2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
38 static int g_verbose
= 0;
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
58 unsigned int reversed
:1;
59 unsigned int virtual_mem
:1;
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93 struct btrfs_root
*send_root
;
94 struct btrfs_root
*parent_root
;
95 struct clone_root
*clone_roots
;
98 /* current state of the compare_tree call */
99 struct btrfs_path
*left_path
;
100 struct btrfs_path
*right_path
;
101 struct btrfs_key
*cmp_key
;
104 * infos of the currently processed inode. In case of deleted inodes,
105 * these are the values from the deleted inode.
110 int cur_inode_new_gen
;
111 int cur_inode_deleted
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
124 struct file
*cur_inode_filp
;
128 struct name_cache_entry
{
129 struct list_head list
;
131 * radix_tree has only 32bit entries but we need to handle 64bit inums.
132 * We use the lower 32bit of the 64bit inum to store it in the tree. If
133 * more then one inum would fall into the same entry, we use radix_list
134 * to store the additional entries. radix_list is also used to store
135 * entries where two entries have the same inum but different
138 struct list_head radix_list
;
144 int need_later_update
;
149 static void fs_path_reset(struct fs_path
*p
)
152 p
->start
= p
->buf
+ p
->buf_len
- 1;
162 static struct fs_path
*fs_path_alloc(void)
166 p
= kmalloc(sizeof(*p
), GFP_NOFS
);
171 p
->buf
= p
->inline_buf
;
172 p
->buf_len
= FS_PATH_INLINE_SIZE
;
177 static struct fs_path
*fs_path_alloc_reversed(void)
189 static void fs_path_free(struct fs_path
*p
)
193 if (p
->buf
!= p
->inline_buf
) {
202 static int fs_path_len(struct fs_path
*p
)
204 return p
->end
- p
->start
;
207 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
215 if (p
->buf_len
>= len
)
218 path_len
= p
->end
- p
->start
;
219 old_buf_len
= p
->buf_len
;
220 len
= PAGE_ALIGN(len
);
222 if (p
->buf
== p
->inline_buf
) {
223 tmp_buf
= kmalloc(len
, GFP_NOFS
| __GFP_NOWARN
);
225 tmp_buf
= vmalloc(len
);
230 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
234 if (p
->virtual_mem
) {
235 tmp_buf
= vmalloc(len
);
238 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
241 tmp_buf
= krealloc(p
->buf
, len
, GFP_NOFS
);
243 tmp_buf
= vmalloc(len
);
246 memcpy(tmp_buf
, p
->buf
, p
->buf_len
);
255 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
256 p
->end
= p
->buf
+ p
->buf_len
- 1;
257 p
->start
= p
->end
- path_len
;
258 memmove(p
->start
, tmp_buf
, path_len
+ 1);
261 p
->end
= p
->start
+ path_len
;
266 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
)
271 new_len
= p
->end
- p
->start
+ name_len
;
272 if (p
->start
!= p
->end
)
274 ret
= fs_path_ensure_buf(p
, new_len
);
279 if (p
->start
!= p
->end
)
281 p
->start
-= name_len
;
282 p
->prepared
= p
->start
;
284 if (p
->start
!= p
->end
)
286 p
->prepared
= p
->end
;
295 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
299 ret
= fs_path_prepare_for_add(p
, name_len
);
302 memcpy(p
->prepared
, name
, name_len
);
309 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
313 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
);
316 memcpy(p
->prepared
, p2
->start
, p2
->end
- p2
->start
);
323 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
324 struct extent_buffer
*eb
,
325 unsigned long off
, int len
)
329 ret
= fs_path_prepare_for_add(p
, len
);
333 read_extent_buffer(eb
, p
->prepared
, off
, len
);
341 static void fs_path_remove(struct fs_path
*p
)
344 while (p
->start
!= p
->end
&& *p
->end
!= '/')
350 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
354 p
->reversed
= from
->reversed
;
357 ret
= fs_path_add_path(p
, from
);
363 static void fs_path_unreverse(struct fs_path
*p
)
372 len
= p
->end
- p
->start
;
374 p
->end
= p
->start
+ len
;
375 memmove(p
->start
, tmp
, len
+ 1);
379 static struct btrfs_path
*alloc_path_for_send(void)
381 struct btrfs_path
*path
;
383 path
= btrfs_alloc_path();
386 path
->search_commit_root
= 1;
387 path
->skip_locking
= 1;
391 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
401 ret
= vfs_write(filp
, (char *)buf
+ pos
, len
- pos
, off
);
402 /* TODO handle that correctly */
403 /*if (ret == -ERESTARTSYS) {
422 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
424 struct btrfs_tlv_header
*hdr
;
425 int total_len
= sizeof(*hdr
) + len
;
426 int left
= sctx
->send_max_size
- sctx
->send_size
;
428 if (unlikely(left
< total_len
))
431 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
432 hdr
->tlv_type
= cpu_to_le16(attr
);
433 hdr
->tlv_len
= cpu_to_le16(len
);
434 memcpy(hdr
+ 1, data
, len
);
435 sctx
->send_size
+= total_len
;
441 static int tlv_put_u8(struct send_ctx
*sctx
, u16 attr
, u8 value
)
443 return tlv_put(sctx
, attr
, &value
, sizeof(value
));
446 static int tlv_put_u16(struct send_ctx
*sctx
, u16 attr
, u16 value
)
448 __le16 tmp
= cpu_to_le16(value
);
449 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
452 static int tlv_put_u32(struct send_ctx
*sctx
, u16 attr
, u32 value
)
454 __le32 tmp
= cpu_to_le32(value
);
455 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
459 static int tlv_put_u64(struct send_ctx
*sctx
, u16 attr
, u64 value
)
461 __le64 tmp
= cpu_to_le64(value
);
462 return tlv_put(sctx
, attr
, &tmp
, sizeof(tmp
));
465 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
466 const char *str
, int len
)
470 return tlv_put(sctx
, attr
, str
, len
);
473 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
476 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
480 static int tlv_put_timespec(struct send_ctx
*sctx
, u16 attr
,
483 struct btrfs_timespec bts
;
484 bts
.sec
= cpu_to_le64(ts
->tv_sec
);
485 bts
.nsec
= cpu_to_le32(ts
->tv_nsec
);
486 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
490 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
491 struct extent_buffer
*eb
,
492 struct btrfs_timespec
*ts
)
494 struct btrfs_timespec bts
;
495 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
496 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
500 #define TLV_PUT(sctx, attrtype, attrlen, data) \
502 ret = tlv_put(sctx, attrtype, attrlen, data); \
504 goto tlv_put_failure; \
507 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
509 ret = tlv_put_u##bits(sctx, attrtype, value); \
511 goto tlv_put_failure; \
514 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
515 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
516 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
517 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
518 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
520 ret = tlv_put_string(sctx, attrtype, str, len); \
522 goto tlv_put_failure; \
524 #define TLV_PUT_PATH(sctx, attrtype, p) \
526 ret = tlv_put_string(sctx, attrtype, p->start, \
527 p->end - p->start); \
529 goto tlv_put_failure; \
531 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
533 ret = tlv_put_uuid(sctx, attrtype, uuid); \
535 goto tlv_put_failure; \
537 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
539 ret = tlv_put_timespec(sctx, attrtype, ts); \
541 goto tlv_put_failure; \
543 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
545 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
547 goto tlv_put_failure; \
550 static int send_header(struct send_ctx
*sctx
)
552 struct btrfs_stream_header hdr
;
554 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
555 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
557 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
562 * For each command/item we want to send to userspace, we call this function.
564 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
566 struct btrfs_cmd_header
*hdr
;
568 if (!sctx
->send_buf
) {
573 BUG_ON(sctx
->send_size
);
575 sctx
->send_size
+= sizeof(*hdr
);
576 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
577 hdr
->cmd
= cpu_to_le16(cmd
);
582 static int send_cmd(struct send_ctx
*sctx
)
585 struct btrfs_cmd_header
*hdr
;
588 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
589 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
592 crc
= crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
593 hdr
->crc
= cpu_to_le32(crc
);
595 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
598 sctx
->total_send_size
+= sctx
->send_size
;
599 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
606 * Sends a move instruction to user space
608 static int send_rename(struct send_ctx
*sctx
,
609 struct fs_path
*from
, struct fs_path
*to
)
613 verbose_printk("btrfs: send_rename %s -> %s\n", from
->start
, to
->start
);
615 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
619 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
620 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
622 ret
= send_cmd(sctx
);
630 * Sends a link instruction to user space
632 static int send_link(struct send_ctx
*sctx
,
633 struct fs_path
*path
, struct fs_path
*lnk
)
637 verbose_printk("btrfs: send_link %s -> %s\n", path
->start
, lnk
->start
);
639 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
643 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
644 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
646 ret
= send_cmd(sctx
);
654 * Sends an unlink instruction to user space
656 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
660 verbose_printk("btrfs: send_unlink %s\n", path
->start
);
662 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
666 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
668 ret
= send_cmd(sctx
);
676 * Sends a rmdir instruction to user space
678 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
682 verbose_printk("btrfs: send_rmdir %s\n", path
->start
);
684 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
688 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
690 ret
= send_cmd(sctx
);
698 * Helper function to retrieve some fields from an inode item.
700 static int get_inode_info(struct btrfs_root
*root
,
701 u64 ino
, u64
*size
, u64
*gen
,
702 u64
*mode
, u64
*uid
, u64
*gid
,
706 struct btrfs_inode_item
*ii
;
707 struct btrfs_key key
;
708 struct btrfs_path
*path
;
710 path
= alloc_path_for_send();
715 key
.type
= BTRFS_INODE_ITEM_KEY
;
717 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
725 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
726 struct btrfs_inode_item
);
728 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
730 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
732 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
734 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
736 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
738 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
741 btrfs_free_path(path
);
745 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
750 * Helper function to iterate the entries in ONE btrfs_inode_ref or
751 * btrfs_inode_extref.
752 * The iterate callback may return a non zero value to stop iteration. This can
753 * be a negative value for error codes or 1 to simply stop it.
755 * path must point to the INODE_REF or INODE_EXTREF when called.
