2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/uuid.h>
21 #include "transaction.h"
23 #include "print-tree.h"
26 * Read a root item from the tree. In case we detect a root item smaller then
27 * sizeof(root_item), we know it's an old version of the root structure and
28 * initialize all new fields to zero. The same happens if we detect mismatching
29 * generation numbers as then we know the root was once mounted with an older
30 * kernel that was not aware of the root item structure change.
32 static void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
33 struct btrfs_root_item
*item
)
39 len
= btrfs_item_size_nr(eb
, slot
);
40 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
41 min_t(int, len
, (int)sizeof(*item
)));
42 if (len
< sizeof(*item
))
44 if (!need_reset
&& btrfs_root_generation(item
)
45 != btrfs_root_generation_v2(item
)) {
46 if (btrfs_root_generation_v2(item
) != 0) {
47 printk(KERN_WARNING
"btrfs: mismatching "
48 "generation and generation_v2 "
49 "found in root item. This root "
50 "was probably mounted with an "
51 "older kernel. Resetting all "
57 memset(&item
->generation_v2
, 0,
58 sizeof(*item
) - offsetof(struct btrfs_root_item
,
62 memcpy(item
->uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
67 * btrfs_find_root - lookup the root by the key.
68 * root: the root of the root tree
69 * search_key: the key to search
70 * path: the path we search
71 * root_item: the root item of the tree we look for
72 * root_key: the reak key of the tree we look for
74 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
75 * of the search key, just lookup the root with the highest offset for a
78 * If we find something return 0, otherwise > 0, < 0 on error.
80 int btrfs_find_root(struct btrfs_root
*root
, struct btrfs_key
*search_key
,
81 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
82 struct btrfs_key
*root_key
)
84 struct btrfs_key found_key
;
85 struct extent_buffer
*l
;
89 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
93 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
97 BUG_ON(ret
== 0); /* Logical error */
98 if (path
->slots
[0] == 0)
105 slot
= path
->slots
[0];
107 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
108 if (found_key
.objectid
!= search_key
->objectid
||
109 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
115 btrfs_read_root_item(l
, slot
, root_item
);
117 memcpy(root_key
, &found_key
, sizeof(found_key
));
119 btrfs_release_path(path
);
123 void btrfs_set_root_node(struct btrfs_root_item
*item
,
124 struct extent_buffer
*node
)
126 btrfs_set_root_bytenr(item
, node
->start
);
127 btrfs_set_root_level(item
, btrfs_header_level(node
));
128 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
132 * copy the data in 'item' into the btree
134 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
135 *root
, struct btrfs_key
*key
, struct btrfs_root_item
138 struct btrfs_path
*path
;
139 struct extent_buffer
*l
;
145 path
= btrfs_alloc_path();
149 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
151 btrfs_abort_transaction(trans
, root
, ret
);
156 btrfs_print_leaf(root
, path
->nodes
[0]);
157 printk(KERN_CRIT
"unable to update root key %llu %u %llu\n",
158 key
->objectid
, key
->type
, key
->offset
);
163 slot
= path
->slots
[0];
164 ptr
= btrfs_item_ptr_offset(l
, slot
);
165 old_len
= btrfs_item_size_nr(l
, slot
);
168 * If this is the first time we update the root item which originated
169 * from an older kernel, we need to enlarge the item size to make room
170 * for the added fields.
172 if (old_len
< sizeof(*item
)) {
173 btrfs_release_path(path
);
174 ret
= btrfs_search_slot(trans
, root
, key
, path
,
177 btrfs_abort_transaction(trans
, root
, ret
);
181 ret
= btrfs_del_item(trans
, root
, path
);
183 btrfs_abort_transaction(trans
, root
, ret
);
186 btrfs_release_path(path
);
187 ret
= btrfs_insert_empty_item(trans
, root
, path
,
190 btrfs_abort_transaction(trans
, root
, ret
);
194 slot
= path
->slots
[0];
195 ptr
= btrfs_item_ptr_offset(l
, slot
);
199 * Update generation_v2 so at the next mount we know the new root
202 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
204 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
205 btrfs_mark_buffer_dirty(path
->nodes
[0]);
207 btrfs_free_path(path
);
211 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
212 struct btrfs_key
*key
, struct btrfs_root_item
*item
)
215 * Make sure generation v1 and v2 match. See update_root for details.
