Linux 3.12.5
[linux/fpc-iii.git] / fs / btrfs / free-space-cache.c
blobb4f9904c4c6b2ed5f0da30ad664baf33100a879c
1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35 struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
43 struct btrfs_key key;
44 struct btrfs_key location;
45 struct btrfs_disk_key disk_key;
46 struct btrfs_free_space_header *header;
47 struct extent_buffer *leaf;
48 struct inode *inode = NULL;
49 int ret;
51 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52 key.offset = offset;
53 key.type = 0;
55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 if (ret < 0)
57 return ERR_PTR(ret);
58 if (ret > 0) {
59 btrfs_release_path(path);
60 return ERR_PTR(-ENOENT);
63 leaf = path->nodes[0];
64 header = btrfs_item_ptr(leaf, path->slots[0],
65 struct btrfs_free_space_header);
66 btrfs_free_space_key(leaf, header, &disk_key);
67 btrfs_disk_key_to_cpu(&location, &disk_key);
68 btrfs_release_path(path);
70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 if (!inode)
72 return ERR_PTR(-ENOENT);
73 if (IS_ERR(inode))
74 return inode;
75 if (is_bad_inode(inode)) {
76 iput(inode);
77 return ERR_PTR(-ENOENT);
80 mapping_set_gfp_mask(inode->i_mapping,
81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
83 return inode;
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 struct btrfs_block_group_cache
88 *block_group, struct btrfs_path *path)
90 struct inode *inode = NULL;
91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
93 spin_lock(&block_group->lock);
94 if (block_group->inode)
95 inode = igrab(block_group->inode);
96 spin_unlock(&block_group->lock);
97 if (inode)
98 return inode;
100 inode = __lookup_free_space_inode(root, path,
101 block_group->key.objectid);
102 if (IS_ERR(inode))
103 return inode;
105 spin_lock(&block_group->lock);
106 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107 btrfs_info(root->fs_info,
108 "Old style space inode found, converting.");
109 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
110 BTRFS_INODE_NODATACOW;
111 block_group->disk_cache_state = BTRFS_DC_CLEAR;
114 if (!block_group->iref) {
115 block_group->inode = igrab(inode);
116 block_group->iref = 1;
118 spin_unlock(&block_group->lock);
120 return inode;
123 static int __create_free_space_inode(struct btrfs_root *root,
124 struct btrfs_trans_handle *trans,
125 struct btrfs_path *path,
126 u64 ino, u64 offset)
128 struct btrfs_key key;
129 struct btrfs_disk_key disk_key;
130 struct btrfs_free_space_header *header;
131 struct btrfs_inode_item *inode_item;
132 struct extent_buffer *leaf;
133 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
134 int ret;
136 ret = btrfs_insert_empty_inode(trans, root, path, ino);
137 if (ret)
138 return ret;
140 /* We inline crc's for the free disk space cache */
141 if (ino != BTRFS_FREE_INO_OBJECTID)
142 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
144 leaf = path->nodes[0];
145 inode_item = btrfs_item_ptr(leaf, path->slots[0],
146 struct btrfs_inode_item);
147 btrfs_item_key(leaf, &disk_key, path->slots[0]);
148 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
149 sizeof(*inode_item));
150 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
151 btrfs_set_inode_size(leaf, inode_item, 0);
152 btrfs_set_inode_nbytes(leaf, inode_item, 0);
153 btrfs_set_inode_uid(leaf, inode_item, 0);
154 btrfs_set_inode_gid(leaf, inode_item, 0);
155 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
156 btrfs_set_inode_flags(leaf, inode_item, flags);
157 btrfs_set_inode_nlink(leaf, inode_item, 1);
158 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
159 btrfs_set_inode_block_group(leaf, inode_item, offset);
160 btrfs_mark_buffer_dirty(leaf);
161 btrfs_release_path(path);
163 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
164 key.offset = offset;
165 key.type = 0;
167 ret = btrfs_insert_empty_item(trans, root, path, &key,
168 sizeof(struct btrfs_free_space_header));
169 if (ret < 0) {
170 btrfs_release_path(path);
171 return ret;
173 leaf = path->nodes[0];
174 header = btrfs_item_ptr(leaf, path->slots[0],
175 struct btrfs_free_space_header);
176 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
177 btrfs_set_free_space_key(leaf, header, &disk_key);
178 btrfs_mark_buffer_dirty(leaf);
179 btrfs_release_path(path);
181 return 0;
184 int create_free_space_inode(struct btrfs_root *root,
185 struct btrfs_trans_handle *trans,
186 struct btrfs_block_group_cache *block_group,
187 struct btrfs_path *path)
189 int ret;
190 u64 ino;
192 ret = btrfs_find_free_objectid(root, &ino);
193 if (ret < 0)
194 return ret;
196 return __create_free_space_inode(root, trans, path, ino,
197 block_group->key.objectid);
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
201 struct btrfs_block_rsv *rsv)
203 u64 needed_bytes;
204 int ret;
206 /* 1 for slack space, 1 for updating the inode */
207 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
208 btrfs_calc_trans_metadata_size(root, 1);
210 spin_lock(&rsv->lock);
211 if (rsv->reserved < needed_bytes)
212 ret = -ENOSPC;
213 else
214 ret = 0;
215 spin_unlock(&rsv->lock);
216 return ret;
219 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
220 struct btrfs_trans_handle *trans,
221 struct btrfs_path *path,
222 struct inode *inode)
224 int ret = 0;
226 btrfs_i_size_write(inode, 0);
227 truncate_pagecache(inode, 0);
230 * We don't need an orphan item because truncating the free space cache
231 * will never be split across transactions.
233 ret = btrfs_truncate_inode_items(trans, root, inode,
234 0, BTRFS_EXTENT_DATA_KEY);
235 if (ret) {
236 btrfs_abort_transaction(trans, root, ret);
237 return ret;
240 ret = btrfs_update_inode(trans, root, inode);
241 if (ret)
242 btrfs_abort_transaction(trans, root, ret);
244 return ret;
247 static int readahead_cache(struct inode *inode)
249 struct file_ra_state *ra;
250 unsigned long last_index;
252 ra = kzalloc(sizeof(*ra), GFP_NOFS);
253 if (!ra)
254 return -ENOMEM;
256 file_ra_state_init(ra, inode->i_mapping);
257 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261 kfree(ra);
263 return 0;
266 struct io_ctl {
267 void *cur, *orig;
268 struct page *page;
269 struct page **pages;
270 struct btrfs_root *root;
271 unsigned long size;
272 int index;
273 int num_pages;
274 unsigned check_crcs:1;
277 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
278 struct btrfs_root *root)
280 memset(io_ctl, 0, sizeof(struct io_ctl));
281 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
282 PAGE_CACHE_SHIFT;
283 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
284 GFP_NOFS);
285 if (!io_ctl->pages)
286 return -ENOMEM;
287 io_ctl->root = root;
288 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
289 io_ctl->check_crcs = 1;
290 return 0;
293 static void io_ctl_free(struct io_ctl *io_ctl)
295 kfree(io_ctl->pages);
298 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 if (io_ctl->cur) {
301 kunmap(io_ctl->page);
302 io_ctl->cur = NULL;
303 io_ctl->orig = NULL;
307 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 ASSERT(io_ctl->index < io_ctl->num_pages);
310 io_ctl->page = io_ctl->pages[io_ctl->index++];
311 io_ctl->cur = kmap(io_ctl->page);
312 io_ctl->orig = io_ctl->cur;
313 io_ctl->size = PAGE_CACHE_SIZE;
314 if (clear)
315 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
320 int i;
322 io_ctl_unmap_page(io_ctl);
324 for (i = 0; i < io_ctl->num_pages; i++) {
325 if (io_ctl->pages[i]) {
326 ClearPageChecked(io_ctl->pages[i]);
327 unlock_page(io_ctl->pages[i]);
328 page_cache_release(io_ctl->pages[i]);
333 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
334 int uptodate)
336 struct page *page;
337 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
338 int i;
340 for (i = 0; i < io_ctl->num_pages; i++) {
341 page = find_or_create_page(inode->i_mapping, i, mask);
342 if (!page) {
343 io_ctl_drop_pages(io_ctl);
344 return -ENOMEM;
346 io_ctl->pages[i] = page;
347 if (uptodate && !PageUptodate(page)) {
348 btrfs_readpage(NULL, page);
349 lock_page(page);
350 if (!PageUptodate(page)) {
351 printk(KERN_ERR "btrfs: error reading free "
352 "space cache\n");
353 io_ctl_drop_pages(io_ctl);
354 return -EIO;
359 for (i = 0; i < io_ctl->num_pages; i++) {
360 clear_page_dirty_for_io(io_ctl->pages[i]);
361 set_page_extent_mapped(io_ctl->pages[i]);
364 return 0;
367 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
369 __le64 *val;
371 io_ctl_map_page(io_ctl, 1);
374 * Skip the csum areas. If we don't check crcs then we just have a
375 * 64bit chunk at the front of the first page.
377 if (io_ctl->check_crcs) {
378 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
379 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
380 } else {
381 io_ctl->cur += sizeof(u64);
382 io_ctl->size -= sizeof(u64) * 2;
385 val = io_ctl->cur;
386 *val = cpu_to_le64(generation);
387 io_ctl->cur += sizeof(u64);
390 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
392 __le64 *gen;
395 * Skip the crc area. If we don't check crcs then we just have a 64bit
396 * chunk at the front of the first page.