757 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
758 struct btrfs_key
*found_key
, int resolve
,
759 iterate_inode_ref_t iterate
, void *ctx
)
761 struct extent_buffer
*eb
= path
->nodes
[0];
762 struct btrfs_item
*item
;
763 struct btrfs_inode_ref
*iref
;
764 struct btrfs_inode_extref
*extref
;
765 struct btrfs_path
*tmp_path
;
769 int slot
= path
->slots
[0];
776 unsigned long name_off
;
777 unsigned long elem_size
;
780 p
= fs_path_alloc_reversed();
784 tmp_path
= alloc_path_for_send();
791 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
792 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
793 struct btrfs_inode_ref
);
794 item
= btrfs_item_nr(eb
, slot
);
795 total
= btrfs_item_size(eb
, item
);
796 elem_size
= sizeof(*iref
);
798 ptr
= btrfs_item_ptr_offset(eb
, slot
);
799 total
= btrfs_item_size_nr(eb
, slot
);
800 elem_size
= sizeof(*extref
);
803 while (cur
< total
) {
806 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
807 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
808 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
809 name_off
= (unsigned long)(iref
+ 1);
810 index
= btrfs_inode_ref_index(eb
, iref
);
811 dir
= found_key
->offset
;
813 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
814 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
815 name_off
= (unsigned long)&extref
->name
;
816 index
= btrfs_inode_extref_index(eb
, extref
);
817 dir
= btrfs_inode_extref_parent(eb
, extref
);
821 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
825 ret
= PTR_ERR(start
);
828 if (start
< p
->buf
) {
829 /* overflow , try again with larger buffer */
830 ret
= fs_path_ensure_buf(p
,
831 p
->buf_len
+ p
->buf
- start
);
834 start
= btrfs_ref_to_path(root
, tmp_path
,
839 ret
= PTR_ERR(start
);
842 BUG_ON(start
< p
->buf
);
846 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
852 cur
+= elem_size
+ name_len
;
853 ret
= iterate(num
, dir
, index
, p
, ctx
);
860 btrfs_free_path(tmp_path
);
865 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
866 const char *name
, int name_len
,
867 const char *data
, int data_len
,
871 * Helper function to iterate the entries in ONE btrfs_dir_item.
872 * The iterate callback may return a non zero value to stop iteration. This can
873 * be a negative value for error codes or 1 to simply stop it.
875 * path must point to the dir item when called.
877 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
878 struct btrfs_key
*found_key
,
879 iterate_dir_item_t iterate
, void *ctx
)
882 struct extent_buffer
*eb
;
883 struct btrfs_item
*item
;
884 struct btrfs_dir_item
*di
;
885 struct btrfs_key di_key
;
900 buf
= kmalloc(buf_len
, GFP_NOFS
);
907 slot
= path
->slots
[0];
908 item
= btrfs_item_nr(eb
, slot
);
909 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
912 total
= btrfs_item_size(eb
, item
);
915 while (cur
< total
) {
916 name_len
= btrfs_dir_name_len(eb
, di
);
917 data_len
= btrfs_dir_data_len(eb
, di
);
918 type
= btrfs_dir_type(eb
, di
);
919 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
921 if (name_len
+ data_len
> buf_len
) {
922 buf_len
= PAGE_ALIGN(name_len
+ data_len
);
924 buf2
= vmalloc(buf_len
);
931 buf2
= krealloc(buf
, buf_len
, GFP_NOFS
);
933 buf2
= vmalloc(buf_len
);
947 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
948 name_len
+ data_len
);
950 len
= sizeof(*di
) + name_len
+ data_len
;
951 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
954 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
955 data_len
, type
, ctx
);
974 static int __copy_first_ref(int num
, u64 dir
, int index
,
975 struct fs_path
*p
, void *ctx
)
978 struct fs_path
*pt
= ctx
;
980 ret
= fs_path_copy(pt
, p
);
984 /* we want the first only */
989 * Retrieve the first path of an inode. If an inode has more then one
990 * ref/hardlink, this is ignored.
992 static int get_inode_path(struct btrfs_root
*root
,
993 u64 ino
, struct fs_path
*path
)
996 struct btrfs_key key
, found_key
;
997 struct btrfs_path
*p
;
999 p
= alloc_path_for_send();
1003 fs_path_reset(path
);
1006 key
.type
= BTRFS_INODE_REF_KEY
;
1009 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1016 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1017 if (found_key
.objectid
!= ino
||
1018 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1019 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1024 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1025 __copy_first_ref
, path
);
1035 struct backref_ctx
{
1036 struct send_ctx
*sctx
;
1038 /* number of total found references */
1042 * used for clones found in send_root. clones found behind cur_objectid
1043 * and cur_offset are not considered as allowed clones.
1048 /* may be truncated in case it's the last extent in a file */
1051 /* Just to check for bugs in backref resolving */
1055 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1057 u64 root
= (u64
)(uintptr_t)key
;
1058 struct clone_root
*cr
= (struct clone_root
*)elt
;
1060 if (root
< cr
->root
->objectid
)
1062 if (root
> cr
->root
->objectid
)
1067 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1069 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1070 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1072 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1074 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1080 * Called for every backref that is found for the current extent.
1081 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1083 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1085 struct backref_ctx
*bctx
= ctx_
;
1086 struct clone_root
*found
;
1090 /* First check if the root is in the list of accepted clone sources */
1091 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1092 bctx
->sctx
->clone_roots_cnt
,
1093 sizeof(struct clone_root
),
1094 __clone_root_cmp_bsearch
);
1098 if (found
->root
== bctx
->sctx
->send_root
&&
1099 ino
== bctx
->cur_objectid
&&
1100 offset
== bctx
->cur_offset
) {
1101 bctx
->found_itself
= 1;
1105 * There are inodes that have extents that lie behind its i_size. Don't
1106 * accept clones from these extents.
1108 ret
= get_inode_info(found
->root
, ino
, &i_size
, NULL
, NULL
, NULL
, NULL
,
1113 if (offset
+ bctx
->extent_len
> i_size
)
1117 * Make sure we don't consider clones from send_root that are
1118 * behind the current inode/offset.
1120 if (found
->root
== bctx
->sctx
->send_root
) {
1122 * TODO for the moment we don't accept clones from the inode
1123 * that is currently send. We may change this when
1124 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1127 if (ino
>= bctx
->cur_objectid
)
1130 if (ino
> bctx
->cur_objectid
)
1132 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1138 found
->found_refs
++;
1139 if (ino
< found
->ino
) {
1141 found
->offset
= offset
;
1142 } else if (found
->ino
== ino
) {
1144 * same extent found more then once in the same file.
1146 if (found
->offset
> offset
+ bctx
->extent_len
)
1147 found
->offset
= offset
;
1154 * Given an inode, offset and extent item, it finds a good clone for a clone
1155 * instruction. Returns -ENOENT when none could be found. The function makes
1156 * sure that the returned clone is usable at the point where sending is at the
1157 * moment. This means, that no clones are accepted which lie behind the current
1160 * path must point to the extent item when called.
1162 static int find_extent_clone(struct send_ctx
*sctx
,
1163 struct btrfs_path
*path
,
1164 u64 ino
, u64 data_offset
,
1166 struct clone_root
**found
)
1173 u64 extent_item_pos
;
1175 struct btrfs_file_extent_item
*fi
;
1176 struct extent_buffer
*eb
= path
->nodes
[0];
1177 struct backref_ctx
*backref_ctx
= NULL
;
1178 struct clone_root
*cur_clone_root
;
1179 struct btrfs_key found_key
;
1180 struct btrfs_path
*tmp_path
;
1184 tmp_path
= alloc_path_for_send();
1188 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_NOFS
);
1194 if (data_offset
>= ino_size
) {
1196 * There may be extents that lie behind the file's size.
1197 * I at least had this in combination with snapshotting while
1198 * writing large files.
1204 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1205 struct btrfs_file_extent_item
);
1206 extent_type
= btrfs_file_extent_type(eb
, fi
);
1207 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1211 compressed
= btrfs_file_extent_compression(eb
, fi
);
1213 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1214 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1215 if (disk_byte
== 0) {
1219 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1221 ret
= extent_from_logical(sctx
->send_root
->fs_info
, disk_byte
, tmp_path
,
1222 &found_key
, &flags
);
1223 btrfs_release_path(tmp_path
);
1227 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1233 * Setup the clone roots.
1235 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1236 cur_clone_root
= sctx
->clone_roots
+ i
;
1237 cur_clone_root
->ino
= (u64
)-1;
1238 cur_clone_root
->offset
= 0;
1239 cur_clone_root
->found_refs
= 0;
1242 backref_ctx
->sctx
= sctx
;
1243 backref_ctx
->found
= 0;
1244 backref_ctx
->cur_objectid
= ino
;
1245 backref_ctx
->cur_offset
= data_offset
;
1246 backref_ctx
->found_itself
= 0;
1247 backref_ctx
->extent_len
= num_bytes
;
1250 * The last extent of a file may be too large due to page alignment.
1251 * We need to adjust extent_len in this case so that the checks in
1252 * __iterate_backrefs work.
1254 if (data_offset
+ num_bytes
>= ino_size
)
1255 backref_ctx
->extent_len
= ino_size
- data_offset
;
1258 * Now collect all backrefs.
1260 if (compressed
== BTRFS_COMPRESS_NONE
)
1261 extent_item_pos
= logical
- found_key
.objectid
;
1263 extent_item_pos
= 0;
1265 extent_item_pos
= logical
- found_key
.objectid
;
1266 ret
= iterate_extent_inodes(sctx
->send_root
->fs_info
,
1267 found_key
.objectid
, extent_item_pos
, 1,
1268 __iterate_backrefs
, backref_ctx
);
1273 if (!backref_ctx
->found_itself
) {
1274 /* found a bug in backref code? */
1276 printk(KERN_ERR
"btrfs: ERROR did not find backref in "
1277 "send_root. inode=%llu, offset=%llu, "
1278 "disk_byte=%llu found extent=%llu\n",
1279 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1283 verbose_printk(KERN_DEBUG
"btrfs: find_extent_clone: data_offset=%llu, "
1285 "num_bytes=%llu, logical=%llu\n",
1286 data_offset
, ino
, num_bytes
, logical
);
1288 if (!backref_ctx
->found
)
1289 verbose_printk("btrfs: no clones found\n");
1291 cur_clone_root
= NULL
;
1292 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1293 if (sctx
->clone_roots
[i
].found_refs
) {
1294 if (!cur_clone_root
)
1295 cur_clone_root
= sctx
->clone_roots
+ i
;
1296 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1297 /* prefer clones from send_root over others */
1298 cur_clone_root
= sctx
->clone_roots
+ i
;
1303 if (cur_clone_root
) {
1304 *found
= cur_clone_root
;
1311 btrfs_free_path(tmp_path
);
1316 static int read_symlink(struct btrfs_root
*root
,
1318 struct fs_path
*dest
)
1321 struct btrfs_path
*path
;
1322 struct btrfs_key key
;
1323 struct btrfs_file_extent_item
*ei
;
1329 path
= alloc_path_for_send();
1334 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1336 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1341 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1342 struct btrfs_file_extent_item
);
1343 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1344 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1345 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1346 BUG_ON(compression
);
1348 off
= btrfs_file_extent_inline_start(ei
);
1349 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
1351 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1354 btrfs_free_path(path
);
1359 * Helper function to generate a file name that is unique in the root of
1360 * send_root and parent_root. This is used to generate names for orphan inodes.
