 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4635 num_bytes
= calc_global_metadata_size(fs_info
);
4637 spin_lock(&sinfo
->lock
);
4638 spin_lock(&block_rsv
->lock
);
4640 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
4642 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4643 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4644 sinfo
->bytes_may_use
;
4646 if (sinfo
->total_bytes
> num_bytes
) {
4647 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4648 block_rsv
->reserved
+= num_bytes
;
4649 sinfo
->bytes_may_use
+= num_bytes
;
4650 trace_btrfs_space_reservation(fs_info
, "space_info",
4651 sinfo
->flags
, num_bytes
, 1);
4654 if (block_rsv
->reserved
>= block_rsv
->size
) {
4655 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4656 sinfo
->bytes_may_use
-= num_bytes
;
4657 trace_btrfs_space_reservation(fs_info
, "space_info",
4658 sinfo
->flags
, num_bytes
, 0);
4659 block_rsv
->reserved
= block_rsv
->size
;
4660 block_rsv
->full
= 1;
4663 spin_unlock(&block_rsv
->lock
);
4664 spin_unlock(&sinfo
->lock
);
4667 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4669 struct btrfs_space_info
*space_info
;
4671 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4672 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4674 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4675 fs_info
->global_block_rsv
.space_info
= space_info
;
4676 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4677 fs_info
->trans_block_rsv
.space_info
= space_info
;
4678 fs_info
->empty_block_rsv
.space_info
= space_info
;
4679 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4681 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4682 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4683 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4684 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4685 if (fs_info
->quota_root
)
4686 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
4687 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4689 update_global_block_rsv(fs_info
);
4692 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4694 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4696 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4697 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4698 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4699 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4700 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4701 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4702 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4703 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4706 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4707 struct btrfs_root
*root
)
4709 if (!trans
->block_rsv
)
4712 if (!trans
->bytes_reserved
)
4715 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4716 trans
->transid
, trans
->bytes_reserved
, 0);
4717 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4718 trans
->bytes_reserved
= 0;
4721 /* Can only return 0 or -ENOSPC */
4722 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4723 struct inode
*inode
)
4725 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4726 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4727 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4730 * We need to hold space in order to delete our orphan item once we've
4731 * added it, so this takes the reservation so we can release it later
4732 * when we are truly done with the orphan item.
4734 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4735 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4736 btrfs_ino(inode
), num_bytes
, 1);
4737 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4740 void btrfs_orphan_release_metadata(struct inode
*inode
)
4742 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4743 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4744 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4745 btrfs_ino(inode
), num_bytes
, 0);
4746 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4750 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4751 * root: the root of the parent directory
4752 * rsv: block reservation
4753 * items: the number of items that we need do reservation
4754 * qgroup_reserved: used to return the reserved size in qgroup
4756 * This function is used to reserve the space for snapshot/subvolume
4757 * creation and deletion. Those operations are different with the
4758 * common file/directory operations, they change two fs/file trees
4759 * and root tree, the number of items that the qgroup reserves is
4760 * different with the free space reservation. So we can not use
4761 * the space reseravtion mechanism in start_transaction().
4763 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
4764 struct btrfs_block_rsv
*rsv
,
4766 u64
*qgroup_reserved
,
4767 bool use_global_rsv
)
4771 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4773 if (root
->fs_info
->quota_enabled
) {
4774 /* One for parent inode, two for dir entries */
4775 num_bytes
= 3 * root
->leafsize
;
4776 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
4783 *qgroup_reserved
= num_bytes
;
4785 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
4786 rsv
->space_info
= __find_space_info(root
->fs_info
,
4787 BTRFS_BLOCK_GROUP_METADATA
);
4788 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
4789 BTRFS_RESERVE_FLUSH_ALL
);
4791 if (ret
== -ENOSPC
&& use_global_rsv
)
4792 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
4795 if (*qgroup_reserved
)
4796 btrfs_qgroup_free(root
, *qgroup_reserved
);
4802 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
4803 struct btrfs_block_rsv
*rsv
,
4804 u64 qgroup_reserved
)
4806 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4807 if (qgroup_reserved
)
4808 btrfs_qgroup_free(root
, qgroup_reserved
);
4812 * drop_outstanding_extent - drop an outstanding extent
4813 * @inode: the inode we're dropping the extent for
4815 * This is called when we are freeing up an outstanding extent, either called
4816 * after an error or after an extent is written. This will return the number of
4817 * reserved extents that need to be freed. This must be called with
4818 * BTRFS_I(inode)->lock held.
4820 static unsigned drop_outstanding_extent(struct inode
*inode
)
4822 unsigned drop_inode_space
= 0;
4823 unsigned dropped_extents
= 0;
4825 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
4826 BTRFS_I(inode
)->outstanding_extents
--;
4828 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4829 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4830 &BTRFS_I(inode
)->runtime_flags
))
4831 drop_inode_space
= 1;
4834 * If we have more or the same amount of outsanding extents than we have
4835 * reserved then we need to leave the reserved extents count alone.
4837 if (BTRFS_I(inode
)->outstanding_extents
>=
4838 BTRFS_I(inode
)->reserved_extents
)
4839 return drop_inode_space
;
4841 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4842 BTRFS_I(inode
)->outstanding_extents
;
4843 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
4844 return dropped_extents
+ drop_inode_space
;
4848 * calc_csum_metadata_size - return the amount of metada space that must be
4849 * reserved/free'd for the given bytes.
4850 * @inode: the inode we're manipulating
4851 * @num_bytes: the number of bytes in question
4852 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4854 * This adjusts the number of csum_bytes in the inode and then returns the
4855 * correct amount of metadata that must either be reserved or freed. We
4856 * calculate how many checksums we can fit into one leaf and then divide the
4857 * number of bytes that will need to be checksumed by this value to figure out
4858 * how many checksums will be required. If we are adding bytes then the number
4859 * may go up and we will return the number of additional bytes that must be
4860 * reserved. If it is going down we will return the number of bytes that must
4863 * This must be called with BTRFS_I(inode)->lock held.
4865 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
4868 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4870 int num_csums_per_leaf
;
4874 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
4875 BTRFS_I(inode
)->csum_bytes
== 0)
4878 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4880 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
4882 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
4883 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
4884 num_csums_per_leaf
= (int)div64_u64(csum_size
,
4885 sizeof(struct btrfs_csum_item
) +
4886 sizeof(struct btrfs_disk_key
));
4887 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4888 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
4889 num_csums
= num_csums
/ num_csums_per_leaf
;
4891 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
4892 old_csums
= old_csums
/ num_csums_per_leaf
;
4894 /* No change, no need to reserve more */
4895 if (old_csums
== num_csums
)
4899 return btrfs_calc_trans_metadata_size(root
,
4900 num_csums
- old_csums
);
4902 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
4905 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4907 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4908 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4911 unsigned nr_extents
= 0;
4912 int extra_reserve
= 0;
4913 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
4915 bool delalloc_lock
= true;
4919 /* If we are a free space inode we need to not flush since we will be in
4920 * the middle of a transaction commit. We also don't need the delalloc
4921 * mutex since we won't race with anybody. We need this mostly to make
4922 * lockdep shut its filthy mouth.
4924 if (btrfs_is_free_space_inode(inode
)) {
4925 flush
= BTRFS_RESERVE_NO_FLUSH
;
4926 delalloc_lock
= false;
4929 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
4930 btrfs_transaction_in_commit(root
->fs_info
))
4931 schedule_timeout(1);
4934 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
4936 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4938 spin_lock(&BTRFS_I(inode
)->lock
);
4939 BTRFS_I(inode
)->outstanding_extents
++;
4941 if (BTRFS_I(inode
)->outstanding_extents
>
4942 BTRFS_I(inode
)->reserved_extents
)
4943 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4944 BTRFS_I(inode
)->reserved_extents
;
4947 * Add an item to reserve for updating the inode when we complete the
4950 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4951 &BTRFS_I(inode
)->runtime_flags
)) {
4956 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4957 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
4958 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
4959 spin_unlock(&BTRFS_I(inode
)->lock
);
4961 if (root
->fs_info
->quota_enabled
) {
4962 ret
= btrfs_qgroup_reserve(root
, num_bytes
+
4963 nr_extents
* root
->leafsize
);
4968 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
4969 if (unlikely(ret
)) {
4970 if (root
->fs_info
->quota_enabled
)
4971 btrfs_qgroup_free(root
, num_bytes
+
4972 nr_extents
* root
->leafsize
);
4976 spin_lock(&BTRFS_I(inode
)->lock
);
4977 if (extra_reserve
) {
4978 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4979 &BTRFS_I(inode
)->runtime_flags
);
4982 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4983 spin_unlock(&BTRFS_I(inode
)->lock
);
4986 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4989 trace_btrfs_space_reservation(root
->fs_info
,"delalloc",
4990 btrfs_ino(inode
), to_reserve
, 1);
4991 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4996 spin_lock(&BTRFS_I(inode
)->lock
);
4997 dropped
= drop_outstanding_extent(inode
);
4999 * If the inodes csum_bytes is the same as the original
5000 * csum_bytes then we know we haven't raced with any free()ers
5001 * so we can just reduce our inodes csum bytes and carry on.
5003 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5004 calc_csum_metadata_size(inode
, num_bytes
, 0);
5006 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5010 * This is tricky, but first we need to figure out how much we
5011 * free'd from any free-ers that occured during this
5012 * reservation, so we reset ->csum_bytes to the csum_bytes
5013 * before we dropped our lock, and then call the free for the
5014 * number of bytes that were freed while we were trying our
5017 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5018 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5019 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5023 * Now we need to see how much we would have freed had we not
5024 * been making this reservation and our ->csum_bytes were not
5025 * artificially inflated.
5027 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5028 bytes
= csum_bytes
- orig_csum_bytes
;
5029 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5032 * Now reset ->csum_bytes to what it should be. If bytes is
5033 * more than to_free then we would have free'd more space had we
5034 * not had an artificially high ->csum_bytes, so we need to free
5035 * the remainder. If bytes is the same or less then we don't
5036 * need to do anything, the other free-ers did the correct
5039 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5040 if (bytes
> to_free
)
5041 to_free
= bytes
- to_free
;
5045 spin_unlock(&BTRFS_I(inode
)->lock
);
5047 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5050 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5051 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5052 btrfs_ino(inode
), to_free
, 0);
5055 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5060 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5061 * @inode: the inode to release the reservation for
5062 * @num_bytes: the number of bytes we're releasing
5064 * This will release the metadata reservation for an inode. This can be called
5065 * once we complete IO for a given set of bytes to release their metadata
5068 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5070 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5074 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5075 spin_lock(&BTRFS_I(inode
)->lock
);
5076 dropped
= drop_outstanding_extent(inode
);
5079 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5080 spin_unlock(&BTRFS_I(inode
)->lock
);
5082 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5084 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5085 btrfs_ino(inode
), to_free
, 0);
5086 if (root
->fs_info
->quota_enabled
) {
5087 btrfs_qgroup_free(root
, num_bytes
+
5088 dropped
* root
->leafsize
);
5091 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5096 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5097 * @inode: inode we're writing to
5098 * @num_bytes: the number of bytes we want to allocate
5100 * This will do the following things
5102 * o reserve space in the data space info for num_bytes
5103 * o reserve space in the metadata space info based on number of outstanding
5104 * extents and how much csums will be needed
5105 * o add to the inodes ->delalloc_bytes
5106 * o add it to the fs_info's delalloc inodes list.
5108 * This will return 0 for success and -ENOSPC if there is no space left.
5110 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5114 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
5118 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5120 btrfs_free_reserved_data_space(inode
, num_bytes
);
5128 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5129 * @inode: inode we're releasing space for
5130 * @num_bytes: the number of bytes we want to free up
5132 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5133 * called in the case that we don't need the metadata AND data reservations
5134 * anymore. So if there is an error or we insert an inline extent.
5136 * This function will release the metadata space that was not used and will
5137 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5138 * list if there are no delalloc bytes left.