398 if (io_ctl->check_crcs) {
399 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
400 io_ctl->size -= sizeof(u64) +
401 (sizeof(u32) * io_ctl->num_pages);
402 } else {
403 io_ctl->cur += sizeof(u64);
404 io_ctl->size -= sizeof(u64) * 2;
407 gen = io_ctl->cur;
408 if (le64_to_cpu(*gen) != generation) {
409 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
410 "(%Lu) does not match inode (%Lu)\n", *gen,
411 generation);
412 io_ctl_unmap_page(io_ctl);
413 return -EIO;
415 io_ctl->cur += sizeof(u64);
416 return 0;
419 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
421 u32 *tmp;
422 u32 crc = ~(u32)0;
423 unsigned offset = 0;
425 if (!io_ctl->check_crcs) {
426 io_ctl_unmap_page(io_ctl);
427 return;
430 if (index == 0)
431 offset = sizeof(u32) * io_ctl->num_pages;
433 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
434 PAGE_CACHE_SIZE - offset);
435 btrfs_csum_final(crc, (char *)&crc);
436 io_ctl_unmap_page(io_ctl);
437 tmp = kmap(io_ctl->pages[0]);
438 tmp += index;
439 *tmp = crc;
440 kunmap(io_ctl->pages[0]);
443 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
445 u32 *tmp, val;
446 u32 crc = ~(u32)0;
447 unsigned offset = 0;
449 if (!io_ctl->check_crcs) {
450 io_ctl_map_page(io_ctl, 0);
451 return 0;
454 if (index == 0)
455 offset = sizeof(u32) * io_ctl->num_pages;
457 tmp = kmap(io_ctl->pages[0]);
458 tmp += index;
459 val = *tmp;
460 kunmap(io_ctl->pages[0]);
462 io_ctl_map_page(io_ctl, 0);
463 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
464 PAGE_CACHE_SIZE - offset);
465 btrfs_csum_final(crc, (char *)&crc);
466 if (val != crc) {
467 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
468 "space cache\n");
469 io_ctl_unmap_page(io_ctl);
470 return -EIO;
473 return 0;
476 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
477 void *bitmap)
479 struct btrfs_free_space_entry *entry;
481 if (!io_ctl->cur)
482 return -ENOSPC;
484 entry = io_ctl->cur;
485 entry->offset = cpu_to_le64(offset);
486 entry->bytes = cpu_to_le64(bytes);
487 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
488 BTRFS_FREE_SPACE_EXTENT;
489 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
490 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
492 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
493 return 0;
495 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
497 /* No more pages to map */
498 if (io_ctl->index >= io_ctl->num_pages)
499 return 0;
501 /* map the next page */
502 io_ctl_map_page(io_ctl, 1);
503 return 0;
506 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
508 if (!io_ctl->cur)
509 return -ENOSPC;
512 * If we aren't at the start of the current page, unmap this one and
513 * map the next one if there is any left.
515 if (io_ctl->cur != io_ctl->orig) {
516 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
517 if (io_ctl->index >= io_ctl->num_pages)
518 return -ENOSPC;
519 io_ctl_map_page(io_ctl, 0);
522 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
523 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
524 if (io_ctl->index < io_ctl->num_pages)
525 io_ctl_map_page(io_ctl, 0);
526 return 0;
529 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532 * If we're not on the boundary we know we've modified the page and we
533 * need to crc the page.
535 if (io_ctl->cur != io_ctl->orig)
536 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
537 else
538 io_ctl_unmap_page(io_ctl);
540 while (io_ctl->index < io_ctl->num_pages) {
541 io_ctl_map_page(io_ctl, 1);
542 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
546 static int io_ctl_read_entry(struct io_ctl *io_ctl,
547 struct btrfs_free_space *entry, u8 *type)
549 struct btrfs_free_space_entry *e;
550 int ret;
552 if (!io_ctl->cur) {
553 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
554 if (ret)
555 return ret;
558 e = io_ctl->cur;
559 entry->offset = le64_to_cpu(e->offset);
560 entry->bytes = le64_to_cpu(e->bytes);
561 *type = e->type;
562 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
563 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
565 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
566 return 0;
568 io_ctl_unmap_page(io_ctl);
570 return 0;
573 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
574 struct btrfs_free_space *entry)
576 int ret;
578 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
579 if (ret)
580 return ret;
582 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
583 io_ctl_unmap_page(io_ctl);
585 return 0;
589 * Since we attach pinned extents after the fact we can have contiguous sections
590 * of free space that are split up in entries. This poses a problem with the
591 * tree logging stuff since it could have allocated across what appears to be 2
592 * entries since we would have merged the entries when adding the pinned extents
593 * back to the free space cache. So run through the space cache that we just
594 * loaded and merge contiguous entries. This will make the log replay stuff not
595 * blow up and it will make for nicer allocator behavior.
597 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
599 struct btrfs_free_space *e, *prev = NULL;
600 struct rb_node *n;
602 again:
603 spin_lock(&ctl->tree_lock);
604 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
605 e = rb_entry(n, struct btrfs_free_space, offset_index);
606 if (!prev)
607 goto next;
608 if (e->bitmap || prev->bitmap)
609 goto next;
610 if (prev->offset + prev->bytes == e->offset) {
611 unlink_free_space(ctl, prev);
612 unlink_free_space(ctl, e);
613 prev->bytes += e->bytes;
614 kmem_cache_free(btrfs_free_space_cachep, e);
615 link_free_space(ctl, prev);
616 prev = NULL;
617 spin_unlock(&ctl->tree_lock);
618 goto again;
620 next:
621 prev = e;
623 spin_unlock(&ctl->tree_lock);
626 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
627 struct btrfs_free_space_ctl *ctl,
628 struct btrfs_path *path, u64 offset)
630 struct btrfs_free_space_header *header;
631 struct extent_buffer *leaf;
632 struct io_ctl io_ctl;
633 struct btrfs_key key;
634 struct btrfs_free_space *e, *n;
635 struct list_head bitmaps;
636 u64 num_entries;
637 u64 num_bitmaps;
638 u64 generation;
639 u8 type;
640 int ret = 0;
642 INIT_LIST_HEAD(&bitmaps);
644 /* Nothing in the space cache, goodbye */
645 if (!i_size_read(inode))
646 return 0;
648 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
649 key.offset = offset;
650 key.type = 0;
652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
653 if (ret < 0)
654 return 0;
655 else if (ret > 0) {
656 btrfs_release_path(path);
657 return 0;
660 ret = -1;
662 leaf = path->nodes[0];
663 header = btrfs_item_ptr(leaf, path->slots[0],
664 struct btrfs_free_space_header);
665 num_entries = btrfs_free_space_entries(leaf, header);
666 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
667 generation = btrfs_free_space_generation(leaf, header);
668 btrfs_release_path(path);
670 if (BTRFS_I(inode)->generation != generation) {
671 btrfs_err(root->fs_info,
672 "free space inode generation (%llu) "
673 "did not match free space cache generation (%llu)",
674 BTRFS_I(inode)->generation, generation);
675 return 0;
678 if (!num_entries)
679 return 0;
681 ret = io_ctl_init(&io_ctl, inode, root);
682 if (ret)
683 return ret;
685 ret = readahead_cache(inode);
686 if (ret)
687 goto out;
689 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
690 if (ret)
691 goto out;
693 ret = io_ctl_check_crc(&io_ctl, 0);
694 if (ret)
695 goto free_cache;
697 ret = io_ctl_check_generation(&io_ctl, generation);
698 if (ret)
699 goto free_cache;
701 while (num_entries) {
702 e = kmem_cache_zalloc(btrfs_free_space_cachep,
703 GFP_NOFS);
704 if (!e)
705 goto free_cache;
707 ret = io_ctl_read_entry(&io_ctl, e, &type);
708 if (ret) {
709 kmem_cache_free(btrfs_free_space_cachep, e);
710 goto free_cache;
713 if (!e->bytes) {
714 kmem_cache_free(btrfs_free_space_cachep, e);
715 goto free_cache;
718 if (type == BTRFS_FREE_SPACE_EXTENT) {
719 spin_lock(&ctl->tree_lock);
720 ret = link_free_space(ctl, e);
721 spin_unlock(&ctl->tree_lock);
722 if (ret) {
723 btrfs_err(root->fs_info,
724 "Duplicate entries in free space cache, dumping");
725 kmem_cache_free(btrfs_free_space_cachep, e);
726 goto free_cache;
728 } else {
729 ASSERT(num_bitmaps);
730 num_bitmaps--;
731 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
732 if (!e->bitmap) {
733 kmem_cache_free(
734 btrfs_free_space_cachep, e);
735 goto free_cache;
737 spin_lock(&ctl->tree_lock);
738 ret = link_free_space(ctl, e);
739 ctl->total_bitmaps++;
740 ctl->op->recalc_thresholds(ctl);
741 spin_unlock(&ctl->tree_lock);
742 if (ret) {
743 btrfs_err(root->fs_info,
744 "Duplicate entries in free space cache, dumping");
745 kmem_cache_free(btrfs_free_space_cachep, e);
746 goto free_cache;
748 list_add_tail(&e->list, &bitmaps);
751 num_entries--;
754 io_ctl_unmap_page(&io_ctl);
757 * We add the bitmaps at the end of the entries in order that
758 * the bitmap entries are added to the cache.
760 list_for_each_entry_safe(e, n, &bitmaps, list) {
761 list_del_init(&e->list);
762 ret = io_ctl_read_bitmap(&io_ctl, e);
763 if (ret)
764 goto free_cache;
767 io_ctl_drop_pages(&io_ctl);
768 merge_space_tree(ctl);
769 ret = 1;
770 out:
771 io_ctl_free(&io_ctl);
772 return ret;
773 free_cache:
774 io_ctl_drop_pages(&io_ctl);
775 __btrfs_remove_free_space_cache(ctl);
776 goto out;
779 int load_free_space_cache(struct btrfs_fs_info *fs_info,
780 struct btrfs_block_group_cache *block_group)
782 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
783 struct btrfs_root *root = fs_info->tree_root;
784 struct inode *inode;
785 struct btrfs_path *path;
786 int ret = 0;
787 bool matched;
788 u64 used = btrfs_block_group_used(&block_group->item);
791 * If this block group has been marked to be cleared for one reason or
792 * another then we can't trust the on disk cache, so just return.