1362 static int gen_unique_name(struct send_ctx
*sctx
,
1364 struct fs_path
*dest
)
1367 struct btrfs_path
*path
;
1368 struct btrfs_dir_item
*di
;
1373 path
= alloc_path_for_send();
1378 len
= snprintf(tmp
, sizeof(tmp
) - 1, "o%llu-%llu-%llu",
1380 if (len
>= sizeof(tmp
)) {
1381 /* should really not happen */
1386 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1387 path
, BTRFS_FIRST_FREE_OBJECTID
,
1388 tmp
, strlen(tmp
), 0);
1389 btrfs_release_path(path
);
1395 /* not unique, try again */
1400 if (!sctx
->parent_root
) {
1406 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1407 path
, BTRFS_FIRST_FREE_OBJECTID
,
1408 tmp
, strlen(tmp
), 0);
1409 btrfs_release_path(path
);
1415 /* not unique, try again */
1423 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1426 btrfs_free_path(path
);
1431 inode_state_no_change
,
1432 inode_state_will_create
,
1433 inode_state_did_create
,
1434 inode_state_will_delete
,
1435 inode_state_did_delete
,
1438 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1446 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1448 if (ret
< 0 && ret
!= -ENOENT
)
1452 if (!sctx
->parent_root
) {
1453 right_ret
= -ENOENT
;
1455 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1456 NULL
, NULL
, NULL
, NULL
);
1457 if (ret
< 0 && ret
!= -ENOENT
)
1462 if (!left_ret
&& !right_ret
) {
1463 if (left_gen
== gen
&& right_gen
== gen
) {
1464 ret
= inode_state_no_change
;
1465 } else if (left_gen
== gen
) {
1466 if (ino
< sctx
->send_progress
)
1467 ret
= inode_state_did_create
;
1469 ret
= inode_state_will_create
;
1470 } else if (right_gen
== gen
) {
1471 if (ino
< sctx
->send_progress
)
1472 ret
= inode_state_did_delete
;
1474 ret
= inode_state_will_delete
;
1478 } else if (!left_ret
) {
1479 if (left_gen
== gen
) {
1480 if (ino
< sctx
->send_progress
)
1481 ret
= inode_state_did_create
;
1483 ret
= inode_state_will_create
;
1487 } else if (!right_ret
) {
1488 if (right_gen
== gen
) {
1489 if (ino
< sctx
->send_progress
)
1490 ret
= inode_state_did_delete
;
1492 ret
= inode_state_will_delete
;
1504 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1508 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1512 if (ret
== inode_state_no_change
||
1513 ret
== inode_state_did_create
||
1514 ret
== inode_state_will_delete
)
1524 * Helper function to lookup a dir item in a dir.
1526 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1527 u64 dir
, const char *name
, int name_len
,
1532 struct btrfs_dir_item
*di
;
1533 struct btrfs_key key
;
1534 struct btrfs_path
*path
;
1536 path
= alloc_path_for_send();
1540 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1541 dir
, name
, name_len
, 0);
1550 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1551 *found_inode
= key
.objectid
;
1552 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1555 btrfs_free_path(path
);
1560 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1561 * generation of the parent dir and the name of the dir entry.
1563 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1564 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1567 struct btrfs_key key
;
1568 struct btrfs_key found_key
;
1569 struct btrfs_path
*path
;
1573 path
= alloc_path_for_send();
1578 key
.type
= BTRFS_INODE_REF_KEY
;
1581 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1585 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1587 if (ret
|| found_key
.objectid
!= ino
||
1588 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1589 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1594 if (key
.type
== BTRFS_INODE_REF_KEY
) {
1595 struct btrfs_inode_ref
*iref
;
1596 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1597 struct btrfs_inode_ref
);
1598 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1599 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1600 (unsigned long)(iref
+ 1),
1602 parent_dir
= found_key
.offset
;
1604 struct btrfs_inode_extref
*extref
;
1605 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1606 struct btrfs_inode_extref
);
1607 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1608 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1609 (unsigned long)&extref
->name
, len
);
1610 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1614 btrfs_release_path(path
);
1616 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
, NULL
,
1624 btrfs_free_path(path
);
1628 static int is_first_ref(struct btrfs_root
*root
,
1630 const char *name
, int name_len
)
1633 struct fs_path
*tmp_name
;
1637 tmp_name
= fs_path_alloc();
1641 ret
= get_first_ref(root
, ino
, &tmp_dir
, &tmp_dir_gen
, tmp_name
);
1645 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1650 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1653 fs_path_free(tmp_name
);
1658 * Used by process_recorded_refs to determine if a new ref would overwrite an
1659 * already existing ref. In case it detects an overwrite, it returns the
1660 * inode/gen in who_ino/who_gen.
1661 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1662 * to make sure later references to the overwritten inode are possible.
1663 * Orphanizing is however only required for the first ref of an inode.
1664 * process_recorded_refs does an additional is_first_ref check to see if
1665 * orphanizing is really required.
1667 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1668 const char *name
, int name_len
,
1669 u64
*who_ino
, u64
*who_gen
)
1673 u64 other_inode
= 0;
1676 if (!sctx
->parent_root
)
1679 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1684 * If we have a parent root we need to verify that the parent dir was
1685 * not delted and then re-created, if it was then we have no overwrite
1686 * and we can just unlink this entry.
1688 if (sctx
->parent_root
) {
1689 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1691 if (ret
< 0 && ret
!= -ENOENT
)
1701 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1702 &other_inode
, &other_type
);
1703 if (ret
< 0 && ret
!= -ENOENT
)
1711 * Check if the overwritten ref was already processed. If yes, the ref
1712 * was already unlinked/moved, so we can safely assume that we will not
1713 * overwrite anything at this point in time.
1715 if (other_inode
> sctx
->send_progress
) {
1716 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1717 who_gen
, NULL
, NULL
, NULL
, NULL
);
1722 *who_ino
= other_inode
;
1732 * Checks if the ref was overwritten by an already processed inode. This is
1733 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1734 * thus the orphan name needs be used.
1735 * process_recorded_refs also uses it to avoid unlinking of refs that were
1738 static int did_overwrite_ref(struct send_ctx
*sctx
,
1739 u64 dir
, u64 dir_gen
,
1740 u64 ino
, u64 ino_gen
,
1741 const char *name
, int name_len
)
1748 if (!sctx
->parent_root
)
1751 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1755 /* check if the ref was overwritten by another ref */
1756 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1757 &ow_inode
, &other_type
);
1758 if (ret
< 0 && ret
!= -ENOENT
)
1761 /* was never and will never be overwritten */
1766 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1771 if (ow_inode
== ino
&& gen
== ino_gen
) {
1776 /* we know that it is or will be overwritten. check this now */
1777 if (ow_inode
< sctx
->send_progress
)
1787 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1788 * that got overwritten. This is used by process_recorded_refs to determine
1789 * if it has to use the path as returned by get_cur_path or the orphan name.
1791 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1794 struct fs_path
*name
= NULL
;
1798 if (!sctx
->parent_root
)
1801 name
= fs_path_alloc();
1805 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
1809 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
1810 name
->start
, fs_path_len(name
));
1818 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1819 * so we need to do some special handling in case we have clashes. This function
1820 * takes care of this with the help of name_cache_entry::radix_list.
1821 * In case of error, nce is kfreed.
1823 static int name_cache_insert(struct send_ctx
*sctx
,
1824 struct name_cache_entry
*nce
)
1827 struct list_head
*nce_head
;
1829 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1830 (unsigned long)nce
->ino
);
1832 nce_head
= kmalloc(sizeof(*nce_head
), GFP_NOFS
);
1837 INIT_LIST_HEAD(nce_head
);
1839 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
1846 list_add_tail(&nce
->radix_list
, nce_head
);
1847 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1848 sctx
->name_cache_size
++;
1853 static void name_cache_delete(struct send_ctx
*sctx
,
1854 struct name_cache_entry
*nce
)
1856 struct list_head
*nce_head
;
1858 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
1859 (unsigned long)nce
->ino
);
1862 list_del(&nce
->radix_list
);
1863 list_del(&nce
->list
);
1864 sctx
->name_cache_size
--;
1866 if (list_empty(nce_head
)) {
1867 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
1872 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
1875 struct list_head
*nce_head
;
1876 struct name_cache_entry
*cur
;
1878 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
1882 list_for_each_entry(cur
, nce_head
, radix_list
) {
1883 if (cur
->ino
== ino
&& cur
->gen
== gen
)
1890 * Removes the entry from the list and adds it back to the end. This marks the
1891 * entry as recently used so that name_cache_clean_unused does not remove it.
1893 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
1895 list_del(&nce
->list
);
1896 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
1900 * Remove some entries from the beginning of name_cache_list.
1902 static void name_cache_clean_unused(struct send_ctx
*sctx
)
1904 struct name_cache_entry
*nce
;
1906 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
1909 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
1910 nce
= list_entry(sctx
->name_cache_list
.next
,
1911 struct name_cache_entry
, list
);
1912 name_cache_delete(sctx
, nce
);
1917 static void name_cache_free(struct send_ctx
*sctx
)
1919 struct name_cache_entry
*nce
;
1921 while (!list_empty(&sctx
->name_cache_list
)) {
1922 nce
= list_entry(sctx
->name_cache_list
.next
,
1923 struct name_cache_entry
, list
);
1924 name_cache_delete(sctx
, nce
);
1930 * Used by get_cur_path for each ref up to the root.
1931 * Returns 0 if it succeeded.
1932 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1933 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1934 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1935 * Returns <0 in case of error.
1937 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
1941 struct fs_path
*dest
)
1945 struct btrfs_path
*path
= NULL
;
1946 struct name_cache_entry
*nce
= NULL
;
1949 * First check if we already did a call to this function with the same
1950 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1951 * return the cached result.
1953 nce
= name_cache_search(sctx
, ino
, gen
);
1955 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
1956 name_cache_delete(sctx
, nce
);
1960 name_cache_used(sctx
, nce
);
1961 *parent_ino
= nce
->parent_ino
;
1962 *parent_gen
= nce
->parent_gen
;
1963 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
1971 path
= alloc_path_for_send();
1976 * If the inode is not existent yet, add the orphan name and return 1.
1977 * This should only happen for the parent dir that we determine in
1980 ret
= is_inode_existent(sctx
, ino
, gen
);
1985 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
1993 * Depending on whether the inode was already processed or not, use
1994 * send_root or parent_root for ref lookup.