5140 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5142 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5143 btrfs_free_reserved_data_space(inode
, num_bytes
);
5146 static int update_block_group(struct btrfs_root
*root
,
5147 u64 bytenr
, u64 num_bytes
, int alloc
)
5149 struct btrfs_block_group_cache
*cache
= NULL
;
5150 struct btrfs_fs_info
*info
= root
->fs_info
;
5151 u64 total
= num_bytes
;
5156 /* block accounting for super block */
5157 spin_lock(&info
->delalloc_root_lock
);
5158 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5160 old_val
+= num_bytes
;
5162 old_val
-= num_bytes
;
5163 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5164 spin_unlock(&info
->delalloc_root_lock
);
5167 cache
= btrfs_lookup_block_group(info
, bytenr
);
5170 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5171 BTRFS_BLOCK_GROUP_RAID1
|
5172 BTRFS_BLOCK_GROUP_RAID10
))
5177 * If this block group has free space cache written out, we
5178 * need to make sure to load it if we are removing space. This
5179 * is because we need the unpinning stage to actually add the
5180 * space back to the block group, otherwise we will leak space.
5182 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5183 cache_block_group(cache
, 1);
5185 byte_in_group
= bytenr
- cache
->key
.objectid
;
5186 WARN_ON(byte_in_group
> cache
->key
.offset
);
5188 spin_lock(&cache
->space_info
->lock
);
5189 spin_lock(&cache
->lock
);
5191 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5192 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5193 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5196 old_val
= btrfs_block_group_used(&cache
->item
);
5197 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5199 old_val
+= num_bytes
;
5200 btrfs_set_block_group_used(&cache
->item
, old_val
);
5201 cache
->reserved
-= num_bytes
;
5202 cache
->space_info
->bytes_reserved
-= num_bytes
;
5203 cache
->space_info
->bytes_used
+= num_bytes
;
5204 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5205 spin_unlock(&cache
->lock
);
5206 spin_unlock(&cache
->space_info
->lock
);
5208 old_val
-= num_bytes
;
5209 btrfs_set_block_group_used(&cache
->item
, old_val
);
5210 cache
->pinned
+= num_bytes
;
5211 cache
->space_info
->bytes_pinned
+= num_bytes
;
5212 cache
->space_info
->bytes_used
-= num_bytes
;
5213 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5214 spin_unlock(&cache
->lock
);
5215 spin_unlock(&cache
->space_info
->lock
);
5217 set_extent_dirty(info
->pinned_extents
,
5218 bytenr
, bytenr
+ num_bytes
- 1,
5219 GFP_NOFS
| __GFP_NOFAIL
);
5221 btrfs_put_block_group(cache
);
5223 bytenr
+= num_bytes
;
5228 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5230 struct btrfs_block_group_cache
*cache
;
5233 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5234 bytenr
= root
->fs_info
->first_logical_byte
;
5235 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5237 if (bytenr
< (u64
)-1)
5240 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5244 bytenr
= cache
->key
.objectid
;
5245 btrfs_put_block_group(cache
);
5250 static int pin_down_extent(struct btrfs_root
*root
,
5251 struct btrfs_block_group_cache
*cache
,
5252 u64 bytenr
, u64 num_bytes
, int reserved
)
5254 spin_lock(&cache
->space_info
->lock
);
5255 spin_lock(&cache
->lock
);
5256 cache
->pinned
+= num_bytes
;
5257 cache
->space_info
->bytes_pinned
+= num_bytes
;
5259 cache
->reserved
-= num_bytes
;
5260 cache
->space_info
->bytes_reserved
-= num_bytes
;
5262 spin_unlock(&cache
->lock
);
5263 spin_unlock(&cache
->space_info
->lock
);
5265 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5266 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5271 * this function must be called within transaction
5273 int btrfs_pin_extent(struct btrfs_root
*root
,
5274 u64 bytenr
, u64 num_bytes
, int reserved
)
5276 struct btrfs_block_group_cache
*cache
;
5278 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5279 BUG_ON(!cache
); /* Logic error */
5281 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5283 btrfs_put_block_group(cache
);
5288 * this function must be called within transaction
5290 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5291 u64 bytenr
, u64 num_bytes
)
5293 struct btrfs_block_group_cache
*cache
;
5296 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5301 * pull in the free space cache (if any) so that our pin
5302 * removes the free space from the cache. We have load_only set
5303 * to one because the slow code to read in the free extents does check
5304 * the pinned extents.
5306 cache_block_group(cache
, 1);
5308 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5310 /* remove us from the free space cache (if we're there at all) */
5311 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5312 btrfs_put_block_group(cache
);
5316 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5319 struct btrfs_block_group_cache
*block_group
;
5320 struct btrfs_caching_control
*caching_ctl
;
5322 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5326 cache_block_group(block_group
, 0);
5327 caching_ctl
= get_caching_control(block_group
);
5331 BUG_ON(!block_group_cache_done(block_group
));
5332 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5334 mutex_lock(&caching_ctl
->mutex
);
5336 if (start
>= caching_ctl
->progress
) {
5337 ret
= add_excluded_extent(root
, start
, num_bytes
);
5338 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5339 ret
= btrfs_remove_free_space(block_group
,
5342 num_bytes
= caching_ctl
->progress
- start
;
5343 ret
= btrfs_remove_free_space(block_group
,
5348 num_bytes
= (start
+ num_bytes
) -
5349 caching_ctl
->progress
;
5350 start
= caching_ctl
->progress
;
5351 ret
= add_excluded_extent(root
, start
, num_bytes
);
5354 mutex_unlock(&caching_ctl
->mutex
);
5355 put_caching_control(caching_ctl
);
5357 btrfs_put_block_group(block_group
);
5361 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5362 struct extent_buffer
*eb
)
5364 struct btrfs_file_extent_item
*item
;
5365 struct btrfs_key key
;
5369 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5372 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5373 btrfs_item_key_to_cpu(eb
, &key
, i
);
5374 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5376 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5377 found_type
= btrfs_file_extent_type(eb
, item
);
5378 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5380 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5382 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5383 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5384 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5391 * btrfs_update_reserved_bytes - update the block_group and space info counters
5392 * @cache: The cache we are manipulating
5393 * @num_bytes: The number of bytes in question
5394 * @reserve: One of the reservation enums
5396 * This is called by the allocator when it reserves space, or by somebody who is
5397 * freeing space that was never actually used on disk. For example if you
5398 * reserve some space for a new leaf in transaction A and before transaction A
5399 * commits you free that leaf, you call this with reserve set to 0 in order to
5400 * clear the reservation.
5402 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5403 * ENOSPC accounting. For data we handle the reservation through clearing the
5404 * delalloc bits in the io_tree. We have to do this since we could end up
5405 * allocating less disk space for the amount of data we have reserved in the
5406 * case of compression.
5408 * If this is a reservation and the block group has become read only we cannot
5409 * make the reservation and return -EAGAIN, otherwise this function always
5412 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5413 u64 num_bytes
, int reserve
)
5415 struct btrfs_space_info
*space_info
= cache
->space_info
;
5418 spin_lock(&space_info
->lock
);
5419 spin_lock(&cache
->lock
);
5420 if (reserve
!= RESERVE_FREE
) {
5424 cache
->reserved
+= num_bytes
;
5425 space_info
->bytes_reserved
+= num_bytes
;
5426 if (reserve
== RESERVE_ALLOC
) {
5427 trace_btrfs_space_reservation(cache
->fs_info
,
5428 "space_info", space_info
->flags
,
5430 space_info
->bytes_may_use
-= num_bytes
;
5435 space_info
->bytes_readonly
+= num_bytes
;
5436 cache
->reserved
-= num_bytes
;
5437 space_info
->bytes_reserved
-= num_bytes
;
5439 spin_unlock(&cache
->lock
);
5440 spin_unlock(&space_info
->lock
);
5444 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5445 struct btrfs_root
*root
)
5447 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5448 struct btrfs_caching_control
*next
;
5449 struct btrfs_caching_control
*caching_ctl
;
5450 struct btrfs_block_group_cache
*cache
;
5451 struct btrfs_space_info
*space_info
;
5453 down_write(&fs_info
->extent_commit_sem
);
5455 list_for_each_entry_safe(caching_ctl
, next
,
5456 &fs_info
->caching_block_groups
, list
) {
5457 cache
= caching_ctl
->block_group
;
5458 if (block_group_cache_done(cache
)) {
5459 cache
->last_byte_to_unpin
= (u64
)-1;
5460 list_del_init(&caching_ctl
->list
);
5461 put_caching_control(caching_ctl
);
5463 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5467 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5468 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5470 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5472 up_write(&fs_info
->extent_commit_sem
);
5474 list_for_each_entry_rcu(space_info
, &fs_info
->space_info
, list
)
5475 percpu_counter_set(&space_info
->total_bytes_pinned
, 0);
5477 update_global_block_rsv(fs_info
);
5480 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
5482 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5483 struct btrfs_block_group_cache
*cache
= NULL
;
5484 struct btrfs_space_info
*space_info
;
5485 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5489 while (start
<= end
) {
5492 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
5494 btrfs_put_block_group(cache
);
5495 cache
= btrfs_lookup_block_group(fs_info
, start
);
5496 BUG_ON(!cache
); /* Logic error */
5499 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
5500 len
= min(len
, end
+ 1 - start
);
5502 if (start
< cache
->last_byte_to_unpin
) {
5503 len
= min(len
, cache
->last_byte_to_unpin
- start
);
5504 btrfs_add_free_space(cache
, start
, len
);
5508 space_info
= cache
->space_info
;
5510 spin_lock(&space_info
->lock
);
5511 spin_lock(&cache
->lock
);
5512 cache
->pinned
-= len
;
5513 space_info
->bytes_pinned
-= len
;
5515 space_info
->bytes_readonly
+= len
;
5518 spin_unlock(&cache
->lock
);
5519 if (!readonly
&& global_rsv
->space_info
== space_info
) {
5520 spin_lock(&global_rsv
->lock
);
5521 if (!global_rsv
->full
) {
5522 len
= min(len
, global_rsv
->size
-
5523 global_rsv
->reserved
);
5524 global_rsv
->reserved
+= len
;
5525 space_info
->bytes_may_use
+= len
;
5526 if (global_rsv
->reserved
>= global_rsv
->size
)
5527 global_rsv
->full
= 1;
5529 spin_unlock(&global_rsv
->lock
);
5531 spin_unlock(&space_info
->lock
);
5535 btrfs_put_block_group(cache
);
5539 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
5540 struct btrfs_root
*root
)
5542 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5543 struct extent_io_tree
*unpin
;
5551 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5552 unpin
= &fs_info
->freed_extents
[1];
5554 unpin
= &fs_info
->freed_extents
[0];
5557 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
5558 EXTENT_DIRTY
, NULL
);
5562 if (btrfs_test_opt(root
, DISCARD
))
5563 ret
= btrfs_discard_extent(root
, start
,
5564 end
+ 1 - start
, NULL
);
5566 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
5567 unpin_extent_range(root
, start
, end
);
5574 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
5575 u64 owner
, u64 root_objectid
)
5577 struct btrfs_space_info
*space_info
;
5580 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5581 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
5582 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
5584 flags
= BTRFS_BLOCK_GROUP_METADATA
;
5586 flags
= BTRFS_BLOCK_GROUP_DATA
;
5589 space_info
= __find_space_info(fs_info
, flags
);
5590 BUG_ON(!space_info
); /* Logic bug */
5591 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
5595 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5596 struct btrfs_root
*root
,
5597 u64 bytenr
, u64 num_bytes
, u64 parent
,
5598 u64 root_objectid
, u64 owner_objectid
,
5599 u64 owner_offset
, int refs_to_drop
,
5600 struct btrfs_delayed_extent_op
*extent_op
)
5602 struct btrfs_key key
;
5603 struct btrfs_path
*path
;
5604 struct btrfs_fs_info
*info
= root
->fs_info
;
5605 struct btrfs_root
*extent_root
= info
->extent_root
;
5606 struct extent_buffer
*leaf
;
5607 struct btrfs_extent_item
*ei
;
5608 struct btrfs_extent_inline_ref
*iref
;
5611 int extent_slot
= 0;
5612 int found_extent
= 0;
5616 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
5619 path
= btrfs_alloc_path();
5624 path
->leave_spinning
= 1;
5626 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
5627 BUG_ON(!is_data
&& refs_to_drop
!= 1);
5630 skinny_metadata
= 0;
5632 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
5633 bytenr
, num_bytes
, parent
,
5634 root_objectid
, owner_objectid
,
5637 extent_slot
= path
->slots
[0];
5638 while (extent_slot
>= 0) {
5639 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5641 if (key
.objectid
!= bytenr
)
5643 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5644 key
.offset
== num_bytes
) {
5648 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
5649 key
.offset
== owner_objectid
) {
5653 if (path
->slots
[0] - extent_slot
> 5)
5657 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5658 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
5659 if (found_extent
&& item_size
< sizeof(*ei
))
5662 if (!found_extent
) {
5664 ret
= remove_extent_backref(trans
, extent_root
, path
,
5668 btrfs_abort_transaction(trans
, extent_root
, ret
);
5671 btrfs_release_path(path
);
5672 path
->leave_spinning
= 1;
5674 key
.objectid
= bytenr
;
5675 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5676 key
.offset
= num_bytes
;
5678 if (!is_data
&& skinny_metadata
) {
5679 key
.type
= BTRFS_METADATA_ITEM_KEY
;
5680 key
.offset
= owner_objectid
;
5683 ret
= btrfs_search_slot(trans
, extent_root
,
5685 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
5687 * Couldn't find our skinny metadata item,
5688 * see if we have ye olde extent item.