794 spin_lock(&block_group->lock);
795 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
796 spin_unlock(&block_group->lock);
797 return 0;
799 spin_unlock(&block_group->lock);
801 path = btrfs_alloc_path();
802 if (!path)
803 return 0;
804 path->search_commit_root = 1;
805 path->skip_locking = 1;
807 inode = lookup_free_space_inode(root, block_group, path);
808 if (IS_ERR(inode)) {
809 btrfs_free_path(path);
810 return 0;
813 /* We may have converted the inode and made the cache invalid. */
814 spin_lock(&block_group->lock);
815 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
816 spin_unlock(&block_group->lock);
817 btrfs_free_path(path);
818 goto out;
820 spin_unlock(&block_group->lock);
822 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
823 path, block_group->key.objectid);
824 btrfs_free_path(path);
825 if (ret <= 0)
826 goto out;
828 spin_lock(&ctl->tree_lock);
829 matched = (ctl->free_space == (block_group->key.offset - used -
830 block_group->bytes_super));
831 spin_unlock(&ctl->tree_lock);
833 if (!matched) {
834 __btrfs_remove_free_space_cache(ctl);
835 btrfs_err(fs_info, "block group %llu has wrong amount of free space",
836 block_group->key.objectid);
837 ret = -1;
839 out:
840 if (ret < 0) {
841 /* This cache is bogus, make sure it gets cleared */
842 spin_lock(&block_group->lock);
843 block_group->disk_cache_state = BTRFS_DC_CLEAR;
844 spin_unlock(&block_group->lock);
845 ret = 0;
847 btrfs_err(fs_info, "failed to load free space cache for block group %llu",
848 block_group->key.objectid);
851 iput(inode);
852 return ret;
856 * __btrfs_write_out_cache - write out cached info to an inode
857 * @root - the root the inode belongs to
858 * @ctl - the free space cache we are going to write out
859 * @block_group - the block_group for this cache if it belongs to a block_group
860 * @trans - the trans handle
861 * @path - the path to use
862 * @offset - the offset for the key we'll insert
864 * This function writes out a free space cache struct to disk for quick recovery
865 * on mount. This will return 0 if it was successfull in writing the cache out,
866 * and -1 if it was not.
868 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
869 struct btrfs_free_space_ctl *ctl,
870 struct btrfs_block_group_cache *block_group,
871 struct btrfs_trans_handle *trans,
872 struct btrfs_path *path, u64 offset)
874 struct btrfs_free_space_header *header;
875 struct extent_buffer *leaf;
876 struct rb_node *node;
877 struct list_head *pos, *n;
878 struct extent_state *cached_state = NULL;
879 struct btrfs_free_cluster *cluster = NULL;
880 struct extent_io_tree *unpin = NULL;
881 struct io_ctl io_ctl;
882 struct list_head bitmap_list;
883 struct btrfs_key key;
884 u64 start, extent_start, extent_end, len;
885 int entries = 0;
886 int bitmaps = 0;
887 int ret;
888 int err = -1;
890 INIT_LIST_HEAD(&bitmap_list);
892 if (!i_size_read(inode))
893 return -1;
895 ret = io_ctl_init(&io_ctl, inode, root);
896 if (ret)
897 return -1;
899 /* Get the cluster for this block_group if it exists */
900 if (block_group && !list_empty(&block_group->cluster_list))
901 cluster = list_entry(block_group->cluster_list.next,
902 struct btrfs_free_cluster,
903 block_group_list);
905 /* Lock all pages first so we can lock the extent safely. */
906 io_ctl_prepare_pages(&io_ctl, inode, 0);
908 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
909 0, &cached_state);
911 node = rb_first(&ctl->free_space_offset);
912 if (!node && cluster) {
913 node = rb_first(&cluster->root);
914 cluster = NULL;
917 /* Make sure we can fit our crcs into the first page */
918 if (io_ctl.check_crcs &&
919 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
920 goto out_nospc;
922 io_ctl_set_generation(&io_ctl, trans->transid);
924 /* Write out the extent entries */
925 while (node) {
926 struct btrfs_free_space *e;
928 e = rb_entry(node, struct btrfs_free_space, offset_index);
929 entries++;
931 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
932 e->bitmap);
933 if (ret)
934 goto out_nospc;
936 if (e->bitmap) {
937 list_add_tail(&e->list, &bitmap_list);
938 bitmaps++;
940 node = rb_next(node);
941 if (!node && cluster) {
942 node = rb_first(&cluster->root);
943 cluster = NULL;
948 * We want to add any pinned extents to our free space cache
949 * so we don't leak the space
953 * We shouldn't have switched the pinned extents yet so this is the
954 * right one
956 unpin = root->fs_info->pinned_extents;
958 if (block_group)
959 start = block_group->key.objectid;
961 while (block_group && (start < block_group->key.objectid +
962 block_group->key.offset)) {
963 ret = find_first_extent_bit(unpin, start,
964 &extent_start, &extent_end,
965 EXTENT_DIRTY, NULL);
966 if (ret) {
967 ret = 0;
968 break;
971 /* This pinned extent is out of our range */
972 if (extent_start >= block_group->key.objectid +
973 block_group->key.offset)
974 break;
976 extent_start = max(extent_start, start);
977 extent_end = min(block_group->key.objectid +
978 block_group->key.offset, extent_end + 1);
979 len = extent_end - extent_start;
981 entries++;
982 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
983 if (ret)
984 goto out_nospc;
986 start = extent_end;
989 /* Write out the bitmaps */
990 list_for_each_safe(pos, n, &bitmap_list) {
991 struct btrfs_free_space *entry =
992 list_entry(pos, struct btrfs_free_space, list);
994 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
995 if (ret)
996 goto out_nospc;
997 list_del_init(&entry->list);
1000 /* Zero out the rest of the pages just to make sure */
1001 io_ctl_zero_remaining_pages(&io_ctl);
1003 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1004 0, i_size_read(inode), &cached_state);
1005 io_ctl_drop_pages(&io_ctl);
1006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1007 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1009 if (ret)
1010 goto out;
1013 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1015 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1016 key.offset = offset;
1017 key.type = 0;
1019 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1020 if (ret < 0) {
1021 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1022 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1023 GFP_NOFS);
1024 goto out;
1026 leaf = path->nodes[0];
1027 if (ret > 0) {
1028 struct btrfs_key found_key;
1029 ASSERT(path->slots[0]);
1030 path->slots[0]--;
1031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1032 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1033 found_key.offset != offset) {
1034 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1035 inode->i_size - 1,
1036 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1037 NULL, GFP_NOFS);
1038 btrfs_release_path(path);
1039 goto out;
1043 BTRFS_I(inode)->generation = trans->transid;
1044 header = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_free_space_header);
1046 btrfs_set_free_space_entries(leaf, header, entries);
1047 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1048 btrfs_set_free_space_generation(leaf, header, trans->transid);
1049 btrfs_mark_buffer_dirty(leaf);
1050 btrfs_release_path(path);
1052 err = 0;
1053 out:
1054 io_ctl_free(&io_ctl);
1055 if (err) {
1056 invalidate_inode_pages2(inode->i_mapping);
1057 BTRFS_I(inode)->generation = 0;
1059 btrfs_update_inode(trans, root, inode);
1060 return err;
1062 out_nospc:
1063 list_for_each_safe(pos, n, &bitmap_list) {
1064 struct btrfs_free_space *entry =
1065 list_entry(pos, struct btrfs_free_space, list);
1066 list_del_init(&entry->list);
1068 io_ctl_drop_pages(&io_ctl);
1069 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1070 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1071 goto out;
1074 int btrfs_write_out_cache(struct btrfs_root *root,
1075 struct btrfs_trans_handle *trans,
1076 struct btrfs_block_group_cache *block_group,
1077 struct btrfs_path *path)
1079 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1080 struct inode *inode;
1081 int ret = 0;
1083 root = root->fs_info->tree_root;
1085 spin_lock(&block_group->lock);
1086 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1087 spin_unlock(&block_group->lock);
1088 return 0;
1090 spin_unlock(&block_group->lock);
1092 inode = lookup_free_space_inode(root, block_group, path);
1093 if (IS_ERR(inode))
1094 return 0;
1096 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1097 path, block_group->key.objectid);
1098 if (ret) {
1099 spin_lock(&block_group->lock);
1100 block_group->disk_cache_state = BTRFS_DC_ERROR;
1101 spin_unlock(&block_group->lock);
1102 ret = 0;
1103 #ifdef DEBUG
1104 btrfs_err(root->fs_info,
1105 "failed to write free space cache for block group %llu",
1106 block_group->key.objectid);
1107 #endif
1110 iput(inode);
1111 return ret;
1114 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1115 u64 offset)
1117 ASSERT(offset >= bitmap_start);
1118 offset -= bitmap_start;
1119 return (unsigned long)(div_u64(offset, unit));
1122 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1124 return (unsigned long)(div_u64(bytes, unit));
1127 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1128 u64 offset)
1130 u64 bitmap_start;
1131 u64 bytes_per_bitmap;
1133 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1134 bitmap_start = offset - ctl->start;
1135 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1136 bitmap_start *= bytes_per_bitmap;
1137 bitmap_start += ctl->start;
1139 return bitmap_start;
1142 static int tree_insert_offset(struct rb_root *root, u64 offset,
1143 struct rb_node *node, int bitmap)
1145 struct rb_node **p = &root->rb_node;
1146 struct rb_node *parent = NULL;
1147 struct btrfs_free_space *info;
1149 while (*p) {
1150 parent = *p;
1151 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1153 if (offset < info->offset) {
1154 p = &(*p)->rb_left;
1155 } else if (offset > info->offset) {
1156 p = &(*p)->rb_right;
1157 } else {
1159 * we could have a bitmap entry and an extent entry
1160 * share the same offset. If this is the case, we want
1161 * the extent entry to always be found first if we do a
1162 * linear search through the tree, since we want to have
1163 * the quickest allocation time, and allocating from an
1164 * extent is faster than allocating from a bitmap. So
1165 * if we're inserting a bitmap and we find an entry at
1166 * this offset, we want to go right, or after this entry
1167 * logically. If we are inserting an extent and we've
1168 * found a bitmap, we want to go left, or before
1169 * logically.
1171 if (bitmap) {
1172 if (info->bitmap) {
1173 WARN_ON_ONCE(1);
1174 return -EEXIST;
1176 p = &(*p)->rb_right;
1177 } else {
1178 if (!info->bitmap) {
1179 WARN_ON_ONCE(1);
1180 return -EEXIST;
1182 p = &(*p)->rb_left;
1187 rb_link_node(node, parent, p);
1188 rb_insert_color(node, root);
1190 return 0;
1194 * searches the tree for the given offset.
1196 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1197 * want a section that has at least bytes size and comes at or after the given
1198 * offset.