217 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
218 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
221 int btrfs_find_orphan_roots(struct btrfs_root
*tree_root
)
223 struct extent_buffer
*leaf
;
224 struct btrfs_path
*path
;
225 struct btrfs_key key
;
226 struct btrfs_key root_key
;
227 struct btrfs_root
*root
;
230 bool can_recover
= true;
232 if (tree_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
235 path
= btrfs_alloc_path();
239 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
240 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
243 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
244 root_key
.offset
= (u64
)-1;
247 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
253 leaf
= path
->nodes
[0];
254 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
255 ret
= btrfs_next_leaf(tree_root
, path
);
260 leaf
= path
->nodes
[0];
263 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
264 btrfs_release_path(path
);
266 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
267 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
270 root_key
.objectid
= key
.offset
;
273 root
= btrfs_read_fs_root(tree_root
, &root_key
);
275 if (err
&& err
!= -ENOENT
) {
277 } else if (err
== -ENOENT
) {
278 struct btrfs_trans_handle
*trans
;
280 btrfs_release_path(path
);
282 trans
= btrfs_join_transaction(tree_root
);
284 err
= PTR_ERR(trans
);
285 btrfs_error(tree_root
->fs_info
, err
,
286 "Failed to start trans to delete "
290 err
= btrfs_del_orphan_item(trans
, tree_root
,
292 btrfs_end_transaction(trans
, tree_root
);
294 btrfs_error(tree_root
->fs_info
, err
,
295 "Failed to delete root orphan "
302 err
= btrfs_init_fs_root(root
);
304 btrfs_free_fs_root(root
);
308 root
->orphan_item_inserted
= 1;
310 err
= btrfs_insert_fs_root(root
->fs_info
, root
);
312 BUG_ON(err
== -EEXIST
);
313 btrfs_free_fs_root(root
);
317 if (btrfs_root_refs(&root
->root_item
) == 0)
318 btrfs_add_dead_root(root
);
321 btrfs_free_path(path
);
325 /* drop the root item for 'key' from 'root' */
326 int btrfs_del_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
327 struct btrfs_key
*key
)
329 struct btrfs_path
*path
;
332 path
= btrfs_alloc_path();
335 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
341 ret
= btrfs_del_item(trans
, root
, path
);
343 btrfs_free_path(path
);
347 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
,
348 struct btrfs_root
*tree_root
,
349 u64 root_id
, u64 ref_id
, u64 dirid
, u64
*sequence
,
350 const char *name
, int name_len
)
353 struct btrfs_path
*path
;
354 struct btrfs_root_ref
*ref
;
355 struct extent_buffer
*leaf
;
356 struct btrfs_key key
;
361 path
= btrfs_alloc_path();
365 key
.objectid
= root_id
;
366 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
369 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
372 leaf
= path
->nodes
[0];
373 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
374 struct btrfs_root_ref
);
376 WARN_ON(btrfs_root_ref_dirid(leaf
, ref
) != dirid
);
377 WARN_ON(btrfs_root_ref_name_len(leaf
, ref
) != name_len
);
378 ptr
= (unsigned long)(ref
+ 1);
379 WARN_ON(memcmp_extent_buffer(leaf
, name
, ptr
, name_len
));
380 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
382 ret
= btrfs_del_item(trans
, tree_root
, path
);
390 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
391 btrfs_release_path(path
);
392 key
.objectid
= ref_id
;
393 key
.type
= BTRFS_ROOT_REF_KEY
;
394 key
.offset
= root_id
;
399 btrfs_free_path(path
);
403 int btrfs_find_root_ref(struct btrfs_root
*tree_root
,
404 struct btrfs_path
*path
,
405 u64 root_id
, u64 ref_id
)
407 struct btrfs_key key
;
410 key
.objectid
= root_id
;
411 key
.type
= BTRFS_ROOT_REF_KEY
;
414 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
419 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
420 * or BTRFS_ROOT_BACKREF_KEY.
422 * The dirid, sequence, name and name_len refer to the directory entry
423 * that is referencing the root.
425 * For a forward ref, the root_id is the id of the tree referencing
426 * the root and ref_id is the id of the subvol or snapshot.
428 * For a back ref the root_id is the id of the subvol or snapshot and
429 * ref_id is the id of the tree referencing it.
431 * Will return 0, -ENOMEM, or anything from the CoW path
433 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
,
434 struct btrfs_root
*tree_root
,
435 u64 root_id
, u64 ref_id
, u64 dirid
, u64 sequence
,
436 const char *name
, int name_len
)
438 struct btrfs_key key
;
440 struct btrfs_path
*path
;
441 struct btrfs_root_ref
*ref
;
442 struct extent_buffer
*leaf
;
445 path
= btrfs_alloc_path();
449 key
.objectid
= root_id
;
450 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
453 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
454 sizeof(*ref
) + name_len
);
456 btrfs_abort_transaction(trans
, tree_root
, ret
);
457 btrfs_free_path(path
);
461 leaf
= path
->nodes
[0];
462 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
463 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
464 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
465 btrfs_set_root_ref_name_len(leaf
, ref
, name_len
);
466 ptr
= (unsigned long)(ref
+ 1);
467 write_extent_buffer(leaf
, name
, ptr
, name_len
);
468 btrfs_mark_buffer_dirty(leaf
);
470 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
471 btrfs_release_path(path
);
472 key
.objectid
= ref_id
;
473 key
.type
= BTRFS_ROOT_REF_KEY
;
474 key
.offset
= root_id
;
478 btrfs_free_path(path
);
483 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484 * for subvolumes. To work around this problem, we steal a bit from
485 * root_item->inode_item->flags, and use it to indicate if those fields
486 * have been properly initialized.
488 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
490 u64 inode_flags
= btrfs_stack_inode_flags(&root_item
->inode
);
492 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
493 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
494 btrfs_set_stack_inode_flags(&root_item
->inode
, inode_flags
);
495 btrfs_set_root_flags(root_item
, 0);
496 btrfs_set_root_limit(root_item
, 0);
500 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
501 struct btrfs_root
*root
)
503 struct btrfs_root_item
*item
= &root
->root_item
;
504 struct timespec ct
= CURRENT_TIME
;
506 spin_lock(&root
->root_item_lock
);
507 btrfs_set_root_ctransid(item
, trans
->transid
);
508 btrfs_set_stack_timespec_sec(&item
->ctime
, ct
.tv_sec
);
509 btrfs_set_stack_timespec_nsec(&item
->ctime
, ct
.tv_nsec
);
510 spin_unlock(&root
->root_item_lock
);