5691 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5693 if (key
.objectid
== bytenr
&&
5694 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5695 key
.offset
== num_bytes
)
5699 if (ret
> 0 && skinny_metadata
) {
5700 skinny_metadata
= false;
5701 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5702 key
.offset
= num_bytes
;
5703 btrfs_release_path(path
);
5704 ret
= btrfs_search_slot(trans
, extent_root
,
5709 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5712 btrfs_print_leaf(extent_root
,
5716 btrfs_abort_transaction(trans
, extent_root
, ret
);
5719 extent_slot
= path
->slots
[0];
5721 } else if (ret
== -ENOENT
) {
5722 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5725 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5726 bytenr
, parent
, root_objectid
, owner_objectid
,
5729 btrfs_abort_transaction(trans
, extent_root
, ret
);
5733 leaf
= path
->nodes
[0];
5734 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5735 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5736 if (item_size
< sizeof(*ei
)) {
5737 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5738 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5741 btrfs_abort_transaction(trans
, extent_root
, ret
);
5745 btrfs_release_path(path
);
5746 path
->leave_spinning
= 1;
5748 key
.objectid
= bytenr
;
5749 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5750 key
.offset
= num_bytes
;
5752 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
5755 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5757 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5760 btrfs_abort_transaction(trans
, extent_root
, ret
);
5764 extent_slot
= path
->slots
[0];
5765 leaf
= path
->nodes
[0];
5766 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5769 BUG_ON(item_size
< sizeof(*ei
));
5770 ei
= btrfs_item_ptr(leaf
, extent_slot
,
5771 struct btrfs_extent_item
);
5772 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
5773 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
5774 struct btrfs_tree_block_info
*bi
;
5775 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
5776 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
5777 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
5780 refs
= btrfs_extent_refs(leaf
, ei
);
5781 if (refs
< refs_to_drop
) {
5782 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
5783 "for bytenr %Lu\n", refs_to_drop
, refs
, bytenr
);
5785 btrfs_abort_transaction(trans
, extent_root
, ret
);
5788 refs
-= refs_to_drop
;
5792 __run_delayed_extent_op(extent_op
, leaf
, ei
);
5794 * In the case of inline back ref, reference count will
5795 * be updated by remove_extent_backref
5798 BUG_ON(!found_extent
);
5800 btrfs_set_extent_refs(leaf
, ei
, refs
);
5801 btrfs_mark_buffer_dirty(leaf
);
5804 ret
= remove_extent_backref(trans
, extent_root
, path
,
5808 btrfs_abort_transaction(trans
, extent_root
, ret
);
5812 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
5816 BUG_ON(is_data
&& refs_to_drop
!=
5817 extent_data_ref_count(root
, path
, iref
));
5819 BUG_ON(path
->slots
[0] != extent_slot
);
5821 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
5822 path
->slots
[0] = extent_slot
;
5827 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
5830 btrfs_abort_transaction(trans
, extent_root
, ret
);
5833 btrfs_release_path(path
);
5836 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
5838 btrfs_abort_transaction(trans
, extent_root
, ret
);
5843 ret
= update_block_group(root
, bytenr
, num_bytes
, 0);
5845 btrfs_abort_transaction(trans
, extent_root
, ret
);
5850 btrfs_free_path(path
);
5855 * when we free an block, it is possible (and likely) that we free the last
5856 * delayed ref for that extent as well. This searches the delayed ref tree for
5857 * a given extent, and if there are no other delayed refs to be processed, it
5858 * removes it from the tree.
5860 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
5861 struct btrfs_root
*root
, u64 bytenr
)
5863 struct btrfs_delayed_ref_head
*head
;
5864 struct btrfs_delayed_ref_root
*delayed_refs
;
5865 struct btrfs_delayed_ref_node
*ref
;
5866 struct rb_node
*node
;
5869 delayed_refs
= &trans
->transaction
->delayed_refs
;
5870 spin_lock(&delayed_refs
->lock
);
5871 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
5875 node
= rb_prev(&head
->node
.rb_node
);
5879 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
5881 /* there are still entries for this ref, we can't drop it */
5882 if (ref
->bytenr
== bytenr
)
5885 if (head
->extent_op
) {
5886 if (!head
->must_insert_reserved
)
5888 btrfs_free_delayed_extent_op(head
->extent_op
);
5889 head
->extent_op
= NULL
;
5893 * waiting for the lock here would deadlock. If someone else has it
5894 * locked they are already in the process of dropping it anyway
5896 if (!mutex_trylock(&head
->mutex
))
5900 * at this point we have a head with no other entries. Go
5901 * ahead and process it.
5903 head
->node
.in_tree
= 0;
5904 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
5906 delayed_refs
->num_entries
--;
5909 * we don't take a ref on the node because we're removing it from the
5910 * tree, so we just steal the ref the tree was holding.
5912 delayed_refs
->num_heads
--;
5913 if (list_empty(&head
->cluster
))
5914 delayed_refs
->num_heads_ready
--;
5916 list_del_init(&head
->cluster
);
5917 spin_unlock(&delayed_refs
->lock
);
5919 BUG_ON(head
->extent_op
);
5920 if (head
->must_insert_reserved
)
5923 mutex_unlock(&head
->mutex
);
5924 btrfs_put_delayed_ref(&head
->node
);
5927 spin_unlock(&delayed_refs
->lock
);
5931 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
5932 struct btrfs_root
*root
,
5933 struct extent_buffer
*buf
,
5934 u64 parent
, int last_ref
)
5936 struct btrfs_block_group_cache
*cache
= NULL
;
5940 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5941 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
5942 buf
->start
, buf
->len
,
5943 parent
, root
->root_key
.objectid
,
5944 btrfs_header_level(buf
),
5945 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
5946 BUG_ON(ret
); /* -ENOMEM */
5952 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
5954 if (btrfs_header_generation(buf
) == trans
->transid
) {
5955 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5956 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
5961 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
5962 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
5966 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
5968 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
5969 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
);
5974 add_pinned_bytes(root
->fs_info
, buf
->len
,
5975 btrfs_header_level(buf
),
5976 root
->root_key
.objectid
);
5979 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5982 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
5983 btrfs_put_block_group(cache
);
5986 /* Can return -ENOMEM */
5987 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
5988 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
5989 u64 owner
, u64 offset
, int for_cow
)
5992 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5994 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
5997 * tree log blocks never actually go into the extent allocation
5998 * tree, just update pinning info and exit early.
6000 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6001 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6002 /* unlocks the pinned mutex */
6003 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6005 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6006 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6008 parent
, root_objectid
, (int)owner
,
6009 BTRFS_DROP_DELAYED_REF
, NULL
, for_cow
);
6011 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6013 parent
, root_objectid
, owner
,
6014 offset
, BTRFS_DROP_DELAYED_REF
,
6020 static u64
stripe_align(struct btrfs_root
*root
,
6021 struct btrfs_block_group_cache
*cache
,
6022 u64 val
, u64 num_bytes
)
6024 u64 ret
= ALIGN(val
, root
->stripesize
);
6029 * when we wait for progress in the block group caching, its because
6030 * our allocation attempt failed at least once. So, we must sleep
6031 * and let some progress happen before we try again.
6033 * This function will sleep at least once waiting for new free space to
6034 * show up, and then it will check the block group free space numbers
6035 * for our min num_bytes. Another option is to have it go ahead
6036 * and look in the rbtree for a free extent of a given size, but this
6039 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6040 * any of the information in this block group.
6042 static noinline
void
6043 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6046 struct btrfs_caching_control
*caching_ctl
;
6048 caching_ctl
= get_caching_control(cache
);
6052 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6053 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6055 put_caching_control(caching_ctl
);
6059 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6061 struct btrfs_caching_control
*caching_ctl
;
6064 caching_ctl
= get_caching_control(cache
);
6066 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6068 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6069 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6071 put_caching_control(caching_ctl
);
6075 int __get_raid_index(u64 flags
)
6077 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6078 return BTRFS_RAID_RAID10
;
6079 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6080 return BTRFS_RAID_RAID1
;
6081 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6082 return BTRFS_RAID_DUP
;
6083 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6084 return BTRFS_RAID_RAID0
;
6085 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6086 return BTRFS_RAID_RAID5
;
6087 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6088 return BTRFS_RAID_RAID6
;
6090 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6093 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6095 return __get_raid_index(cache
->flags
);
6098 enum btrfs_loop_type
{
6099 LOOP_CACHING_NOWAIT
= 0,
6100 LOOP_CACHING_WAIT
= 1,
6101 LOOP_ALLOC_CHUNK
= 2,
6102 LOOP_NO_EMPTY_SIZE
= 3,
6106 * walks the btree of allocated extents and find a hole of a given size.
6107 * The key ins is changed to record the hole:
6108 * ins->objectid == start position
6109 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6110 * ins->offset == the size of the hole.
6111 * Any available blocks before search_start are skipped.
6113 * If there is no suitable free space, we will record the max size of
6114 * the free space extent currently.
6116 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6117 u64 num_bytes
, u64 empty_size
,
6118 u64 hint_byte
, struct btrfs_key
*ins
,
6122 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6123 struct btrfs_free_cluster
*last_ptr
= NULL
;
6124 struct btrfs_block_group_cache
*block_group
= NULL
;
6125 struct btrfs_block_group_cache
*used_block_group
;
6126 u64 search_start
= 0;
6127 u64 max_extent_size
= 0;
6128 int empty_cluster
= 2 * 1024 * 1024;
6129 struct btrfs_space_info
*space_info
;
6131 int index
= __get_raid_index(flags
);
6132 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6133 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6134 bool found_uncached_bg
= false;
6135 bool failed_cluster_refill
= false;
6136 bool failed_alloc
= false;
6137 bool use_cluster
= true;
6138 bool have_caching_bg
= false;
6140 WARN_ON(num_bytes
< root
->sectorsize
);
6141 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
6145 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6147 space_info
= __find_space_info(root
->fs_info
, flags
);
6149 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6154 * If the space info is for both data and metadata it means we have a
6155 * small filesystem and we can't use the clustering stuff.
6157 if (btrfs_mixed_space_info(space_info
))
6158 use_cluster
= false;
6160 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6161 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6162 if (!btrfs_test_opt(root
, SSD
))
6163 empty_cluster
= 64 * 1024;
6166 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6167 btrfs_test_opt(root
, SSD
)) {
6168 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6172 spin_lock(&last_ptr
->lock
);
6173 if (last_ptr
->block_group
)
6174 hint_byte
= last_ptr
->window_start
;
6175 spin_unlock(&last_ptr
->lock
);
6178 search_start
= max(search_start
, first_logical_byte(root
, 0));
6179 search_start
= max(search_start
, hint_byte
);
6184 if (search_start
== hint_byte
) {
6185 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6187 used_block_group
= block_group
;
6189 * we don't want to use the block group if it doesn't match our
6190 * allocation bits, or if its not cached.
6192 * However if we are re-searching with an ideal block group
6193 * picked out then we don't care that the block group is cached.
6195 if (block_group
&& block_group_bits(block_group
, flags
) &&
6196 block_group
->cached
!= BTRFS_CACHE_NO
) {
6197 down_read(&space_info
->groups_sem
);
6198 if (list_empty(&block_group
->list
) ||
6201 * someone is removing this block group,
6202 * we can't jump into the have_block_group
6203 * target because our list pointers are not
6206 btrfs_put_block_group(block_group
);
6207 up_read(&space_info
->groups_sem
);
6209 index
= get_block_group_index(block_group
);
6210 goto have_block_group
;
6212 } else if (block_group
) {
6213 btrfs_put_block_group(block_group
);
6217 have_caching_bg
= false;
6218 down_read(&space_info
->groups_sem
);
6219 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6224 used_block_group
= block_group
;
6225 btrfs_get_block_group(block_group
);
6226 search_start
= block_group
->key
.objectid
;
6229 * this can happen if we end up cycling through all the
6230 * raid types, but we want to make sure we only allocate
6231 * for the proper type.
6233 if (!block_group_bits(block_group
, flags
)) {
6234 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6235 BTRFS_BLOCK_GROUP_RAID1
|
6236 BTRFS_BLOCK_GROUP_RAID5
|
6237 BTRFS_BLOCK_GROUP_RAID6
|
6238 BTRFS_BLOCK_GROUP_RAID10
;
6241 * if they asked for extra copies and this block group
6242 * doesn't provide them, bail. This does allow us to
6243 * fill raid0 from raid1.
6245 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6250 cached
= block_group_cache_done(block_group
);
6251 if (unlikely(!cached
)) {
6252 found_uncached_bg
= true;
6253 ret
= cache_block_group(block_group
, 0);
6258 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6260 if (unlikely(block_group
->ro
))
6264 * Ok we want to try and use the cluster allocator, so
6268 unsigned long aligned_cluster
;
6270 * the refill lock keeps out other
6271 * people trying to start a new cluster
6273 spin_lock(&last_ptr
->refill_lock
);
6274 used_block_group
= last_ptr
->block_group
;
6275 if (used_block_group
!= block_group
&&
6276 (!used_block_group
||
6277 used_block_group
->ro
||
6278 !block_group_bits(used_block_group
, flags
))) {
6279 used_block_group
= block_group
;
6280 goto refill_cluster
;
6283 if (used_block_group
!= block_group
)
6284 btrfs_get_block_group(used_block_group
);
6286 offset
= btrfs_alloc_from_cluster(used_block_group
,
6289 used_block_group
->key
.objectid
,
6292 /* we have a block, we're done */
6293 spin_unlock(&last_ptr
->refill_lock
);
6294 trace_btrfs_reserve_extent_cluster(root
,
6295 block_group
, search_start
, num_bytes
);
6299 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6300 if (used_block_group
!= block_group
) {
6301 btrfs_put_block_group(used_block_group
);
6302 used_block_group
= block_group
;
6305 BUG_ON(used_block_group
!= block_group
);
6306 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6307 * set up a new clusters, so lets just skip it
6308 * and let the allocator find whatever block
6309 * it can find. If we reach this point, we
6310 * will have tried the cluster allocator
6311 * plenty of times and not have found
6312 * anything, so we are likely way too
6313 * fragmented for the clustering stuff to find
6316 * However, if the cluster is taken from the
6317 * current block group, release the cluster
6318 * first, so that we stand a better chance of
6319 * succeeding in the unclustered
6321 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6322 last_ptr
->block_group
!= block_group
) {
6323 spin_unlock(&last_ptr
->refill_lock
);
6324 goto unclustered_alloc
;
6328 * this cluster didn't work out, free it and
6331 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6333 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6334 spin_unlock(&last_ptr
->refill_lock
);
6335 goto unclustered_alloc
;
6338 aligned_cluster
= max_t(unsigned long,
6339 empty_cluster
+ empty_size
,
6340 block_group
->full_stripe_len
);
6342 /* allocate a cluster in this block group */
6343 ret
= btrfs_find_space_cluster(root
, block_group
,
6344 last_ptr
, search_start
,
6349 * now pull our allocation out of this
6352 offset
= btrfs_alloc_from_cluster(block_group
,
6358 /* we found one, proceed */
6359 spin_unlock(&last_ptr
->refill_lock
);
6360 trace_btrfs_reserve_extent_cluster(root
,
6361 block_group
, search_start
,
6365 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6366 && !failed_cluster_refill
) {
6367 spin_unlock(&last_ptr
->refill_lock
);
6369 failed_cluster_refill
= true;
6370 wait_block_group_cache_progress(block_group
,
6371 num_bytes
+ empty_cluster
+ empty_size
);
6372 goto have_block_group
;
6376 * at this point we either didn't find a cluster
6377 * or we weren't able to allocate a block from our
6378 * cluster. Free the cluster we've been trying
6379 * to use, and go to the next block group
6381 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6382 spin_unlock(&last_ptr
->refill_lock
);
6387 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
6389 block_group
->free_space_ctl
->free_space
<
6390 num_bytes
+ empty_cluster
+ empty_size
) {
6391 if (block_group
->free_space_ctl
->free_space
>
6394 block_group
->free_space_ctl
->free_space
;
6395 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6398 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6400 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
6401 num_bytes
, empty_size
,
6404 * If we didn't find a chunk, and we haven't failed on this
6405 * block group before, and this block group is in the middle of
6406 * caching and we are ok with waiting, then go ahead and wait
6407 * for progress to be made, and set failed_alloc to true.
6409 * If failed_alloc is true then we've already waited on this
6410 * block group once and should move on to the next block group.
6412 if (!offset
&& !failed_alloc
&& !cached
&&
6413 loop
> LOOP_CACHING_NOWAIT
) {
6414 wait_block_group_cache_progress(block_group
,
6415 num_bytes
+ empty_size
);
6416 failed_alloc
= true;
6417 goto have_block_group
;
6418 } else if (!offset
) {
6420 have_caching_bg
= true;
6424 search_start
= stripe_align(root
, used_block_group
,
6427 /* move on to the next group */
6428 if (search_start
+ num_bytes
>
6429 used_block_group
->key
.objectid
+ used_block_group
->key
.offset
) {
6430 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
6434 if (offset
< search_start
)
6435 btrfs_add_free_space(used_block_group
, offset
,
6436 search_start
- offset
);
6437 BUG_ON(offset
> search_start
);
6439 ret
= btrfs_update_reserved_bytes(used_block_group
, num_bytes
,
6441 if (ret
== -EAGAIN
) {
6442 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
6446 /* we are all good, lets return */
6447 ins
->objectid
= search_start
;
6448 ins
->offset
= num_bytes
;
6450 trace_btrfs_reserve_extent(orig_root
, block_group
,
6451 search_start
, num_bytes
);
6452 if (used_block_group
!= block_group
)
6453 btrfs_put_block_group(used_block_group
);
6454 btrfs_put_block_group(block_group
);
6457 failed_cluster_refill
= false;
6458 failed_alloc
= false;
6459 BUG_ON(index
!= get_block_group_index(block_group
));
6460 if (used_block_group
!= block_group
)
6461 btrfs_put_block_group(used_block_group
);
6462 btrfs_put_block_group(block_group
);
6464 up_read(&space_info
->groups_sem
);
6466 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
6469 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
6473 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6474 * caching kthreads as we move along
6475 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6476 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6477 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6480 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
6483 if (loop
== LOOP_ALLOC_CHUNK
) {
6484 struct btrfs_trans_handle
*trans
;
6486 trans
= btrfs_join_transaction(root
);
6487 if (IS_ERR(trans
)) {
6488 ret
= PTR_ERR(trans
);
6492 ret
= do_chunk_alloc(trans
, root
, flags
,
6495 * Do not bail out on ENOSPC since we
6496 * can do more things.
6498 if (ret
< 0 && ret
!= -ENOSPC
)
6499 btrfs_abort_transaction(trans
,
6503 btrfs_end_transaction(trans
, root
);
6508 if (loop
== LOOP_NO_EMPTY_SIZE
) {
6514 } else if (!ins
->objectid
) {
6516 } else if (ins
->objectid
) {
6521 ins
->offset
= max_extent_size
;
6525 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
6526 int dump_block_groups
)
6528 struct btrfs_block_group_cache
*cache
;
6531 spin_lock(&info
->lock
);
6532 printk(KERN_INFO
"space_info %llu has %llu free, is %sfull\n",
6534 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
6535 info
->bytes_reserved
- info
->bytes_readonly
,
6536 (info
->full
) ? "" : "not ");
6537 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
6538 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6539 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
6540 info
->bytes_reserved
, info
->bytes_may_use
,
6541 info
->bytes_readonly
);
6542 spin_unlock(&info
->lock
);
6544 if (!dump_block_groups
)
6547 down_read(&info
->groups_sem
);
6549 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
6550 spin_lock(&cache
->lock
);
6551 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6552 cache
->key
.objectid
, cache
->key
.offset
,
6553 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
6554 cache
->reserved
, cache
->ro
? "[readonly]" : "");
6555 btrfs_dump_free_space(cache
, bytes
);
6556 spin_unlock(&cache
->lock
);
6558 if (++index
< BTRFS_NR_RAID_TYPES
)
6560 up_read(&info
->groups_sem
);
6563 int btrfs_reserve_extent(struct btrfs_root
*root
,
6564 u64 num_bytes
, u64 min_alloc_size
,
6565 u64 empty_size
, u64 hint_byte
,
6566 struct btrfs_key
*ins
, int is_data
)
6568 bool final_tried
= false;
6572 flags
= btrfs_get_alloc_profile(root
, is_data
);
6574 WARN_ON(num_bytes
< root
->sectorsize
);
6575 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
6578 if (ret
== -ENOSPC
) {
6579 if (!final_tried
&& ins
->offset
) {
6580 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
6581 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
6582 num_bytes
= max(num_bytes
, min_alloc_size
);
6583 if (num_bytes
== min_alloc_size
)
6586 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
6587 struct btrfs_space_info
*sinfo
;
6589 sinfo
= __find_space_info(root
->fs_info
, flags
);
6590 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
6593 dump_space_info(sinfo
, num_bytes
, 1);
6597 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
6602 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
6603 u64 start
, u64 len
, int pin
)
6605 struct btrfs_block_group_cache
*cache
;
6608 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
6610 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
6615 if (btrfs_test_opt(root
, DISCARD
))
6616 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
6619 pin_down_extent(root
, cache
, start
, len
, 1);
6621 btrfs_add_free_space(cache
, start
, len
);
6622 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
);
6624 btrfs_put_block_group(cache
);
6626 trace_btrfs_reserved_extent_free(root
, start
, len
);
6631 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
6634 return __btrfs_free_reserved_extent(root
, start
, len
, 0);
6637 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
6640 return __btrfs_free_reserved_extent(root
, start
, len
, 1);
6643 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6644 struct btrfs_root
*root
,
6645 u64 parent
, u64 root_objectid
,
6646 u64 flags
, u64 owner
, u64 offset
,
6647 struct btrfs_key
*ins
, int ref_mod
)
6650 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6651 struct btrfs_extent_item
*extent_item
;
6652 struct btrfs_extent_inline_ref
*iref
;
6653 struct btrfs_path
*path
;
6654 struct extent_buffer
*leaf
;
6659 type
= BTRFS_SHARED_DATA_REF_KEY
;
6661 type
= BTRFS_EXTENT_DATA_REF_KEY
;
6663 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
6665 path
= btrfs_alloc_path();
6669 path
->leave_spinning
= 1;
6670 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6673 btrfs_free_path(path
);
6677 leaf
= path
->nodes
[0];
6678 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6679 struct btrfs_extent_item
);
6680 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
6681 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6682 btrfs_set_extent_flags(leaf
, extent_item
,
6683 flags
| BTRFS_EXTENT_FLAG_DATA
);
6685 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
6686 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
6688 struct btrfs_shared_data_ref
*ref
;
6689 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
6690 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6691 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
6693 struct btrfs_extent_data_ref
*ref
;
6694 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
6695 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
6696 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
6697 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
6698 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
6701 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6702 btrfs_free_path(path
);
6704 ret
= update_block_group(root
, ins
->objectid
, ins
->offset
, 1);
6705 if (ret
) { /* -ENOENT, logic error */
6706 btrfs_err(fs_info
, "update block group failed for %llu %llu",
6707 ins
->objectid
, ins
->offset
);
6713 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
6714 struct btrfs_root
*root
,
6715 u64 parent
, u64 root_objectid
,
6716 u64 flags
, struct btrfs_disk_key
*key
,
6717 int level
, struct btrfs_key
*ins
)
6720 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6721 struct btrfs_extent_item
*extent_item
;
6722 struct btrfs_tree_block_info
*block_info
;
6723 struct btrfs_extent_inline_ref
*iref
;
6724 struct btrfs_path
*path
;
6725 struct extent_buffer
*leaf
;
6726 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
6727 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6730 if (!skinny_metadata
)
6731 size
+= sizeof(*block_info
);
6733 path
= btrfs_alloc_path();
6737 path
->leave_spinning
= 1;
6738 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6741 btrfs_free_path(path
);
6745 leaf
= path
->nodes
[0];
6746 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6747 struct btrfs_extent_item
);
6748 btrfs_set_extent_refs(leaf
, extent_item
, 1);
6749 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6750 btrfs_set_extent_flags(leaf
, extent_item
,
6751 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
6753 if (skinny_metadata
) {
6754 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
6756 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
6757 btrfs_set_tree_block_key(leaf
, block_info
, key
);
6758 btrfs_set_tree_block_level(leaf
, block_info
, level
);
6759 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
6763 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
6764 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6765 BTRFS_SHARED_BLOCK_REF_KEY
);
6766 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6768 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6769 BTRFS_TREE_BLOCK_REF_KEY
);
6770 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
6773 btrfs_mark_buffer_dirty(leaf
);
6774 btrfs_free_path(path
);
6776 ret
= update_block_group(root
, ins
->objectid
, root
->leafsize
, 1);
6777 if (ret
) { /* -ENOENT, logic error */
6778 btrfs_err(fs_info
, "update block group failed for %llu %llu",
6779 ins
->objectid
, ins
->offset
);
6785 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6786 struct btrfs_root
*root
,
6787 u64 root_objectid
, u64 owner
,
6788 u64 offset
, struct btrfs_key
*ins
)
6792 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
6794 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
6796 root_objectid
, owner
, offset
,
6797 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
6802 * this is used by the tree logging recovery code. It records that
6803 * an extent has been allocated and makes sure to clear the free
6804 * space cache bits as well
6806 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
6807 struct btrfs_root
*root
,
6808 u64 root_objectid
, u64 owner
, u64 offset
,
6809 struct btrfs_key
*ins
)
6812 struct btrfs_block_group_cache
*block_group
;
6815 * Mixed block groups will exclude before processing the log so we only
6816 * need to do the exlude dance if this fs isn't mixed.
6818 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
6819 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
6824 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
6828 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
6829 RESERVE_ALLOC_NO_ACCOUNT
);
6830 BUG_ON(ret
); /* logic error */
6831 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
6832 0, owner
, offset
, ins
, 1);
6833 btrfs_put_block_group(block_group
);
6837 static struct extent_buffer
*
6838 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6839 u64 bytenr
, u32 blocksize
, int level
)
6841 struct extent_buffer
*buf
;
6843 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6845 return ERR_PTR(-ENOMEM
);
6846 btrfs_set_header_generation(buf
, trans
->transid
);
6847 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
6848 btrfs_tree_lock(buf
);
6849 clean_tree_block(trans
, root
, buf
);
6850 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
6852 btrfs_set_lock_blocking(buf
);
6853 btrfs_set_buffer_uptodate(buf
);
6855 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6857 * we allow two log transactions at a time, use different
6858 * EXENT bit to differentiate dirty pages.
6860 if (root
->log_transid
% 2 == 0)
6861 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
6862 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6864 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
6865 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6867 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
6868 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6870 trans
->blocks_used
++;
6871 /* this returns a buffer locked for blocking */
6875 static struct btrfs_block_rsv
*
6876 use_block_rsv(struct btrfs_trans_handle
*trans
,
6877 struct btrfs_root
*root
, u32 blocksize
)
6879 struct btrfs_block_rsv
*block_rsv
;
6880 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
6882 bool global_updated
= false;
6884 block_rsv
= get_block_rsv(trans
, root
);
6886 if (unlikely(block_rsv
->size
== 0))
6889 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
6893 if (block_rsv
->failfast
)
6894 return ERR_PTR(ret
);
6896 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
6897 global_updated
= true;
6898 update_global_block_rsv(root
->fs_info
);
6902 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
6903 static DEFINE_RATELIMIT_STATE(_rs
,
6904 DEFAULT_RATELIMIT_INTERVAL
* 10,
6905 /*DEFAULT_RATELIMIT_BURST*/ 1);
6906 if (__ratelimit(&_rs
))
6908 "btrfs: block rsv returned %d\n", ret
);
6911 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
6912 BTRFS_RESERVE_NO_FLUSH
);
6916 * If we couldn't reserve metadata bytes try and use some from
6917 * the global reserve if its space type is the same as the global
6920 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
6921 block_rsv
->space_info
== global_rsv
->space_info
) {
6922 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6926 return ERR_PTR(ret
);
6929 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
6930 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
6932 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
6933 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
6937 * finds a free extent and does all the dirty work required for allocation
6938 * returns the key for the extent through ins, and a tree buffer for
6939 * the first block of the extent through buf.
6941 * returns the tree buffer or NULL.
6943 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
6944 struct btrfs_root
*root
, u32 blocksize
,
6945 u64 parent
, u64 root_objectid
,
6946 struct btrfs_disk_key
*key
, int level
,
6947 u64 hint
, u64 empty_size
)
6949 struct btrfs_key ins
;
6950 struct btrfs_block_rsv
*block_rsv
;
6951 struct extent_buffer
*buf
;
6954 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6957 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
6958 if (IS_ERR(block_rsv
))
6959 return ERR_CAST(block_rsv
);
6961 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
6962 empty_size
, hint
, &ins
, 0);
6964 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
6965 return ERR_PTR(ret
);
6968 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
6970 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
6972 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
6974 parent
= ins
.objectid
;
6975 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6979 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6980 struct btrfs_delayed_extent_op
*extent_op
;
6981 extent_op
= btrfs_alloc_delayed_extent_op();
6982 BUG_ON(!extent_op
); /* -ENOMEM */
6984 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
6986 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
6987 extent_op
->flags_to_set
= flags
;
6988 if (skinny_metadata
)
6989 extent_op
->update_key
= 0;
6991 extent_op
->update_key
= 1;
6992 extent_op
->update_flags
= 1;
6993 extent_op
->is_data
= 0;
6994 extent_op
->level
= level
;
6996 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6998 ins
.offset
, parent
, root_objectid
,
6999 level
, BTRFS_ADD_DELAYED_EXTENT
,
7001 BUG_ON(ret
); /* -ENOMEM */
7006 struct walk_control
{
7007 u64 refs
[BTRFS_MAX_LEVEL
];
7008 u64 flags
[BTRFS_MAX_LEVEL
];
7009 struct btrfs_key update_progress
;
7020 #define DROP_REFERENCE 1
7021 #define UPDATE_BACKREF 2
7023 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7024 struct btrfs_root
*root
,
7025 struct walk_control
*wc
,
7026 struct btrfs_path
*path
)
7034 struct btrfs_key key
;
7035 struct extent_buffer
*eb
;
7040 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7041 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7042 wc
->reada_count
= max(wc
->reada_count
, 2);
7044 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7045 wc
->reada_count
= min_t(int, wc
->reada_count
,
7046 BTRFS_NODEPTRS_PER_BLOCK(root
));
7049 eb
= path
->nodes
[wc
->level
];
7050 nritems
= btrfs_header_nritems(eb
);
7051 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
7053 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7054 if (nread
>= wc
->reada_count
)
7058 bytenr
= btrfs_node_blockptr(eb
, slot
);
7059 generation
= btrfs_node_ptr_generation(eb
, slot
);
7061 if (slot
== path
->slots
[wc
->level
])
7064 if (wc
->stage
== UPDATE_BACKREF
&&
7065 generation
<= root
->root_key
.offset
)
7068 /* We don't lock the tree block, it's OK to be racy here */
7069 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7070 wc
->level
- 1, 1, &refs
,
7072 /* We don't care about errors in readahead. */
7077 if (wc
->stage
== DROP_REFERENCE
) {
7081 if (wc
->level
== 1 &&
7082 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7084 if (!wc
->update_ref
||
7085 generation
<= root
->root_key
.offset
)
7087 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7088 ret
= btrfs_comp_cpu_keys(&key
,
7089 &wc
->update_progress
);
7093 if (wc
->level
== 1 &&
7094 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7098 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
7104 wc
->reada_slot
= slot
;
7108 * helper to process tree block while walking down the tree.
7110 * when wc->stage == UPDATE_BACKREF, this function updates
7111 * back refs for pointers in the block.
7113 * NOTE: return value 1 means we should stop walking down.
7115 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7116 struct btrfs_root
*root
,
7117 struct btrfs_path
*path
,
7118 struct walk_control
*wc
, int lookup_info
)
7120 int level
= wc
->level
;
7121 struct extent_buffer
*eb
= path
->nodes
[level
];
7122 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7125 if (wc
->stage
== UPDATE_BACKREF
&&
7126 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7130 * when reference count of tree block is 1, it won't increase
7131 * again. once full backref flag is set, we never clear it.
7134 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
7135 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
7136 BUG_ON(!path
->locks
[level
]);
7137 ret
= btrfs_lookup_extent_info(trans
, root
,
7138 eb
->start
, level
, 1,
7141 BUG_ON(ret
== -ENOMEM
);
7144 BUG_ON(wc
->refs
[level
] == 0);
7147 if (wc
->stage
== DROP_REFERENCE
) {
7148 if (wc
->refs
[level
] > 1)
7151 if (path
->locks
[level
] && !wc
->keep_locks
) {
7152 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7153 path
->locks
[level
] = 0;
7158 /* wc->stage == UPDATE_BACKREF */
7159 if (!(wc
->flags
[level
] & flag
)) {
7160 BUG_ON(!path
->locks
[level
]);
7161 ret
= btrfs_inc_ref(trans
, root
, eb
, 1, wc
->for_reloc
);
7162 BUG_ON(ret
); /* -ENOMEM */
7163 ret
= btrfs_dec_ref(trans
, root
, eb
, 0, wc
->for_reloc
);
7164 BUG_ON(ret
); /* -ENOMEM */
7165 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
7167 btrfs_header_level(eb
), 0);
7168 BUG_ON(ret
); /* -ENOMEM */
7169 wc
->flags
[level
] |= flag
;
7173 * the block is shared by multiple trees, so it's not good to
7174 * keep the tree lock
7176 if (path
->locks
[level
] && level
> 0) {
7177 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7178 path
->locks
[level
] = 0;
7184 * helper to process tree block pointer.
7186 * when wc->stage == DROP_REFERENCE, this function checks
7187 * reference count of the block pointed to. if the block
7188 * is shared and we need update back refs for the subtree
7189 * rooted at the block, this function changes wc->stage to
7190 * UPDATE_BACKREF. if the block is shared and there is no
7191 * need to update back, this function drops the reference
7194 * NOTE: return value 1 means we should stop walking down.