1200 static struct btrfs_free_space *
1201 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1202 u64 offset, int bitmap_only, int fuzzy)
1204 struct rb_node *n = ctl->free_space_offset.rb_node;
1205 struct btrfs_free_space *entry, *prev = NULL;
1207 /* find entry that is closest to the 'offset' */
1208 while (1) {
1209 if (!n) {
1210 entry = NULL;
1211 break;
1214 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1215 prev = entry;
1217 if (offset < entry->offset)
1218 n = n->rb_left;
1219 else if (offset > entry->offset)
1220 n = n->rb_right;
1221 else
1222 break;
1225 if (bitmap_only) {
1226 if (!entry)
1227 return NULL;
1228 if (entry->bitmap)
1229 return entry;
1232 * bitmap entry and extent entry may share same offset,
1233 * in that case, bitmap entry comes after extent entry.
1235 n = rb_next(n);
1236 if (!n)
1237 return NULL;
1238 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1239 if (entry->offset != offset)
1240 return NULL;
1242 WARN_ON(!entry->bitmap);
1243 return entry;
1244 } else if (entry) {
1245 if (entry->bitmap) {
1247 * if previous extent entry covers the offset,
1248 * we should return it instead of the bitmap entry
1250 n = rb_prev(&entry->offset_index);
1251 if (n) {
1252 prev = rb_entry(n, struct btrfs_free_space,
1253 offset_index);
1254 if (!prev->bitmap &&
1255 prev->offset + prev->bytes > offset)
1256 entry = prev;
1259 return entry;
1262 if (!prev)
1263 return NULL;
1265 /* find last entry before the 'offset' */
1266 entry = prev;
1267 if (entry->offset > offset) {
1268 n = rb_prev(&entry->offset_index);
1269 if (n) {
1270 entry = rb_entry(n, struct btrfs_free_space,
1271 offset_index);
1272 ASSERT(entry->offset <= offset);
1273 } else {
1274 if (fuzzy)
1275 return entry;
1276 else
1277 return NULL;
1281 if (entry->bitmap) {
1282 n = rb_prev(&entry->offset_index);
1283 if (n) {
1284 prev = rb_entry(n, struct btrfs_free_space,
1285 offset_index);
1286 if (!prev->bitmap &&
1287 prev->offset + prev->bytes > offset)
1288 return prev;
1290 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1291 return entry;
1292 } else if (entry->offset + entry->bytes > offset)
1293 return entry;
1295 if (!fuzzy)
1296 return NULL;
1298 while (1) {
1299 if (entry->bitmap) {
1300 if (entry->offset + BITS_PER_BITMAP *
1301 ctl->unit > offset)
1302 break;
1303 } else {
1304 if (entry->offset + entry->bytes > offset)
1305 break;
1308 n = rb_next(&entry->offset_index);
1309 if (!n)
1310 return NULL;
1311 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1313 return entry;
1316 static inline void
1317 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1318 struct btrfs_free_space *info)
1320 rb_erase(&info->offset_index, &ctl->free_space_offset);
1321 ctl->free_extents--;
1324 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1325 struct btrfs_free_space *info)
1327 __unlink_free_space(ctl, info);
1328 ctl->free_space -= info->bytes;
1331 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1332 struct btrfs_free_space *info)
1334 int ret = 0;
1336 ASSERT(info->bytes || info->bitmap);
1337 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1338 &info->offset_index, (info->bitmap != NULL));
1339 if (ret)
1340 return ret;
1342 ctl->free_space += info->bytes;
1343 ctl->free_extents++;
1344 return ret;
1347 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1349 struct btrfs_block_group_cache *block_group = ctl->private;
1350 u64 max_bytes;
1351 u64 bitmap_bytes;
1352 u64 extent_bytes;
1353 u64 size = block_group->key.offset;
1354 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1355 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1357 max_bitmaps = max(max_bitmaps, 1);
1359 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1362 * The goal is to keep the total amount of memory used per 1gb of space
1363 * at or below 32k, so we need to adjust how much memory we allow to be
1364 * used by extent based free space tracking
1366 if (size < 1024 * 1024 * 1024)
1367 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1368 else
1369 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1370 div64_u64(size, 1024 * 1024 * 1024);
1373 * we want to account for 1 more bitmap than what we have so we can make
1374 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1375 * we add more bitmaps.
1377 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1379 if (bitmap_bytes >= max_bytes) {
1380 ctl->extents_thresh = 0;
1381 return;
1385 * we want the extent entry threshold to always be at most 1/2 the maxw
1386 * bytes we can have, or whatever is less than that.
1388 extent_bytes = max_bytes - bitmap_bytes;
1389 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1391 ctl->extents_thresh =
1392 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1395 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1396 struct btrfs_free_space *info,
1397 u64 offset, u64 bytes)
1399 unsigned long start, count;
1401 start = offset_to_bit(info->offset, ctl->unit, offset);
1402 count = bytes_to_bits(bytes, ctl->unit);
1403 ASSERT(start + count <= BITS_PER_BITMAP);
1405 bitmap_clear(info->bitmap, start, count);
1407 info->bytes -= bytes;
1410 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1411 struct btrfs_free_space *info, u64 offset,
1412 u64 bytes)
1414 __bitmap_clear_bits(ctl, info, offset, bytes);
1415 ctl->free_space -= bytes;
1418 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1419 struct btrfs_free_space *info, u64 offset,
1420 u64 bytes)
1422 unsigned long start, count;
1424 start = offset_to_bit(info->offset, ctl->unit, offset);
1425 count = bytes_to_bits(bytes, ctl->unit);
1426 ASSERT(start + count <= BITS_PER_BITMAP);
1428 bitmap_set(info->bitmap, start, count);
1430 info->bytes += bytes;
1431 ctl->free_space += bytes;
1435 * If we can not find suitable extent, we will use bytes to record
1436 * the size of the max extent.
1438 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1439 struct btrfs_free_space *bitmap_info, u64 *offset,
1440 u64 *bytes)
1442 unsigned long found_bits = 0;
1443 unsigned long max_bits = 0;
1444 unsigned long bits, i;
1445 unsigned long next_zero;
1446 unsigned long extent_bits;
1448 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1449 max_t(u64, *offset, bitmap_info->offset));
1450 bits = bytes_to_bits(*bytes, ctl->unit);
1452 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1453 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1454 BITS_PER_BITMAP, i);
1455 extent_bits = next_zero - i;
1456 if (extent_bits >= bits) {
1457 found_bits = extent_bits;
1458 break;
1459 } else if (extent_bits > max_bits) {
1460 max_bits = extent_bits;
1462 i = next_zero;
1465 if (found_bits) {
1466 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1467 *bytes = (u64)(found_bits) * ctl->unit;
1468 return 0;
1471 *bytes = (u64)(max_bits) * ctl->unit;
1472 return -1;
1475 /* Cache the size of the max extent in bytes */
1476 static struct btrfs_free_space *
1477 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1478 unsigned long align, u64 *max_extent_size)
1480 struct btrfs_free_space *entry;
1481 struct rb_node *node;
1482 u64 tmp;
1483 u64 align_off;
1484 int ret;
1486 if (!ctl->free_space_offset.rb_node)
1487 goto out;
1489 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1490 if (!entry)
1491 goto out;
1493 for (node = &entry->offset_index; node; node = rb_next(node)) {
1494 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1495 if (entry->bytes < *bytes) {
1496 if (entry->bytes > *max_extent_size)
1497 *max_extent_size = entry->bytes;
1498 continue;
1501 /* make sure the space returned is big enough
1502 * to match our requested alignment
1504 if (*bytes >= align) {
1505 tmp = entry->offset - ctl->start + align - 1;
1506 do_div(tmp, align);
1507 tmp = tmp * align + ctl->start;
1508 align_off = tmp - entry->offset;
1509 } else {
1510 align_off = 0;
1511 tmp = entry->offset;
1514 if (entry->bytes < *bytes + align_off) {
1515 if (entry->bytes > *max_extent_size)
1516 *max_extent_size = entry->bytes;
1517 continue;
1520 if (entry->bitmap) {
1521 u64 size = *bytes;
1523 ret = search_bitmap(ctl, entry, &tmp, &size);
1524 if (!ret) {
1525 *offset = tmp;
1526 *bytes = size;
1527 return entry;
1528 } else if (size > *max_extent_size) {
1529 *max_extent_size = size;
1531 continue;
1534 *offset = tmp;
1535 *bytes = entry->bytes - align_off;
1536 return entry;
1538 out:
1539 return NULL;
1542 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1543 struct btrfs_free_space *info, u64 offset)
1545 info->offset = offset_to_bitmap(ctl, offset);
1546 info->bytes = 0;
1547 INIT_LIST_HEAD(&info->list);
1548 link_free_space(ctl, info);
1549 ctl->total_bitmaps++;
1551 ctl->op->recalc_thresholds(ctl);
1554 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1555 struct btrfs_free_space *bitmap_info)
1557 unlink_free_space(ctl, bitmap_info);
1558 kfree(bitmap_info->bitmap);
1559 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1560 ctl->total_bitmaps--;
1561 ctl->op->recalc_thresholds(ctl);
1564 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1565 struct btrfs_free_space *bitmap_info,
1566 u64 *offset, u64 *bytes)
1568 u64 end;
1569 u64 search_start, search_bytes;
1570 int ret;
1572 again:
1573 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1576 * We need to search for bits in this bitmap. We could only cover some
1577 * of the extent in this bitmap thanks to how we add space, so we need
1578 * to search for as much as it as we can and clear that amount, and then
1579 * go searching for the next bit.
1581 search_start = *offset;
1582 search_bytes = ctl->unit;
1583 search_bytes = min(search_bytes, end - search_start + 1);
1584 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1585 if (ret < 0 || search_start != *offset)
1586 return -EINVAL;
1588 /* We may have found more bits than what we need */
1589 search_bytes = min(search_bytes, *bytes);
1591 /* Cannot clear past the end of the bitmap */
1592 search_bytes = min(search_bytes, end - search_start + 1);
1594 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1595 *offset += search_bytes;
1596 *bytes -= search_bytes;
1598 if (*bytes) {
1599 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1600 if (!bitmap_info->bytes)
1601 free_bitmap(ctl, bitmap_info);
1604 * no entry after this bitmap, but we still have bytes to
1605 * remove, so something has gone wrong.