1996 if (ino
< sctx
->send_progress
)
1997 ret
= get_first_ref(sctx
->send_root
, ino
,
1998 parent_ino
, parent_gen
, dest
);
2000 ret
= get_first_ref(sctx
->parent_root
, ino
,
2001 parent_ino
, parent_gen
, dest
);
2006 * Check if the ref was overwritten by an inode's ref that was processed
2007 * earlier. If yes, treat as orphan and return 1.
2009 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2010 dest
->start
, dest
->end
- dest
->start
);
2014 fs_path_reset(dest
);
2015 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2023 * Store the result of the lookup in the name cache.
2025 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_NOFS
);
2033 nce
->parent_ino
= *parent_ino
;
2034 nce
->parent_gen
= *parent_gen
;
2035 nce
->name_len
= fs_path_len(dest
);
2037 strcpy(nce
->name
, dest
->start
);
2039 if (ino
< sctx
->send_progress
)
2040 nce
->need_later_update
= 0;
2042 nce
->need_later_update
= 1;
2044 nce_ret
= name_cache_insert(sctx
, nce
);
2047 name_cache_clean_unused(sctx
);
2050 btrfs_free_path(path
);
2055 * Magic happens here. This function returns the first ref to an inode as it
2056 * would look like while receiving the stream at this point in time.
2057 * We walk the path up to the root. For every inode in between, we check if it
2058 * was already processed/sent. If yes, we continue with the parent as found
2059 * in send_root. If not, we continue with the parent as found in parent_root.
2060 * If we encounter an inode that was deleted at this point in time, we use the
2061 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2062 * that were not created yet and overwritten inodes/refs.
2064 * When do we have have orphan inodes:
2065 * 1. When an inode is freshly created and thus no valid refs are available yet
2066 * 2. When a directory lost all it's refs (deleted) but still has dir items
2067 * inside which were not processed yet (pending for move/delete). If anyone
2068 * tried to get the path to the dir items, it would get a path inside that
2070 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2071 * of an unprocessed inode. If in that case the first ref would be
2072 * overwritten, the overwritten inode gets "orphanized". Later when we
2073 * process this overwritten inode, it is restored at a new place by moving
2076 * sctx->send_progress tells this function at which point in time receiving
2079 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2080 struct fs_path
*dest
)
2083 struct fs_path
*name
= NULL
;
2084 u64 parent_inode
= 0;
2088 name
= fs_path_alloc();
2095 fs_path_reset(dest
);
2097 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2098 fs_path_reset(name
);
2100 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2101 &parent_inode
, &parent_gen
, name
);
2107 ret
= fs_path_add_path(dest
, name
);
2118 fs_path_unreverse(dest
);
2123 * Called for regular files when sending extents data. Opens a struct file
2124 * to read from the file.
2126 static int open_cur_inode_file(struct send_ctx
*sctx
)
2129 struct btrfs_key key
;
2131 struct inode
*inode
;
2132 struct dentry
*dentry
;
2136 if (sctx
->cur_inode_filp
)
2139 key
.objectid
= sctx
->cur_ino
;
2140 key
.type
= BTRFS_INODE_ITEM_KEY
;
2143 inode
= btrfs_iget(sctx
->send_root
->fs_info
->sb
, &key
, sctx
->send_root
,
2145 if (IS_ERR(inode
)) {
2146 ret
= PTR_ERR(inode
);
2150 dentry
= d_obtain_alias(inode
);
2152 if (IS_ERR(dentry
)) {
2153 ret
= PTR_ERR(dentry
);
2157 path
.mnt
= sctx
->mnt
;
2158 path
.dentry
= dentry
;
2159 filp
= dentry_open(&path
, O_RDONLY
| O_LARGEFILE
, current_cred());
2163 ret
= PTR_ERR(filp
);
2166 sctx
->cur_inode_filp
= filp
;
2170 * no xxxput required here as every vfs op
2171 * does it by itself on failure
2177 * Closes the struct file that was created in open_cur_inode_file
2179 static int close_cur_inode_file(struct send_ctx
*sctx
)
2183 if (!sctx
->cur_inode_filp
)
2186 ret
= filp_close(sctx
->cur_inode_filp
, NULL
);
2187 sctx
->cur_inode_filp
= NULL
;
2194 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2196 static int send_subvol_begin(struct send_ctx
*sctx
)
2199 struct btrfs_root
*send_root
= sctx
->send_root
;
2200 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2201 struct btrfs_path
*path
;
2202 struct btrfs_key key
;
2203 struct btrfs_root_ref
*ref
;
2204 struct extent_buffer
*leaf
;
2208 path
= alloc_path_for_send();
2212 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_NOFS
);
2214 btrfs_free_path(path
);
2218 key
.objectid
= send_root
->objectid
;
2219 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2222 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2231 leaf
= path
->nodes
[0];
2232 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2233 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2234 key
.objectid
!= send_root
->objectid
) {
2238 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2239 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2240 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2241 btrfs_release_path(path
);
2244 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2248 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2253 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2254 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2255 sctx
->send_root
->root_item
.uuid
);
2256 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2257 sctx
->send_root
->root_item
.ctransid
);
2259 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2260 sctx
->parent_root
->root_item
.uuid
);
2261 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2262 sctx
->parent_root
->root_item
.ctransid
);
2265 ret
= send_cmd(sctx
);
2269 btrfs_free_path(path
);
2274 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2279 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino
, size
);
2281 p
= fs_path_alloc();
2285 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2289 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2292 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2293 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2295 ret
= send_cmd(sctx
);
2303 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2308 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino
, mode
);
2310 p
= fs_path_alloc();
2314 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2318 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2321 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2322 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2324 ret
= send_cmd(sctx
);
2332 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2337 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino
, uid
, gid
);
2339 p
= fs_path_alloc();
2343 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2347 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2350 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2351 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2352 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2354 ret
= send_cmd(sctx
);
2362 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2365 struct fs_path
*p
= NULL
;
2366 struct btrfs_inode_item
*ii
;
2367 struct btrfs_path
*path
= NULL
;
2368 struct extent_buffer
*eb
;
2369 struct btrfs_key key
;
2372 verbose_printk("btrfs: send_utimes %llu\n", ino
);
2374 p
= fs_path_alloc();
2378 path
= alloc_path_for_send();
2385 key
.type
= BTRFS_INODE_ITEM_KEY
;
2387 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2391 eb
= path
->nodes
[0];
2392 slot
= path
->slots
[0];
2393 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2395 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2399 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2402 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2403 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
,
2404 btrfs_inode_atime(ii
));
2405 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
,
2406 btrfs_inode_mtime(ii
));
2407 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
,
2408 btrfs_inode_ctime(ii
));
2409 /* TODO Add otime support when the otime patches get into upstream */
2411 ret
= send_cmd(sctx
);
2416 btrfs_free_path(path
);
2421 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2422 * a valid path yet because we did not process the refs yet. So, the inode
2423 * is created as orphan.
2425 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2434 verbose_printk("btrfs: send_create_inode %llu\n", ino
);
2436 p
= fs_path_alloc();
2440 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
, NULL
,
2445 if (S_ISREG(mode
)) {
2446 cmd
= BTRFS_SEND_C_MKFILE
;
2447 } else if (S_ISDIR(mode
)) {
2448 cmd
= BTRFS_SEND_C_MKDIR
;
2449 } else if (S_ISLNK(mode
)) {
2450 cmd
= BTRFS_SEND_C_SYMLINK
;
2451 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2452 cmd
= BTRFS_SEND_C_MKNOD
;
2453 } else if (S_ISFIFO(mode
)) {
2454 cmd
= BTRFS_SEND_C_MKFIFO
;
2455 } else if (S_ISSOCK(mode
)) {
2456 cmd
= BTRFS_SEND_C_MKSOCK
;
2458 printk(KERN_WARNING
"btrfs: unexpected inode type %o",
2459 (int)(mode
& S_IFMT
));
2464 ret
= begin_cmd(sctx
, cmd
);
2468 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2472 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2473 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2475 if (S_ISLNK(mode
)) {
2477 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2480 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2481 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2482 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2483 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2484 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2487 ret
= send_cmd(sctx
);
2499 * We need some special handling for inodes that get processed before the parent
2500 * directory got created. See process_recorded_refs for details.
2501 * This function does the check if we already created the dir out of order.
2503 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2506 struct btrfs_path
*path
= NULL
;
2507 struct btrfs_key key
;
2508 struct btrfs_key found_key
;
2509 struct btrfs_key di_key
;
2510 struct extent_buffer
*eb
;
2511 struct btrfs_dir_item
*di
;
2514 path
= alloc_path_for_send();
2521 key
.type
= BTRFS_DIR_INDEX_KEY
;
2524 ret
= btrfs_search_slot_for_read(sctx
->send_root
, &key
, path
,
2529 eb
= path
->nodes
[0];
2530 slot
= path
->slots
[0];
2531 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2533 if (ret
|| found_key
.objectid
!= key
.objectid
||
2534 found_key
.type
!= key
.type
) {
2539 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2540 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2542 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2543 di_key
.objectid
< sctx
->send_progress
) {
2548 key
.offset
= found_key
.offset
+ 1;
2549 btrfs_release_path(path
);
2553 btrfs_free_path(path
);
2558 * Only creates the inode if it is:
2559 * 1. Not a directory
2560 * 2. Or a directory which was not created already due to out of order
2561 * directories. See did_create_dir and process_recorded_refs for details.
2563 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2567 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2568 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2577 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2585 struct recorded_ref
{
2586 struct list_head list
;
2589 struct fs_path
*full_path
;
2597 * We need to process new refs before deleted refs, but compare_tree gives us
2598 * everything mixed. So we first record all refs and later process them.
2599 * This function is a helper to record one ref.