7196 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
7197 struct btrfs_root
*root
,
7198 struct btrfs_path
*path
,
7199 struct walk_control
*wc
, int *lookup_info
)
7205 struct btrfs_key key
;
7206 struct extent_buffer
*next
;
7207 int level
= wc
->level
;
7211 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
7212 path
->slots
[level
]);
7214 * if the lower level block was created before the snapshot
7215 * was created, we know there is no need to update back refs
7218 if (wc
->stage
== UPDATE_BACKREF
&&
7219 generation
<= root
->root_key
.offset
) {
7224 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
7225 blocksize
= btrfs_level_size(root
, level
- 1);
7227 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
7229 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
7232 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
7236 btrfs_tree_lock(next
);
7237 btrfs_set_lock_blocking(next
);
7239 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
7240 &wc
->refs
[level
- 1],
7241 &wc
->flags
[level
- 1]);
7243 btrfs_tree_unlock(next
);
7247 if (unlikely(wc
->refs
[level
- 1] == 0)) {
7248 btrfs_err(root
->fs_info
, "Missing references.");
7253 if (wc
->stage
== DROP_REFERENCE
) {
7254 if (wc
->refs
[level
- 1] > 1) {
7256 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7259 if (!wc
->update_ref
||
7260 generation
<= root
->root_key
.offset
)
7263 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
7264 path
->slots
[level
]);
7265 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
7269 wc
->stage
= UPDATE_BACKREF
;
7270 wc
->shared_level
= level
- 1;
7274 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7278 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
7279 btrfs_tree_unlock(next
);
7280 free_extent_buffer(next
);
7286 if (reada
&& level
== 1)
7287 reada_walk_down(trans
, root
, wc
, path
);
7288 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
7289 if (!next
|| !extent_buffer_uptodate(next
)) {
7290 free_extent_buffer(next
);
7293 btrfs_tree_lock(next
);
7294 btrfs_set_lock_blocking(next
);
7298 BUG_ON(level
!= btrfs_header_level(next
));
7299 path
->nodes
[level
] = next
;
7300 path
->slots
[level
] = 0;
7301 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7307 wc
->refs
[level
- 1] = 0;
7308 wc
->flags
[level
- 1] = 0;
7309 if (wc
->stage
== DROP_REFERENCE
) {
7310 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
7311 parent
= path
->nodes
[level
]->start
;
7313 BUG_ON(root
->root_key
.objectid
!=
7314 btrfs_header_owner(path
->nodes
[level
]));
7318 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
7319 root
->root_key
.objectid
, level
- 1, 0, 0);
7320 BUG_ON(ret
); /* -ENOMEM */
7322 btrfs_tree_unlock(next
);
7323 free_extent_buffer(next
);
7329 * helper to process tree block while walking up the tree.
7331 * when wc->stage == DROP_REFERENCE, this function drops
7332 * reference count on the block.
7334 * when wc->stage == UPDATE_BACKREF, this function changes
7335 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7336 * to UPDATE_BACKREF previously while processing the block.
7338 * NOTE: return value 1 means we should stop walking up.
7340 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
7341 struct btrfs_root
*root
,
7342 struct btrfs_path
*path
,
7343 struct walk_control
*wc
)
7346 int level
= wc
->level
;
7347 struct extent_buffer
*eb
= path
->nodes
[level
];
7350 if (wc
->stage
== UPDATE_BACKREF
) {
7351 BUG_ON(wc
->shared_level
< level
);
7352 if (level
< wc
->shared_level
)
7355 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
7359 wc
->stage
= DROP_REFERENCE
;
7360 wc
->shared_level
= -1;
7361 path
->slots
[level
] = 0;
7364 * check reference count again if the block isn't locked.
7365 * we should start walking down the tree again if reference
7368 if (!path
->locks
[level
]) {
7370 btrfs_tree_lock(eb
);
7371 btrfs_set_lock_blocking(eb
);
7372 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7374 ret
= btrfs_lookup_extent_info(trans
, root
,
7375 eb
->start
, level
, 1,
7379 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7380 path
->locks
[level
] = 0;
7383 BUG_ON(wc
->refs
[level
] == 0);
7384 if (wc
->refs
[level
] == 1) {
7385 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7386 path
->locks
[level
] = 0;
7392 /* wc->stage == DROP_REFERENCE */
7393 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
7395 if (wc
->refs
[level
] == 1) {
7397 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7398 ret
= btrfs_dec_ref(trans
, root
, eb
, 1,
7401 ret
= btrfs_dec_ref(trans
, root
, eb
, 0,
7403 BUG_ON(ret
); /* -ENOMEM */
7405 /* make block locked assertion in clean_tree_block happy */
7406 if (!path
->locks
[level
] &&
7407 btrfs_header_generation(eb
) == trans
->transid
) {
7408 btrfs_tree_lock(eb
);
7409 btrfs_set_lock_blocking(eb
);
7410 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7412 clean_tree_block(trans
, root
, eb
);
7415 if (eb
== root
->node
) {
7416 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7419 BUG_ON(root
->root_key
.objectid
!=
7420 btrfs_header_owner(eb
));
7422 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7423 parent
= path
->nodes
[level
+ 1]->start
;
7425 BUG_ON(root
->root_key
.objectid
!=
7426 btrfs_header_owner(path
->nodes
[level
+ 1]));
7429 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
7431 wc
->refs
[level
] = 0;
7432 wc
->flags
[level
] = 0;
7436 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
7437 struct btrfs_root
*root
,
7438 struct btrfs_path
*path
,
7439 struct walk_control
*wc
)
7441 int level
= wc
->level
;
7442 int lookup_info
= 1;
7445 while (level
>= 0) {
7446 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
7453 if (path
->slots
[level
] >=
7454 btrfs_header_nritems(path
->nodes
[level
]))
7457 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
7459 path
->slots
[level
]++;
7468 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
7469 struct btrfs_root
*root
,
7470 struct btrfs_path
*path
,
7471 struct walk_control
*wc
, int max_level
)
7473 int level
= wc
->level
;
7476 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
7477 while (level
< max_level
&& path
->nodes
[level
]) {
7479 if (path
->slots
[level
] + 1 <
7480 btrfs_header_nritems(path
->nodes
[level
])) {
7481 path
->slots
[level
]++;
7484 ret
= walk_up_proc(trans
, root
, path
, wc
);
7488 if (path
->locks
[level
]) {
7489 btrfs_tree_unlock_rw(path
->nodes
[level
],
7490 path
->locks
[level
]);
7491 path
->locks
[level
] = 0;
7493 free_extent_buffer(path
->nodes
[level
]);
7494 path
->nodes
[level
] = NULL
;
7502 * drop a subvolume tree.
7504 * this function traverses the tree freeing any blocks that only
7505 * referenced by the tree.
7507 * when a shared tree block is found. this function decreases its
7508 * reference count by one. if update_ref is true, this function
7509 * also make sure backrefs for the shared block and all lower level
7510 * blocks are properly updated.
7512 * If called with for_reloc == 0, may exit early with -EAGAIN
7514 int btrfs_drop_snapshot(struct btrfs_root
*root
,
7515 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
7518 struct btrfs_path
*path
;
7519 struct btrfs_trans_handle
*trans
;
7520 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7521 struct btrfs_root_item
*root_item
= &root
->root_item
;
7522 struct walk_control
*wc
;
7523 struct btrfs_key key
;
7527 bool root_dropped
= false;
7529 path
= btrfs_alloc_path();
7535 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
7537 btrfs_free_path(path
);
7542 trans
= btrfs_start_transaction(tree_root
, 0);
7543 if (IS_ERR(trans
)) {
7544 err
= PTR_ERR(trans
);
7549 trans
->block_rsv
= block_rsv
;
7551 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
7552 level
= btrfs_header_level(root
->node
);
7553 path
->nodes
[level
] = btrfs_lock_root_node(root
);
7554 btrfs_set_lock_blocking(path
->nodes
[level
]);
7555 path
->slots
[level
] = 0;
7556 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7557 memset(&wc
->update_progress
, 0,
7558 sizeof(wc
->update_progress
));
7560 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
7561 memcpy(&wc
->update_progress
, &key
,
7562 sizeof(wc
->update_progress
));
7564 level
= root_item
->drop_level
;
7566 path
->lowest_level
= level
;
7567 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7568 path
->lowest_level
= 0;
7576 * unlock our path, this is safe because only this
7577 * function is allowed to delete this snapshot
7579 btrfs_unlock_up_safe(path
, 0);
7581 level
= btrfs_header_level(root
->node
);
7583 btrfs_tree_lock(path
->nodes
[level
]);
7584 btrfs_set_lock_blocking(path
->nodes
[level
]);
7585 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7587 ret
= btrfs_lookup_extent_info(trans
, root
,
7588 path
->nodes
[level
]->start
,
7589 level
, 1, &wc
->refs
[level
],
7595 BUG_ON(wc
->refs
[level
] == 0);
7597 if (level
== root_item
->drop_level
)
7600 btrfs_tree_unlock(path
->nodes
[level
]);
7601 path
->locks
[level
] = 0;
7602 WARN_ON(wc
->refs
[level
] != 1);
7608 wc
->shared_level
= -1;
7609 wc
->stage
= DROP_REFERENCE
;
7610 wc
->update_ref
= update_ref
;
7612 wc
->for_reloc
= for_reloc
;
7613 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
7617 ret
= walk_down_tree(trans
, root
, path
, wc
);
7623 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
7630 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
7634 if (wc
->stage
== DROP_REFERENCE
) {
7636 btrfs_node_key(path
->nodes
[level
],
7637 &root_item
->drop_progress
,
7638 path
->slots
[level
]);
7639 root_item
->drop_level
= level
;
7642 BUG_ON(wc
->level
== 0);
7643 if (btrfs_should_end_transaction(trans
, tree_root
) ||
7644 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
7645 ret
= btrfs_update_root(trans
, tree_root
,
7649 btrfs_abort_transaction(trans
, tree_root
, ret
);
7654 btrfs_end_transaction_throttle(trans
, tree_root
);
7655 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
7656 pr_debug("btrfs: drop snapshot early exit\n");
7661 trans
= btrfs_start_transaction(tree_root
, 0);
7662 if (IS_ERR(trans
)) {
7663 err
= PTR_ERR(trans
);
7667 trans
->block_rsv
= block_rsv
;
7670 btrfs_release_path(path
);
7674 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
7676 btrfs_abort_transaction(trans
, tree_root
, ret
);
7680 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
7681 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
7684 btrfs_abort_transaction(trans
, tree_root
, ret
);
7687 } else if (ret
> 0) {
7688 /* if we fail to delete the orphan item this time
7689 * around, it'll get picked up the next time.
7691 * The most common failure here is just -ENOENT.
7693 btrfs_del_orphan_item(trans
, tree_root
,
7694 root
->root_key
.objectid
);
7698 if (root
->in_radix
) {
7699 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
7701 free_extent_buffer(root
->node
);
7702 free_extent_buffer(root
->commit_root
);
7703 btrfs_put_fs_root(root
);
7705 root_dropped
= true;
7707 btrfs_end_transaction_throttle(trans
, tree_root
);
7710 btrfs_free_path(path
);
7713 * So if we need to stop dropping the snapshot for whatever reason we
7714 * need to make sure to add it back to the dead root list so that we
7715 * keep trying to do the work later. This also cleans up roots if we
7716 * don't have it in the radix (like when we recover after a power fail
7717 * or unmount) so we don't leak memory.
7719 if (!for_reloc
&& root_dropped
== false)
7720 btrfs_add_dead_root(root
);
7722 btrfs_std_error(root
->fs_info
, err
);
7727 * drop subtree rooted at tree block 'node'.
7729 * NOTE: this function will unlock and release tree block 'node'
7730 * only used by relocation code
7732 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
7733 struct btrfs_root
*root
,
7734 struct extent_buffer
*node
,
7735 struct extent_buffer
*parent
)
7737 struct btrfs_path
*path
;
7738 struct walk_control
*wc
;
7744 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7746 path
= btrfs_alloc_path();
7750 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
7752 btrfs_free_path(path
);
7756 btrfs_assert_tree_locked(parent
);
7757 parent_level
= btrfs_header_level(parent
);
7758 extent_buffer_get(parent
);
7759 path
->nodes
[parent_level
] = parent
;
7760 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
7762 btrfs_assert_tree_locked(node
);
7763 level
= btrfs_header_level(node
);
7764 path
->nodes
[level
] = node
;
7765 path
->slots
[level
] = 0;
7766 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7768 wc
->refs
[parent_level
] = 1;
7769 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7771 wc
->shared_level
= -1;
7772 wc
->stage
= DROP_REFERENCE
;
7776 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
7779 wret
= walk_down_tree(trans
, root
, path
, wc
);
7785 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
7793 btrfs_free_path(path
);
7797 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7803 * if restripe for this chunk_type is on pick target profile and
7804 * return, otherwise do the usual balance
7806 stripped
= get_restripe_target(root
->fs_info
, flags
);
7808 return extended_to_chunk(stripped
);
7811 * we add in the count of missing devices because we want
7812 * to make sure that any RAID levels on a degraded FS
7813 * continue to be honored.
7815 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7816 root
->fs_info
->fs_devices
->missing_devices
;
7818 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7819 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
7820 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7822 if (num_devices
== 1) {
7823 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7824 stripped
= flags
& ~stripped
;
7826 /* turn raid0 into single device chunks */
7827 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7830 /* turn mirroring into duplication */
7831 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7832 BTRFS_BLOCK_GROUP_RAID10
))
7833 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7835 /* they already had raid on here, just return */
7836 if (flags
& stripped
)
7839 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7840 stripped
= flags
& ~stripped
;
7842 /* switch duplicated blocks with raid1 */
7843 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7844 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7846 /* this is drive concat, leave it alone */
7852 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
7854 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7856 u64 min_allocable_bytes
;
7861 * We need some metadata space and system metadata space for
7862 * allocating chunks in some corner cases until we force to set
7863 * it to be readonly.
7866 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
7868 min_allocable_bytes
= 1 * 1024 * 1024;
7870 min_allocable_bytes
= 0;
7872 spin_lock(&sinfo
->lock
);
7873 spin_lock(&cache
->lock
);
7880 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7881 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7883 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
7884 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
7885 min_allocable_bytes
<= sinfo
->total_bytes
) {
7886 sinfo
->bytes_readonly
+= num_bytes
;
7891 spin_unlock(&cache
->lock
);
7892 spin_unlock(&sinfo
->lock
);
7896 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
7897 struct btrfs_block_group_cache
*cache
)
7900 struct btrfs_trans_handle
*trans
;
7906 trans
= btrfs_join_transaction(root
);
7908 return PTR_ERR(trans
);
7910 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
7911 if (alloc_flags
!= cache
->flags
) {
7912 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
7918 ret
= set_block_group_ro(cache
, 0);
7921 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
7922 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
7926 ret
= set_block_group_ro(cache
, 0);
7928 btrfs_end_transaction(trans
, root
);
7932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
7933 struct btrfs_root
*root
, u64 type
)
7935 u64 alloc_flags
= get_alloc_profile(root
, type
);
7936 return do_chunk_alloc(trans
, root
, alloc_flags
,
7941 * helper to account the unused space of all the readonly block group in the
7942 * list. takes mirrors into account.
7944 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
7946 struct btrfs_block_group_cache
*block_group
;
7950 list_for_each_entry(block_group
, groups_list
, list
) {
7951 spin_lock(&block_group
->lock
);
7953 if (!block_group
->ro
) {
7954 spin_unlock(&block_group
->lock
);
7958 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7959 BTRFS_BLOCK_GROUP_RAID10
|
7960 BTRFS_BLOCK_GROUP_DUP
))
7965 free_bytes
+= (block_group
->key
.offset
-
7966 btrfs_block_group_used(&block_group
->item
)) *
7969 spin_unlock(&block_group
->lock
);
7976 * helper to account the unused space of all the readonly block group in the
7977 * space_info. takes mirrors into account.
7979 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
7984 spin_lock(&sinfo
->lock
);
7986 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
7987 if (!list_empty(&sinfo
->block_groups
[i
]))
7988 free_bytes
+= __btrfs_get_ro_block_group_free_space(
7989 &sinfo
->block_groups
[i
]);
7991 spin_unlock(&sinfo
->lock
);
7996 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
7997 struct btrfs_block_group_cache
*cache
)
7999 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8004 spin_lock(&sinfo
->lock
);
8005 spin_lock(&cache
->lock
);
8006 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8007 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8008 sinfo
->bytes_readonly
-= num_bytes
;
8010 spin_unlock(&cache
->lock
);
8011 spin_unlock(&sinfo
->lock
);
8015 * checks to see if its even possible to relocate this block group.
8017 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8018 * ok to go ahead and try.
8020 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8022 struct btrfs_block_group_cache
*block_group
;
8023 struct btrfs_space_info
*space_info
;
8024 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8025 struct btrfs_device
*device
;
8026 struct btrfs_trans_handle
*trans
;
8035 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8037 /* odd, couldn't find the block group, leave it alone */
8041 min_free
= btrfs_block_group_used(&block_group
->item
);
8043 /* no bytes used, we're good */
8047 space_info
= block_group
->space_info
;
8048 spin_lock(&space_info
->lock
);
8050 full
= space_info
->full
;
8053 * if this is the last block group we have in this space, we can't
8054 * relocate it unless we're able to allocate a new chunk below.
8056 * Otherwise, we need to make sure we have room in the space to handle
8057 * all of the extents from this block group. If we can, we're good
8059 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8060 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8061 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8062 min_free
< space_info
->total_bytes
)) {
8063 spin_unlock(&space_info
->lock
);
8066 spin_unlock(&space_info
->lock
);
8069 * ok we don't have enough space, but maybe we have free space on our
8070 * devices to allocate new chunks for relocation, so loop through our
8071 * alloc devices and guess if we have enough space. if this block
8072 * group is going to be restriped, run checks against the target
8073 * profile instead of the current one.
8085 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
8087 index
= __get_raid_index(extended_to_chunk(target
));
8090 * this is just a balance, so if we were marked as full
8091 * we know there is no space for a new chunk
8096 index
= get_block_group_index(block_group
);
8099 if (index
== BTRFS_RAID_RAID10
) {
8103 } else if (index
== BTRFS_RAID_RAID1
) {
8105 } else if (index
== BTRFS_RAID_DUP
) {
8108 } else if (index
== BTRFS_RAID_RAID0
) {
8109 dev_min
= fs_devices
->rw_devices
;
8110 do_div(min_free
, dev_min
);
8113 /* We need to do this so that we can look at pending chunks */
8114 trans
= btrfs_join_transaction(root
);
8115 if (IS_ERR(trans
)) {
8116 ret
= PTR_ERR(trans
);
8120 mutex_lock(&root
->fs_info
->chunk_mutex
);
8121 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8125 * check to make sure we can actually find a chunk with enough
8126 * space to fit our block group in.
8128 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
8129 !device
->is_tgtdev_for_dev_replace
) {
8130 ret
= find_free_dev_extent(trans
, device
, min_free
,
8135 if (dev_nr
>= dev_min
)
8141 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8142 btrfs_end_transaction(trans
, root
);
8144 btrfs_put_block_group(block_group
);
8148 static int find_first_block_group(struct btrfs_root
*root
,
8149 struct btrfs_path
*path
, struct btrfs_key
*key
)
8152 struct btrfs_key found_key
;
8153 struct extent_buffer
*leaf
;
8156 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8161 slot
= path
->slots
[0];
8162 leaf
= path
->nodes
[0];
8163 if (slot
>= btrfs_header_nritems(leaf
)) {
8164 ret
= btrfs_next_leaf(root
, path
);
8171 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8173 if (found_key
.objectid
>= key
->objectid
&&
8174 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8184 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8186 struct btrfs_block_group_cache
*block_group
;
8190 struct inode
*inode
;
8192 block_group
= btrfs_lookup_first_block_group(info
, last
);
8193 while (block_group
) {
8194 spin_lock(&block_group
->lock
);
8195 if (block_group
->iref
)
8197 spin_unlock(&block_group
->lock
);
8198 block_group
= next_block_group(info
->tree_root
,
8208 inode
= block_group
->inode
;
8209 block_group
->iref
= 0;
8210 block_group
->inode
= NULL
;
8211 spin_unlock(&block_group
->lock
);
8213 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8214 btrfs_put_block_group(block_group
);
8218 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8220 struct btrfs_block_group_cache
*block_group
;
8221 struct btrfs_space_info
*space_info
;
8222 struct btrfs_caching_control
*caching_ctl
;
8225 down_write(&info
->extent_commit_sem
);
8226 while (!list_empty(&info
->caching_block_groups
)) {
8227 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8228 struct btrfs_caching_control
, list
);
8229 list_del(&caching_ctl
->list
);
8230 put_caching_control(caching_ctl
);
8232 up_write(&info
->extent_commit_sem
);
8234 spin_lock(&info
->block_group_cache_lock
);
8235 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8236 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8238 rb_erase(&block_group
->cache_node
,
8239 &info
->block_group_cache_tree
);
8240 spin_unlock(&info
->block_group_cache_lock
);
8242 down_write(&block_group
->space_info
->groups_sem
);
8243 list_del(&block_group
->list
);
8244 up_write(&block_group
->space_info
->groups_sem
);
8246 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8247 wait_block_group_cache_done(block_group
);
8250 * We haven't cached this block group, which means we could
8251 * possibly have excluded extents on this block group.
8253 if (block_group
->cached
== BTRFS_CACHE_NO
||
8254 block_group
->cached
== BTRFS_CACHE_ERROR
)
8255 free_excluded_extents(info
->extent_root
, block_group
);
8257 btrfs_remove_free_space_cache(block_group
);
8258 btrfs_put_block_group(block_group
);
8260 spin_lock(&info
->block_group_cache_lock
);
8262 spin_unlock(&info
->block_group_cache_lock
);
8264 /* now that all the block groups are freed, go through and
8265 * free all the space_info structs. This is only called during
8266 * the final stages of unmount, and so we know nobody is
8267 * using them. We call synchronize_rcu() once before we start,
8268 * just to be on the safe side.
8272 release_global_block_rsv(info
);
8274 while(!list_empty(&info
->space_info
)) {
8275 space_info
= list_entry(info
->space_info
.next
,
8276 struct btrfs_space_info
,
8278 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
8279 if (space_info
->bytes_pinned
> 0 ||
8280 space_info
->bytes_reserved
> 0 ||
8281 space_info
->bytes_may_use
> 0) {
8283 dump_space_info(space_info
, 0, 0);
8286 percpu_counter_destroy(&space_info
->total_bytes_pinned
);
8287 list_del(&space_info
->list
);
8293 static void __link_block_group(struct btrfs_space_info
*space_info
,
8294 struct btrfs_block_group_cache
*cache
)
8296 int index
= get_block_group_index(cache
);
8298 down_write(&space_info
->groups_sem
);
8299 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8300 up_write(&space_info
->groups_sem
);
8303 int btrfs_read_block_groups(struct btrfs_root
*root
)
8305 struct btrfs_path
*path
;
8307 struct btrfs_block_group_cache
*cache
;
8308 struct btrfs_fs_info
*info
= root
->fs_info
;
8309 struct btrfs_space_info
*space_info
;
8310 struct btrfs_key key
;
8311 struct btrfs_key found_key
;
8312 struct extent_buffer
*leaf
;
8316 root
= info
->extent_root
;
8319 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
8320 path
= btrfs_alloc_path();
8325 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
8326 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
8327 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
8329 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8333 ret
= find_first_block_group(root
, path
, &key
);
8338 leaf
= path
->nodes
[0];
8339 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8340 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8345 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
8347 if (!cache
->free_space_ctl
) {
8353 atomic_set(&cache
->count
, 1);
8354 spin_lock_init(&cache
->lock
);
8355 cache
->fs_info
= info
;
8356 INIT_LIST_HEAD(&cache
->list
);
8357 INIT_LIST_HEAD(&cache
->cluster_list
);
8361 * When we mount with old space cache, we need to
8362 * set BTRFS_DC_CLEAR and set dirty flag.
8364 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8365 * truncate the old free space cache inode and
8367 * b) Setting 'dirty flag' makes sure that we flush
8368 * the new space cache info onto disk.
8370 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
8371 if (btrfs_test_opt(root
, SPACE_CACHE
))
8375 read_extent_buffer(leaf
, &cache
->item
,
8376 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
8377 sizeof(cache
->item
));
8378 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
8380 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
8381 btrfs_release_path(path
);
8382 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
8383 cache
->sectorsize
= root
->sectorsize
;
8384 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
8385 &root
->fs_info
->mapping_tree
,
8386 found_key
.objectid
);
8387 btrfs_init_free_space_ctl(cache
);
8390 * We need to exclude the super stripes now so that the space
8391 * info has super bytes accounted for, otherwise we'll think
8392 * we have more space than we actually do.
8394 ret
= exclude_super_stripes(root
, cache
);
8397 * We may have excluded something, so call this just in
8400 free_excluded_extents(root
, cache
);
8401 kfree(cache
->free_space_ctl
);
8407 * check for two cases, either we are full, and therefore
8408 * don't need to bother with the caching work since we won't
8409 * find any space, or we are empty, and we can just add all
8410 * the space in and be done with it. This saves us _alot_ of
8411 * time, particularly in the full case.
8413 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
8414 cache
->last_byte_to_unpin
= (u64
)-1;
8415 cache
->cached
= BTRFS_CACHE_FINISHED
;
8416 free_excluded_extents(root
, cache
);
8417 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
8418 cache
->last_byte_to_unpin
= (u64
)-1;
8419 cache
->cached
= BTRFS_CACHE_FINISHED
;
8420 add_new_free_space(cache
, root
->fs_info
,
8422 found_key
.objectid
+
8424 free_excluded_extents(root
, cache
);
8427 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8429 btrfs_remove_free_space_cache(cache
);
8430 btrfs_put_block_group(cache
);
8434 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
8435 btrfs_block_group_used(&cache
->item
),
8438 btrfs_remove_free_space_cache(cache
);
8439 spin_lock(&info
->block_group_cache_lock
);
8440 rb_erase(&cache
->cache_node
,
8441 &info
->block_group_cache_tree
);
8442 spin_unlock(&info
->block_group_cache_lock
);
8443 btrfs_put_block_group(cache
);
8447 cache
->space_info
= space_info
;
8448 spin_lock(&cache
->space_info
->lock
);
8449 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8450 spin_unlock(&cache
->space_info
->lock
);
8452 __link_block_group(space_info
, cache
);
8454 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
8455 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
8456 set_block_group_ro(cache
, 1);
8459 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
8460 if (!(get_alloc_profile(root
, space_info
->flags
) &
8461 (BTRFS_BLOCK_GROUP_RAID10
|
8462 BTRFS_BLOCK_GROUP_RAID1
|
8463 BTRFS_BLOCK_GROUP_RAID5
|
8464 BTRFS_BLOCK_GROUP_RAID6
|
8465 BTRFS_BLOCK_GROUP_DUP
)))
8468 * avoid allocating from un-mirrored block group if there are
8469 * mirrored block groups.
8471 list_for_each_entry(cache
,
8472 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
8474 set_block_group_ro(cache
, 1);
8475 list_for_each_entry(cache
,
8476 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
8478 set_block_group_ro(cache
, 1);
8481 init_global_block_rsv(info
);
8484 btrfs_free_path(path
);
8488 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
8489 struct btrfs_root
*root
)
8491 struct btrfs_block_group_cache
*block_group
, *tmp
;
8492 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
8493 struct btrfs_block_group_item item
;
8494 struct btrfs_key key
;
8497 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
,
8499 list_del_init(&block_group
->new_bg_list
);
8504 spin_lock(&block_group
->lock
);
8505 memcpy(&item
, &block_group
->item
, sizeof(item
));
8506 memcpy(&key
, &block_group
->key
, sizeof(key
));
8507 spin_unlock(&block_group
->lock
);
8509 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
8512 btrfs_abort_transaction(trans
, extent_root
, ret
);
8513 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
8514 key
.objectid
, key
.offset
);
8516 btrfs_abort_transaction(trans
, extent_root
, ret
);
8520 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8521 struct btrfs_root
*root
, u64 bytes_used
,
8522 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8526 struct btrfs_root
*extent_root
;
8527 struct btrfs_block_group_cache
*cache
;
8529 extent_root
= root
->fs_info
->extent_root
;
8531 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8533 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8536 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
8538 if (!cache
->free_space_ctl
) {
8543 cache
->key
.objectid
= chunk_offset
;
8544 cache
->key
.offset
= size
;
8545 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8546 cache
->sectorsize
= root
->sectorsize
;
8547 cache
->fs_info
= root
->fs_info
;
8548 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
8549 &root
->fs_info
->mapping_tree
,
8552 atomic_set(&cache
->count
, 1);
8553 spin_lock_init(&cache
->lock
);
8554 INIT_LIST_HEAD(&cache
->list
);
8555 INIT_LIST_HEAD(&cache
->cluster_list
);
8556 INIT_LIST_HEAD(&cache
->new_bg_list
);
8558 btrfs_init_free_space_ctl(cache
);
8560 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8561 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8562 cache
->flags
= type
;
8563 btrfs_set_block_group_flags(&cache
->item
, type
);
8565 cache
->last_byte_to_unpin
= (u64
)-1;
8566 cache
->cached
= BTRFS_CACHE_FINISHED
;
8567 ret
= exclude_super_stripes(root
, cache
);
8570 * We may have excluded something, so call this just in
8573 free_excluded_extents(root
, cache
);
8574 kfree(cache
->free_space_ctl
);
8579 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
8580 chunk_offset
+ size
);
8582 free_excluded_extents(root
, cache
);
8584 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8586 btrfs_remove_free_space_cache(cache
);
8587 btrfs_put_block_group(cache
);
8591 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
8592 &cache
->space_info
);
8594 btrfs_remove_free_space_cache(cache
);
8595 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8596 rb_erase(&cache
->cache_node
,
8597 &root
->fs_info
->block_group_cache_tree
);
8598 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8599 btrfs_put_block_group(cache
);
8602 update_global_block_rsv(root
->fs_info
);
8604 spin_lock(&cache
->space_info
->lock
);
8605 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8606 spin_unlock(&cache
->space_info
->lock
);
8608 __link_block_group(cache
->space_info
, cache
);
8610 list_add_tail(&cache
->new_bg_list
, &trans
->new_bgs
);
8612 set_avail_alloc_bits(extent_root
->fs_info
, type
);
8617 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
8619 u64 extra_flags
= chunk_to_extended(flags
) &
8620 BTRFS_EXTENDED_PROFILE_MASK
;
8622 write_seqlock(&fs_info
->profiles_lock
);
8623 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
8624 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
8625 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
8626 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
8627 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
8628 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
8629 write_sequnlock(&fs_info
->profiles_lock
);
8632 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
8633 struct btrfs_root
*root
, u64 group_start
)
8635 struct btrfs_path
*path
;
8636 struct btrfs_block_group_cache
*block_group
;
8637 struct btrfs_free_cluster
*cluster
;
8638 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8639 struct btrfs_key key
;
8640 struct inode
*inode
;
8645 root
= root
->fs_info
->extent_root
;
8647 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
8648 BUG_ON(!block_group
);
8649 BUG_ON(!block_group
->ro
);
8652 * Free the reserved super bytes from this block group before
8655 free_excluded_extents(root
, block_group
);
8657 memcpy(&key
, &block_group
->key
, sizeof(key
));
8658 index
= get_block_group_index(block_group
);
8659 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
8660 BTRFS_BLOCK_GROUP_RAID1
|
8661 BTRFS_BLOCK_GROUP_RAID10
))
8666 /* make sure this block group isn't part of an allocation cluster */
8667 cluster
= &root
->fs_info
->data_alloc_cluster
;
8668 spin_lock(&cluster
->refill_lock
);
8669 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8670 spin_unlock(&cluster
->refill_lock
);
8673 * make sure this block group isn't part of a metadata
8674 * allocation cluster
8676 cluster
= &root
->fs_info
->meta_alloc_cluster
;
8677 spin_lock(&cluster
->refill_lock
);
8678 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8679 spin_unlock(&cluster
->refill_lock
);
8681 path
= btrfs_alloc_path();
8687 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
8688 if (!IS_ERR(inode
)) {
8689 ret
= btrfs_orphan_add(trans
, inode
);
8691 btrfs_add_delayed_iput(inode
);
8695 /* One for the block groups ref */
8696 spin_lock(&block_group
->lock
);
8697 if (block_group
->iref
) {
8698 block_group
->iref
= 0;
8699 block_group
->inode
= NULL
;
8700 spin_unlock(&block_group
->lock
);
8703 spin_unlock(&block_group
->lock
);
8705 /* One for our lookup ref */
8706 btrfs_add_delayed_iput(inode
);
8709 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
8710 key
.offset
= block_group
->key
.objectid
;
8713 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
8717 btrfs_release_path(path
);
8719 ret
= btrfs_del_item(trans
, tree_root
, path
);
8722 btrfs_release_path(path
);
8725 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8726 rb_erase(&block_group
->cache_node
,
8727 &root
->fs_info
->block_group_cache_tree
);
8729 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
8730 root
->fs_info
->first_logical_byte
= (u64
)-1;
8731 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8733 down_write(&block_group
->space_info
->groups_sem
);
8735 * we must use list_del_init so people can check to see if they
8736 * are still on the list after taking the semaphore
8738 list_del_init(&block_group
->list
);
8739 if (list_empty(&block_group
->space_info
->block_groups
[index
]))
8740 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
8741 up_write(&block_group
->space_info
->groups_sem
);
8743 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8744 wait_block_group_cache_done(block_group
);
8746 btrfs_remove_free_space_cache(block_group
);
8748 spin_lock(&block_group
->space_info
->lock
);
8749 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8750 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8751 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
8752 spin_unlock(&block_group
->space_info
->lock
);
8754 memcpy(&key
, &block_group
->key
, sizeof(key
));
8756 btrfs_clear_space_info_full(root
->fs_info
);
8758 btrfs_put_block_group(block_group
);
8759 btrfs_put_block_group(block_group
);
8761 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8767 ret
= btrfs_del_item(trans
, root
, path
);
8769 btrfs_free_path(path
);
8773 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
8775 struct btrfs_space_info
*space_info
;
8776 struct btrfs_super_block
*disk_super
;
8782 disk_super
= fs_info
->super_copy
;
8783 if (!btrfs_super_root(disk_super
))
8786 features
= btrfs_super_incompat_flags(disk_super
);
8787 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
8790 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
8791 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8796 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
8797 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8799 flags
= BTRFS_BLOCK_GROUP_METADATA
;
8800 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8804 flags
= BTRFS_BLOCK_GROUP_DATA
;
8805 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
8811 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
8813 return unpin_extent_range(root
, start
, end
);
8816 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
8817 u64 num_bytes
, u64
*actual_bytes
)
8819 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
8822 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
8824 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8825 struct btrfs_block_group_cache
*cache
= NULL
;
8830 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
8834 * try to trim all FS space, our block group may start from non-zero.
8836 if (range
->len
== total_bytes
)
8837 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
8839 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
8842 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
8843 btrfs_put_block_group(cache
);
8847 start
= max(range
->start
, cache
->key
.objectid
);
8848 end
= min(range
->start
+ range
->len
,
8849 cache
->key
.objectid
+ cache
->key
.offset
);
8851 if (end
- start
>= range
->minlen
) {
8852 if (!block_group_cache_done(cache
)) {
8853 ret
= cache_block_group(cache
, 0);
8855 btrfs_put_block_group(cache
);
8858 ret
= wait_block_group_cache_done(cache
);
8860 btrfs_put_block_group(cache
);
8864 ret
= btrfs_trim_block_group(cache
,
8870 trimmed
+= group_trimmed
;
8872 btrfs_put_block_group(cache
);
8877 cache
= next_block_group(fs_info
->tree_root
, cache
);
8880 range
->len
= trimmed
;