1607 if (!next)
1608 return -EINVAL;
1610 bitmap_info = rb_entry(next, struct btrfs_free_space,
1611 offset_index);
1614 * if the next entry isn't a bitmap we need to return to let the
1615 * extent stuff do its work.
1617 if (!bitmap_info->bitmap)
1618 return -EAGAIN;
1621 * Ok the next item is a bitmap, but it may not actually hold
1622 * the information for the rest of this free space stuff, so
1623 * look for it, and if we don't find it return so we can try
1624 * everything over again.
1626 search_start = *offset;
1627 search_bytes = ctl->unit;
1628 ret = search_bitmap(ctl, bitmap_info, &search_start,
1629 &search_bytes);
1630 if (ret < 0 || search_start != *offset)
1631 return -EAGAIN;
1633 goto again;
1634 } else if (!bitmap_info->bytes)
1635 free_bitmap(ctl, bitmap_info);
1637 return 0;
1640 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1641 struct btrfs_free_space *info, u64 offset,
1642 u64 bytes)
1644 u64 bytes_to_set = 0;
1645 u64 end;
1647 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1649 bytes_to_set = min(end - offset, bytes);
1651 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1653 return bytes_to_set;
1657 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1658 struct btrfs_free_space *info)
1660 struct btrfs_block_group_cache *block_group = ctl->private;
1663 * If we are below the extents threshold then we can add this as an
1664 * extent, and don't have to deal with the bitmap
1666 if (ctl->free_extents < ctl->extents_thresh) {
1668 * If this block group has some small extents we don't want to
1669 * use up all of our free slots in the cache with them, we want
1670 * to reserve them to larger extents, however if we have plent
1671 * of cache left then go ahead an dadd them, no sense in adding
1672 * the overhead of a bitmap if we don't have to.
1674 if (info->bytes <= block_group->sectorsize * 4) {
1675 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1676 return false;
1677 } else {
1678 return false;
1683 * The original block groups from mkfs can be really small, like 8
1684 * megabytes, so don't bother with a bitmap for those entries. However
1685 * some block groups can be smaller than what a bitmap would cover but
1686 * are still large enough that they could overflow the 32k memory limit,
1687 * so allow those block groups to still be allowed to have a bitmap
1688 * entry.
1690 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1691 return false;
1693 return true;
1696 static struct btrfs_free_space_op free_space_op = {
1697 .recalc_thresholds = recalculate_thresholds,
1698 .use_bitmap = use_bitmap,
1701 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1702 struct btrfs_free_space *info)
1704 struct btrfs_free_space *bitmap_info;
1705 struct btrfs_block_group_cache *block_group = NULL;
1706 int added = 0;
1707 u64 bytes, offset, bytes_added;
1708 int ret;
1710 bytes = info->bytes;
1711 offset = info->offset;
1713 if (!ctl->op->use_bitmap(ctl, info))
1714 return 0;
1716 if (ctl->op == &free_space_op)
1717 block_group = ctl->private;
1718 again:
1720 * Since we link bitmaps right into the cluster we need to see if we
1721 * have a cluster here, and if so and it has our bitmap we need to add
1722 * the free space to that bitmap.
1724 if (block_group && !list_empty(&block_group->cluster_list)) {
1725 struct btrfs_free_cluster *cluster;
1726 struct rb_node *node;
1727 struct btrfs_free_space *entry;
1729 cluster = list_entry(block_group->cluster_list.next,
1730 struct btrfs_free_cluster,
1731 block_group_list);
1732 spin_lock(&cluster->lock);
1733 node = rb_first(&cluster->root);
1734 if (!node) {
1735 spin_unlock(&cluster->lock);
1736 goto no_cluster_bitmap;
1739 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1740 if (!entry->bitmap) {
1741 spin_unlock(&cluster->lock);
1742 goto no_cluster_bitmap;
1745 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1746 bytes_added = add_bytes_to_bitmap(ctl, entry,
1747 offset, bytes);
1748 bytes -= bytes_added;
1749 offset += bytes_added;
1751 spin_unlock(&cluster->lock);
1752 if (!bytes) {
1753 ret = 1;
1754 goto out;
1758 no_cluster_bitmap:
1759 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1760 1, 0);
1761 if (!bitmap_info) {
1762 ASSERT(added == 0);
1763 goto new_bitmap;
1766 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1767 bytes -= bytes_added;
1768 offset += bytes_added;
1769 added = 0;
1771 if (!bytes) {
1772 ret = 1;
1773 goto out;
1774 } else
1775 goto again;
1777 new_bitmap:
1778 if (info && info->bitmap) {
1779 add_new_bitmap(ctl, info, offset);
1780 added = 1;
1781 info = NULL;
1782 goto again;
1783 } else {
1784 spin_unlock(&ctl->tree_lock);
1786 /* no pre-allocated info, allocate a new one */
1787 if (!info) {
1788 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1789 GFP_NOFS);
1790 if (!info) {
1791 spin_lock(&ctl->tree_lock);
1792 ret = -ENOMEM;
1793 goto out;
1797 /* allocate the bitmap */
1798 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1799 spin_lock(&ctl->tree_lock);
1800 if (!info->bitmap) {
1801 ret = -ENOMEM;
1802 goto out;
1804 goto again;
1807 out:
1808 if (info) {
1809 if (info->bitmap)
1810 kfree(info->bitmap);
1811 kmem_cache_free(btrfs_free_space_cachep, info);
1814 return ret;
1817 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1818 struct btrfs_free_space *info, bool update_stat)
1820 struct btrfs_free_space *left_info;
1821 struct btrfs_free_space *right_info;
1822 bool merged = false;
1823 u64 offset = info->offset;
1824 u64 bytes = info->bytes;
1827 * first we want to see if there is free space adjacent to the range we
1828 * are adding, if there is remove that struct and add a new one to
1829 * cover the entire range
1831 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1832 if (right_info && rb_prev(&right_info->offset_index))
1833 left_info = rb_entry(rb_prev(&right_info->offset_index),
1834 struct btrfs_free_space, offset_index);
1835 else
1836 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1838 if (right_info && !right_info->bitmap) {
1839 if (update_stat)
1840 unlink_free_space(ctl, right_info);
1841 else
1842 __unlink_free_space(ctl, right_info);
1843 info->bytes += right_info->bytes;
1844 kmem_cache_free(btrfs_free_space_cachep, right_info);
1845 merged = true;
1848 if (left_info && !left_info->bitmap &&
1849 left_info->offset + left_info->bytes == offset) {
1850 if (update_stat)
1851 unlink_free_space(ctl, left_info);
1852 else
1853 __unlink_free_space(ctl, left_info);
1854 info->offset = left_info->offset;
1855 info->bytes += left_info->bytes;
1856 kmem_cache_free(btrfs_free_space_cachep, left_info);
1857 merged = true;
1860 return merged;
1863 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1864 u64 offset, u64 bytes)
1866 struct btrfs_free_space *info;
1867 int ret = 0;
1869 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1870 if (!info)
1871 return -ENOMEM;
1873 info->offset = offset;
1874 info->bytes = bytes;
1876 spin_lock(&ctl->tree_lock);
1878 if (try_merge_free_space(ctl, info, true))
1879 goto link;
1882 * There was no extent directly to the left or right of this new
1883 * extent then we know we're going to have to allocate a new extent, so
1884 * before we do that see if we need to drop this into a bitmap
1886 ret = insert_into_bitmap(ctl, info);
1887 if (ret < 0) {
1888 goto out;
1889 } else if (ret) {
1890 ret = 0;
1891 goto out;
1893 link:
1894 ret = link_free_space(ctl, info);
1895 if (ret)
1896 kmem_cache_free(btrfs_free_space_cachep, info);
1897 out:
1898 spin_unlock(&ctl->tree_lock);
1900 if (ret) {
1901 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1902 ASSERT(ret != -EEXIST);
1905 return ret;
1908 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1909 u64 offset, u64 bytes)
1911 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1912 struct btrfs_free_space *info;
1913 int ret;
1914 bool re_search = false;
1916 spin_lock(&ctl->tree_lock);
1918 again:
1919 ret = 0;
1920 if (!bytes)
1921 goto out_lock;
1923 info = tree_search_offset(ctl, offset, 0, 0);
1924 if (!info) {
1926 * oops didn't find an extent that matched the space we wanted
1927 * to remove, look for a bitmap instead
1929 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1930 1, 0);
1931 if (!info) {
1933 * If we found a partial bit of our free space in a
1934 * bitmap but then couldn't find the other part this may
1935 * be a problem, so WARN about it.