2601 static int record_ref(struct list_head
*head
, u64 dir
,
2602 u64 dir_gen
, struct fs_path
*path
)
2604 struct recorded_ref
*ref
;
2606 ref
= kmalloc(sizeof(*ref
), GFP_NOFS
);
2611 ref
->dir_gen
= dir_gen
;
2612 ref
->full_path
= path
;
2614 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2615 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2616 ref
->dir_path
= ref
->full_path
->start
;
2617 if (ref
->name
== ref
->full_path
->start
)
2618 ref
->dir_path_len
= 0;
2620 ref
->dir_path_len
= ref
->full_path
->end
-
2621 ref
->full_path
->start
- 1 - ref
->name_len
;
2623 list_add_tail(&ref
->list
, head
);
2627 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2629 struct recorded_ref
*new;
2631 new = kmalloc(sizeof(*ref
), GFP_NOFS
);
2635 new->dir
= ref
->dir
;
2636 new->dir_gen
= ref
->dir_gen
;
2637 new->full_path
= NULL
;
2638 INIT_LIST_HEAD(&new->list
);
2639 list_add_tail(&new->list
, list
);
2643 static void __free_recorded_refs(struct list_head
*head
)
2645 struct recorded_ref
*cur
;
2647 while (!list_empty(head
)) {
2648 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2649 fs_path_free(cur
->full_path
);
2650 list_del(&cur
->list
);
2655 static void free_recorded_refs(struct send_ctx
*sctx
)
2657 __free_recorded_refs(&sctx
->new_refs
);
2658 __free_recorded_refs(&sctx
->deleted_refs
);
2662 * Renames/moves a file/dir to its orphan name. Used when the first
2663 * ref of an unprocessed inode gets overwritten and for all non empty
2666 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2667 struct fs_path
*path
)
2670 struct fs_path
*orphan
;
2672 orphan
= fs_path_alloc();
2676 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2680 ret
= send_rename(sctx
, path
, orphan
);
2683 fs_path_free(orphan
);
2688 * Returns 1 if a directory can be removed at this point in time.
2689 * We check this by iterating all dir items and checking if the inode behind
2690 * the dir item was already processed.
2692 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 send_progress
)
2695 struct btrfs_root
*root
= sctx
->parent_root
;
2696 struct btrfs_path
*path
;
2697 struct btrfs_key key
;
2698 struct btrfs_key found_key
;
2699 struct btrfs_key loc
;
2700 struct btrfs_dir_item
*di
;
2703 * Don't try to rmdir the top/root subvolume dir.
2705 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2708 path
= alloc_path_for_send();
2713 key
.type
= BTRFS_DIR_INDEX_KEY
;
2717 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
2721 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2724 if (ret
|| found_key
.objectid
!= key
.objectid
||
2725 found_key
.type
!= key
.type
) {
2729 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2730 struct btrfs_dir_item
);
2731 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2733 if (loc
.objectid
> send_progress
) {
2738 btrfs_release_path(path
);
2739 key
.offset
= found_key
.offset
+ 1;
2745 btrfs_free_path(path
);
2750 * This does all the move/link/unlink/rmdir magic.
2752 static int process_recorded_refs(struct send_ctx
*sctx
)
2755 struct recorded_ref
*cur
;
2756 struct recorded_ref
*cur2
;
2757 struct list_head check_dirs
;
2758 struct fs_path
*valid_path
= NULL
;
2761 int did_overwrite
= 0;
2764 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx
->cur_ino
);
2767 * This should never happen as the root dir always has the same ref
2768 * which is always '..'
2770 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
2771 INIT_LIST_HEAD(&check_dirs
);
2773 valid_path
= fs_path_alloc();
2780 * First, check if the first ref of the current inode was overwritten
2781 * before. If yes, we know that the current inode was already orphanized
2782 * and thus use the orphan name. If not, we can use get_cur_path to
2783 * get the path of the first ref as it would like while receiving at
2784 * this point in time.
2785 * New inodes are always orphan at the beginning, so force to use the
2786 * orphan name in this case.
2787 * The first ref is stored in valid_path and will be updated if it
2788 * gets moved around.
2790 if (!sctx
->cur_inode_new
) {
2791 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
2792 sctx
->cur_inode_gen
);
2798 if (sctx
->cur_inode_new
|| did_overwrite
) {
2799 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
2800 sctx
->cur_inode_gen
, valid_path
);
2805 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
2811 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
2813 * We may have refs where the parent directory does not exist
2814 * yet. This happens if the parent directories inum is higher
2815 * the the current inum. To handle this case, we create the
2816 * parent directory out of order. But we need to check if this
2817 * did already happen before due to other refs in the same dir.
2819 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
2822 if (ret
== inode_state_will_create
) {
2825 * First check if any of the current inodes refs did
2826 * already create the dir.
2828 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
2831 if (cur2
->dir
== cur
->dir
) {
2838 * If that did not happen, check if a previous inode
2839 * did already create the dir.
2842 ret
= did_create_dir(sctx
, cur
->dir
);
2846 ret
= send_create_inode(sctx
, cur
->dir
);
2853 * Check if this new ref would overwrite the first ref of
2854 * another unprocessed inode. If yes, orphanize the
2855 * overwritten inode. If we find an overwritten ref that is
2856 * not the first ref, simply unlink it.
2858 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2859 cur
->name
, cur
->name_len
,
2860 &ow_inode
, &ow_gen
);
2864 ret
= is_first_ref(sctx
->parent_root
,
2865 ow_inode
, cur
->dir
, cur
->name
,
2870 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
2875 ret
= send_unlink(sctx
, cur
->full_path
);
2882 * link/move the ref to the new place. If we have an orphan
2883 * inode, move it and update valid_path. If not, link or move
2884 * it depending on the inode mode.
2887 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
2891 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2895 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2897 * Dirs can't be linked, so move it. For moved
2898 * dirs, we always have one new and one deleted
2899 * ref. The deleted ref is ignored later.
2901 ret
= send_rename(sctx
, valid_path
,
2905 ret
= fs_path_copy(valid_path
, cur
->full_path
);
2909 ret
= send_link(sctx
, cur
->full_path
,
2915 ret
= dup_ref(cur
, &check_dirs
);
2920 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
2922 * Check if we can already rmdir the directory. If not,
2923 * orphanize it. For every dir item inside that gets deleted
2924 * later, we do this check again and rmdir it then if possible.
2925 * See the use of check_dirs for more details.
2927 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_ino
);
2931 ret
= send_rmdir(sctx
, valid_path
);
2934 } else if (!is_orphan
) {
2935 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
2936 sctx
->cur_inode_gen
, valid_path
);
2942 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2943 ret
= dup_ref(cur
, &check_dirs
);
2947 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
2948 !list_empty(&sctx
->deleted_refs
)) {
2950 * We have a moved dir. Add the old parent to check_dirs
2952 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
2954 ret
= dup_ref(cur
, &check_dirs
);
2957 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
2959 * We have a non dir inode. Go through all deleted refs and
2960 * unlink them if they were not already overwritten by other
2963 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
2964 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
2965 sctx
->cur_ino
, sctx
->cur_inode_gen
,
2966 cur
->name
, cur
->name_len
);
2970 ret
= send_unlink(sctx
, cur
->full_path
);
2974 ret
= dup_ref(cur
, &check_dirs
);
2979 * If the inode is still orphan, unlink the orphan. This may
2980 * happen when a previous inode did overwrite the first ref
2981 * of this inode and no new refs were added for the current
2982 * inode. Unlinking does not mean that the inode is deleted in
2983 * all cases. There may still be links to this inode in other
2987 ret
= send_unlink(sctx
, valid_path
);
2994 * We did collect all parent dirs where cur_inode was once located. We
2995 * now go through all these dirs and check if they are pending for
2996 * deletion and if it's finally possible to perform the rmdir now.
2997 * We also update the inode stats of the parent dirs here.
2999 list_for_each_entry(cur
, &check_dirs
, list
) {
3001 * In case we had refs into dirs that were not processed yet,
3002 * we don't need to do the utime and rmdir logic for these dirs.
3003 * The dir will be processed later.
3005 if (cur
->dir
> sctx
->cur_ino
)
3008 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3012 if (ret
== inode_state_did_create
||
3013 ret
== inode_state_no_change
) {
3014 /* TODO delayed utimes */
3015 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3018 } else if (ret
== inode_state_did_delete
) {
3019 ret
= can_rmdir(sctx
, cur
->dir
, sctx
->cur_ino
);
3023 ret
= get_cur_path(sctx
, cur
->dir
,
3024 cur
->dir_gen
, valid_path
);
3027 ret
= send_rmdir(sctx
, valid_path
);
3037 __free_recorded_refs(&check_dirs
);
3038 free_recorded_refs(sctx
);
3039 fs_path_free(valid_path
);
3043 static int __record_new_ref(int num
, u64 dir
, int index
,
3044 struct fs_path
*name
,
3048 struct send_ctx
*sctx
= ctx
;
3052 p
= fs_path_alloc();
3056 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
, NULL
,
3061 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3064 ret
= fs_path_add_path(p
, name
);
3068 ret
= record_ref(&sctx
->new_refs
, dir
, gen
, p
);
3076 static int __record_deleted_ref(int num
, u64 dir
, int index
,
3077 struct fs_path
*name
,
3081 struct send_ctx
*sctx
= ctx
;
3085 p
= fs_path_alloc();
3089 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
, NULL
,
3094 ret
= get_cur_path(sctx
, dir
, gen
, p
);
3097 ret
= fs_path_add_path(p
, name
);
3101 ret
= record_ref(&sctx
->deleted_refs
, dir
, gen
, p
);
3109 static int record_new_ref(struct send_ctx
*sctx
)
3113 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3114 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
3123 static int record_deleted_ref(struct send_ctx
*sctx
)
3127 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3128 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
3137 struct find_ref_ctx
{
3140 struct btrfs_root
*root
;
3141 struct fs_path
*name
;
3145 static int __find_iref(int num
, u64 dir
, int index
,
3146 struct fs_path
*name
,
3149 struct find_ref_ctx
*ctx
= ctx_
;
3153 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
3154 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
3156 * To avoid doing extra lookups we'll only do this if everything
3159 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
3163 if (dir_gen
!= ctx
->dir_gen
)
3165 ctx
->found_idx
= num
;
3171 static int find_iref(struct btrfs_root
*root
,
3172 struct btrfs_path
*path
,
3173 struct btrfs_key
*key
,
3174 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
3177 struct find_ref_ctx ctx
;
3181 ctx
.dir_gen
= dir_gen
;
3185 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
3189 if (ctx
.found_idx
== -1)
3192 return ctx
.found_idx
;
3195 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
3196 struct fs_path
*name
,
3201 struct send_ctx
*sctx
= ctx
;
3203 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
3208 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
3209 sctx
->cmp_key
, dir
, dir_gen
, name
);
3211 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
3218 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
3219 struct fs_path
*name
,
3224 struct send_ctx
*sctx
= ctx
;
3226 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
3231 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3232 dir
, dir_gen
, name
);
3234 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
3241 static int record_changed_ref(struct send_ctx
*sctx
)
3245 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
3246 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
3249 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
3250 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
3260 * Record and process all refs at once. Needed when an inode changes the
3261 * generation number, which means that it was deleted and recreated.
3263 static int process_all_refs(struct send_ctx
*sctx
,
3264 enum btrfs_compare_tree_result cmd
)
3267 struct btrfs_root
*root
;
3268 struct btrfs_path
*path
;
3269 struct btrfs_key key
;
3270 struct btrfs_key found_key
;
3271 struct extent_buffer
*eb
;
3273 iterate_inode_ref_t cb
;
3275 path
= alloc_path_for_send();
3279 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
3280 root
= sctx
->send_root
;
3281 cb
= __record_new_ref
;
3282 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
3283 root
= sctx
->parent_root
;
3284 cb
= __record_deleted_ref
;
3289 key
.objectid
= sctx
->cmp_key
->objectid
;
3290 key
.type
= BTRFS_INODE_REF_KEY
;
3293 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3299 eb
= path
->nodes
[0];
3300 slot
= path
->slots
[0];
3301 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3303 if (found_key
.objectid
!= key
.objectid
||
3304 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
3305 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
3308 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
3309 btrfs_release_path(path
);
3313 key
.offset
= found_key
.offset
+ 1;
3315 btrfs_release_path(path
);
3317 ret
= process_recorded_refs(sctx
);
3320 btrfs_free_path(path
);
3324 static int send_set_xattr(struct send_ctx
*sctx
,
3325 struct fs_path
*path
,
3326 const char *name
, int name_len
,
3327 const char *data
, int data_len
)
3331 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
3335 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3336 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3337 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
3339 ret
= send_cmd(sctx
);
3346 static int send_remove_xattr(struct send_ctx
*sctx
,
3347 struct fs_path
*path
,
3348 const char *name
, int name_len
)
3352 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
3356 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
3357 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
3359 ret
= send_cmd(sctx
);
3366 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
3367 const char *name
, int name_len
,
3368 const char *data
, int data_len
,
3372 struct send_ctx
*sctx
= ctx
;
3374 posix_acl_xattr_header dummy_acl
;
3376 p
= fs_path_alloc();
3381 * This hack is needed because empty acl's are stored as zero byte
3382 * data in xattrs. Problem with that is, that receiving these zero byte
3383 * acl's will fail later. To fix this, we send a dummy acl list that
3384 * only contains the version number and no entries.
3386 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
3387 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
3388 if (data_len
== 0) {
3389 dummy_acl
.a_version
=
3390 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
3391 data
= (char *)&dummy_acl
;
3392 data_len
= sizeof(dummy_acl
);
3396 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3400 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
3407 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3408 const char *name
, int name_len
,
3409 const char *data
, int data_len
,
3413 struct send_ctx
*sctx
= ctx
;
3416 p
= fs_path_alloc();
3420 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3424 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
3431 static int process_new_xattr(struct send_ctx
*sctx
)
3435 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
3436 sctx
->cmp_key
, __process_new_xattr
, sctx
);
3441 static int process_deleted_xattr(struct send_ctx
*sctx
)
3445 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
3446 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
3451 struct find_xattr_ctx
{
3459 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
3460 const char *name
, int name_len
,
3461 const char *data
, int data_len
,
3462 u8 type
, void *vctx
)
3464 struct find_xattr_ctx
*ctx
= vctx
;
3466 if (name_len
== ctx
->name_len
&&
3467 strncmp(name
, ctx
->name
, name_len
) == 0) {
3468 ctx
->found_idx
= num
;
3469 ctx
->found_data_len
= data_len
;
3470 ctx
->found_data
= kmemdup(data
, data_len
, GFP_NOFS
);
3471 if (!ctx
->found_data
)
3478 static int find_xattr(struct btrfs_root
*root
,
3479 struct btrfs_path
*path
,
3480 struct btrfs_key
*key
,
3481 const char *name
, int name_len
,
3482 char **data
, int *data_len
)
3485 struct find_xattr_ctx ctx
;
3488 ctx
.name_len
= name_len
;
3490 ctx
.found_data
= NULL
;
3491 ctx
.found_data_len
= 0;
3493 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
3497 if (ctx
.found_idx
== -1)
3500 *data
= ctx
.found_data
;
3501 *data_len
= ctx
.found_data_len
;
3503 kfree(ctx
.found_data
);
3505 return ctx
.found_idx
;
3509 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
3510 const char *name
, int name_len
,
3511 const char *data
, int data_len
,
3515 struct send_ctx
*sctx
= ctx
;
3516 char *found_data
= NULL
;
3517 int found_data_len
= 0;
3519 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
3520 sctx
->cmp_key
, name
, name_len
, &found_data
,
3522 if (ret
== -ENOENT
) {
3523 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
3524 data_len
, type
, ctx
);
3525 } else if (ret
>= 0) {
3526 if (data_len
!= found_data_len
||
3527 memcmp(data
, found_data
, data_len
)) {
3528 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
3529 data
, data_len
, type
, ctx
);
3539 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
3540 const char *name
, int name_len
,
3541 const char *data
, int data_len
,
3545 struct send_ctx
*sctx
= ctx
;
3547 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
3548 name
, name_len
, NULL
, NULL
);
3550 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
3551 data_len
, type
, ctx
);
3558 static int process_changed_xattr(struct send_ctx
*sctx
)
3562 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
3563 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
3566 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
3567 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
3573 static int process_all_new_xattrs(struct send_ctx
*sctx
)
3576 struct btrfs_root
*root
;
3577 struct btrfs_path
*path
;
3578 struct btrfs_key key
;
3579 struct btrfs_key found_key
;
3580 struct extent_buffer
*eb
;
3583 path
= alloc_path_for_send();
3587 root
= sctx
->send_root
;
3589 key
.objectid
= sctx
->cmp_key
->objectid
;
3590 key
.type
= BTRFS_XATTR_ITEM_KEY
;
3593 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
3601 eb
= path
->nodes
[0];
3602 slot
= path
->slots
[0];
3603 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3605 if (found_key
.objectid
!= key
.objectid
||
3606 found_key
.type
!= key
.type
) {
3611 ret
= iterate_dir_item(root
, path
, &found_key
,
3612 __process_new_xattr
, sctx
);
3616 btrfs_release_path(path
);
3617 key
.offset
= found_key
.offset
+ 1;
3621 btrfs_free_path(path
);
3626 * Read some bytes from the current inode/file and send a write command to
3629 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
3633 loff_t pos
= offset
;
3635 mm_segment_t old_fs
;
3637 p
= fs_path_alloc();
3642 * vfs normally only accepts user space buffers for security reasons.
3643 * we only read from the file and also only provide the read_buf buffer
3644 * to vfs. As this buffer does not come from a user space call, it's
3645 * ok to temporary allow kernel space buffers.
3650 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset
, len
);
3652 ret
= open_cur_inode_file(sctx
);
3656 ret
= vfs_read(sctx
->cur_inode_filp
, sctx
->read_buf
, len
, &pos
);
3663 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
3667 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3671 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3672 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3673 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
3675 ret
= send_cmd(sctx
);
3687 * Send a clone command to user space.
3689 static int send_clone(struct send_ctx
*sctx
,
3690 u64 offset
, u32 len
,
3691 struct clone_root
*clone_root
)
3697 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3698 "clone_inode=%llu, clone_offset=%llu\n", offset
, len
,
3699 clone_root
->root
->objectid
, clone_root
->ino
,
3700 clone_root
->offset
);
3702 p
= fs_path_alloc();
3706 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
3710 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3714 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3715 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
3716 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3718 if (clone_root
->root
== sctx
->send_root
) {
3719 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
3720 &gen
, NULL
, NULL
, NULL
, NULL
);
3723 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
3725 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
3730 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
3731 clone_root
->root
->root_item
.uuid
);
3732 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
3733 clone_root
->root
->root_item
.ctransid
);
3734 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
3735 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
3736 clone_root
->offset
);
3738 ret
= send_cmd(sctx
);
3747 * Send an update extent command to user space.
3749 static int send_update_extent(struct send_ctx
*sctx
,
3750 u64 offset
, u32 len
)
3755 p
= fs_path_alloc();
3759 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
3763 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
3767 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
3768 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
3769 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
3771 ret
= send_cmd(sctx
);
3779 static int send_write_or_clone(struct send_ctx
*sctx
,
3780 struct btrfs_path
*path
,
3781 struct btrfs_key
*key
,
3782 struct clone_root
*clone_root
)
3785 struct btrfs_file_extent_item
*ei
;
3786 u64 offset
= key
->offset
;
3792 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3793 struct btrfs_file_extent_item
);
3794 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
3795 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3796 len
= btrfs_file_extent_inline_len(path
->nodes
[0], ei
);
3798 * it is possible the inline item won't cover the whole page,
3799 * but there may be items after this page. Make
3800 * sure to send the whole thing
3802 len
= PAGE_CACHE_ALIGN(len
);
3804 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3807 if (offset
+ len
> sctx
->cur_inode_size
)
3808 len
= sctx
->cur_inode_size
- offset
;
3815 ret
= send_clone(sctx
, offset
, len
, clone_root
);
3816 } else if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
) {
3817 ret
= send_update_extent(sctx
, offset
, len
);
3821 if (l
> BTRFS_SEND_READ_SIZE
)
3822 l
= BTRFS_SEND_READ_SIZE
;
3823 ret
= send_write(sctx
, pos
+ offset
, l
);
3836 static int is_extent_unchanged(struct send_ctx
*sctx
,
3837 struct btrfs_path
*left_path
,
3838 struct btrfs_key
*ekey
)
3841 struct btrfs_key key
;
3842 struct btrfs_path
*path
= NULL
;
3843 struct extent_buffer
*eb
;
3845 struct btrfs_key found_key
;
3846 struct btrfs_file_extent_item
*ei
;
3851 u64 left_offset_fixed
;
3859 path
= alloc_path_for_send();
3863 eb
= left_path
->nodes
[0];
3864 slot
= left_path
->slots
[0];
3865 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3866 left_type
= btrfs_file_extent_type(eb
, ei
);
3868 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
3872 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3873 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3874 left_offset
= btrfs_file_extent_offset(eb
, ei
);
3875 left_gen
= btrfs_file_extent_generation(eb
, ei
);
3878 * Following comments will refer to these graphics. L is the left
3879 * extents which we are checking at the moment. 1-8 are the right
3880 * extents that we iterate.
3883 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3886 * |--1--|-2b-|...(same as above)
3888 * Alternative situation. Happens on files where extents got split.
3890 * |-----------7-----------|-6-|
3892 * Alternative situation. Happens on files which got larger.
3895 * Nothing follows after 8.
3898 key
.objectid
= ekey
->objectid
;
3899 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3900 key
.offset
= ekey
->offset
;
3901 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
3910 * Handle special case where the right side has no extents at all.
3912 eb
= path
->nodes
[0];
3913 slot
= path
->slots
[0];
3914 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3915 if (found_key
.objectid
!= key
.objectid
||
3916 found_key
.type
!= key
.type
) {
3917 /* If we're a hole then just pretend nothing changed */
3918 ret
= (left_disknr
) ? 0 : 1;
3923 * We're now on 2a, 2b or 7.
3926 while (key
.offset
< ekey
->offset
+ left_len
) {
3927 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
3928 right_type
= btrfs_file_extent_type(eb
, ei
);
3929 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
3930 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
3931 right_offset
= btrfs_file_extent_offset(eb
, ei
);
3932 right_gen
= btrfs_file_extent_generation(eb
, ei
);
3934 if (right_type
!= BTRFS_FILE_EXTENT_REG
) {
3940 * Are we at extent 8? If yes, we know the extent is changed.
3941 * This may only happen on the first iteration.
3943 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
3944 /* If we're a hole just pretend nothing changed */
3945 ret
= (left_disknr
) ? 0 : 1;
3949 left_offset_fixed
= left_offset
;
3950 if (key
.offset
< ekey
->offset
) {
3951 /* Fix the right offset for 2a and 7. */
3952 right_offset
+= ekey
->offset
- key
.offset
;
3954 /* Fix the left offset for all behind 2a and 2b */
3955 left_offset_fixed
+= key
.offset
- ekey
->offset
;
3959 * Check if we have the same extent.
3961 if (left_disknr
!= right_disknr
||
3962 left_offset_fixed
!= right_offset
||
3963 left_gen
!= right_gen
) {
3969 * Go to the next extent.
3971 ret
= btrfs_next_item(sctx
->parent_root
, path
);
3975 eb
= path
->nodes
[0];
3976 slot
= path
->slots
[0];
3977 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
3979 if (ret
|| found_key
.objectid
!= key
.objectid
||
3980 found_key
.type
!= key
.type
) {
3981 key
.offset
+= right_len
;
3984 if (found_key
.offset
!= key
.offset
+ right_len
) {
3992 * We're now behind the left extent (treat as unchanged) or at the end
3993 * of the right side (treat as changed).
3995 if (key
.offset
>= ekey
->offset
+ left_len
)
4002 btrfs_free_path(path
);
4006 static int process_extent(struct send_ctx
*sctx
,
4007 struct btrfs_path
*path
,
4008 struct btrfs_key
*key
)
4010 struct clone_root
*found_clone
= NULL
;
4013 if (S_ISLNK(sctx
->cur_inode_mode
))
4016 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
4017 ret
= is_extent_unchanged(sctx
, path
, key
);
4025 struct btrfs_file_extent_item
*ei
;
4028 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4029 struct btrfs_file_extent_item
);
4030 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
4031 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
4032 type
== BTRFS_FILE_EXTENT_REG
) {
4034 * The send spec does not have a prealloc command yet,
4035 * so just leave a hole for prealloc'ed extents until
4036 * we have enough commands queued up to justify rev'ing
4039 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4044 /* Have a hole, just skip it. */
4045 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
4052 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
4053 sctx
->cur_inode_size
, &found_clone
);
4054 if (ret
!= -ENOENT
&& ret
< 0)
4057 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
4063 static int process_all_extents(struct send_ctx
*sctx
)
4066 struct btrfs_root
*root
;
4067 struct btrfs_path
*path
;
4068 struct btrfs_key key
;
4069 struct btrfs_key found_key
;
4070 struct extent_buffer
*eb
;
4073 root
= sctx
->send_root
;
4074 path
= alloc_path_for_send();
4078 key
.objectid
= sctx
->cmp_key
->objectid
;
4079 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4082 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
4090 eb
= path
->nodes
[0];
4091 slot
= path
->slots
[0];
4092 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4094 if (found_key
.objectid
!= key
.objectid
||
4095 found_key
.type
!= key
.type
) {
4100 ret
= process_extent(sctx
, path
, &found_key
);
4104 btrfs_release_path(path
);
4105 key
.offset
= found_key
.offset
+ 1;
4109 btrfs_free_path(path
);
4113 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
)
4117 if (sctx
->cur_ino
== 0)
4119 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
4120 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
4122 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
4125 ret
= process_recorded_refs(sctx
);
4130 * We have processed the refs and thus need to advance send_progress.
4131 * Now, calls to get_cur_xxx will take the updated refs of the current
4132 * inode into account.
4134 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4140 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
4152 ret
= process_recorded_refs_if_needed(sctx
, at_end
);
4156 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
4158 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
4161 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
4162 &left_mode
, &left_uid
, &left_gid
, NULL
);
4166 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
4168 if (!S_ISLNK(sctx
->cur_inode_mode
))
4171 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
4172 NULL
, NULL
, &right_mode
, &right_uid
,
4177 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
4179 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
4183 if (S_ISREG(sctx
->cur_inode_mode
)) {
4184 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4185 sctx
->cur_inode_size
);
4191 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4192 left_uid
, left_gid
);
4197 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4204 * Need to send that every time, no matter if it actually changed
4205 * between the two trees as we have done changes to the inode before.
4207 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
4215 static int changed_inode(struct send_ctx
*sctx
,
4216 enum btrfs_compare_tree_result result
)
4219 struct btrfs_key
*key
= sctx
->cmp_key
;
4220 struct btrfs_inode_item
*left_ii
= NULL
;
4221 struct btrfs_inode_item
*right_ii
= NULL
;
4225 ret
= close_cur_inode_file(sctx
);
4229 sctx
->cur_ino
= key
->objectid
;
4230 sctx
->cur_inode_new_gen
= 0;
4233 * Set send_progress to current inode. This will tell all get_cur_xxx
4234 * functions that the current inode's refs are not updated yet. Later,
4235 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4237 sctx
->send_progress
= sctx
->cur_ino
;
4239 if (result
== BTRFS_COMPARE_TREE_NEW
||
4240 result
== BTRFS_COMPARE_TREE_CHANGED
) {
4241 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
4242 sctx
->left_path
->slots
[0],
4243 struct btrfs_inode_item
);
4244 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
4247 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4248 sctx
->right_path
->slots
[0],
4249 struct btrfs_inode_item
);
4250 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4253 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4254 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
4255 sctx
->right_path
->slots
[0],
4256 struct btrfs_inode_item
);
4258 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
4262 * The cur_ino = root dir case is special here. We can't treat
4263 * the inode as deleted+reused because it would generate a
4264 * stream that tries to delete/mkdir the root dir.
4266 if (left_gen
!= right_gen
&&
4267 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4268 sctx
->cur_inode_new_gen
= 1;
4271 if (result
== BTRFS_COMPARE_TREE_NEW
) {
4272 sctx
->cur_inode_gen
= left_gen
;
4273 sctx
->cur_inode_new
= 1;
4274 sctx
->cur_inode_deleted
= 0;
4275 sctx
->cur_inode_size
= btrfs_inode_size(
4276 sctx
->left_path
->nodes
[0], left_ii
);
4277 sctx
->cur_inode_mode
= btrfs_inode_mode(
4278 sctx
->left_path
->nodes
[0], left_ii
);
4279 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
4280 ret
= send_create_inode_if_needed(sctx
);
4281 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
4282 sctx
->cur_inode_gen
= right_gen
;
4283 sctx
->cur_inode_new
= 0;
4284 sctx
->cur_inode_deleted
= 1;
4285 sctx
->cur_inode_size
= btrfs_inode_size(
4286 sctx
->right_path
->nodes
[0], right_ii
);
4287 sctx
->cur_inode_mode
= btrfs_inode_mode(
4288 sctx
->right_path
->nodes
[0], right_ii
);
4289 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
4291 * We need to do some special handling in case the inode was
4292 * reported as changed with a changed generation number. This
4293 * means that the original inode was deleted and new inode
4294 * reused the same inum. So we have to treat the old inode as
4295 * deleted and the new one as new.
4297 if (sctx
->cur_inode_new_gen
) {
4299 * First, process the inode as if it was deleted.
4301 sctx
->cur_inode_gen
= right_gen
;
4302 sctx
->cur_inode_new
= 0;
4303 sctx
->cur_inode_deleted
= 1;
4304 sctx
->cur_inode_size
= btrfs_inode_size(
4305 sctx
->right_path
->nodes
[0], right_ii
);
4306 sctx
->cur_inode_mode
= btrfs_inode_mode(
4307 sctx
->right_path
->nodes
[0], right_ii
);
4308 ret
= process_all_refs(sctx
,
4309 BTRFS_COMPARE_TREE_DELETED
);
4314 * Now process the inode as if it was new.
4316 sctx
->cur_inode_gen
= left_gen
;
4317 sctx
->cur_inode_new
= 1;
4318 sctx
->cur_inode_deleted
= 0;
4319 sctx
->cur_inode_size
= btrfs_inode_size(
4320 sctx
->left_path
->nodes
[0], left_ii
);
4321 sctx
->cur_inode_mode
= btrfs_inode_mode(
4322 sctx
->left_path
->nodes
[0], left_ii
);
4323 ret
= send_create_inode_if_needed(sctx
);
4327 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
4331 * Advance send_progress now as we did not get into
4332 * process_recorded_refs_if_needed in the new_gen case.
4334 sctx
->send_progress
= sctx
->cur_ino
+ 1;
4337 * Now process all extents and xattrs of the inode as if
4338 * they were all new.
4340 ret
= process_all_extents(sctx
);
4343 ret
= process_all_new_xattrs(sctx
);
4347 sctx
->cur_inode_gen
= left_gen
;
4348 sctx
->cur_inode_new
= 0;
4349 sctx
->cur_inode_new_gen
= 0;
4350 sctx
->cur_inode_deleted
= 0;
4351 sctx
->cur_inode_size
= btrfs_inode_size(
4352 sctx
->left_path
->nodes
[0], left_ii
);
4353 sctx
->cur_inode_mode
= btrfs_inode_mode(
4354 sctx
->left_path
->nodes
[0], left_ii
);
4363 * We have to process new refs before deleted refs, but compare_trees gives us
4364 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4365 * first and later process them in process_recorded_refs.
4366 * For the cur_inode_new_gen case, we skip recording completely because
4367 * changed_inode did already initiate processing of refs. The reason for this is
4368 * that in this case, compare_tree actually compares the refs of 2 different
4369 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4370 * refs of the right tree as deleted and all refs of the left tree as new.
4372 static int changed_ref(struct send_ctx
*sctx
,
4373 enum btrfs_compare_tree_result result
)
4377 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4379 if (!sctx
->cur_inode_new_gen
&&
4380 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
4381 if (result
== BTRFS_COMPARE_TREE_NEW
)
4382 ret
= record_new_ref(sctx
);
4383 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4384 ret
= record_deleted_ref(sctx
);
4385 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4386 ret
= record_changed_ref(sctx
);
4393 * Process new/deleted/changed xattrs. We skip processing in the
4394 * cur_inode_new_gen case because changed_inode did already initiate processing
4395 * of xattrs. The reason is the same as in changed_ref
4397 static int changed_xattr(struct send_ctx
*sctx
,
4398 enum btrfs_compare_tree_result result
)
4402 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4404 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4405 if (result
== BTRFS_COMPARE_TREE_NEW
)
4406 ret
= process_new_xattr(sctx
);
4407 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
4408 ret
= process_deleted_xattr(sctx
);
4409 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
4410 ret
= process_changed_xattr(sctx
);
4417 * Process new/deleted/changed extents. We skip processing in the
4418 * cur_inode_new_gen case because changed_inode did already initiate processing
4419 * of extents. The reason is the same as in changed_ref
4421 static int changed_extent(struct send_ctx
*sctx
,
4422 enum btrfs_compare_tree_result result
)
4426 BUG_ON(sctx
->cur_ino
!= sctx
->cmp_key
->objectid
);
4428 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
4429 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
4430 ret
= process_extent(sctx
, sctx
->left_path
,
4437 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
4439 u64 orig_gen
, new_gen
;
4442 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
4447 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
4452 return (orig_gen
!= new_gen
) ? 1 : 0;
4455 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
4456 struct btrfs_key
*key
)
4458 struct btrfs_inode_extref
*extref
;
4459 struct extent_buffer
*leaf
;
4460 u64 dirid
= 0, last_dirid
= 0;
4467 /* Easy case, just check this one dirid */
4468 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4469 dirid
= key
->offset
;
4471 ret
= dir_changed(sctx
, dirid
);
4475 leaf
= path
->nodes
[0];
4476 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4477 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4478 while (cur_offset
< item_size
) {
4479 extref
= (struct btrfs_inode_extref
*)(ptr
+
4481 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
4482 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
4483 cur_offset
+= ref_name_len
+ sizeof(*extref
);
4484 if (dirid
== last_dirid
)
4486 ret
= dir_changed(sctx
, dirid
);
4496 * Updates compare related fields in sctx and simply forwards to the actual
4497 * changed_xxx functions.
4499 static int changed_cb(struct btrfs_root
*left_root
,
4500 struct btrfs_root
*right_root
,
4501 struct btrfs_path
*left_path
,
4502 struct btrfs_path
*right_path
,
4503 struct btrfs_key
*key
,
4504 enum btrfs_compare_tree_result result
,
4508 struct send_ctx
*sctx
= ctx
;
4510 if (result
== BTRFS_COMPARE_TREE_SAME
) {
4511 if (key
->type
!= BTRFS_INODE_REF_KEY
&&
4512 key
->type
!= BTRFS_INODE_EXTREF_KEY
)
4514 ret
= compare_refs(sctx
, left_path
, key
);
4519 result
= BTRFS_COMPARE_TREE_CHANGED
;
4523 sctx
->left_path
= left_path
;
4524 sctx
->right_path
= right_path
;
4525 sctx
->cmp_key
= key
;
4527 ret
= finish_inode_if_needed(sctx
, 0);
4531 /* Ignore non-FS objects */
4532 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
4533 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
4536 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
4537 ret
= changed_inode(sctx
, result
);
4538 else if (key
->type
== BTRFS_INODE_REF_KEY
||
4539 key
->type
== BTRFS_INODE_EXTREF_KEY
)
4540 ret
= changed_ref(sctx
, result
);
4541 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
4542 ret
= changed_xattr(sctx
, result
);
4543 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
4544 ret
= changed_extent(sctx
, result
);
4550 static int full_send_tree(struct send_ctx
*sctx
)
4553 struct btrfs_trans_handle
*trans
= NULL
;
4554 struct btrfs_root
*send_root
= sctx
->send_root
;
4555 struct btrfs_key key
;
4556 struct btrfs_key found_key
;
4557 struct btrfs_path
*path
;
4558 struct extent_buffer
*eb
;
4563 path
= alloc_path_for_send();
4567 spin_lock(&send_root
->root_item_lock
);
4568 start_ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4569 spin_unlock(&send_root
->root_item_lock
);
4571 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
4572 key
.type
= BTRFS_INODE_ITEM_KEY
;
4577 * We need to make sure the transaction does not get committed
4578 * while we do anything on commit roots. Join a transaction to prevent
4581 trans
= btrfs_join_transaction(send_root
);
4582 if (IS_ERR(trans
)) {
4583 ret
= PTR_ERR(trans
);
4589 * Make sure the tree has not changed after re-joining. We detect this
4590 * by comparing start_ctransid and ctransid. They should always match.
4592 spin_lock(&send_root
->root_item_lock
);
4593 ctransid
= btrfs_root_ctransid(&send_root
->root_item
);
4594 spin_unlock(&send_root
->root_item_lock
);
4596 if (ctransid
!= start_ctransid
) {
4597 WARN(1, KERN_WARNING
"btrfs: the root that you're trying to "
4598 "send was modified in between. This is "
4599 "probably a bug.\n");
4604 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
4612 * When someone want to commit while we iterate, end the
4613 * joined transaction and rejoin.
4615 if (btrfs_should_end_transaction(trans
, send_root
)) {
4616 ret
= btrfs_end_transaction(trans
, send_root
);
4620 btrfs_release_path(path
);
4624 eb
= path
->nodes
[0];
4625 slot
= path
->slots
[0];
4626 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4628 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
4629 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
4633 key
.objectid
= found_key
.objectid
;
4634 key
.type
= found_key
.type
;
4635 key
.offset
= found_key
.offset
+ 1;
4637 ret
= btrfs_next_item(send_root
, path
);
4647 ret
= finish_inode_if_needed(sctx
, 1);
4650 btrfs_free_path(path
);
4653 ret
= btrfs_end_transaction(trans
, send_root
);
4655 btrfs_end_transaction(trans
, send_root
);
4660 static int send_subvol(struct send_ctx
*sctx
)
4664 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
4665 ret
= send_header(sctx
);
4670 ret
= send_subvol_begin(sctx
);
4674 if (sctx
->parent_root
) {
4675 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
4679 ret
= finish_inode_if_needed(sctx
, 1);
4683 ret
= full_send_tree(sctx
);
4690 ret
= close_cur_inode_file(sctx
);
4692 close_cur_inode_file(sctx
);
4694 free_recorded_refs(sctx
);
4698 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
4701 struct btrfs_root
*send_root
;
4702 struct btrfs_root
*clone_root
;
4703 struct btrfs_fs_info
*fs_info
;
4704 struct btrfs_ioctl_send_args
*arg
= NULL
;
4705 struct btrfs_key key
;
4706 struct send_ctx
*sctx
= NULL
;
4708 u64
*clone_sources_tmp
= NULL
;
4710 if (!capable(CAP_SYS_ADMIN
))
4713 send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
4714 fs_info
= send_root
->fs_info
;
4717 * This is done when we lookup the root, it should already be complete
4718 * by the time we get here.
4720 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
4723 * If we just created this root we need to make sure that the orphan
4724 * cleanup has been done and committed since we search the commit root,
4725 * so check its commit root transid with our otransid and if they match
4726 * commit the transaction to make sure everything is updated.
4728 down_read(&send_root
->fs_info
->extent_commit_sem
);
4729 if (btrfs_header_generation(send_root
->commit_root
) ==
4730 btrfs_root_otransid(&send_root
->root_item
)) {
4731 struct btrfs_trans_handle
*trans
;
4733 up_read(&send_root
->fs_info
->extent_commit_sem
);
4735 trans
= btrfs_attach_transaction_barrier(send_root
);
4736 if (IS_ERR(trans
)) {
4737 if (PTR_ERR(trans
) != -ENOENT
) {
4738 ret
= PTR_ERR(trans
);
4741 /* ENOENT means theres no transaction */
4743 ret
= btrfs_commit_transaction(trans
, send_root
);
4748 up_read(&send_root
->fs_info
->extent_commit_sem
);
4751 arg
= memdup_user(arg_
, sizeof(*arg
));
4758 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
4759 sizeof(*arg
->clone_sources
*
4760 arg
->clone_sources_count
))) {
4765 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
4770 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_NOFS
);
4776 INIT_LIST_HEAD(&sctx
->new_refs
);
4777 INIT_LIST_HEAD(&sctx
->deleted_refs
);
4778 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_NOFS
);
4779 INIT_LIST_HEAD(&sctx
->name_cache_list
);
4781 sctx
->flags
= arg
->flags
;
4783 sctx
->send_filp
= fget(arg
->send_fd
);
4784 if (!sctx
->send_filp
) {
4789 sctx
->mnt
= mnt_file
->f_path
.mnt
;
4791 sctx
->send_root
= send_root
;
4792 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
4794 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
4795 sctx
->send_buf
= vmalloc(sctx
->send_max_size
);
4796 if (!sctx
->send_buf
) {
4801 sctx
->read_buf
= vmalloc(BTRFS_SEND_READ_SIZE
);
4802 if (!sctx
->read_buf
) {
4807 sctx
->clone_roots
= vzalloc(sizeof(struct clone_root
) *
4808 (arg
->clone_sources_count
+ 1));
4809 if (!sctx
->clone_roots
) {
4814 if (arg
->clone_sources_count
) {
4815 clone_sources_tmp
= vmalloc(arg
->clone_sources_count
*
4816 sizeof(*arg
->clone_sources
));
4817 if (!clone_sources_tmp
) {
4822 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
4823 arg
->clone_sources_count
*
4824 sizeof(*arg
->clone_sources
));
4830 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
4831 key
.objectid
= clone_sources_tmp
[i
];
4832 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4833 key
.offset
= (u64
)-1;
4834 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4835 if (IS_ERR(clone_root
)) {
4836 ret
= PTR_ERR(clone_root
);
4839 sctx
->clone_roots
[i
].root
= clone_root
;
4841 vfree(clone_sources_tmp
);
4842 clone_sources_tmp
= NULL
;
4845 if (arg
->parent_root
) {
4846 key
.objectid
= arg
->parent_root
;
4847 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4848 key
.offset
= (u64
)-1;
4849 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4850 if (IS_ERR(sctx
->parent_root
)) {
4851 ret
= PTR_ERR(sctx
->parent_root
);
4857 * Clones from send_root are allowed, but only if the clone source
4858 * is behind the current send position. This is checked while searching
4859 * for possible clone sources.
4861 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
4863 /* We do a bsearch later */
4864 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
4865 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
4868 ret
= send_subvol(sctx
);
4872 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
4873 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
4876 ret
= send_cmd(sctx
);
4883 vfree(clone_sources_tmp
);
4886 if (sctx
->send_filp
)
4887 fput(sctx
->send_filp
);
4889 vfree(sctx
->clone_roots
);
4890 vfree(sctx
->send_buf
);
4891 vfree(sctx
->read_buf
);
4893 name_cache_free(sctx
);