1937 WARN_ON(re_search);
1938 goto out_lock;
1942 re_search = false;
1943 if (!info->bitmap) {
1944 unlink_free_space(ctl, info);
1945 if (offset == info->offset) {
1946 u64 to_free = min(bytes, info->bytes);
1948 info->bytes -= to_free;
1949 info->offset += to_free;
1950 if (info->bytes) {
1951 ret = link_free_space(ctl, info);
1952 WARN_ON(ret);
1953 } else {
1954 kmem_cache_free(btrfs_free_space_cachep, info);
1957 offset += to_free;
1958 bytes -= to_free;
1959 goto again;
1960 } else {
1961 u64 old_end = info->bytes + info->offset;
1963 info->bytes = offset - info->offset;
1964 ret = link_free_space(ctl, info);
1965 WARN_ON(ret);
1966 if (ret)
1967 goto out_lock;
1969 /* Not enough bytes in this entry to satisfy us */
1970 if (old_end < offset + bytes) {
1971 bytes -= old_end - offset;
1972 offset = old_end;
1973 goto again;
1974 } else if (old_end == offset + bytes) {
1975 /* all done */
1976 goto out_lock;
1978 spin_unlock(&ctl->tree_lock);
1980 ret = btrfs_add_free_space(block_group, offset + bytes,
1981 old_end - (offset + bytes));
1982 WARN_ON(ret);
1983 goto out;
1987 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1988 if (ret == -EAGAIN) {
1989 re_search = true;
1990 goto again;
1992 out_lock:
1993 spin_unlock(&ctl->tree_lock);
1994 out:
1995 return ret;
1998 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1999 u64 bytes)
2001 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2002 struct btrfs_free_space *info;
2003 struct rb_node *n;
2004 int count = 0;
2006 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2007 info = rb_entry(n, struct btrfs_free_space, offset_index);
2008 if (info->bytes >= bytes && !block_group->ro)
2009 count++;
2010 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
2011 info->offset, info->bytes,
2012 (info->bitmap) ? "yes" : "no");
2014 printk(KERN_INFO "block group has cluster?: %s\n",
2015 list_empty(&block_group->cluster_list) ? "no" : "yes");
2016 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2017 "\n", count);
2020 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2022 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2024 spin_lock_init(&ctl->tree_lock);
2025 ctl->unit = block_group->sectorsize;
2026 ctl->start = block_group->key.objectid;
2027 ctl->private = block_group;
2028 ctl->op = &free_space_op;
2031 * we only want to have 32k of ram per block group for keeping
2032 * track of free space, and if we pass 1/2 of that we want to
2033 * start converting things over to using bitmaps
2035 ctl->extents_thresh = ((1024 * 32) / 2) /
2036 sizeof(struct btrfs_free_space);
2040 * for a given cluster, put all of its extents back into the free
2041 * space cache. If the block group passed doesn't match the block group
2042 * pointed to by the cluster, someone else raced in and freed the
2043 * cluster already. In that case, we just return without changing anything
2045 static int
2046 __btrfs_return_cluster_to_free_space(
2047 struct btrfs_block_group_cache *block_group,
2048 struct btrfs_free_cluster *cluster)
2050 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2051 struct btrfs_free_space *entry;
2052 struct rb_node *node;
2054 spin_lock(&cluster->lock);
2055 if (cluster->block_group != block_group)
2056 goto out;
2058 cluster->block_group = NULL;
2059 cluster->window_start = 0;
2060 list_del_init(&cluster->block_group_list);
2062 node = rb_first(&cluster->root);
2063 while (node) {
2064 bool bitmap;
2066 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2067 node = rb_next(&entry->offset_index);
2068 rb_erase(&entry->offset_index, &cluster->root);
2070 bitmap = (entry->bitmap != NULL);
2071 if (!bitmap)
2072 try_merge_free_space(ctl, entry, false);
2073 tree_insert_offset(&ctl->free_space_offset,
2074 entry->offset, &entry->offset_index, bitmap);
2076 cluster->root = RB_ROOT;
2078 out:
2079 spin_unlock(&cluster->lock);
2080 btrfs_put_block_group(block_group);
2081 return 0;
2084 static void __btrfs_remove_free_space_cache_locked(
2085 struct btrfs_free_space_ctl *ctl)
2087 struct btrfs_free_space *info;
2088 struct rb_node *node;
2090 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2091 info = rb_entry(node, struct btrfs_free_space, offset_index);
2092 if (!info->bitmap) {
2093 unlink_free_space(ctl, info);
2094 kmem_cache_free(btrfs_free_space_cachep, info);
2095 } else {
2096 free_bitmap(ctl, info);
2098 if (need_resched()) {
2099 spin_unlock(&ctl->tree_lock);
2100 cond_resched();
2101 spin_lock(&ctl->tree_lock);
2106 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2108 spin_lock(&ctl->tree_lock);
2109 __btrfs_remove_free_space_cache_locked(ctl);
2110 spin_unlock(&ctl->tree_lock);
2113 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2115 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2116 struct btrfs_free_cluster *cluster;
2117 struct list_head *head;
2119 spin_lock(&ctl->tree_lock);
2120 while ((head = block_group->cluster_list.next) !=
2121 &block_group->cluster_list) {
2122 cluster = list_entry(head, struct btrfs_free_cluster,
2123 block_group_list);
2125 WARN_ON(cluster->block_group != block_group);
2126 __btrfs_return_cluster_to_free_space(block_group, cluster);
2127 if (need_resched()) {
2128 spin_unlock(&ctl->tree_lock);
2129 cond_resched();
2130 spin_lock(&ctl->tree_lock);
2133 __btrfs_remove_free_space_cache_locked(ctl);
2134 spin_unlock(&ctl->tree_lock);
2138 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2139 u64 offset, u64 bytes, u64 empty_size,
2140 u64 *max_extent_size)
2142 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2143 struct btrfs_free_space *entry = NULL;
2144 u64 bytes_search = bytes + empty_size;
2145 u64 ret = 0;
2146 u64 align_gap = 0;
2147 u64 align_gap_len = 0;
2149 spin_lock(&ctl->tree_lock);
2150 entry = find_free_space(ctl, &offset, &bytes_search,
2151 block_group->full_stripe_len, max_extent_size);
2152 if (!entry)
2153 goto out;
2155 ret = offset;
2156 if (entry->bitmap) {
2157 bitmap_clear_bits(ctl, entry, offset, bytes);
2158 if (!entry->bytes)
2159 free_bitmap(ctl, entry);
2160 } else {
2161 unlink_free_space(ctl, entry);
2162 align_gap_len = offset - entry->offset;
2163 align_gap = entry->offset;
2165 entry->offset = offset + bytes;
2166 WARN_ON(entry->bytes < bytes + align_gap_len);
2168 entry->bytes -= bytes + align_gap_len;
2169 if (!entry->bytes)
2170 kmem_cache_free(btrfs_free_space_cachep, entry);
2171 else
2172 link_free_space(ctl, entry);
2174 out:
2175 spin_unlock(&ctl->tree_lock);
2177 if (align_gap_len)
2178 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2179 return ret;
2183 * given a cluster, put all of its extents back into the free space
2184 * cache. If a block group is passed, this function will only free
2185 * a cluster that belongs to the passed block group.
2187 * Otherwise, it'll get a reference on the block group pointed to by the
2188 * cluster and remove the cluster from it.
2190 int btrfs_return_cluster_to_free_space(
2191 struct btrfs_block_group_cache *block_group,
2192 struct btrfs_free_cluster *cluster)
2194 struct btrfs_free_space_ctl *ctl;
2195 int ret;
2197 /* first, get a safe pointer to the block group */
2198 spin_lock(&cluster->lock);
2199 if (!block_group) {
2200 block_group = cluster->block_group;
2201 if (!block_group) {
2202 spin_unlock(&cluster->lock);
2203 return 0;
2205 } else if (cluster->block_group != block_group) {
2206 /* someone else has already freed it don't redo their work */
2207 spin_unlock(&cluster->lock);
2208 return 0;
2210 atomic_inc(&block_group->count);
2211 spin_unlock(&cluster->lock);
2213 ctl = block_group->free_space_ctl;
2215 /* now return any extents the cluster had on it */
2216 spin_lock(&ctl->tree_lock);
2217 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2218 spin_unlock(&ctl->tree_lock);
2220 /* finally drop our ref */
2221 btrfs_put_block_group(block_group);
2222 return ret;
2225 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2226 struct btrfs_free_cluster *cluster,
2227 struct btrfs_free_space *entry,
2228 u64 bytes, u64 min_start,
2229 u64 *max_extent_size)
2231 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2232 int err;
2233 u64 search_start = cluster->window_start;
2234 u64 search_bytes = bytes;
2235 u64 ret = 0;
2237 search_start = min_start;
2238 search_bytes = bytes;
2240 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2241 if (err) {
2242 if (search_bytes > *max_extent_size)
2243 *max_extent_size = search_bytes;
2244 return 0;
2247 ret = search_start;
2248 __bitmap_clear_bits(ctl, entry, ret, bytes);
2250 return ret;
2254 * given a cluster, try to allocate 'bytes' from it, returns 0
2255 * if it couldn't find anything suitably large, or a logical disk offset
2256 * if things worked out
2258 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2259 struct btrfs_free_cluster *cluster, u64 bytes,
2260 u64 min_start, u64 *max_extent_size)
2262 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2263 struct btrfs_free_space *entry = NULL;
2264 struct rb_node *node;
2265 u64 ret = 0;
2267 spin_lock(&cluster->lock);
2268 if (bytes > cluster->max_size)
2269 goto out;
2271 if (cluster->block_group != block_group)
2272 goto out;
2274 node = rb_first(&cluster->root);
2275 if (!node)
2276 goto out;
2278 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2279 while(1) {
2280 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2281 *max_extent_size = entry->bytes;
2283 if (entry->bytes < bytes ||
2284 (!entry->bitmap && entry->offset < min_start)) {
2285 node = rb_next(&entry->offset_index);
2286 if (!node)
2287 break;
2288 entry = rb_entry(node, struct btrfs_free_space,
2289 offset_index);
2290 continue;
2293 if (entry->bitmap) {
2294 ret = btrfs_alloc_from_bitmap(block_group,
2295 cluster, entry, bytes,
2296 cluster->window_start,
2297 max_extent_size);
2298 if (ret == 0) {
2299 node = rb_next(&entry->offset_index);
2300 if (!node)
2301 break;
2302 entry = rb_entry(node, struct btrfs_free_space,
2303 offset_index);
2304 continue;
2306 cluster->window_start += bytes;
2307 } else {
2308 ret = entry->offset;
2310 entry->offset += bytes;
2311 entry->bytes -= bytes;
2314 if (entry->bytes == 0)
2315 rb_erase(&entry->offset_index, &cluster->root);
2316 break;
2318 out:
2319 spin_unlock(&cluster->lock);
2321 if (!ret)
2322 return 0;
2324 spin_lock(&ctl->tree_lock);
2326 ctl->free_space -= bytes;
2327 if (entry->bytes == 0) {
2328 ctl->free_extents--;
2329 if (entry->bitmap) {
2330 kfree(entry->bitmap);
2331 ctl->total_bitmaps--;
2332 ctl->op->recalc_thresholds(ctl);
2334 kmem_cache_free(btrfs_free_space_cachep, entry);
2337 spin_unlock(&ctl->tree_lock);
2339 return ret;
2342 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2343 struct btrfs_free_space *entry,
2344 struct btrfs_free_cluster *cluster,
2345 u64 offset, u64 bytes,
2346 u64 cont1_bytes, u64 min_bytes)
2348 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2349 unsigned long next_zero;
2350 unsigned long i;
2351 unsigned long want_bits;
2352 unsigned long min_bits;
2353 unsigned long found_bits;
2354 unsigned long start = 0;
2355 unsigned long total_found = 0;
2356 int ret;
2358 i = offset_to_bit(entry->offset, ctl->unit,
2359 max_t(u64, offset, entry->offset));
2360 want_bits = bytes_to_bits(bytes, ctl->unit);
2361 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2363 again:
2364 found_bits = 0;
2365 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2366 next_zero = find_next_zero_bit(entry->bitmap,
2367 BITS_PER_BITMAP, i);
2368 if (next_zero - i >= min_bits) {
2369 found_bits = next_zero - i;
2370 break;
2372 i = next_zero;
2375 if (!found_bits)
2376 return -ENOSPC;
2378 if (!total_found) {
2379 start = i;
2380 cluster->max_size = 0;
2383 total_found += found_bits;
2385 if (cluster->max_size < found_bits * ctl->unit)
2386 cluster->max_size = found_bits * ctl->unit;
2388 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2389 i = next_zero + 1;
2390 goto again;
2393 cluster->window_start = start * ctl->unit + entry->offset;
2394 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2395 ret = tree_insert_offset(&cluster->root, entry->offset,
2396 &entry->offset_index, 1);
2397 ASSERT(!ret); /* -EEXIST; Logic error */
2399 trace_btrfs_setup_cluster(block_group, cluster,
2400 total_found * ctl->unit, 1);
2401 return 0;
2405 * This searches the block group for just extents to fill the cluster with.
2406 * Try to find a cluster with at least bytes total bytes, at least one
2407 * extent of cont1_bytes, and other clusters of at least min_bytes.
2409 static noinline int
2410 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2411 struct btrfs_free_cluster *cluster,
2412 struct list_head *bitmaps, u64 offset, u64 bytes,
2413 u64 cont1_bytes, u64 min_bytes)
2415 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2416 struct btrfs_free_space *first = NULL;
2417 struct btrfs_free_space *entry = NULL;
2418 struct btrfs_free_space *last;
2419 struct rb_node *node;
2420 u64 window_start;
2421 u64 window_free;
2422 u64 max_extent;
2423 u64 total_size = 0;
2425 entry = tree_search_offset(ctl, offset, 0, 1);
2426 if (!entry)
2427 return -ENOSPC;
2430 * We don't want bitmaps, so just move along until we find a normal
2431 * extent entry.
2433 while (entry->bitmap || entry->bytes < min_bytes) {
2434 if (entry->bitmap && list_empty(&entry->list))
2435 list_add_tail(&entry->list, bitmaps);
2436 node = rb_next(&entry->offset_index);
2437 if (!node)
2438 return -ENOSPC;
2439 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2442 window_start = entry->offset;
2443 window_free = entry->bytes;
2444 max_extent = entry->bytes;
2445 first = entry;
2446 last = entry;
2448 for (node = rb_next(&entry->offset_index); node;
2449 node = rb_next(&entry->offset_index)) {
2450 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2452 if (entry->bitmap) {
2453 if (list_empty(&entry->list))
2454 list_add_tail(&entry->list, bitmaps);
2455 continue;
2458 if (entry->bytes < min_bytes)
2459 continue;
2461 last = entry;
2462 window_free += entry->bytes;
2463 if (entry->bytes > max_extent)
2464 max_extent = entry->bytes;
2467 if (window_free < bytes || max_extent < cont1_bytes)
2468 return -ENOSPC;
2470 cluster->window_start = first->offset;
2472 node = &first->offset_index;
2475 * now we've found our entries, pull them out of the free space
2476 * cache and put them into the cluster rbtree
2478 do {
2479 int ret;
2481 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2482 node = rb_next(&entry->offset_index);
2483 if (entry->bitmap || entry->bytes < min_bytes)
2484 continue;
2486 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2487 ret = tree_insert_offset(&cluster->root, entry->offset,
2488 &entry->offset_index, 0);
2489 total_size += entry->bytes;
2490 ASSERT(!ret); /* -EEXIST; Logic error */
2491 } while (node && entry != last);
2493 cluster->max_size = max_extent;
2494 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2495 return 0;
2499 * This specifically looks for bitmaps that may work in the cluster, we assume
2500 * that we have already failed to find extents that will work.
2502 static noinline int
2503 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2504 struct btrfs_free_cluster *cluster,
2505 struct list_head *bitmaps, u64 offset, u64 bytes,
2506 u64 cont1_bytes, u64 min_bytes)
2508 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2509 struct btrfs_free_space *entry;
2510 int ret = -ENOSPC;
2511 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2513 if (ctl->total_bitmaps == 0)
2514 return -ENOSPC;
2517 * The bitmap that covers offset won't be in the list unless offset
2518 * is just its start offset.
2520 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2521 if (entry->offset != bitmap_offset) {
2522 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2523 if (entry && list_empty(&entry->list))
2524 list_add(&entry->list, bitmaps);
2527 list_for_each_entry(entry, bitmaps, list) {
2528 if (entry->bytes < bytes)
2529 continue;
2530 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2531 bytes, cont1_bytes, min_bytes);
2532 if (!ret)
2533 return 0;
2537 * The bitmaps list has all the bitmaps that record free space
2538 * starting after offset, so no more search is required.
2540 return -ENOSPC;
2544 * here we try to find a cluster of blocks in a block group. The goal
2545 * is to find at least bytes+empty_size.
2546 * We might not find them all in one contiguous area.
2548 * returns zero and sets up cluster if things worked out, otherwise
2549 * it returns -enospc
2551 int btrfs_find_space_cluster(struct btrfs_root *root,
2552 struct btrfs_block_group_cache *block_group,
2553 struct btrfs_free_cluster *cluster,
2554 u64 offset, u64 bytes, u64 empty_size)
2556 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2557 struct btrfs_free_space *entry, *tmp;
2558 LIST_HEAD(bitmaps);
2559 u64 min_bytes;
2560 u64 cont1_bytes;
2561 int ret;
2564 * Choose the minimum extent size we'll require for this
2565 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2566 * For metadata, allow allocates with smaller extents. For
2567 * data, keep it dense.
2569 if (btrfs_test_opt(root, SSD_SPREAD)) {
2570 cont1_bytes = min_bytes = bytes + empty_size;
2571 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2572 cont1_bytes = bytes;
2573 min_bytes = block_group->sectorsize;
2574 } else {
2575 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2576 min_bytes = block_group->sectorsize;
2579 spin_lock(&ctl->tree_lock);
2582 * If we know we don't have enough space to make a cluster don't even
2583 * bother doing all the work to try and find one.
2585 if (ctl->free_space < bytes) {
2586 spin_unlock(&ctl->tree_lock);
2587 return -ENOSPC;
2590 spin_lock(&cluster->lock);
2592 /* someone already found a cluster, hooray */
2593 if (cluster->block_group) {
2594 ret = 0;
2595 goto out;
2598 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2599 min_bytes);
2601 INIT_LIST_HEAD(&bitmaps);
2602 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2603 bytes + empty_size,
2604 cont1_bytes, min_bytes);
2605 if (ret)
2606 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2607 offset, bytes + empty_size,
2608 cont1_bytes, min_bytes);
2610 /* Clear our temporary list */
2611 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2612 list_del_init(&entry->list);
2614 if (!ret) {
2615 atomic_inc(&block_group->count);
2616 list_add_tail(&cluster->block_group_list,
2617 &block_group->cluster_list);
2618 cluster->block_group = block_group;
2619 } else {
2620 trace_btrfs_failed_cluster_setup(block_group);
2622 out:
2623 spin_unlock(&cluster->lock);
2624 spin_unlock(&ctl->tree_lock);
2626 return ret;
2630 * simple code to zero out a cluster
2632 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2634 spin_lock_init(&cluster->lock);
2635 spin_lock_init(&cluster->refill_lock);
2636 cluster->root = RB_ROOT;
2637 cluster->max_size = 0;
2638 INIT_LIST_HEAD(&cluster->block_group_list);
2639 cluster->block_group = NULL;
2642 static int do_trimming(struct btrfs_block_group_cache *block_group,
2643 u64 *total_trimmed, u64 start, u64 bytes,
2644 u64 reserved_start, u64 reserved_bytes)
2646 struct btrfs_space_info *space_info = block_group->space_info;
2647 struct btrfs_fs_info *fs_info = block_group->fs_info;
2648 int ret;
2649 int update = 0;
2650 u64 trimmed = 0;
2652 spin_lock(&space_info->lock);
2653 spin_lock(&block_group->lock);
2654 if (!block_group->ro) {
2655 block_group->reserved += reserved_bytes;
2656 space_info->bytes_reserved += reserved_bytes;
2657 update = 1;
2659 spin_unlock(&block_group->lock);
2660 spin_unlock(&space_info->lock);
2662 ret = btrfs_error_discard_extent(fs_info->extent_root,
2663 start, bytes, &trimmed);
2664 if (!ret)
2665 *total_trimmed += trimmed;
2667 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2669 if (update) {
2670 spin_lock(&space_info->lock);
2671 spin_lock(&block_group->lock);
2672 if (block_group->ro)
2673 space_info->bytes_readonly += reserved_bytes;
2674 block_group->reserved -= reserved_bytes;
2675 space_info->bytes_reserved -= reserved_bytes;
2676 spin_unlock(&space_info->lock);
2677 spin_unlock(&block_group->lock);
2680 return ret;
2683 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2684 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2686 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2687 struct btrfs_free_space *entry;
2688 struct rb_node *node;
2689 int ret = 0;
2690 u64 extent_start;
2691 u64 extent_bytes;
2692 u64 bytes;
2694 while (start < end) {
2695 spin_lock(&ctl->tree_lock);
2697 if (ctl->free_space < minlen) {
2698 spin_unlock(&ctl->tree_lock);
2699 break;
2702 entry = tree_search_offset(ctl, start, 0, 1);
2703 if (!entry) {
2704 spin_unlock(&ctl->tree_lock);
2705 break;
2708 /* skip bitmaps */
2709 while (entry->bitmap) {
2710 node = rb_next(&entry->offset_index);
2711 if (!node) {
2712 spin_unlock(&ctl->tree_lock);
2713 goto out;
2715 entry = rb_entry(node, struct btrfs_free_space,
2716 offset_index);
2719 if (entry->offset >= end) {
2720 spin_unlock(&ctl->tree_lock);
2721 break;
2724 extent_start = entry->offset;
2725 extent_bytes = entry->bytes;
2726 start = max(start, extent_start);
2727 bytes = min(extent_start + extent_bytes, end) - start;
2728 if (bytes < minlen) {
2729 spin_unlock(&ctl->tree_lock);
2730 goto next;
2733 unlink_free_space(ctl, entry);
2734 kmem_cache_free(btrfs_free_space_cachep, entry);
2736 spin_unlock(&ctl->tree_lock);
2738 ret = do_trimming(block_group, total_trimmed, start, bytes,
2739 extent_start, extent_bytes);
2740 if (ret)
2741 break;
2742 next:
2743 start += bytes;
2745 if (fatal_signal_pending(current)) {
2746 ret = -ERESTARTSYS;
2747 break;
2750 cond_resched();
2752 out:
2753 return ret;
2756 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2757 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2759 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2760 struct btrfs_free_space *entry;
2761 int ret = 0;
2762 int ret2;
2763 u64 bytes;
2764 u64 offset = offset_to_bitmap(ctl, start);
2766 while (offset < end) {
2767 bool next_bitmap = false;
2769 spin_lock(&ctl->tree_lock);
2771 if (ctl->free_space < minlen) {
2772 spin_unlock(&ctl->tree_lock);
2773 break;
2776 entry = tree_search_offset(ctl, offset, 1, 0);
2777 if (!entry) {
2778 spin_unlock(&ctl->tree_lock);
2779 next_bitmap = true;
2780 goto next;
2783 bytes = minlen;
2784 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2785 if (ret2 || start >= end) {
2786 spin_unlock(&ctl->tree_lock);
2787 next_bitmap = true;
2788 goto next;
2791 bytes = min(bytes, end - start);
2792 if (bytes < minlen) {
2793 spin_unlock(&ctl->tree_lock);
2794 goto next;
2797 bitmap_clear_bits(ctl, entry, start, bytes);
2798 if (entry->bytes == 0)
2799 free_bitmap(ctl, entry);
2801 spin_unlock(&ctl->tree_lock);
2803 ret = do_trimming(block_group, total_trimmed, start, bytes,
2804 start, bytes);
2805 if (ret)
2806 break;
2807 next:
2808 if (next_bitmap) {
2809 offset += BITS_PER_BITMAP * ctl->unit;
2810 } else {
2811 start += bytes;
2812 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2813 offset += BITS_PER_BITMAP * ctl->unit;
2816 if (fatal_signal_pending(current)) {
2817 ret = -ERESTARTSYS;
2818 break;
2821 cond_resched();
2824 return ret;
2827 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2828 u64 *trimmed, u64 start, u64 end, u64 minlen)
2830 int ret;
2832 *trimmed = 0;
2834 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2835 if (ret)
2836 return ret;
2838 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2840 return ret;
2844 * Find the left-most item in the cache tree, and then return the
2845 * smallest inode number in the item.
2847 * Note: the returned inode number may not be the smallest one in
2848 * the tree, if the left-most item is a bitmap.
2850 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2852 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2853 struct btrfs_free_space *entry = NULL;
2854 u64 ino = 0;
2856 spin_lock(&ctl->tree_lock);
2858 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2859 goto out;
2861 entry = rb_entry(rb_first(&ctl->free_space_offset),
2862 struct btrfs_free_space, offset_index);
2864 if (!entry->bitmap) {
2865 ino = entry->offset;
2867 unlink_free_space(ctl, entry);
2868 entry->offset++;
2869 entry->bytes--;
2870 if (!entry->bytes)
2871 kmem_cache_free(btrfs_free_space_cachep, entry);
2872 else
2873 link_free_space(ctl, entry);
2874 } else {
2875 u64 offset = 0;
2876 u64 count = 1;
2877 int ret;
2879 ret = search_bitmap(ctl, entry, &offset, &count);
2880 /* Logic error; Should be empty if it can't find anything */
2881 ASSERT(!ret);
2883 ino = offset;
2884 bitmap_clear_bits(ctl, entry, offset, 1);
2885 if (entry->bytes == 0)
2886 free_bitmap(ctl, entry);
2888 out:
2889 spin_unlock(&ctl->tree_lock);
2891 return ino;
2894 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2895 struct btrfs_path *path)
2897 struct inode *inode = NULL;
2899 spin_lock(&root->cache_lock);
2900 if (root->cache_inode)
2901 inode = igrab(root->cache_inode);
2902 spin_unlock(&root->cache_lock);
2903 if (inode)
2904 return inode;
2906 inode = __lookup_free_space_inode(root, path, 0);
2907 if (IS_ERR(inode))
2908 return inode;
2910 spin_lock(&root->cache_lock);
2911 if (!btrfs_fs_closing(root->fs_info))
2912 root->cache_inode = igrab(inode);
2913 spin_unlock(&root->cache_lock);
2915 return inode;
2918 int create_free_ino_inode(struct btrfs_root *root,
2919 struct btrfs_trans_handle *trans,
2920 struct btrfs_path *path)
2922 return __create_free_space_inode(root, trans, path,
2923 BTRFS_FREE_INO_OBJECTID, 0);
2926 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2928 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2929 struct btrfs_path *path;
2930 struct inode *inode;
2931 int ret = 0;
2932 u64 root_gen = btrfs_root_generation(&root->root_item);
2934 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2935 return 0;
2938 * If we're unmounting then just return, since this does a search on the
2939 * normal root and not the commit root and we could deadlock.
2941 if (btrfs_fs_closing(fs_info))
2942 return 0;
2944 path = btrfs_alloc_path();
2945 if (!path)
2946 return 0;
2948 inode = lookup_free_ino_inode(root, path);
2949 if (IS_ERR(inode))
2950 goto out;
2952 if (root_gen != BTRFS_I(inode)->generation)
2953 goto out_put;
2955 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2957 if (ret < 0)
2958 btrfs_err(fs_info,
2959 "failed to load free ino cache for root %llu",
2960 root->root_key.objectid);
2961 out_put:
2962 iput(inode);
2963 out:
2964 btrfs_free_path(path);
2965 return ret;
2968 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2969 struct btrfs_trans_handle *trans,
2970 struct btrfs_path *path)
2972 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2973 struct inode *inode;
2974 int ret;
2976 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2977 return 0;
2979 inode = lookup_free_ino_inode(root, path);
2980 if (IS_ERR(inode))
2981 return 0;
2983 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2984 if (ret) {
2985 btrfs_delalloc_release_metadata(inode, inode->i_size);
2986 #ifdef DEBUG
2987 btrfs_err(root->fs_info,
2988 "failed to write free ino cache for root %llu",
2989 root->root_key.objectid);
2990 #endif
2993 iput(inode);
2994 return ret;
2997 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2999 * Use this if you need to make a bitmap or extent entry specifically, it
3000 * doesn't do any of the merging that add_free_space does, this acts a lot like
3001 * how the free space cache loading stuff works, so you can get really weird
3002 * configurations.
3004 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3005 u64 offset, u64 bytes, bool bitmap)
3007 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3008 struct btrfs_free_space *info = NULL, *bitmap_info;
3009 void *map = NULL;
3010 u64 bytes_added;
3011 int ret;
3013 again:
3014 if (!info) {
3015 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3016 if (!info)
3017 return -ENOMEM;
3020 if (!bitmap) {
3021 spin_lock(&ctl->tree_lock);
3022 info->offset = offset;
3023 info->bytes = bytes;
3024 ret = link_free_space(ctl, info);
3025 spin_unlock(&ctl->tree_lock);
3026 if (ret)
3027 kmem_cache_free(btrfs_free_space_cachep, info);
3028 return ret;
3031 if (!map) {
3032 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3033 if (!map) {
3034 kmem_cache_free(btrfs_free_space_cachep, info);
3035 return -ENOMEM;
3039 spin_lock(&ctl->tree_lock);
3040 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3041 1, 0);
3042 if (!bitmap_info) {
3043 info->bitmap = map;
3044 map = NULL;
3045 add_new_bitmap(ctl, info, offset);
3046 bitmap_info = info;
3049 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3050 bytes -= bytes_added;
3051 offset += bytes_added;
3052 spin_unlock(&ctl->tree_lock);
3054 if (bytes)
3055 goto again;
3057 if (map)
3058 kfree(map);
3059 return 0;
3063 * Checks to see if the given range is in the free space cache. This is really
3064 * just used to check the absence of space, so if there is free space in the
3065 * range at all we will return 1.
3067 int test_check_exists(struct btrfs_block_group_cache *cache,
3068 u64 offset, u64 bytes)
3070 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3071 struct btrfs_free_space *info;
3072 int ret = 0;
3074 spin_lock(&ctl->tree_lock);
3075 info = tree_search_offset(ctl, offset, 0, 0);
3076 if (!info) {
3077 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3078 1, 0);
3079 if (!info)
3080 goto out;
3083 have_info:
3084 if (info->bitmap) {
3085 u64 bit_off, bit_bytes;
3086 struct rb_node *n;
3087 struct btrfs_free_space *tmp;
3089 bit_off = offset;
3090 bit_bytes = ctl->unit;
3091 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3092 if (!ret) {
3093 if (bit_off == offset) {
3094 ret = 1;
3095 goto out;
3096 } else if (bit_off > offset &&
3097 offset + bytes > bit_off) {
3098 ret = 1;
3099 goto out;
3103 n = rb_prev(&info->offset_index);
3104 while (n) {
3105 tmp = rb_entry(n, struct btrfs_free_space,
3106 offset_index);
3107 if (tmp->offset + tmp->bytes < offset)
3108 break;
3109 if (offset + bytes < tmp->offset) {
3110 n = rb_prev(&info->offset_index);
3111 continue;
3113 info = tmp;
3114 goto have_info;
3117 n = rb_next(&info->offset_index);
3118 while (n) {
3119 tmp = rb_entry(n, struct btrfs_free_space,
3120 offset_index);
3121 if (offset + bytes < tmp->offset)
3122 break;
3123 if (tmp->offset + tmp->bytes < offset) {
3124 n = rb_next(&info->offset_index);
3125 continue;
3127 info = tmp;
3128 goto have_info;
3131 goto out;
3134 if (info->offset == offset) {
3135 ret = 1;
3136 goto out;
3139 if (offset > info->offset && offset < info->offset + info->bytes)
3140 ret = 1;
3141 out:
3142 spin_unlock(&ctl->tree_lock);
3143 return ret;
3145 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */