2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
33 #include "extent_map.h"
35 #include "transaction.h"
36 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 static DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 static void lock_chunks(struct btrfs_root
*root
)
58 mutex_lock(&root
->fs_info
->chunk_mutex
);
61 static void unlock_chunks(struct btrfs_root
*root
)
63 mutex_unlock(&root
->fs_info
->chunk_mutex
);
66 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
68 struct btrfs_fs_devices
*fs_devs
;
70 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
72 return ERR_PTR(-ENOMEM
);
74 mutex_init(&fs_devs
->device_list_mutex
);
76 INIT_LIST_HEAD(&fs_devs
->devices
);
77 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
78 INIT_LIST_HEAD(&fs_devs
->list
);
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
92 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
94 struct btrfs_fs_devices
*fs_devs
;
96 fs_devs
= __alloc_fs_devices();
101 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
103 generate_random_uuid(fs_devs
->fsid
);
108 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
110 struct btrfs_device
*device
;
111 WARN_ON(fs_devices
->opened
);
112 while (!list_empty(&fs_devices
->devices
)) {
113 device
= list_entry(fs_devices
->devices
.next
,
114 struct btrfs_device
, dev_list
);
115 list_del(&device
->dev_list
);
116 rcu_string_free(device
->name
);
122 static void btrfs_kobject_uevent(struct block_device
*bdev
,
123 enum kobject_action action
)
127 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
131 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
132 &disk_to_dev(bdev
->bd_disk
)->kobj
);
135 void btrfs_cleanup_fs_uuids(void)
137 struct btrfs_fs_devices
*fs_devices
;
139 while (!list_empty(&fs_uuids
)) {
140 fs_devices
= list_entry(fs_uuids
.next
,
141 struct btrfs_fs_devices
, list
);
142 list_del(&fs_devices
->list
);
143 free_fs_devices(fs_devices
);
147 static struct btrfs_device
*__alloc_device(void)
149 struct btrfs_device
*dev
;
151 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
153 return ERR_PTR(-ENOMEM
);
155 INIT_LIST_HEAD(&dev
->dev_list
);
156 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
158 spin_lock_init(&dev
->io_lock
);
160 spin_lock_init(&dev
->reada_lock
);
161 atomic_set(&dev
->reada_in_flight
, 0);
162 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
163 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
168 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
171 struct btrfs_device
*dev
;
173 list_for_each_entry(dev
, head
, dev_list
) {
174 if (dev
->devid
== devid
&&
175 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
182 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
184 struct btrfs_fs_devices
*fs_devices
;
186 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
187 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
194 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
195 int flush
, struct block_device
**bdev
,
196 struct buffer_head
**bh
)
200 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
203 ret
= PTR_ERR(*bdev
);
204 printk(KERN_INFO
"btrfs: open %s failed\n", device_path
);
209 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
210 ret
= set_blocksize(*bdev
, 4096);
212 blkdev_put(*bdev
, flags
);
215 invalidate_bdev(*bdev
);
216 *bh
= btrfs_read_dev_super(*bdev
);
219 blkdev_put(*bdev
, flags
);
231 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
232 struct bio
*head
, struct bio
*tail
)
235 struct bio
*old_head
;
237 old_head
= pending_bios
->head
;
238 pending_bios
->head
= head
;
239 if (pending_bios
->tail
)
240 tail
->bi_next
= old_head
;
242 pending_bios
->tail
= tail
;
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
256 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
259 struct backing_dev_info
*bdi
;
260 struct btrfs_fs_info
*fs_info
;
261 struct btrfs_pending_bios
*pending_bios
;
265 unsigned long num_run
;
266 unsigned long batch_run
= 0;
268 unsigned long last_waited
= 0;
270 int sync_pending
= 0;
271 struct blk_plug plug
;
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
279 blk_start_plug(&plug
);
281 bdi
= blk_get_backing_dev_info(device
->bdev
);
282 fs_info
= device
->dev_root
->fs_info
;
283 limit
= btrfs_async_submit_limit(fs_info
);
284 limit
= limit
* 2 / 3;
287 spin_lock(&device
->io_lock
);
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
297 if (!force_reg
&& device
->pending_sync_bios
.head
) {
298 pending_bios
= &device
->pending_sync_bios
;
301 pending_bios
= &device
->pending_bios
;
305 pending
= pending_bios
->head
;
306 tail
= pending_bios
->tail
;
307 WARN_ON(pending
&& !tail
);
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
314 * device->running_pending is used to synchronize with the
317 if (device
->pending_sync_bios
.head
== NULL
&&
318 device
->pending_bios
.head
== NULL
) {
320 device
->running_pending
= 0;
323 device
->running_pending
= 1;
326 pending_bios
->head
= NULL
;
327 pending_bios
->tail
= NULL
;
329 spin_unlock(&device
->io_lock
);
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
338 pending_bios
!= &device
->pending_sync_bios
&&
339 device
->pending_sync_bios
.head
) ||
340 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
341 device
->pending_bios
.head
)) {
342 spin_lock(&device
->io_lock
);
343 requeue_list(pending_bios
, pending
, tail
);
348 pending
= pending
->bi_next
;
351 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
352 waitqueue_active(&fs_info
->async_submit_wait
))
353 wake_up(&fs_info
->async_submit_wait
);
355 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
365 if (pending_bios
== &device
->pending_sync_bios
) {
367 } else if (sync_pending
) {
368 blk_finish_plug(&plug
);
369 blk_start_plug(&plug
);
373 btrfsic_submit_bio(cur
->bi_rw
, cur
);
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
384 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
385 fs_info
->fs_devices
->open_devices
> 1) {
386 struct io_context
*ioc
;
388 ioc
= current
->io_context
;
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
399 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
400 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
402 ioc
->last_waited
== last_waited
)) {
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
409 last_waited
= ioc
->last_waited
;
414 spin_lock(&device
->io_lock
);
415 requeue_list(pending_bios
, pending
, tail
);
416 device
->running_pending
= 1;
418 spin_unlock(&device
->io_lock
);
419 btrfs_requeue_work(&device
->work
);
422 /* unplug every 64 requests just for good measure */
423 if (batch_run
% 64 == 0) {
424 blk_finish_plug(&plug
);
425 blk_start_plug(&plug
);
434 spin_lock(&device
->io_lock
);
435 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
437 spin_unlock(&device
->io_lock
);
440 blk_finish_plug(&plug
);
443 static void pending_bios_fn(struct btrfs_work
*work
)
445 struct btrfs_device
*device
;
447 device
= container_of(work
, struct btrfs_device
, work
);
448 run_scheduled_bios(device
);
451 static noinline
int device_list_add(const char *path
,
452 struct btrfs_super_block
*disk_super
,
453 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
455 struct btrfs_device
*device
;
456 struct btrfs_fs_devices
*fs_devices
;
457 struct rcu_string
*name
;
458 u64 found_transid
= btrfs_super_generation(disk_super
);
460 fs_devices
= find_fsid(disk_super
->fsid
);
462 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
463 if (IS_ERR(fs_devices
))
464 return PTR_ERR(fs_devices
);
466 list_add(&fs_devices
->list
, &fs_uuids
);
467 fs_devices
->latest_devid
= devid
;
468 fs_devices
->latest_trans
= found_transid
;
472 device
= __find_device(&fs_devices
->devices
, devid
,
473 disk_super
->dev_item
.uuid
);
476 if (fs_devices
->opened
)
479 device
= btrfs_alloc_device(NULL
, &devid
,
480 disk_super
->dev_item
.uuid
);
481 if (IS_ERR(device
)) {
482 /* we can safely leave the fs_devices entry around */
483 return PTR_ERR(device
);
486 name
= rcu_string_strdup(path
, GFP_NOFS
);
491 rcu_assign_pointer(device
->name
, name
);
493 mutex_lock(&fs_devices
->device_list_mutex
);
494 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
495 fs_devices
->num_devices
++;
496 mutex_unlock(&fs_devices
->device_list_mutex
);
498 device
->fs_devices
= fs_devices
;
499 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
500 name
= rcu_string_strdup(path
, GFP_NOFS
);
503 rcu_string_free(device
->name
);
504 rcu_assign_pointer(device
->name
, name
);
505 if (device
->missing
) {
506 fs_devices
->missing_devices
--;
511 if (found_transid
> fs_devices
->latest_trans
) {
512 fs_devices
->latest_devid
= devid
;
513 fs_devices
->latest_trans
= found_transid
;
515 *fs_devices_ret
= fs_devices
;
519 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
521 struct btrfs_fs_devices
*fs_devices
;
522 struct btrfs_device
*device
;
523 struct btrfs_device
*orig_dev
;
525 fs_devices
= alloc_fs_devices(orig
->fsid
);
526 if (IS_ERR(fs_devices
))
529 fs_devices
->latest_devid
= orig
->latest_devid
;
530 fs_devices
->latest_trans
= orig
->latest_trans
;
531 fs_devices
->total_devices
= orig
->total_devices
;
533 /* We have held the volume lock, it is safe to get the devices. */
534 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
535 struct rcu_string
*name
;
537 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
546 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
551 rcu_assign_pointer(device
->name
, name
);
553 list_add(&device
->dev_list
, &fs_devices
->devices
);
554 device
->fs_devices
= fs_devices
;
555 fs_devices
->num_devices
++;
559 free_fs_devices(fs_devices
);
560 return ERR_PTR(-ENOMEM
);
563 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
564 struct btrfs_fs_devices
*fs_devices
, int step
)
566 struct btrfs_device
*device
, *next
;
568 struct block_device
*latest_bdev
= NULL
;
569 u64 latest_devid
= 0;
570 u64 latest_transid
= 0;
572 mutex_lock(&uuid_mutex
);
574 /* This is the initialized path, it is safe to release the devices. */
575 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
576 if (device
->in_fs_metadata
) {
577 if (!device
->is_tgtdev_for_dev_replace
&&
579 device
->generation
> latest_transid
)) {
580 latest_devid
= device
->devid
;
581 latest_transid
= device
->generation
;
582 latest_bdev
= device
->bdev
;
587 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
598 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
603 blkdev_put(device
->bdev
, device
->mode
);
605 fs_devices
->open_devices
--;
607 if (device
->writeable
) {
608 list_del_init(&device
->dev_alloc_list
);
609 device
->writeable
= 0;
610 if (!device
->is_tgtdev_for_dev_replace
)
611 fs_devices
->rw_devices
--;
613 list_del_init(&device
->dev_list
);
614 fs_devices
->num_devices
--;
615 rcu_string_free(device
->name
);
619 if (fs_devices
->seed
) {
620 fs_devices
= fs_devices
->seed
;
624 fs_devices
->latest_bdev
= latest_bdev
;
625 fs_devices
->latest_devid
= latest_devid
;
626 fs_devices
->latest_trans
= latest_transid
;
628 mutex_unlock(&uuid_mutex
);
631 static void __free_device(struct work_struct
*work
)
633 struct btrfs_device
*device
;
635 device
= container_of(work
, struct btrfs_device
, rcu_work
);
638 blkdev_put(device
->bdev
, device
->mode
);
640 rcu_string_free(device
->name
);
644 static void free_device(struct rcu_head
*head
)
646 struct btrfs_device
*device
;
648 device
= container_of(head
, struct btrfs_device
, rcu
);
650 INIT_WORK(&device
->rcu_work
, __free_device
);
651 schedule_work(&device
->rcu_work
);
654 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
656 struct btrfs_device
*device
;
658 if (--fs_devices
->opened
> 0)
661 mutex_lock(&fs_devices
->device_list_mutex
);
662 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
663 struct btrfs_device
*new_device
;
664 struct rcu_string
*name
;
667 fs_devices
->open_devices
--;
669 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
670 list_del_init(&device
->dev_alloc_list
);
671 fs_devices
->rw_devices
--;
674 if (device
->can_discard
)
675 fs_devices
->num_can_discard
--;
677 fs_devices
->missing_devices
--;
679 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
681 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
683 /* Safe because we are under uuid_mutex */
685 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
686 BUG_ON(!name
); /* -ENOMEM */
687 rcu_assign_pointer(new_device
->name
, name
);
690 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
691 new_device
->fs_devices
= device
->fs_devices
;
693 call_rcu(&device
->rcu
, free_device
);
695 mutex_unlock(&fs_devices
->device_list_mutex
);
697 WARN_ON(fs_devices
->open_devices
);
698 WARN_ON(fs_devices
->rw_devices
);
699 fs_devices
->opened
= 0;
700 fs_devices
->seeding
= 0;
705 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
707 struct btrfs_fs_devices
*seed_devices
= NULL
;
710 mutex_lock(&uuid_mutex
);
711 ret
= __btrfs_close_devices(fs_devices
);
712 if (!fs_devices
->opened
) {
713 seed_devices
= fs_devices
->seed
;
714 fs_devices
->seed
= NULL
;
716 mutex_unlock(&uuid_mutex
);
718 while (seed_devices
) {
719 fs_devices
= seed_devices
;
720 seed_devices
= fs_devices
->seed
;
721 __btrfs_close_devices(fs_devices
);
722 free_fs_devices(fs_devices
);
725 * Wait for rcu kworkers under __btrfs_close_devices
726 * to finish all blkdev_puts so device is really
727 * free when umount is done.
733 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
734 fmode_t flags
, void *holder
)
736 struct request_queue
*q
;
737 struct block_device
*bdev
;
738 struct list_head
*head
= &fs_devices
->devices
;
739 struct btrfs_device
*device
;
740 struct block_device
*latest_bdev
= NULL
;
741 struct buffer_head
*bh
;
742 struct btrfs_super_block
*disk_super
;
743 u64 latest_devid
= 0;
744 u64 latest_transid
= 0;
751 list_for_each_entry(device
, head
, dev_list
) {
757 /* Just open everything we can; ignore failures here */
758 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
762 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
763 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
764 if (devid
!= device
->devid
)
767 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
771 device
->generation
= btrfs_super_generation(disk_super
);
772 if (!latest_transid
|| device
->generation
> latest_transid
) {
773 latest_devid
= devid
;
774 latest_transid
= device
->generation
;
778 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
779 device
->writeable
= 0;
781 device
->writeable
= !bdev_read_only(bdev
);
785 q
= bdev_get_queue(bdev
);
786 if (blk_queue_discard(q
)) {
787 device
->can_discard
= 1;
788 fs_devices
->num_can_discard
++;
792 device
->in_fs_metadata
= 0;
793 device
->mode
= flags
;
795 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
796 fs_devices
->rotating
= 1;
798 fs_devices
->open_devices
++;
799 if (device
->writeable
&&
800 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
801 fs_devices
->rw_devices
++;
802 list_add(&device
->dev_alloc_list
,
803 &fs_devices
->alloc_list
);
810 blkdev_put(bdev
, flags
);
813 if (fs_devices
->open_devices
== 0) {
817 fs_devices
->seeding
= seeding
;
818 fs_devices
->opened
= 1;
819 fs_devices
->latest_bdev
= latest_bdev
;
820 fs_devices
->latest_devid
= latest_devid
;
821 fs_devices
->latest_trans
= latest_transid
;
822 fs_devices
->total_rw_bytes
= 0;
827 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
828 fmode_t flags
, void *holder
)
832 mutex_lock(&uuid_mutex
);
833 if (fs_devices
->opened
) {
834 fs_devices
->opened
++;
837 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
839 mutex_unlock(&uuid_mutex
);
844 * Look for a btrfs signature on a device. This may be called out of the mount path
845 * and we are not allowed to call set_blocksize during the scan. The superblock
846 * is read via pagecache
848 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
849 struct btrfs_fs_devices
**fs_devices_ret
)
851 struct btrfs_super_block
*disk_super
;
852 struct block_device
*bdev
;
863 * we would like to check all the supers, but that would make
864 * a btrfs mount succeed after a mkfs from a different FS.
865 * So, we need to add a special mount option to scan for
866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
868 bytenr
= btrfs_sb_offset(0);
870 mutex_lock(&uuid_mutex
);
872 bdev
= blkdev_get_by_path(path
, flags
, holder
);
879 /* make sure our super fits in the device */
880 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
883 /* make sure our super fits in the page */
884 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
887 /* make sure our super doesn't straddle pages on disk */
888 index
= bytenr
>> PAGE_CACHE_SHIFT
;
889 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
892 /* pull in the page with our super */
893 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
896 if (IS_ERR_OR_NULL(page
))
901 /* align our pointer to the offset of the super block */
902 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
904 if (btrfs_super_bytenr(disk_super
) != bytenr
||
905 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
908 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
909 transid
= btrfs_super_generation(disk_super
);
910 total_devices
= btrfs_super_num_devices(disk_super
);
912 if (disk_super
->label
[0]) {
913 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
914 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
915 printk(KERN_INFO
"btrfs: device label %s ", disk_super
->label
);
917 printk(KERN_INFO
"btrfs: device fsid %pU ", disk_super
->fsid
);
920 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
922 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
923 if (!ret
&& fs_devices_ret
)
924 (*fs_devices_ret
)->total_devices
= total_devices
;
928 page_cache_release(page
);
931 blkdev_put(bdev
, flags
);
933 mutex_unlock(&uuid_mutex
);
937 /* helper to account the used device space in the range */
938 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
939 u64 end
, u64
*length
)
941 struct btrfs_key key
;
942 struct btrfs_root
*root
= device
->dev_root
;
943 struct btrfs_dev_extent
*dev_extent
;
944 struct btrfs_path
*path
;
948 struct extent_buffer
*l
;
952 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
955 path
= btrfs_alloc_path();
960 key
.objectid
= device
->devid
;
962 key
.type
= BTRFS_DEV_EXTENT_KEY
;
964 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
968 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
975 slot
= path
->slots
[0];
976 if (slot
>= btrfs_header_nritems(l
)) {
977 ret
= btrfs_next_leaf(root
, path
);
985 btrfs_item_key_to_cpu(l
, &key
, slot
);
987 if (key
.objectid
< device
->devid
)
990 if (key
.objectid
> device
->devid
)
993 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
996 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
997 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
999 if (key
.offset
<= start
&& extent_end
> end
) {
1000 *length
= end
- start
+ 1;
1002 } else if (key
.offset
<= start
&& extent_end
> start
)
1003 *length
+= extent_end
- start
;
1004 else if (key
.offset
> start
&& extent_end
<= end
)
1005 *length
+= extent_end
- key
.offset
;
1006 else if (key
.offset
> start
&& key
.offset
<= end
) {
1007 *length
+= end
- key
.offset
+ 1;
1009 } else if (key
.offset
> end
)
1017 btrfs_free_path(path
);
1021 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1022 struct btrfs_device
*device
,
1023 u64
*start
, u64 len
)
1025 struct extent_map
*em
;
1028 list_for_each_entry(em
, &trans
->transaction
->pending_chunks
, list
) {
1029 struct map_lookup
*map
;
1032 map
= (struct map_lookup
*)em
->bdev
;
1033 for (i
= 0; i
< map
->num_stripes
; i
++) {
1034 if (map
->stripes
[i
].dev
!= device
)
1036 if (map
->stripes
[i
].physical
>= *start
+ len
||
1037 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1040 *start
= map
->stripes
[i
].physical
+
1051 * find_free_dev_extent - find free space in the specified device
1052 * @device: the device which we search the free space in
1053 * @num_bytes: the size of the free space that we need
1054 * @start: store the start of the free space.
1055 * @len: the size of the free space. that we find, or the size of the max
1056 * free space if we don't find suitable free space
1058 * this uses a pretty simple search, the expectation is that it is
1059 * called very infrequently and that a given device has a small number
1062 * @start is used to store the start of the free space if we find. But if we
1063 * don't find suitable free space, it will be used to store the start position
1064 * of the max free space.
1066 * @len is used to store the size of the free space that we find.
1067 * But if we don't find suitable free space, it is used to store the size of
1068 * the max free space.
1070 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_device
*device
, u64 num_bytes
,
1072 u64
*start
, u64
*len
)
1074 struct btrfs_key key
;
1075 struct btrfs_root
*root
= device
->dev_root
;
1076 struct btrfs_dev_extent
*dev_extent
;
1077 struct btrfs_path
*path
;
1083 u64 search_end
= device
->total_bytes
;
1086 struct extent_buffer
*l
;
1088 /* FIXME use last free of some kind */
1090 /* we don't want to overwrite the superblock on the drive,
1091 * so we make sure to start at an offset of at least 1MB
1093 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1095 path
= btrfs_alloc_path();
1099 max_hole_start
= search_start
;
1103 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1109 path
->search_commit_root
= 1;
1110 path
->skip_locking
= 1;
1112 key
.objectid
= device
->devid
;
1113 key
.offset
= search_start
;
1114 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1116 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1120 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1127 slot
= path
->slots
[0];
1128 if (slot
>= btrfs_header_nritems(l
)) {
1129 ret
= btrfs_next_leaf(root
, path
);
1137 btrfs_item_key_to_cpu(l
, &key
, slot
);
1139 if (key
.objectid
< device
->devid
)
1142 if (key
.objectid
> device
->devid
)
1145 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
1148 if (key
.offset
> search_start
) {
1149 hole_size
= key
.offset
- search_start
;
1152 * Have to check before we set max_hole_start, otherwise
1153 * we could end up sending back this offset anyway.
1155 if (contains_pending_extent(trans
, device
,
1160 if (hole_size
> max_hole_size
) {
1161 max_hole_start
= search_start
;
1162 max_hole_size
= hole_size
;
1166 * If this free space is greater than which we need,
1167 * it must be the max free space that we have found
1168 * until now, so max_hole_start must point to the start
1169 * of this free space and the length of this free space
1170 * is stored in max_hole_size. Thus, we return
1171 * max_hole_start and max_hole_size and go back to the
1174 if (hole_size
>= num_bytes
) {
1180 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1181 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1183 if (extent_end
> search_start
)
1184 search_start
= extent_end
;
1191 * At this point, search_start should be the end of
1192 * allocated dev extents, and when shrinking the device,
1193 * search_end may be smaller than search_start.
1195 if (search_end
> search_start
)
1196 hole_size
= search_end
- search_start
;
1198 if (hole_size
> max_hole_size
) {
1199 max_hole_start
= search_start
;
1200 max_hole_size
= hole_size
;
1203 if (contains_pending_extent(trans
, device
, &search_start
, hole_size
)) {
1204 btrfs_release_path(path
);
1209 if (hole_size
< num_bytes
)
1215 btrfs_free_path(path
);
1216 *start
= max_hole_start
;
1218 *len
= max_hole_size
;
1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1223 struct btrfs_device
*device
,
1227 struct btrfs_path
*path
;
1228 struct btrfs_root
*root
= device
->dev_root
;
1229 struct btrfs_key key
;
1230 struct btrfs_key found_key
;
1231 struct extent_buffer
*leaf
= NULL
;
1232 struct btrfs_dev_extent
*extent
= NULL
;
1234 path
= btrfs_alloc_path();
1238 key
.objectid
= device
->devid
;
1240 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1242 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1244 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1245 BTRFS_DEV_EXTENT_KEY
);
1248 leaf
= path
->nodes
[0];
1249 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1250 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1251 struct btrfs_dev_extent
);
1252 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1253 btrfs_dev_extent_length(leaf
, extent
) < start
);
1255 btrfs_release_path(path
);
1257 } else if (ret
== 0) {
1258 leaf
= path
->nodes
[0];
1259 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1260 struct btrfs_dev_extent
);
1262 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1266 if (device
->bytes_used
> 0) {
1267 u64 len
= btrfs_dev_extent_length(leaf
, extent
);
1268 device
->bytes_used
-= len
;
1269 spin_lock(&root
->fs_info
->free_chunk_lock
);
1270 root
->fs_info
->free_chunk_space
+= len
;
1271 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1273 ret
= btrfs_del_item(trans
, root
, path
);
1275 btrfs_error(root
->fs_info
, ret
,
1276 "Failed to remove dev extent item");
1279 btrfs_free_path(path
);
1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1284 struct btrfs_device
*device
,
1285 u64 chunk_tree
, u64 chunk_objectid
,
1286 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1289 struct btrfs_path
*path
;
1290 struct btrfs_root
*root
= device
->dev_root
;
1291 struct btrfs_dev_extent
*extent
;
1292 struct extent_buffer
*leaf
;
1293 struct btrfs_key key
;
1295 WARN_ON(!device
->in_fs_metadata
);
1296 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1297 path
= btrfs_alloc_path();
1301 key
.objectid
= device
->devid
;
1303 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1304 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1309 leaf
= path
->nodes
[0];
1310 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1311 struct btrfs_dev_extent
);
1312 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1313 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1314 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1316 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1317 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1319 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1320 btrfs_mark_buffer_dirty(leaf
);
1322 btrfs_free_path(path
);
1326 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1328 struct extent_map_tree
*em_tree
;
1329 struct extent_map
*em
;
1333 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1334 read_lock(&em_tree
->lock
);
1335 n
= rb_last(&em_tree
->map
);
1337 em
= rb_entry(n
, struct extent_map
, rb_node
);
1338 ret
= em
->start
+ em
->len
;
1340 read_unlock(&em_tree
->lock
);
1345 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1349 struct btrfs_key key
;
1350 struct btrfs_key found_key
;
1351 struct btrfs_path
*path
;
1353 path
= btrfs_alloc_path();
1357 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1358 key
.type
= BTRFS_DEV_ITEM_KEY
;
1359 key
.offset
= (u64
)-1;
1361 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1365 BUG_ON(ret
== 0); /* Corruption */
1367 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1368 BTRFS_DEV_ITEMS_OBJECTID
,
1369 BTRFS_DEV_ITEM_KEY
);
1373 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1375 *devid_ret
= found_key
.offset
+ 1;
1379 btrfs_free_path(path
);
1384 * the device information is stored in the chunk root
1385 * the btrfs_device struct should be fully filled in
1387 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_root
*root
,
1389 struct btrfs_device
*device
)
1392 struct btrfs_path
*path
;
1393 struct btrfs_dev_item
*dev_item
;
1394 struct extent_buffer
*leaf
;
1395 struct btrfs_key key
;
1398 root
= root
->fs_info
->chunk_root
;
1400 path
= btrfs_alloc_path();
1404 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1405 key
.type
= BTRFS_DEV_ITEM_KEY
;
1406 key
.offset
= device
->devid
;
1408 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1413 leaf
= path
->nodes
[0];
1414 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1416 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1417 btrfs_set_device_generation(leaf
, dev_item
, 0);
1418 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1419 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1420 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1421 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1422 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1423 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1424 btrfs_set_device_group(leaf
, dev_item
, 0);
1425 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1426 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1427 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1429 ptr
= btrfs_device_uuid(dev_item
);
1430 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1431 ptr
= btrfs_device_fsid(dev_item
);
1432 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1433 btrfs_mark_buffer_dirty(leaf
);
1437 btrfs_free_path(path
);
1441 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1442 struct btrfs_device
*device
)
1445 struct btrfs_path
*path
;
1446 struct btrfs_key key
;
1447 struct btrfs_trans_handle
*trans
;
1449 root
= root
->fs_info
->chunk_root
;
1451 path
= btrfs_alloc_path();
1455 trans
= btrfs_start_transaction(root
, 0);
1456 if (IS_ERR(trans
)) {
1457 btrfs_free_path(path
);
1458 return PTR_ERR(trans
);
1460 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1461 key
.type
= BTRFS_DEV_ITEM_KEY
;
1462 key
.offset
= device
->devid
;
1465 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1474 ret
= btrfs_del_item(trans
, root
, path
);
1478 btrfs_free_path(path
);
1479 unlock_chunks(root
);
1480 btrfs_commit_transaction(trans
, root
);
1484 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1486 struct btrfs_device
*device
;
1487 struct btrfs_device
*next_device
;
1488 struct block_device
*bdev
;
1489 struct buffer_head
*bh
= NULL
;
1490 struct btrfs_super_block
*disk_super
;
1491 struct btrfs_fs_devices
*cur_devices
;
1498 bool clear_super
= false;
1500 mutex_lock(&uuid_mutex
);
1503 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1505 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1506 root
->fs_info
->avail_system_alloc_bits
|
1507 root
->fs_info
->avail_metadata_alloc_bits
;
1508 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1510 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1511 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1512 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1513 WARN_ON(num_devices
< 1);
1516 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1518 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1519 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1523 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1524 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1528 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1529 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1530 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1533 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1534 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1535 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1539 if (strcmp(device_path
, "missing") == 0) {
1540 struct list_head
*devices
;
1541 struct btrfs_device
*tmp
;
1544 devices
= &root
->fs_info
->fs_devices
->devices
;
1546 * It is safe to read the devices since the volume_mutex
1549 list_for_each_entry(tmp
, devices
, dev_list
) {
1550 if (tmp
->in_fs_metadata
&&
1551 !tmp
->is_tgtdev_for_dev_replace
&&
1561 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1565 ret
= btrfs_get_bdev_and_sb(device_path
,
1566 FMODE_WRITE
| FMODE_EXCL
,
1567 root
->fs_info
->bdev_holder
, 0,
1571 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1572 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1573 dev_uuid
= disk_super
->dev_item
.uuid
;
1574 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1582 if (device
->is_tgtdev_for_dev_replace
) {
1583 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1587 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1588 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1592 if (device
->writeable
) {
1594 list_del_init(&device
->dev_alloc_list
);
1595 unlock_chunks(root
);
1596 root
->fs_info
->fs_devices
->rw_devices
--;
1600 mutex_unlock(&uuid_mutex
);
1601 ret
= btrfs_shrink_device(device
, 0);
1602 mutex_lock(&uuid_mutex
);
1607 * TODO: the superblock still includes this device in its num_devices
1608 * counter although write_all_supers() is not locked out. This
1609 * could give a filesystem state which requires a degraded mount.
1611 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1615 spin_lock(&root
->fs_info
->free_chunk_lock
);
1616 root
->fs_info
->free_chunk_space
= device
->total_bytes
-
1618 spin_unlock(&root
->fs_info
->free_chunk_lock
);
1620 device
->in_fs_metadata
= 0;
1621 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1624 * the device list mutex makes sure that we don't change
1625 * the device list while someone else is writing out all
1626 * the device supers. Whoever is writing all supers, should
1627 * lock the device list mutex before getting the number of
1628 * devices in the super block (super_copy). Conversely,
1629 * whoever updates the number of devices in the super block
1630 * (super_copy) should hold the device list mutex.
1633 cur_devices
= device
->fs_devices
;
1634 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1635 list_del_rcu(&device
->dev_list
);
1637 device
->fs_devices
->num_devices
--;
1638 device
->fs_devices
->total_devices
--;
1640 if (device
->missing
)
1641 root
->fs_info
->fs_devices
->missing_devices
--;
1643 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1644 struct btrfs_device
, dev_list
);
1645 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1646 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1647 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1648 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1651 device
->fs_devices
->open_devices
--;
1653 call_rcu(&device
->rcu
, free_device
);
1655 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1656 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1657 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1659 if (cur_devices
->open_devices
== 0) {
1660 struct btrfs_fs_devices
*fs_devices
;
1661 fs_devices
= root
->fs_info
->fs_devices
;
1662 while (fs_devices
) {
1663 if (fs_devices
->seed
== cur_devices
)
1665 fs_devices
= fs_devices
->seed
;
1667 fs_devices
->seed
= cur_devices
->seed
;
1668 cur_devices
->seed
= NULL
;
1670 __btrfs_close_devices(cur_devices
);
1671 unlock_chunks(root
);
1672 free_fs_devices(cur_devices
);
1675 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1676 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1679 * at this point, the device is zero sized. We want to
1680 * remove it from the devices list and zero out the old super
1682 if (clear_super
&& disk_super
) {
1683 /* make sure this device isn't detected as part of
1686 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1687 set_buffer_dirty(bh
);
1688 sync_dirty_buffer(bh
);
1693 /* Notify udev that device has changed */
1695 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1700 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1702 mutex_unlock(&uuid_mutex
);
1705 if (device
->writeable
) {
1707 list_add(&device
->dev_alloc_list
,
1708 &root
->fs_info
->fs_devices
->alloc_list
);
1709 unlock_chunks(root
);
1710 root
->fs_info
->fs_devices
->rw_devices
++;
1715 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info
*fs_info
,
1716 struct btrfs_device
*srcdev
)
1718 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1720 list_del_rcu(&srcdev
->dev_list
);
1721 list_del_rcu(&srcdev
->dev_alloc_list
);
1722 fs_info
->fs_devices
->num_devices
--;
1723 if (srcdev
->missing
) {
1724 fs_info
->fs_devices
->missing_devices
--;
1725 fs_info
->fs_devices
->rw_devices
++;
1727 if (srcdev
->can_discard
)
1728 fs_info
->fs_devices
->num_can_discard
--;
1730 fs_info
->fs_devices
->open_devices
--;
1732 /* zero out the old super */
1733 btrfs_scratch_superblock(srcdev
);
1736 call_rcu(&srcdev
->rcu
, free_device
);
1739 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1740 struct btrfs_device
*tgtdev
)
1742 struct btrfs_device
*next_device
;
1745 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1747 btrfs_scratch_superblock(tgtdev
);
1748 fs_info
->fs_devices
->open_devices
--;
1750 fs_info
->fs_devices
->num_devices
--;
1751 if (tgtdev
->can_discard
)
1752 fs_info
->fs_devices
->num_can_discard
++;
1754 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1755 struct btrfs_device
, dev_list
);
1756 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1757 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1758 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1759 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1760 list_del_rcu(&tgtdev
->dev_list
);
1762 call_rcu(&tgtdev
->rcu
, free_device
);
1764 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1767 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1768 struct btrfs_device
**device
)
1771 struct btrfs_super_block
*disk_super
;
1774 struct block_device
*bdev
;
1775 struct buffer_head
*bh
;
1778 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1779 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1782 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1783 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1784 dev_uuid
= disk_super
->dev_item
.uuid
;
1785 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1790 blkdev_put(bdev
, FMODE_READ
);
1794 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1796 struct btrfs_device
**device
)
1799 if (strcmp(device_path
, "missing") == 0) {
1800 struct list_head
*devices
;
1801 struct btrfs_device
*tmp
;
1803 devices
= &root
->fs_info
->fs_devices
->devices
;
1805 * It is safe to read the devices since the volume_mutex
1806 * is held by the caller.
1808 list_for_each_entry(tmp
, devices
, dev_list
) {
1809 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1816 pr_err("btrfs: no missing device found\n");
1822 return btrfs_find_device_by_path(root
, device_path
, device
);
1827 * does all the dirty work required for changing file system's UUID.
1829 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1831 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1832 struct btrfs_fs_devices
*old_devices
;
1833 struct btrfs_fs_devices
*seed_devices
;
1834 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1835 struct btrfs_device
*device
;
1838 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1839 if (!fs_devices
->seeding
)
1842 seed_devices
= __alloc_fs_devices();
1843 if (IS_ERR(seed_devices
))
1844 return PTR_ERR(seed_devices
);
1846 old_devices
= clone_fs_devices(fs_devices
);
1847 if (IS_ERR(old_devices
)) {
1848 kfree(seed_devices
);
1849 return PTR_ERR(old_devices
);
1852 list_add(&old_devices
->list
, &fs_uuids
);
1854 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1855 seed_devices
->opened
= 1;
1856 INIT_LIST_HEAD(&seed_devices
->devices
);
1857 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1858 mutex_init(&seed_devices
->device_list_mutex
);
1860 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1861 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1864 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1865 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1866 device
->fs_devices
= seed_devices
;
1869 fs_devices
->seeding
= 0;
1870 fs_devices
->num_devices
= 0;
1871 fs_devices
->open_devices
= 0;
1872 fs_devices
->total_devices
= 0;
1873 fs_devices
->seed
= seed_devices
;
1875 generate_random_uuid(fs_devices
->fsid
);
1876 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1877 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1878 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1880 super_flags
= btrfs_super_flags(disk_super
) &
1881 ~BTRFS_SUPER_FLAG_SEEDING
;
1882 btrfs_set_super_flags(disk_super
, super_flags
);
1888 * strore the expected generation for seed devices in device items.
1890 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1891 struct btrfs_root
*root
)
1893 struct btrfs_path
*path
;
1894 struct extent_buffer
*leaf
;
1895 struct btrfs_dev_item
*dev_item
;
1896 struct btrfs_device
*device
;
1897 struct btrfs_key key
;
1898 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1899 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1903 path
= btrfs_alloc_path();
1907 root
= root
->fs_info
->chunk_root
;
1908 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1910 key
.type
= BTRFS_DEV_ITEM_KEY
;
1913 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1917 leaf
= path
->nodes
[0];
1919 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1920 ret
= btrfs_next_leaf(root
, path
);
1925 leaf
= path
->nodes
[0];
1926 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1927 btrfs_release_path(path
);
1931 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1932 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1933 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1936 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1937 struct btrfs_dev_item
);
1938 devid
= btrfs_device_id(leaf
, dev_item
);
1939 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
1941 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
1943 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1945 BUG_ON(!device
); /* Logic error */
1947 if (device
->fs_devices
->seeding
) {
1948 btrfs_set_device_generation(leaf
, dev_item
,
1949 device
->generation
);
1950 btrfs_mark_buffer_dirty(leaf
);
1958 btrfs_free_path(path
);
1962 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1964 struct request_queue
*q
;
1965 struct btrfs_trans_handle
*trans
;
1966 struct btrfs_device
*device
;
1967 struct block_device
*bdev
;
1968 struct list_head
*devices
;
1969 struct super_block
*sb
= root
->fs_info
->sb
;
1970 struct rcu_string
*name
;
1972 int seeding_dev
= 0;
1975 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1978 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
1979 root
->fs_info
->bdev_holder
);
1981 return PTR_ERR(bdev
);
1983 if (root
->fs_info
->fs_devices
->seeding
) {
1985 down_write(&sb
->s_umount
);
1986 mutex_lock(&uuid_mutex
);
1989 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1991 devices
= &root
->fs_info
->fs_devices
->devices
;
1993 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1994 list_for_each_entry(device
, devices
, dev_list
) {
1995 if (device
->bdev
== bdev
) {
1998 &root
->fs_info
->fs_devices
->device_list_mutex
);
2002 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2004 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2005 if (IS_ERR(device
)) {
2006 /* we can safely leave the fs_devices entry around */
2007 ret
= PTR_ERR(device
);
2011 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2017 rcu_assign_pointer(device
->name
, name
);
2019 trans
= btrfs_start_transaction(root
, 0);
2020 if (IS_ERR(trans
)) {
2021 rcu_string_free(device
->name
);
2023 ret
= PTR_ERR(trans
);
2029 q
= bdev_get_queue(bdev
);
2030 if (blk_queue_discard(q
))
2031 device
->can_discard
= 1;
2032 device
->writeable
= 1;
2033 device
->generation
= trans
->transid
;
2034 device
->io_width
= root
->sectorsize
;
2035 device
->io_align
= root
->sectorsize
;
2036 device
->sector_size
= root
->sectorsize
;
2037 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2038 device
->disk_total_bytes
= device
->total_bytes
;
2039 device
->dev_root
= root
->fs_info
->dev_root
;
2040 device
->bdev
= bdev
;
2041 device
->in_fs_metadata
= 1;
2042 device
->is_tgtdev_for_dev_replace
= 0;
2043 device
->mode
= FMODE_EXCL
;
2044 set_blocksize(device
->bdev
, 4096);
2047 sb
->s_flags
&= ~MS_RDONLY
;
2048 ret
= btrfs_prepare_sprout(root
);
2049 BUG_ON(ret
); /* -ENOMEM */
2052 device
->fs_devices
= root
->fs_info
->fs_devices
;
2054 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2055 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2056 list_add(&device
->dev_alloc_list
,
2057 &root
->fs_info
->fs_devices
->alloc_list
);
2058 root
->fs_info
->fs_devices
->num_devices
++;
2059 root
->fs_info
->fs_devices
->open_devices
++;
2060 root
->fs_info
->fs_devices
->rw_devices
++;
2061 root
->fs_info
->fs_devices
->total_devices
++;
2062 if (device
->can_discard
)
2063 root
->fs_info
->fs_devices
->num_can_discard
++;
2064 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2066 spin_lock(&root
->fs_info
->free_chunk_lock
);
2067 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2068 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2070 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2071 root
->fs_info
->fs_devices
->rotating
= 1;
2073 total_bytes
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2074 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2075 total_bytes
+ device
->total_bytes
);
2077 total_bytes
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2078 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2080 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2083 ret
= init_first_rw_device(trans
, root
, device
);
2085 btrfs_abort_transaction(trans
, root
, ret
);
2088 ret
= btrfs_finish_sprout(trans
, root
);
2090 btrfs_abort_transaction(trans
, root
, ret
);
2094 ret
= btrfs_add_device(trans
, root
, device
);
2096 btrfs_abort_transaction(trans
, root
, ret
);
2102 * we've got more storage, clear any full flags on the space
2105 btrfs_clear_space_info_full(root
->fs_info
);
2107 unlock_chunks(root
);
2108 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2109 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2110 ret
= btrfs_commit_transaction(trans
, root
);
2113 mutex_unlock(&uuid_mutex
);
2114 up_write(&sb
->s_umount
);
2116 if (ret
) /* transaction commit */
2119 ret
= btrfs_relocate_sys_chunks(root
);
2121 btrfs_error(root
->fs_info
, ret
,
2122 "Failed to relocate sys chunks after "
2123 "device initialization. This can be fixed "
2124 "using the \"btrfs balance\" command.");
2125 trans
= btrfs_attach_transaction(root
);
2126 if (IS_ERR(trans
)) {
2127 if (PTR_ERR(trans
) == -ENOENT
)
2129 return PTR_ERR(trans
);
2131 ret
= btrfs_commit_transaction(trans
, root
);
2137 unlock_chunks(root
);
2138 btrfs_end_transaction(trans
, root
);
2139 rcu_string_free(device
->name
);
2142 blkdev_put(bdev
, FMODE_EXCL
);
2144 mutex_unlock(&uuid_mutex
);
2145 up_write(&sb
->s_umount
);
2150 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2151 struct btrfs_device
**device_out
)
2153 struct request_queue
*q
;
2154 struct btrfs_device
*device
;
2155 struct block_device
*bdev
;
2156 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2157 struct list_head
*devices
;
2158 struct rcu_string
*name
;
2159 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2163 if (fs_info
->fs_devices
->seeding
)
2166 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2167 fs_info
->bdev_holder
);
2169 return PTR_ERR(bdev
);
2171 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2173 devices
= &fs_info
->fs_devices
->devices
;
2174 list_for_each_entry(device
, devices
, dev_list
) {
2175 if (device
->bdev
== bdev
) {
2181 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2182 if (IS_ERR(device
)) {
2183 ret
= PTR_ERR(device
);
2187 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2193 rcu_assign_pointer(device
->name
, name
);
2195 q
= bdev_get_queue(bdev
);
2196 if (blk_queue_discard(q
))
2197 device
->can_discard
= 1;
2198 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2199 device
->writeable
= 1;
2200 device
->generation
= 0;
2201 device
->io_width
= root
->sectorsize
;
2202 device
->io_align
= root
->sectorsize
;
2203 device
->sector_size
= root
->sectorsize
;
2204 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2205 device
->disk_total_bytes
= device
->total_bytes
;
2206 device
->dev_root
= fs_info
->dev_root
;
2207 device
->bdev
= bdev
;
2208 device
->in_fs_metadata
= 1;
2209 device
->is_tgtdev_for_dev_replace
= 1;
2210 device
->mode
= FMODE_EXCL
;
2211 set_blocksize(device
->bdev
, 4096);
2212 device
->fs_devices
= fs_info
->fs_devices
;
2213 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2214 fs_info
->fs_devices
->num_devices
++;
2215 fs_info
->fs_devices
->open_devices
++;
2216 if (device
->can_discard
)
2217 fs_info
->fs_devices
->num_can_discard
++;
2218 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2220 *device_out
= device
;
2224 blkdev_put(bdev
, FMODE_EXCL
);
2228 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2229 struct btrfs_device
*tgtdev
)
2231 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2232 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2233 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2234 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2235 tgtdev
->dev_root
= fs_info
->dev_root
;
2236 tgtdev
->in_fs_metadata
= 1;
2239 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2240 struct btrfs_device
*device
)
2243 struct btrfs_path
*path
;
2244 struct btrfs_root
*root
;
2245 struct btrfs_dev_item
*dev_item
;
2246 struct extent_buffer
*leaf
;
2247 struct btrfs_key key
;
2249 root
= device
->dev_root
->fs_info
->chunk_root
;
2251 path
= btrfs_alloc_path();
2255 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2256 key
.type
= BTRFS_DEV_ITEM_KEY
;
2257 key
.offset
= device
->devid
;
2259 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2268 leaf
= path
->nodes
[0];
2269 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2271 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2272 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2273 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2274 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2275 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2276 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
2277 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
2278 btrfs_mark_buffer_dirty(leaf
);
2281 btrfs_free_path(path
);
2285 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2286 struct btrfs_device
*device
, u64 new_size
)
2288 struct btrfs_super_block
*super_copy
=
2289 device
->dev_root
->fs_info
->super_copy
;
2290 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2291 u64 diff
= new_size
- device
->total_bytes
;
2293 if (!device
->writeable
)
2295 if (new_size
<= device
->total_bytes
||
2296 device
->is_tgtdev_for_dev_replace
)
2299 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2300 device
->fs_devices
->total_rw_bytes
+= diff
;
2302 device
->total_bytes
= new_size
;
2303 device
->disk_total_bytes
= new_size
;
2304 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2306 return btrfs_update_device(trans
, device
);
2309 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2310 struct btrfs_device
*device
, u64 new_size
)
2313 lock_chunks(device
->dev_root
);
2314 ret
= __btrfs_grow_device(trans
, device
, new_size
);
2315 unlock_chunks(device
->dev_root
);
2319 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2320 struct btrfs_root
*root
,
2321 u64 chunk_tree
, u64 chunk_objectid
,
2325 struct btrfs_path
*path
;
2326 struct btrfs_key key
;
2328 root
= root
->fs_info
->chunk_root
;
2329 path
= btrfs_alloc_path();
2333 key
.objectid
= chunk_objectid
;
2334 key
.offset
= chunk_offset
;
2335 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2337 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2340 else if (ret
> 0) { /* Logic error or corruption */
2341 btrfs_error(root
->fs_info
, -ENOENT
,
2342 "Failed lookup while freeing chunk.");
2347 ret
= btrfs_del_item(trans
, root
, path
);
2349 btrfs_error(root
->fs_info
, ret
,
2350 "Failed to delete chunk item.");
2352 btrfs_free_path(path
);
2356 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2359 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2360 struct btrfs_disk_key
*disk_key
;
2361 struct btrfs_chunk
*chunk
;
2368 struct btrfs_key key
;
2370 array_size
= btrfs_super_sys_array_size(super_copy
);
2372 ptr
= super_copy
->sys_chunk_array
;
2375 while (cur
< array_size
) {
2376 disk_key
= (struct btrfs_disk_key
*)ptr
;
2377 btrfs_disk_key_to_cpu(&key
, disk_key
);
2379 len
= sizeof(*disk_key
);
2381 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2382 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2383 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2384 len
+= btrfs_chunk_item_size(num_stripes
);
2389 if (key
.objectid
== chunk_objectid
&&
2390 key
.offset
== chunk_offset
) {
2391 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2393 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2402 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2403 u64 chunk_tree
, u64 chunk_objectid
,
2406 struct extent_map_tree
*em_tree
;
2407 struct btrfs_root
*extent_root
;
2408 struct btrfs_trans_handle
*trans
;
2409 struct extent_map
*em
;
2410 struct map_lookup
*map
;
2414 root
= root
->fs_info
->chunk_root
;
2415 extent_root
= root
->fs_info
->extent_root
;
2416 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2418 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2422 /* step one, relocate all the extents inside this chunk */
2423 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2427 trans
= btrfs_start_transaction(root
, 0);
2428 if (IS_ERR(trans
)) {
2429 ret
= PTR_ERR(trans
);
2430 btrfs_std_error(root
->fs_info
, ret
);
2437 * step two, delete the device extents and the
2438 * chunk tree entries
2440 read_lock(&em_tree
->lock
);
2441 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2442 read_unlock(&em_tree
->lock
);
2444 BUG_ON(!em
|| em
->start
> chunk_offset
||
2445 em
->start
+ em
->len
< chunk_offset
);
2446 map
= (struct map_lookup
*)em
->bdev
;
2448 for (i
= 0; i
< map
->num_stripes
; i
++) {
2449 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
2450 map
->stripes
[i
].physical
);
2453 if (map
->stripes
[i
].dev
) {
2454 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2458 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2463 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2465 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2466 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2470 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
2473 write_lock(&em_tree
->lock
);
2474 remove_extent_mapping(em_tree
, em
);
2475 write_unlock(&em_tree
->lock
);
2480 /* once for the tree */
2481 free_extent_map(em
);
2483 free_extent_map(em
);
2485 unlock_chunks(root
);
2486 btrfs_end_transaction(trans
, root
);
2490 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2492 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2493 struct btrfs_path
*path
;
2494 struct extent_buffer
*leaf
;
2495 struct btrfs_chunk
*chunk
;
2496 struct btrfs_key key
;
2497 struct btrfs_key found_key
;
2498 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2500 bool retried
= false;
2504 path
= btrfs_alloc_path();
2509 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2510 key
.offset
= (u64
)-1;
2511 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2514 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2517 BUG_ON(ret
== 0); /* Corruption */
2519 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2526 leaf
= path
->nodes
[0];
2527 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2529 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2530 struct btrfs_chunk
);
2531 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2532 btrfs_release_path(path
);
2534 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2535 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2544 if (found_key
.offset
== 0)
2546 key
.offset
= found_key
.offset
- 1;
2549 if (failed
&& !retried
) {
2553 } else if (failed
&& retried
) {
2558 btrfs_free_path(path
);
2562 static int insert_balance_item(struct btrfs_root
*root
,
2563 struct btrfs_balance_control
*bctl
)
2565 struct btrfs_trans_handle
*trans
;
2566 struct btrfs_balance_item
*item
;
2567 struct btrfs_disk_balance_args disk_bargs
;
2568 struct btrfs_path
*path
;
2569 struct extent_buffer
*leaf
;
2570 struct btrfs_key key
;
2573 path
= btrfs_alloc_path();
2577 trans
= btrfs_start_transaction(root
, 0);
2578 if (IS_ERR(trans
)) {
2579 btrfs_free_path(path
);
2580 return PTR_ERR(trans
);
2583 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2584 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2587 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2592 leaf
= path
->nodes
[0];
2593 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2595 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2597 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2598 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2599 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2600 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2601 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2602 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2604 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2606 btrfs_mark_buffer_dirty(leaf
);
2608 btrfs_free_path(path
);
2609 err
= btrfs_commit_transaction(trans
, root
);
2615 static int del_balance_item(struct btrfs_root
*root
)
2617 struct btrfs_trans_handle
*trans
;
2618 struct btrfs_path
*path
;
2619 struct btrfs_key key
;
2622 path
= btrfs_alloc_path();
2626 trans
= btrfs_start_transaction(root
, 0);
2627 if (IS_ERR(trans
)) {
2628 btrfs_free_path(path
);
2629 return PTR_ERR(trans
);
2632 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2633 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2636 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2644 ret
= btrfs_del_item(trans
, root
, path
);
2646 btrfs_free_path(path
);
2647 err
= btrfs_commit_transaction(trans
, root
);
2654 * This is a heuristic used to reduce the number of chunks balanced on
2655 * resume after balance was interrupted.
2657 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2660 * Turn on soft mode for chunk types that were being converted.
2662 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2663 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2664 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2665 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2666 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2667 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2670 * Turn on usage filter if is not already used. The idea is
2671 * that chunks that we have already balanced should be
2672 * reasonably full. Don't do it for chunks that are being
2673 * converted - that will keep us from relocating unconverted
2674 * (albeit full) chunks.
2676 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2677 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2678 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2679 bctl
->data
.usage
= 90;
2681 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2682 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2683 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2684 bctl
->sys
.usage
= 90;
2686 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2687 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2688 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2689 bctl
->meta
.usage
= 90;
2694 * Should be called with both balance and volume mutexes held to
2695 * serialize other volume operations (add_dev/rm_dev/resize) with
2696 * restriper. Same goes for unset_balance_control.
2698 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2700 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2702 BUG_ON(fs_info
->balance_ctl
);
2704 spin_lock(&fs_info
->balance_lock
);
2705 fs_info
->balance_ctl
= bctl
;
2706 spin_unlock(&fs_info
->balance_lock
);
2709 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2711 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2713 BUG_ON(!fs_info
->balance_ctl
);
2715 spin_lock(&fs_info
->balance_lock
);
2716 fs_info
->balance_ctl
= NULL
;
2717 spin_unlock(&fs_info
->balance_lock
);
2723 * Balance filters. Return 1 if chunk should be filtered out
2724 * (should not be balanced).
2726 static int chunk_profiles_filter(u64 chunk_type
,
2727 struct btrfs_balance_args
*bargs
)
2729 chunk_type
= chunk_to_extended(chunk_type
) &
2730 BTRFS_EXTENDED_PROFILE_MASK
;
2732 if (bargs
->profiles
& chunk_type
)
2738 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2739 struct btrfs_balance_args
*bargs
)
2741 struct btrfs_block_group_cache
*cache
;
2742 u64 chunk_used
, user_thresh
;
2745 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2746 chunk_used
= btrfs_block_group_used(&cache
->item
);
2748 if (bargs
->usage
== 0)
2750 else if (bargs
->usage
> 100)
2751 user_thresh
= cache
->key
.offset
;
2753 user_thresh
= div_factor_fine(cache
->key
.offset
,
2756 if (chunk_used
< user_thresh
)
2759 btrfs_put_block_group(cache
);
2763 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2764 struct btrfs_chunk
*chunk
,
2765 struct btrfs_balance_args
*bargs
)
2767 struct btrfs_stripe
*stripe
;
2768 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2771 for (i
= 0; i
< num_stripes
; i
++) {
2772 stripe
= btrfs_stripe_nr(chunk
, i
);
2773 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2780 /* [pstart, pend) */
2781 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2782 struct btrfs_chunk
*chunk
,
2784 struct btrfs_balance_args
*bargs
)
2786 struct btrfs_stripe
*stripe
;
2787 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2793 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
2796 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
2797 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
2798 factor
= num_stripes
/ 2;
2799 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
2800 factor
= num_stripes
- 1;
2801 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
2802 factor
= num_stripes
- 2;
2804 factor
= num_stripes
;
2807 for (i
= 0; i
< num_stripes
; i
++) {
2808 stripe
= btrfs_stripe_nr(chunk
, i
);
2809 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
2812 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
2813 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
2814 do_div(stripe_length
, factor
);
2816 if (stripe_offset
< bargs
->pend
&&
2817 stripe_offset
+ stripe_length
> bargs
->pstart
)
2824 /* [vstart, vend) */
2825 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
2826 struct btrfs_chunk
*chunk
,
2828 struct btrfs_balance_args
*bargs
)
2830 if (chunk_offset
< bargs
->vend
&&
2831 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
2832 /* at least part of the chunk is inside this vrange */
2838 static int chunk_soft_convert_filter(u64 chunk_type
,
2839 struct btrfs_balance_args
*bargs
)
2841 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
2844 chunk_type
= chunk_to_extended(chunk_type
) &
2845 BTRFS_EXTENDED_PROFILE_MASK
;
2847 if (bargs
->target
== chunk_type
)
2853 static int should_balance_chunk(struct btrfs_root
*root
,
2854 struct extent_buffer
*leaf
,
2855 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
2857 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
2858 struct btrfs_balance_args
*bargs
= NULL
;
2859 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2862 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
2863 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
2867 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
2868 bargs
= &bctl
->data
;
2869 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
2871 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
2872 bargs
= &bctl
->meta
;
2874 /* profiles filter */
2875 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
2876 chunk_profiles_filter(chunk_type
, bargs
)) {
2881 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2882 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
2887 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
2888 chunk_devid_filter(leaf
, chunk
, bargs
)) {
2892 /* drange filter, makes sense only with devid filter */
2893 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
2894 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2899 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
2900 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
2904 /* soft profile changing mode */
2905 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
2906 chunk_soft_convert_filter(chunk_type
, bargs
)) {
2913 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
2915 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2916 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2917 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
2918 struct list_head
*devices
;
2919 struct btrfs_device
*device
;
2922 struct btrfs_chunk
*chunk
;
2923 struct btrfs_path
*path
;
2924 struct btrfs_key key
;
2925 struct btrfs_key found_key
;
2926 struct btrfs_trans_handle
*trans
;
2927 struct extent_buffer
*leaf
;
2930 int enospc_errors
= 0;
2931 bool counting
= true;
2933 /* step one make some room on all the devices */
2934 devices
= &fs_info
->fs_devices
->devices
;
2935 list_for_each_entry(device
, devices
, dev_list
) {
2936 old_size
= device
->total_bytes
;
2937 size_to_free
= div_factor(old_size
, 1);
2938 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
2939 if (!device
->writeable
||
2940 device
->total_bytes
- device
->bytes_used
> size_to_free
||
2941 device
->is_tgtdev_for_dev_replace
)
2944 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
2949 trans
= btrfs_start_transaction(dev_root
, 0);
2950 BUG_ON(IS_ERR(trans
));
2952 ret
= btrfs_grow_device(trans
, device
, old_size
);
2955 btrfs_end_transaction(trans
, dev_root
);
2958 /* step two, relocate all the chunks */
2959 path
= btrfs_alloc_path();
2965 /* zero out stat counters */
2966 spin_lock(&fs_info
->balance_lock
);
2967 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
2968 spin_unlock(&fs_info
->balance_lock
);
2970 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2971 key
.offset
= (u64
)-1;
2972 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2975 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
2976 atomic_read(&fs_info
->balance_cancel_req
)) {
2981 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2986 * this shouldn't happen, it means the last relocate
2990 BUG(); /* FIXME break ? */
2992 ret
= btrfs_previous_item(chunk_root
, path
, 0,
2993 BTRFS_CHUNK_ITEM_KEY
);
2999 leaf
= path
->nodes
[0];
3000 slot
= path
->slots
[0];
3001 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3003 if (found_key
.objectid
!= key
.objectid
)
3006 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3009 spin_lock(&fs_info
->balance_lock
);
3010 bctl
->stat
.considered
++;
3011 spin_unlock(&fs_info
->balance_lock
);
3014 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3016 btrfs_release_path(path
);
3021 spin_lock(&fs_info
->balance_lock
);
3022 bctl
->stat
.expected
++;
3023 spin_unlock(&fs_info
->balance_lock
);
3027 ret
= btrfs_relocate_chunk(chunk_root
,
3028 chunk_root
->root_key
.objectid
,
3031 if (ret
&& ret
!= -ENOSPC
)
3033 if (ret
== -ENOSPC
) {
3036 spin_lock(&fs_info
->balance_lock
);
3037 bctl
->stat
.completed
++;
3038 spin_unlock(&fs_info
->balance_lock
);
3041 if (found_key
.offset
== 0)
3043 key
.offset
= found_key
.offset
- 1;
3047 btrfs_release_path(path
);
3052 btrfs_free_path(path
);
3053 if (enospc_errors
) {
3054 printk(KERN_INFO
"btrfs: %d enospc errors during balance\n",
3064 * alloc_profile_is_valid - see if a given profile is valid and reduced
3065 * @flags: profile to validate
3066 * @extended: if true @flags is treated as an extended profile
3068 static int alloc_profile_is_valid(u64 flags
, int extended
)
3070 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3071 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3073 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3075 /* 1) check that all other bits are zeroed */
3079 /* 2) see if profile is reduced */
3081 return !extended
; /* "0" is valid for usual profiles */
3083 /* true if exactly one bit set */
3084 return (flags
& (flags
- 1)) == 0;
3087 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3089 /* cancel requested || normal exit path */
3090 return atomic_read(&fs_info
->balance_cancel_req
) ||
3091 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3092 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3095 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3099 unset_balance_control(fs_info
);
3100 ret
= del_balance_item(fs_info
->tree_root
);
3102 btrfs_std_error(fs_info
, ret
);
3104 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3108 * Should be called with both balance and volume mutexes held
3110 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3111 struct btrfs_ioctl_balance_args
*bargs
)
3113 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3120 if (btrfs_fs_closing(fs_info
) ||
3121 atomic_read(&fs_info
->balance_pause_req
) ||
3122 atomic_read(&fs_info
->balance_cancel_req
)) {
3127 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3128 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3132 * In case of mixed groups both data and meta should be picked,
3133 * and identical options should be given for both of them.
3135 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3136 if (mixed
&& (bctl
->flags
& allowed
)) {
3137 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3138 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3139 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3140 printk(KERN_ERR
"btrfs: with mixed groups data and "
3141 "metadata balance options must be the same\n");
3147 num_devices
= fs_info
->fs_devices
->num_devices
;
3148 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3149 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3150 BUG_ON(num_devices
< 1);
3153 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3154 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3155 if (num_devices
== 1)
3156 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3157 else if (num_devices
> 1)
3158 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3159 if (num_devices
> 2)
3160 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3161 if (num_devices
> 3)
3162 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3163 BTRFS_BLOCK_GROUP_RAID6
);
3164 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3165 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3166 (bctl
->data
.target
& ~allowed
))) {
3167 printk(KERN_ERR
"btrfs: unable to start balance with target "
3168 "data profile %llu\n",
3173 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3174 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3175 (bctl
->meta
.target
& ~allowed
))) {
3176 printk(KERN_ERR
"btrfs: unable to start balance with target "
3177 "metadata profile %llu\n",
3182 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3183 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3184 (bctl
->sys
.target
& ~allowed
))) {
3185 printk(KERN_ERR
"btrfs: unable to start balance with target "
3186 "system profile %llu\n",
3192 /* allow dup'ed data chunks only in mixed mode */
3193 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3194 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3195 printk(KERN_ERR
"btrfs: dup for data is not allowed\n");
3200 /* allow to reduce meta or sys integrity only if force set */
3201 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3202 BTRFS_BLOCK_GROUP_RAID10
|
3203 BTRFS_BLOCK_GROUP_RAID5
|
3204 BTRFS_BLOCK_GROUP_RAID6
;
3206 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3208 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3209 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3210 !(bctl
->sys
.target
& allowed
)) ||
3211 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3212 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3213 !(bctl
->meta
.target
& allowed
))) {
3214 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3215 printk(KERN_INFO
"btrfs: force reducing metadata "
3218 printk(KERN_ERR
"btrfs: balance will reduce metadata "
3219 "integrity, use force if you want this\n");
3224 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3226 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3227 int num_tolerated_disk_barrier_failures
;
3228 u64 target
= bctl
->sys
.target
;
3230 num_tolerated_disk_barrier_failures
=
3231 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3232 if (num_tolerated_disk_barrier_failures
> 0 &&
3234 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3235 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3236 num_tolerated_disk_barrier_failures
= 0;
3237 else if (num_tolerated_disk_barrier_failures
> 1 &&
3239 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3240 num_tolerated_disk_barrier_failures
= 1;
3242 fs_info
->num_tolerated_disk_barrier_failures
=
3243 num_tolerated_disk_barrier_failures
;
3246 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3247 if (ret
&& ret
!= -EEXIST
)
3250 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3251 BUG_ON(ret
== -EEXIST
);
3252 set_balance_control(bctl
);
3254 BUG_ON(ret
!= -EEXIST
);
3255 spin_lock(&fs_info
->balance_lock
);
3256 update_balance_args(bctl
);
3257 spin_unlock(&fs_info
->balance_lock
);
3260 atomic_inc(&fs_info
->balance_running
);
3261 mutex_unlock(&fs_info
->balance_mutex
);
3263 ret
= __btrfs_balance(fs_info
);
3265 mutex_lock(&fs_info
->balance_mutex
);
3266 atomic_dec(&fs_info
->balance_running
);
3268 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3269 fs_info
->num_tolerated_disk_barrier_failures
=
3270 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3274 memset(bargs
, 0, sizeof(*bargs
));
3275 update_ioctl_balance_args(fs_info
, 0, bargs
);
3278 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3279 balance_need_close(fs_info
)) {
3280 __cancel_balance(fs_info
);
3283 wake_up(&fs_info
->balance_wait_q
);
3287 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3288 __cancel_balance(fs_info
);
3291 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3296 static int balance_kthread(void *data
)
3298 struct btrfs_fs_info
*fs_info
= data
;
3301 mutex_lock(&fs_info
->volume_mutex
);
3302 mutex_lock(&fs_info
->balance_mutex
);
3304 if (fs_info
->balance_ctl
) {
3305 printk(KERN_INFO
"btrfs: continuing balance\n");
3306 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3309 mutex_unlock(&fs_info
->balance_mutex
);
3310 mutex_unlock(&fs_info
->volume_mutex
);
3315 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3317 struct task_struct
*tsk
;
3319 spin_lock(&fs_info
->balance_lock
);
3320 if (!fs_info
->balance_ctl
) {
3321 spin_unlock(&fs_info
->balance_lock
);
3324 spin_unlock(&fs_info
->balance_lock
);
3326 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3327 printk(KERN_INFO
"btrfs: force skipping balance\n");
3331 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3332 return PTR_ERR_OR_ZERO(tsk
);
3335 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3337 struct btrfs_balance_control
*bctl
;
3338 struct btrfs_balance_item
*item
;
3339 struct btrfs_disk_balance_args disk_bargs
;
3340 struct btrfs_path
*path
;
3341 struct extent_buffer
*leaf
;
3342 struct btrfs_key key
;
3345 path
= btrfs_alloc_path();
3349 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3350 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3353 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3356 if (ret
> 0) { /* ret = -ENOENT; */
3361 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3367 leaf
= path
->nodes
[0];
3368 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3370 bctl
->fs_info
= fs_info
;
3371 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3372 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3374 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3375 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3376 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3377 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3378 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3379 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3381 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3383 mutex_lock(&fs_info
->volume_mutex
);
3384 mutex_lock(&fs_info
->balance_mutex
);
3386 set_balance_control(bctl
);
3388 mutex_unlock(&fs_info
->balance_mutex
);
3389 mutex_unlock(&fs_info
->volume_mutex
);
3391 btrfs_free_path(path
);
3395 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3399 mutex_lock(&fs_info
->balance_mutex
);
3400 if (!fs_info
->balance_ctl
) {
3401 mutex_unlock(&fs_info
->balance_mutex
);
3405 if (atomic_read(&fs_info
->balance_running
)) {
3406 atomic_inc(&fs_info
->balance_pause_req
);
3407 mutex_unlock(&fs_info
->balance_mutex
);
3409 wait_event(fs_info
->balance_wait_q
,
3410 atomic_read(&fs_info
->balance_running
) == 0);
3412 mutex_lock(&fs_info
->balance_mutex
);
3413 /* we are good with balance_ctl ripped off from under us */
3414 BUG_ON(atomic_read(&fs_info
->balance_running
));
3415 atomic_dec(&fs_info
->balance_pause_req
);
3420 mutex_unlock(&fs_info
->balance_mutex
);
3424 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3426 mutex_lock(&fs_info
->balance_mutex
);
3427 if (!fs_info
->balance_ctl
) {
3428 mutex_unlock(&fs_info
->balance_mutex
);
3432 atomic_inc(&fs_info
->balance_cancel_req
);
3434 * if we are running just wait and return, balance item is
3435 * deleted in btrfs_balance in this case
3437 if (atomic_read(&fs_info
->balance_running
)) {
3438 mutex_unlock(&fs_info
->balance_mutex
);
3439 wait_event(fs_info
->balance_wait_q
,
3440 atomic_read(&fs_info
->balance_running
) == 0);
3441 mutex_lock(&fs_info
->balance_mutex
);
3443 /* __cancel_balance needs volume_mutex */
3444 mutex_unlock(&fs_info
->balance_mutex
);
3445 mutex_lock(&fs_info
->volume_mutex
);
3446 mutex_lock(&fs_info
->balance_mutex
);
3448 if (fs_info
->balance_ctl
)
3449 __cancel_balance(fs_info
);
3451 mutex_unlock(&fs_info
->volume_mutex
);
3454 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3455 atomic_dec(&fs_info
->balance_cancel_req
);
3456 mutex_unlock(&fs_info
->balance_mutex
);
3460 static int btrfs_uuid_scan_kthread(void *data
)
3462 struct btrfs_fs_info
*fs_info
= data
;
3463 struct btrfs_root
*root
= fs_info
->tree_root
;
3464 struct btrfs_key key
;
3465 struct btrfs_key max_key
;
3466 struct btrfs_path
*path
= NULL
;
3468 struct extent_buffer
*eb
;
3470 struct btrfs_root_item root_item
;
3472 struct btrfs_trans_handle
*trans
= NULL
;
3474 path
= btrfs_alloc_path();
3481 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3484 max_key
.objectid
= (u64
)-1;
3485 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3486 max_key
.offset
= (u64
)-1;
3488 path
->keep_locks
= 1;
3491 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0);
3498 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3499 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3500 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3501 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3504 eb
= path
->nodes
[0];
3505 slot
= path
->slots
[0];
3506 item_size
= btrfs_item_size_nr(eb
, slot
);
3507 if (item_size
< sizeof(root_item
))
3510 read_extent_buffer(eb
, &root_item
,
3511 btrfs_item_ptr_offset(eb
, slot
),
3512 (int)sizeof(root_item
));
3513 if (btrfs_root_refs(&root_item
) == 0)
3516 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3517 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3521 btrfs_release_path(path
);
3523 * 1 - subvol uuid item
3524 * 1 - received_subvol uuid item
3526 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3527 if (IS_ERR(trans
)) {
3528 ret
= PTR_ERR(trans
);
3536 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3537 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3539 BTRFS_UUID_KEY_SUBVOL
,
3542 pr_warn("btrfs: uuid_tree_add failed %d\n",
3548 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3549 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3550 root_item
.received_uuid
,
3551 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3554 pr_warn("btrfs: uuid_tree_add failed %d\n",
3562 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3568 btrfs_release_path(path
);
3569 if (key
.offset
< (u64
)-1) {
3571 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3573 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3574 } else if (key
.objectid
< (u64
)-1) {
3576 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3585 btrfs_free_path(path
);
3586 if (trans
&& !IS_ERR(trans
))
3587 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3589 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret
);
3591 fs_info
->update_uuid_tree_gen
= 1;
3592 up(&fs_info
->uuid_tree_rescan_sem
);
3597 * Callback for btrfs_uuid_tree_iterate().
3599 * 0 check succeeded, the entry is not outdated.
3600 * < 0 if an error occured.
3601 * > 0 if the check failed, which means the caller shall remove the entry.
3603 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3604 u8
*uuid
, u8 type
, u64 subid
)
3606 struct btrfs_key key
;
3608 struct btrfs_root
*subvol_root
;
3610 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3611 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3614 key
.objectid
= subid
;
3615 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3616 key
.offset
= (u64
)-1;
3617 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3618 if (IS_ERR(subvol_root
)) {
3619 ret
= PTR_ERR(subvol_root
);
3626 case BTRFS_UUID_KEY_SUBVOL
:
3627 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3630 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3631 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3641 static int btrfs_uuid_rescan_kthread(void *data
)
3643 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3647 * 1st step is to iterate through the existing UUID tree and
3648 * to delete all entries that contain outdated data.
3649 * 2nd step is to add all missing entries to the UUID tree.
3651 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
3653 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret
);
3654 up(&fs_info
->uuid_tree_rescan_sem
);
3657 return btrfs_uuid_scan_kthread(data
);
3660 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
3662 struct btrfs_trans_handle
*trans
;
3663 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
3664 struct btrfs_root
*uuid_root
;
3665 struct task_struct
*task
;
3672 trans
= btrfs_start_transaction(tree_root
, 2);
3674 return PTR_ERR(trans
);
3676 uuid_root
= btrfs_create_tree(trans
, fs_info
,
3677 BTRFS_UUID_TREE_OBJECTID
);
3678 if (IS_ERR(uuid_root
)) {
3679 btrfs_abort_transaction(trans
, tree_root
,
3680 PTR_ERR(uuid_root
));
3681 return PTR_ERR(uuid_root
);
3684 fs_info
->uuid_root
= uuid_root
;
3686 ret
= btrfs_commit_transaction(trans
, tree_root
);
3690 down(&fs_info
->uuid_tree_rescan_sem
);
3691 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
3693 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3694 pr_warn("btrfs: failed to start uuid_scan task\n");
3695 up(&fs_info
->uuid_tree_rescan_sem
);
3696 return PTR_ERR(task
);
3702 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
3704 struct task_struct
*task
;
3706 down(&fs_info
->uuid_tree_rescan_sem
);
3707 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
3709 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3710 pr_warn("btrfs: failed to start uuid_rescan task\n");
3711 up(&fs_info
->uuid_tree_rescan_sem
);
3712 return PTR_ERR(task
);
3719 * shrinking a device means finding all of the device extents past
3720 * the new size, and then following the back refs to the chunks.
3721 * The chunk relocation code actually frees the device extent
3723 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3725 struct btrfs_trans_handle
*trans
;
3726 struct btrfs_root
*root
= device
->dev_root
;
3727 struct btrfs_dev_extent
*dev_extent
= NULL
;
3728 struct btrfs_path
*path
;
3736 bool retried
= false;
3737 struct extent_buffer
*l
;
3738 struct btrfs_key key
;
3739 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3740 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3741 u64 old_size
= device
->total_bytes
;
3742 u64 diff
= device
->total_bytes
- new_size
;
3744 if (device
->is_tgtdev_for_dev_replace
)
3747 path
= btrfs_alloc_path();
3755 device
->total_bytes
= new_size
;
3756 if (device
->writeable
) {
3757 device
->fs_devices
->total_rw_bytes
-= diff
;
3758 spin_lock(&root
->fs_info
->free_chunk_lock
);
3759 root
->fs_info
->free_chunk_space
-= diff
;
3760 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3762 unlock_chunks(root
);
3765 key
.objectid
= device
->devid
;
3766 key
.offset
= (u64
)-1;
3767 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3770 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3774 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
3779 btrfs_release_path(path
);
3784 slot
= path
->slots
[0];
3785 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
3787 if (key
.objectid
!= device
->devid
) {
3788 btrfs_release_path(path
);
3792 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3793 length
= btrfs_dev_extent_length(l
, dev_extent
);
3795 if (key
.offset
+ length
<= new_size
) {
3796 btrfs_release_path(path
);
3800 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
3801 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
3802 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3803 btrfs_release_path(path
);
3805 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
3807 if (ret
&& ret
!= -ENOSPC
)
3811 } while (key
.offset
-- > 0);
3813 if (failed
&& !retried
) {
3817 } else if (failed
&& retried
) {
3821 device
->total_bytes
= old_size
;
3822 if (device
->writeable
)
3823 device
->fs_devices
->total_rw_bytes
+= diff
;
3824 spin_lock(&root
->fs_info
->free_chunk_lock
);
3825 root
->fs_info
->free_chunk_space
+= diff
;
3826 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3827 unlock_chunks(root
);
3831 /* Shrinking succeeded, else we would be at "done". */
3832 trans
= btrfs_start_transaction(root
, 0);
3833 if (IS_ERR(trans
)) {
3834 ret
= PTR_ERR(trans
);
3840 device
->disk_total_bytes
= new_size
;
3841 /* Now btrfs_update_device() will change the on-disk size. */
3842 ret
= btrfs_update_device(trans
, device
);
3844 unlock_chunks(root
);
3845 btrfs_end_transaction(trans
, root
);
3848 WARN_ON(diff
> old_total
);
3849 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
3850 unlock_chunks(root
);
3851 btrfs_end_transaction(trans
, root
);
3853 btrfs_free_path(path
);
3857 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
3858 struct btrfs_key
*key
,
3859 struct btrfs_chunk
*chunk
, int item_size
)
3861 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3862 struct btrfs_disk_key disk_key
;
3866 array_size
= btrfs_super_sys_array_size(super_copy
);
3867 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
3870 ptr
= super_copy
->sys_chunk_array
+ array_size
;
3871 btrfs_cpu_key_to_disk(&disk_key
, key
);
3872 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
3873 ptr
+= sizeof(disk_key
);
3874 memcpy(ptr
, chunk
, item_size
);
3875 item_size
+= sizeof(disk_key
);
3876 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
3881 * sort the devices in descending order by max_avail, total_avail
3883 static int btrfs_cmp_device_info(const void *a
, const void *b
)
3885 const struct btrfs_device_info
*di_a
= a
;
3886 const struct btrfs_device_info
*di_b
= b
;
3888 if (di_a
->max_avail
> di_b
->max_avail
)
3890 if (di_a
->max_avail
< di_b
->max_avail
)
3892 if (di_a
->total_avail
> di_b
->total_avail
)
3894 if (di_a
->total_avail
< di_b
->total_avail
)
3899 static struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
3900 [BTRFS_RAID_RAID10
] = {
3903 .devs_max
= 0, /* 0 == as many as possible */
3905 .devs_increment
= 2,
3908 [BTRFS_RAID_RAID1
] = {
3913 .devs_increment
= 2,
3916 [BTRFS_RAID_DUP
] = {
3921 .devs_increment
= 1,
3924 [BTRFS_RAID_RAID0
] = {
3929 .devs_increment
= 1,
3932 [BTRFS_RAID_SINGLE
] = {
3937 .devs_increment
= 1,
3940 [BTRFS_RAID_RAID5
] = {
3945 .devs_increment
= 1,
3948 [BTRFS_RAID_RAID6
] = {
3953 .devs_increment
= 1,
3958 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
3960 /* TODO allow them to set a preferred stripe size */
3964 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
3966 if (!(type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)))
3969 btrfs_set_fs_incompat(info
, RAID56
);
3972 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
3973 struct btrfs_root
*extent_root
, u64 start
,
3976 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
3977 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
3978 struct list_head
*cur
;
3979 struct map_lookup
*map
= NULL
;
3980 struct extent_map_tree
*em_tree
;
3981 struct extent_map
*em
;
3982 struct btrfs_device_info
*devices_info
= NULL
;
3984 int num_stripes
; /* total number of stripes to allocate */
3985 int data_stripes
; /* number of stripes that count for
3987 int sub_stripes
; /* sub_stripes info for map */
3988 int dev_stripes
; /* stripes per dev */
3989 int devs_max
; /* max devs to use */
3990 int devs_min
; /* min devs needed */
3991 int devs_increment
; /* ndevs has to be a multiple of this */
3992 int ncopies
; /* how many copies to data has */
3994 u64 max_stripe_size
;
3998 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4004 BUG_ON(!alloc_profile_is_valid(type
, 0));
4006 if (list_empty(&fs_devices
->alloc_list
))
4009 index
= __get_raid_index(type
);
4011 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4012 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4013 devs_max
= btrfs_raid_array
[index
].devs_max
;
4014 devs_min
= btrfs_raid_array
[index
].devs_min
;
4015 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4016 ncopies
= btrfs_raid_array
[index
].ncopies
;
4018 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4019 max_stripe_size
= 1024 * 1024 * 1024;
4020 max_chunk_size
= 10 * max_stripe_size
;
4021 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4022 /* for larger filesystems, use larger metadata chunks */
4023 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4024 max_stripe_size
= 1024 * 1024 * 1024;
4026 max_stripe_size
= 256 * 1024 * 1024;
4027 max_chunk_size
= max_stripe_size
;
4028 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4029 max_stripe_size
= 32 * 1024 * 1024;
4030 max_chunk_size
= 2 * max_stripe_size
;
4032 printk(KERN_ERR
"btrfs: invalid chunk type 0x%llx requested\n",
4037 /* we don't want a chunk larger than 10% of writeable space */
4038 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4041 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
4046 cur
= fs_devices
->alloc_list
.next
;
4049 * in the first pass through the devices list, we gather information
4050 * about the available holes on each device.
4053 while (cur
!= &fs_devices
->alloc_list
) {
4054 struct btrfs_device
*device
;
4058 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4062 if (!device
->writeable
) {
4064 "btrfs: read-only device in alloc_list\n");
4068 if (!device
->in_fs_metadata
||
4069 device
->is_tgtdev_for_dev_replace
)
4072 if (device
->total_bytes
> device
->bytes_used
)
4073 total_avail
= device
->total_bytes
- device
->bytes_used
;
4077 /* If there is no space on this device, skip it. */
4078 if (total_avail
== 0)
4081 ret
= find_free_dev_extent(trans
, device
,
4082 max_stripe_size
* dev_stripes
,
4083 &dev_offset
, &max_avail
);
4084 if (ret
&& ret
!= -ENOSPC
)
4088 max_avail
= max_stripe_size
* dev_stripes
;
4090 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4093 if (ndevs
== fs_devices
->rw_devices
) {
4094 WARN(1, "%s: found more than %llu devices\n",
4095 __func__
, fs_devices
->rw_devices
);
4098 devices_info
[ndevs
].dev_offset
= dev_offset
;
4099 devices_info
[ndevs
].max_avail
= max_avail
;
4100 devices_info
[ndevs
].total_avail
= total_avail
;
4101 devices_info
[ndevs
].dev
= device
;
4106 * now sort the devices by hole size / available space
4108 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4109 btrfs_cmp_device_info
, NULL
);
4111 /* round down to number of usable stripes */
4112 ndevs
-= ndevs
% devs_increment
;
4114 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4119 if (devs_max
&& ndevs
> devs_max
)
4122 * the primary goal is to maximize the number of stripes, so use as many
4123 * devices as possible, even if the stripes are not maximum sized.
4125 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4126 num_stripes
= ndevs
* dev_stripes
;
4129 * this will have to be fixed for RAID1 and RAID10 over
4132 data_stripes
= num_stripes
/ ncopies
;
4134 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4135 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4136 btrfs_super_stripesize(info
->super_copy
));
4137 data_stripes
= num_stripes
- 1;
4139 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4140 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4141 btrfs_super_stripesize(info
->super_copy
));
4142 data_stripes
= num_stripes
- 2;
4146 * Use the number of data stripes to figure out how big this chunk
4147 * is really going to be in terms of logical address space,
4148 * and compare that answer with the max chunk size
4150 if (stripe_size
* data_stripes
> max_chunk_size
) {
4151 u64 mask
= (1ULL << 24) - 1;
4152 stripe_size
= max_chunk_size
;
4153 do_div(stripe_size
, data_stripes
);
4155 /* bump the answer up to a 16MB boundary */
4156 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4158 /* but don't go higher than the limits we found
4159 * while searching for free extents
4161 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4162 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4165 do_div(stripe_size
, dev_stripes
);
4167 /* align to BTRFS_STRIPE_LEN */
4168 do_div(stripe_size
, raid_stripe_len
);
4169 stripe_size
*= raid_stripe_len
;
4171 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4176 map
->num_stripes
= num_stripes
;
4178 for (i
= 0; i
< ndevs
; ++i
) {
4179 for (j
= 0; j
< dev_stripes
; ++j
) {
4180 int s
= i
* dev_stripes
+ j
;
4181 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4182 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4186 map
->sector_size
= extent_root
->sectorsize
;
4187 map
->stripe_len
= raid_stripe_len
;
4188 map
->io_align
= raid_stripe_len
;
4189 map
->io_width
= raid_stripe_len
;
4191 map
->sub_stripes
= sub_stripes
;
4193 num_bytes
= stripe_size
* data_stripes
;
4195 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4197 em
= alloc_extent_map();
4202 em
->bdev
= (struct block_device
*)map
;
4204 em
->len
= num_bytes
;
4205 em
->block_start
= 0;
4206 em
->block_len
= em
->len
;
4207 em
->orig_block_len
= stripe_size
;
4209 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4210 write_lock(&em_tree
->lock
);
4211 ret
= add_extent_mapping(em_tree
, em
, 0);
4213 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4214 atomic_inc(&em
->refs
);
4216 write_unlock(&em_tree
->lock
);
4218 free_extent_map(em
);
4222 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4223 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4226 goto error_del_extent
;
4228 free_extent_map(em
);
4229 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4231 kfree(devices_info
);
4235 write_lock(&em_tree
->lock
);
4236 remove_extent_mapping(em_tree
, em
);
4237 write_unlock(&em_tree
->lock
);
4239 /* One for our allocation */
4240 free_extent_map(em
);
4241 /* One for the tree reference */
4242 free_extent_map(em
);
4245 kfree(devices_info
);
4249 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4250 struct btrfs_root
*extent_root
,
4251 u64 chunk_offset
, u64 chunk_size
)
4253 struct btrfs_key key
;
4254 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4255 struct btrfs_device
*device
;
4256 struct btrfs_chunk
*chunk
;
4257 struct btrfs_stripe
*stripe
;
4258 struct extent_map_tree
*em_tree
;
4259 struct extent_map
*em
;
4260 struct map_lookup
*map
;
4267 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4268 read_lock(&em_tree
->lock
);
4269 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4270 read_unlock(&em_tree
->lock
);
4273 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4274 "%Lu len %Lu", chunk_offset
, chunk_size
);
4278 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4279 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4280 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset
,
4281 chunk_size
, em
->start
, em
->len
);
4282 free_extent_map(em
);
4286 map
= (struct map_lookup
*)em
->bdev
;
4287 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4288 stripe_size
= em
->orig_block_len
;
4290 chunk
= kzalloc(item_size
, GFP_NOFS
);
4296 for (i
= 0; i
< map
->num_stripes
; i
++) {
4297 device
= map
->stripes
[i
].dev
;
4298 dev_offset
= map
->stripes
[i
].physical
;
4300 device
->bytes_used
+= stripe_size
;
4301 ret
= btrfs_update_device(trans
, device
);
4304 ret
= btrfs_alloc_dev_extent(trans
, device
,
4305 chunk_root
->root_key
.objectid
,
4306 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4307 chunk_offset
, dev_offset
,
4313 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4314 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4316 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4318 stripe
= &chunk
->stripe
;
4319 for (i
= 0; i
< map
->num_stripes
; i
++) {
4320 device
= map
->stripes
[i
].dev
;
4321 dev_offset
= map
->stripes
[i
].physical
;
4323 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4324 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4325 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4329 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4330 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4331 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4332 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4333 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4334 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4335 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4336 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4337 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4339 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4340 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4341 key
.offset
= chunk_offset
;
4343 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4344 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4346 * TODO: Cleanup of inserted chunk root in case of
4349 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4355 free_extent_map(em
);
4360 * Chunk allocation falls into two parts. The first part does works
4361 * that make the new allocated chunk useable, but not do any operation
4362 * that modifies the chunk tree. The second part does the works that
4363 * require modifying the chunk tree. This division is important for the
4364 * bootstrap process of adding storage to a seed btrfs.
4366 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4367 struct btrfs_root
*extent_root
, u64 type
)
4371 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4372 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4375 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4376 struct btrfs_root
*root
,
4377 struct btrfs_device
*device
)
4380 u64 sys_chunk_offset
;
4382 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4383 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4386 chunk_offset
= find_next_chunk(fs_info
);
4387 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4388 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4393 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4394 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4395 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4398 btrfs_abort_transaction(trans
, root
, ret
);
4402 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
4404 btrfs_abort_transaction(trans
, root
, ret
);
4409 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4411 struct extent_map
*em
;
4412 struct map_lookup
*map
;
4413 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4417 read_lock(&map_tree
->map_tree
.lock
);
4418 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4419 read_unlock(&map_tree
->map_tree
.lock
);
4423 if (btrfs_test_opt(root
, DEGRADED
)) {
4424 free_extent_map(em
);
4428 map
= (struct map_lookup
*)em
->bdev
;
4429 for (i
= 0; i
< map
->num_stripes
; i
++) {
4430 if (!map
->stripes
[i
].dev
->writeable
) {
4435 free_extent_map(em
);
4439 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4441 extent_map_tree_init(&tree
->map_tree
);
4444 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4446 struct extent_map
*em
;
4449 write_lock(&tree
->map_tree
.lock
);
4450 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4452 remove_extent_mapping(&tree
->map_tree
, em
);
4453 write_unlock(&tree
->map_tree
.lock
);
4458 free_extent_map(em
);
4459 /* once for the tree */
4460 free_extent_map(em
);
4464 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4466 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4467 struct extent_map
*em
;
4468 struct map_lookup
*map
;
4469 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4472 read_lock(&em_tree
->lock
);
4473 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4474 read_unlock(&em_tree
->lock
);
4477 * We could return errors for these cases, but that could get ugly and
4478 * we'd probably do the same thing which is just not do anything else
4479 * and exit, so return 1 so the callers don't try to use other copies.
4482 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu\n", logical
,
4487 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4488 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4489 "%Lu-%Lu\n", logical
, logical
+len
, em
->start
,
4490 em
->start
+ em
->len
);
4494 map
= (struct map_lookup
*)em
->bdev
;
4495 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4496 ret
= map
->num_stripes
;
4497 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4498 ret
= map
->sub_stripes
;
4499 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4501 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4505 free_extent_map(em
);
4507 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4508 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4510 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4515 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4516 struct btrfs_mapping_tree
*map_tree
,
4519 struct extent_map
*em
;
4520 struct map_lookup
*map
;
4521 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4522 unsigned long len
= root
->sectorsize
;
4524 read_lock(&em_tree
->lock
);
4525 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4526 read_unlock(&em_tree
->lock
);
4529 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4530 map
= (struct map_lookup
*)em
->bdev
;
4531 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4532 BTRFS_BLOCK_GROUP_RAID6
)) {
4533 len
= map
->stripe_len
* nr_data_stripes(map
);
4535 free_extent_map(em
);
4539 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4540 u64 logical
, u64 len
, int mirror_num
)
4542 struct extent_map
*em
;
4543 struct map_lookup
*map
;
4544 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4547 read_lock(&em_tree
->lock
);
4548 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4549 read_unlock(&em_tree
->lock
);
4552 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4553 map
= (struct map_lookup
*)em
->bdev
;
4554 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4555 BTRFS_BLOCK_GROUP_RAID6
))
4557 free_extent_map(em
);
4561 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4562 struct map_lookup
*map
, int first
, int num
,
4563 int optimal
, int dev_replace_is_ongoing
)
4567 struct btrfs_device
*srcdev
;
4569 if (dev_replace_is_ongoing
&&
4570 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4571 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4572 srcdev
= fs_info
->dev_replace
.srcdev
;
4577 * try to avoid the drive that is the source drive for a
4578 * dev-replace procedure, only choose it if no other non-missing
4579 * mirror is available
4581 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4582 if (map
->stripes
[optimal
].dev
->bdev
&&
4583 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4585 for (i
= first
; i
< first
+ num
; i
++) {
4586 if (map
->stripes
[i
].dev
->bdev
&&
4587 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4592 /* we couldn't find one that doesn't fail. Just return something
4593 * and the io error handling code will clean up eventually
4598 static inline int parity_smaller(u64 a
, u64 b
)
4603 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4604 static void sort_parity_stripes(struct btrfs_bio
*bbio
, u64
*raid_map
)
4606 struct btrfs_bio_stripe s
;
4613 for (i
= 0; i
< bbio
->num_stripes
- 1; i
++) {
4614 if (parity_smaller(raid_map
[i
], raid_map
[i
+1])) {
4615 s
= bbio
->stripes
[i
];
4617 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
4618 raid_map
[i
] = raid_map
[i
+1];
4619 bbio
->stripes
[i
+1] = s
;
4627 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4628 u64 logical
, u64
*length
,
4629 struct btrfs_bio
**bbio_ret
,
4630 int mirror_num
, u64
**raid_map_ret
)
4632 struct extent_map
*em
;
4633 struct map_lookup
*map
;
4634 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4635 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4638 u64 stripe_end_offset
;
4643 u64
*raid_map
= NULL
;
4649 struct btrfs_bio
*bbio
= NULL
;
4650 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4651 int dev_replace_is_ongoing
= 0;
4652 int num_alloc_stripes
;
4653 int patch_the_first_stripe_for_dev_replace
= 0;
4654 u64 physical_to_patch_in_first_stripe
= 0;
4655 u64 raid56_full_stripe_start
= (u64
)-1;
4657 read_lock(&em_tree
->lock
);
4658 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4659 read_unlock(&em_tree
->lock
);
4662 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
4667 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4668 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
4669 "found %Lu-%Lu\n", logical
, em
->start
,
4670 em
->start
+ em
->len
);
4674 map
= (struct map_lookup
*)em
->bdev
;
4675 offset
= logical
- em
->start
;
4677 stripe_len
= map
->stripe_len
;
4680 * stripe_nr counts the total number of stripes we have to stride
4681 * to get to this block
4683 do_div(stripe_nr
, stripe_len
);
4685 stripe_offset
= stripe_nr
* stripe_len
;
4686 BUG_ON(offset
< stripe_offset
);
4688 /* stripe_offset is the offset of this block in its stripe*/
4689 stripe_offset
= offset
- stripe_offset
;
4691 /* if we're here for raid56, we need to know the stripe aligned start */
4692 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4693 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
4694 raid56_full_stripe_start
= offset
;
4696 /* allow a write of a full stripe, but make sure we don't
4697 * allow straddling of stripes
4699 do_div(raid56_full_stripe_start
, full_stripe_len
);
4700 raid56_full_stripe_start
*= full_stripe_len
;
4703 if (rw
& REQ_DISCARD
) {
4704 /* we don't discard raid56 yet */
4706 (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
)) {
4710 *length
= min_t(u64
, em
->len
- offset
, *length
);
4711 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
4713 /* For writes to RAID[56], allow a full stripeset across all disks.
4714 For other RAID types and for RAID[56] reads, just allow a single
4715 stripe (on a single disk). */
4716 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
) &&
4718 max_len
= stripe_len
* nr_data_stripes(map
) -
4719 (offset
- raid56_full_stripe_start
);
4721 /* we limit the length of each bio to what fits in a stripe */
4722 max_len
= stripe_len
- stripe_offset
;
4724 *length
= min_t(u64
, em
->len
- offset
, max_len
);
4726 *length
= em
->len
- offset
;
4729 /* This is for when we're called from btrfs_merge_bio_hook() and all
4730 it cares about is the length */
4734 btrfs_dev_replace_lock(dev_replace
);
4735 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
4736 if (!dev_replace_is_ongoing
)
4737 btrfs_dev_replace_unlock(dev_replace
);
4739 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
4740 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
4741 dev_replace
->tgtdev
!= NULL
) {
4743 * in dev-replace case, for repair case (that's the only
4744 * case where the mirror is selected explicitly when
4745 * calling btrfs_map_block), blocks left of the left cursor
4746 * can also be read from the target drive.
4747 * For REQ_GET_READ_MIRRORS, the target drive is added as
4748 * the last one to the array of stripes. For READ, it also
4749 * needs to be supported using the same mirror number.
4750 * If the requested block is not left of the left cursor,
4751 * EIO is returned. This can happen because btrfs_num_copies()
4752 * returns one more in the dev-replace case.
4754 u64 tmp_length
= *length
;
4755 struct btrfs_bio
*tmp_bbio
= NULL
;
4756 int tmp_num_stripes
;
4757 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
4758 int index_srcdev
= 0;
4760 u64 physical_of_found
= 0;
4762 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
4763 logical
, &tmp_length
, &tmp_bbio
, 0, NULL
);
4765 WARN_ON(tmp_bbio
!= NULL
);
4769 tmp_num_stripes
= tmp_bbio
->num_stripes
;
4770 if (mirror_num
> tmp_num_stripes
) {
4772 * REQ_GET_READ_MIRRORS does not contain this
4773 * mirror, that means that the requested area
4774 * is not left of the left cursor
4782 * process the rest of the function using the mirror_num
4783 * of the source drive. Therefore look it up first.
4784 * At the end, patch the device pointer to the one of the
4787 for (i
= 0; i
< tmp_num_stripes
; i
++) {
4788 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
4790 * In case of DUP, in order to keep it
4791 * simple, only add the mirror with the
4792 * lowest physical address
4795 physical_of_found
<=
4796 tmp_bbio
->stripes
[i
].physical
)
4801 tmp_bbio
->stripes
[i
].physical
;
4806 mirror_num
= index_srcdev
+ 1;
4807 patch_the_first_stripe_for_dev_replace
= 1;
4808 physical_to_patch_in_first_stripe
= physical_of_found
;
4817 } else if (mirror_num
> map
->num_stripes
) {
4823 stripe_nr_orig
= stripe_nr
;
4824 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
4825 do_div(stripe_nr_end
, map
->stripe_len
);
4826 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
4829 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
4830 if (rw
& REQ_DISCARD
)
4831 num_stripes
= min_t(u64
, map
->num_stripes
,
4832 stripe_nr_end
- stripe_nr_orig
);
4833 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4834 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
4835 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
4836 num_stripes
= map
->num_stripes
;
4837 else if (mirror_num
)
4838 stripe_index
= mirror_num
- 1;
4840 stripe_index
= find_live_mirror(fs_info
, map
, 0,
4842 current
->pid
% map
->num_stripes
,
4843 dev_replace_is_ongoing
);
4844 mirror_num
= stripe_index
+ 1;
4847 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
4848 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
4849 num_stripes
= map
->num_stripes
;
4850 } else if (mirror_num
) {
4851 stripe_index
= mirror_num
- 1;
4856 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
4857 int factor
= map
->num_stripes
/ map
->sub_stripes
;
4859 stripe_index
= do_div(stripe_nr
, factor
);
4860 stripe_index
*= map
->sub_stripes
;
4862 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
4863 num_stripes
= map
->sub_stripes
;
4864 else if (rw
& REQ_DISCARD
)
4865 num_stripes
= min_t(u64
, map
->sub_stripes
*
4866 (stripe_nr_end
- stripe_nr_orig
),
4868 else if (mirror_num
)
4869 stripe_index
+= mirror_num
- 1;
4871 int old_stripe_index
= stripe_index
;
4872 stripe_index
= find_live_mirror(fs_info
, map
,
4874 map
->sub_stripes
, stripe_index
+
4875 current
->pid
% map
->sub_stripes
,
4876 dev_replace_is_ongoing
);
4877 mirror_num
= stripe_index
- old_stripe_index
+ 1;
4880 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
4881 BTRFS_BLOCK_GROUP_RAID6
)) {
4884 if (bbio_ret
&& ((rw
& REQ_WRITE
) || mirror_num
> 1)
4888 /* push stripe_nr back to the start of the full stripe */
4889 stripe_nr
= raid56_full_stripe_start
;
4890 do_div(stripe_nr
, stripe_len
);
4892 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
4894 /* RAID[56] write or recovery. Return all stripes */
4895 num_stripes
= map
->num_stripes
;
4896 max_errors
= nr_parity_stripes(map
);
4898 raid_map
= kmalloc(sizeof(u64
) * num_stripes
,
4905 /* Work out the disk rotation on this stripe-set */
4907 rot
= do_div(tmp
, num_stripes
);
4909 /* Fill in the logical address of each stripe */
4910 tmp
= stripe_nr
* nr_data_stripes(map
);
4911 for (i
= 0; i
< nr_data_stripes(map
); i
++)
4912 raid_map
[(i
+rot
) % num_stripes
] =
4913 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
4915 raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
4916 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4917 raid_map
[(i
+rot
+1) % num_stripes
] =
4920 *length
= map
->stripe_len
;
4925 * Mirror #0 or #1 means the original data block.
4926 * Mirror #2 is RAID5 parity block.
4927 * Mirror #3 is RAID6 Q block.
4929 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
4931 stripe_index
= nr_data_stripes(map
) +
4934 /* We distribute the parity blocks across stripes */
4935 tmp
= stripe_nr
+ stripe_index
;
4936 stripe_index
= do_div(tmp
, map
->num_stripes
);
4940 * after this do_div call, stripe_nr is the number of stripes
4941 * on this device we have to walk to find the data, and
4942 * stripe_index is the number of our device in the stripe array
4944 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
4945 mirror_num
= stripe_index
+ 1;
4947 BUG_ON(stripe_index
>= map
->num_stripes
);
4949 num_alloc_stripes
= num_stripes
;
4950 if (dev_replace_is_ongoing
) {
4951 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
4952 num_alloc_stripes
<<= 1;
4953 if (rw
& REQ_GET_READ_MIRRORS
)
4954 num_alloc_stripes
++;
4956 bbio
= kzalloc(btrfs_bio_size(num_alloc_stripes
), GFP_NOFS
);
4962 atomic_set(&bbio
->error
, 0);
4964 if (rw
& REQ_DISCARD
) {
4966 int sub_stripes
= 0;
4967 u64 stripes_per_dev
= 0;
4968 u32 remaining_stripes
= 0;
4969 u32 last_stripe
= 0;
4972 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
4973 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
4976 sub_stripes
= map
->sub_stripes
;
4978 factor
= map
->num_stripes
/ sub_stripes
;
4979 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
4982 &remaining_stripes
);
4983 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
4984 last_stripe
*= sub_stripes
;
4987 for (i
= 0; i
< num_stripes
; i
++) {
4988 bbio
->stripes
[i
].physical
=
4989 map
->stripes
[stripe_index
].physical
+
4990 stripe_offset
+ stripe_nr
* map
->stripe_len
;
4991 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
4993 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
4994 BTRFS_BLOCK_GROUP_RAID10
)) {
4995 bbio
->stripes
[i
].length
= stripes_per_dev
*
4998 if (i
/ sub_stripes
< remaining_stripes
)
4999 bbio
->stripes
[i
].length
+=
5003 * Special for the first stripe and
5006 * |-------|...|-------|
5010 if (i
< sub_stripes
)
5011 bbio
->stripes
[i
].length
-=
5014 if (stripe_index
>= last_stripe
&&
5015 stripe_index
<= (last_stripe
+
5017 bbio
->stripes
[i
].length
-=
5020 if (i
== sub_stripes
- 1)
5023 bbio
->stripes
[i
].length
= *length
;
5026 if (stripe_index
== map
->num_stripes
) {
5027 /* This could only happen for RAID0/10 */
5033 for (i
= 0; i
< num_stripes
; i
++) {
5034 bbio
->stripes
[i
].physical
=
5035 map
->stripes
[stripe_index
].physical
+
5037 stripe_nr
* map
->stripe_len
;
5038 bbio
->stripes
[i
].dev
=
5039 map
->stripes
[stripe_index
].dev
;
5044 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) {
5045 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5046 BTRFS_BLOCK_GROUP_RAID10
|
5047 BTRFS_BLOCK_GROUP_RAID5
|
5048 BTRFS_BLOCK_GROUP_DUP
)) {
5050 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5055 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5056 dev_replace
->tgtdev
!= NULL
) {
5057 int index_where_to_add
;
5058 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5061 * duplicate the write operations while the dev replace
5062 * procedure is running. Since the copying of the old disk
5063 * to the new disk takes place at run time while the
5064 * filesystem is mounted writable, the regular write
5065 * operations to the old disk have to be duplicated to go
5066 * to the new disk as well.
5067 * Note that device->missing is handled by the caller, and
5068 * that the write to the old disk is already set up in the
5071 index_where_to_add
= num_stripes
;
5072 for (i
= 0; i
< num_stripes
; i
++) {
5073 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5074 /* write to new disk, too */
5075 struct btrfs_bio_stripe
*new =
5076 bbio
->stripes
+ index_where_to_add
;
5077 struct btrfs_bio_stripe
*old
=
5080 new->physical
= old
->physical
;
5081 new->length
= old
->length
;
5082 new->dev
= dev_replace
->tgtdev
;
5083 index_where_to_add
++;
5087 num_stripes
= index_where_to_add
;
5088 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5089 dev_replace
->tgtdev
!= NULL
) {
5090 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5091 int index_srcdev
= 0;
5093 u64 physical_of_found
= 0;
5096 * During the dev-replace procedure, the target drive can
5097 * also be used to read data in case it is needed to repair
5098 * a corrupt block elsewhere. This is possible if the
5099 * requested area is left of the left cursor. In this area,
5100 * the target drive is a full copy of the source drive.
5102 for (i
= 0; i
< num_stripes
; i
++) {
5103 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5105 * In case of DUP, in order to keep it
5106 * simple, only add the mirror with the
5107 * lowest physical address
5110 physical_of_found
<=
5111 bbio
->stripes
[i
].physical
)
5115 physical_of_found
= bbio
->stripes
[i
].physical
;
5119 u64 length
= map
->stripe_len
;
5121 if (physical_of_found
+ length
<=
5122 dev_replace
->cursor_left
) {
5123 struct btrfs_bio_stripe
*tgtdev_stripe
=
5124 bbio
->stripes
+ num_stripes
;
5126 tgtdev_stripe
->physical
= physical_of_found
;
5127 tgtdev_stripe
->length
=
5128 bbio
->stripes
[index_srcdev
].length
;
5129 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5137 bbio
->num_stripes
= num_stripes
;
5138 bbio
->max_errors
= max_errors
;
5139 bbio
->mirror_num
= mirror_num
;
5142 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5143 * mirror_num == num_stripes + 1 && dev_replace target drive is
5144 * available as a mirror
5146 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5147 WARN_ON(num_stripes
> 1);
5148 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5149 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5150 bbio
->mirror_num
= map
->num_stripes
+ 1;
5153 sort_parity_stripes(bbio
, raid_map
);
5154 *raid_map_ret
= raid_map
;
5157 if (dev_replace_is_ongoing
)
5158 btrfs_dev_replace_unlock(dev_replace
);
5159 free_extent_map(em
);
5163 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5164 u64 logical
, u64
*length
,
5165 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5167 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5171 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5172 u64 chunk_start
, u64 physical
, u64 devid
,
5173 u64
**logical
, int *naddrs
, int *stripe_len
)
5175 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5176 struct extent_map
*em
;
5177 struct map_lookup
*map
;
5185 read_lock(&em_tree
->lock
);
5186 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5187 read_unlock(&em_tree
->lock
);
5190 printk(KERN_ERR
"btrfs: couldn't find em for chunk %Lu\n",
5195 if (em
->start
!= chunk_start
) {
5196 printk(KERN_ERR
"btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5197 em
->start
, chunk_start
);
5198 free_extent_map(em
);
5201 map
= (struct map_lookup
*)em
->bdev
;
5204 rmap_len
= map
->stripe_len
;
5206 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5207 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
5208 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5209 do_div(length
, map
->num_stripes
);
5210 else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
5211 BTRFS_BLOCK_GROUP_RAID6
)) {
5212 do_div(length
, nr_data_stripes(map
));
5213 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5216 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
5217 BUG_ON(!buf
); /* -ENOMEM */
5219 for (i
= 0; i
< map
->num_stripes
; i
++) {
5220 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5222 if (map
->stripes
[i
].physical
> physical
||
5223 map
->stripes
[i
].physical
+ length
<= physical
)
5226 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5227 do_div(stripe_nr
, map
->stripe_len
);
5229 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5230 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5231 do_div(stripe_nr
, map
->sub_stripes
);
5232 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5233 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5234 } /* else if RAID[56], multiply by nr_data_stripes().
5235 * Alternatively, just use rmap_len below instead of
5236 * map->stripe_len */
5238 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5239 WARN_ON(nr
>= map
->num_stripes
);
5240 for (j
= 0; j
< nr
; j
++) {
5241 if (buf
[j
] == bytenr
)
5245 WARN_ON(nr
>= map
->num_stripes
);
5252 *stripe_len
= rmap_len
;
5254 free_extent_map(em
);
5258 static void btrfs_end_bio(struct bio
*bio
, int err
)
5260 struct btrfs_bio
*bbio
= bio
->bi_private
;
5261 int is_orig_bio
= 0;
5264 atomic_inc(&bbio
->error
);
5265 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5266 unsigned int stripe_index
=
5267 btrfs_io_bio(bio
)->stripe_index
;
5268 struct btrfs_device
*dev
;
5270 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5271 dev
= bbio
->stripes
[stripe_index
].dev
;
5273 if (bio
->bi_rw
& WRITE
)
5274 btrfs_dev_stat_inc(dev
,
5275 BTRFS_DEV_STAT_WRITE_ERRS
);
5277 btrfs_dev_stat_inc(dev
,
5278 BTRFS_DEV_STAT_READ_ERRS
);
5279 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5280 btrfs_dev_stat_inc(dev
,
5281 BTRFS_DEV_STAT_FLUSH_ERRS
);
5282 btrfs_dev_stat_print_on_error(dev
);
5287 if (bio
== bbio
->orig_bio
)
5290 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5293 bio
= bbio
->orig_bio
;
5295 bio
->bi_private
= bbio
->private;
5296 bio
->bi_end_io
= bbio
->end_io
;
5297 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5298 /* only send an error to the higher layers if it is
5299 * beyond the tolerance of the btrfs bio
5301 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5305 * this bio is actually up to date, we didn't
5306 * go over the max number of errors
5308 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5313 bio_endio(bio
, err
);
5314 } else if (!is_orig_bio
) {
5319 struct async_sched
{
5322 struct btrfs_fs_info
*info
;
5323 struct btrfs_work work
;
5327 * see run_scheduled_bios for a description of why bios are collected for
5330 * This will add one bio to the pending list for a device and make sure
5331 * the work struct is scheduled.
5333 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5334 struct btrfs_device
*device
,
5335 int rw
, struct bio
*bio
)
5337 int should_queue
= 1;
5338 struct btrfs_pending_bios
*pending_bios
;
5340 if (device
->missing
|| !device
->bdev
) {
5341 bio_endio(bio
, -EIO
);
5345 /* don't bother with additional async steps for reads, right now */
5346 if (!(rw
& REQ_WRITE
)) {
5348 btrfsic_submit_bio(rw
, bio
);
5354 * nr_async_bios allows us to reliably return congestion to the
5355 * higher layers. Otherwise, the async bio makes it appear we have
5356 * made progress against dirty pages when we've really just put it
5357 * on a queue for later
5359 atomic_inc(&root
->fs_info
->nr_async_bios
);
5360 WARN_ON(bio
->bi_next
);
5361 bio
->bi_next
= NULL
;
5364 spin_lock(&device
->io_lock
);
5365 if (bio
->bi_rw
& REQ_SYNC
)
5366 pending_bios
= &device
->pending_sync_bios
;
5368 pending_bios
= &device
->pending_bios
;
5370 if (pending_bios
->tail
)
5371 pending_bios
->tail
->bi_next
= bio
;
5373 pending_bios
->tail
= bio
;
5374 if (!pending_bios
->head
)
5375 pending_bios
->head
= bio
;
5376 if (device
->running_pending
)
5379 spin_unlock(&device
->io_lock
);
5382 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
5386 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5389 struct bio_vec
*prev
;
5390 struct request_queue
*q
= bdev_get_queue(bdev
);
5391 unsigned short max_sectors
= queue_max_sectors(q
);
5392 struct bvec_merge_data bvm
= {
5394 .bi_sector
= sector
,
5395 .bi_rw
= bio
->bi_rw
,
5398 if (bio
->bi_vcnt
== 0) {
5403 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5404 if (bio_sectors(bio
) > max_sectors
)
5407 if (!q
->merge_bvec_fn
)
5410 bvm
.bi_size
= bio
->bi_size
- prev
->bv_len
;
5411 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5416 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5417 struct bio
*bio
, u64 physical
, int dev_nr
,
5420 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5422 bio
->bi_private
= bbio
;
5423 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5424 bio
->bi_end_io
= btrfs_end_bio
;
5425 bio
->bi_sector
= physical
>> 9;
5428 struct rcu_string
*name
;
5431 name
= rcu_dereference(dev
->name
);
5432 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5433 "(%s id %llu), size=%u\n", rw
,
5434 (u64
)bio
->bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5435 name
->str
, dev
->devid
, bio
->bi_size
);
5439 bio
->bi_bdev
= dev
->bdev
;
5441 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5443 btrfsic_submit_bio(rw
, bio
);
5446 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5447 struct bio
*first_bio
, struct btrfs_device
*dev
,
5448 int dev_nr
, int rw
, int async
)
5450 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5452 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5453 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5456 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5460 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5461 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5462 bvec
->bv_offset
) < bvec
->bv_len
) {
5463 u64 len
= bio
->bi_size
;
5465 atomic_inc(&bbio
->stripes_pending
);
5466 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5474 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5478 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5480 atomic_inc(&bbio
->error
);
5481 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5482 bio
->bi_private
= bbio
->private;
5483 bio
->bi_end_io
= bbio
->end_io
;
5484 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5485 bio
->bi_sector
= logical
>> 9;
5487 bio_endio(bio
, -EIO
);
5491 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5492 int mirror_num
, int async_submit
)
5494 struct btrfs_device
*dev
;
5495 struct bio
*first_bio
= bio
;
5496 u64 logical
= (u64
)bio
->bi_sector
<< 9;
5499 u64
*raid_map
= NULL
;
5503 struct btrfs_bio
*bbio
= NULL
;
5505 length
= bio
->bi_size
;
5506 map_length
= length
;
5508 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
5509 mirror_num
, &raid_map
);
5510 if (ret
) /* -ENOMEM */
5513 total_devs
= bbio
->num_stripes
;
5514 bbio
->orig_bio
= first_bio
;
5515 bbio
->private = first_bio
->bi_private
;
5516 bbio
->end_io
= first_bio
->bi_end_io
;
5517 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
5520 /* In this case, map_length has been set to the length of
5521 a single stripe; not the whole write */
5523 return raid56_parity_write(root
, bio
, bbio
,
5524 raid_map
, map_length
);
5526 return raid56_parity_recover(root
, bio
, bbio
,
5527 raid_map
, map_length
,
5532 if (map_length
< length
) {
5533 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
5534 logical
, length
, map_length
);
5538 while (dev_nr
< total_devs
) {
5539 dev
= bbio
->stripes
[dev_nr
].dev
;
5540 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
5541 bbio_error(bbio
, first_bio
, logical
);
5547 * Check and see if we're ok with this bio based on it's size
5548 * and offset with the given device.
5550 if (!bio_size_ok(dev
->bdev
, first_bio
,
5551 bbio
->stripes
[dev_nr
].physical
>> 9)) {
5552 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
5553 dev_nr
, rw
, async_submit
);
5559 if (dev_nr
< total_devs
- 1) {
5560 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
5561 BUG_ON(!bio
); /* -ENOMEM */
5566 submit_stripe_bio(root
, bbio
, bio
,
5567 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
5574 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
5577 struct btrfs_device
*device
;
5578 struct btrfs_fs_devices
*cur_devices
;
5580 cur_devices
= fs_info
->fs_devices
;
5581 while (cur_devices
) {
5583 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5584 device
= __find_device(&cur_devices
->devices
,
5589 cur_devices
= cur_devices
->seed
;
5594 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
5595 u64 devid
, u8
*dev_uuid
)
5597 struct btrfs_device
*device
;
5598 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
5600 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
5604 list_add(&device
->dev_list
, &fs_devices
->devices
);
5605 device
->fs_devices
= fs_devices
;
5606 fs_devices
->num_devices
++;
5608 device
->missing
= 1;
5609 fs_devices
->missing_devices
++;
5615 * btrfs_alloc_device - allocate struct btrfs_device
5616 * @fs_info: used only for generating a new devid, can be NULL if
5617 * devid is provided (i.e. @devid != NULL).
5618 * @devid: a pointer to devid for this device. If NULL a new devid
5620 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5623 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5624 * on error. Returned struct is not linked onto any lists and can be
5625 * destroyed with kfree() right away.
5627 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
5631 struct btrfs_device
*dev
;
5634 if (!devid
&& !fs_info
) {
5636 return ERR_PTR(-EINVAL
);
5639 dev
= __alloc_device();
5648 ret
= find_next_devid(fs_info
, &tmp
);
5651 return ERR_PTR(ret
);
5657 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
5659 generate_random_uuid(dev
->uuid
);
5661 dev
->work
.func
= pending_bios_fn
;
5666 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
5667 struct extent_buffer
*leaf
,
5668 struct btrfs_chunk
*chunk
)
5670 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5671 struct map_lookup
*map
;
5672 struct extent_map
*em
;
5676 u8 uuid
[BTRFS_UUID_SIZE
];
5681 logical
= key
->offset
;
5682 length
= btrfs_chunk_length(leaf
, chunk
);
5684 read_lock(&map_tree
->map_tree
.lock
);
5685 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
5686 read_unlock(&map_tree
->map_tree
.lock
);
5688 /* already mapped? */
5689 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
5690 free_extent_map(em
);
5693 free_extent_map(em
);
5696 em
= alloc_extent_map();
5699 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
5700 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
5702 free_extent_map(em
);
5706 em
->bdev
= (struct block_device
*)map
;
5707 em
->start
= logical
;
5710 em
->block_start
= 0;
5711 em
->block_len
= em
->len
;
5713 map
->num_stripes
= num_stripes
;
5714 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
5715 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
5716 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
5717 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
5718 map
->type
= btrfs_chunk_type(leaf
, chunk
);
5719 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
5720 for (i
= 0; i
< num_stripes
; i
++) {
5721 map
->stripes
[i
].physical
=
5722 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
5723 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
5724 read_extent_buffer(leaf
, uuid
, (unsigned long)
5725 btrfs_stripe_dev_uuid_nr(chunk
, i
),
5727 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
5729 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
5731 free_extent_map(em
);
5734 if (!map
->stripes
[i
].dev
) {
5735 map
->stripes
[i
].dev
=
5736 add_missing_dev(root
, devid
, uuid
);
5737 if (!map
->stripes
[i
].dev
) {
5739 free_extent_map(em
);
5743 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
5746 write_lock(&map_tree
->map_tree
.lock
);
5747 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
5748 write_unlock(&map_tree
->map_tree
.lock
);
5749 BUG_ON(ret
); /* Tree corruption */
5750 free_extent_map(em
);
5755 static void fill_device_from_item(struct extent_buffer
*leaf
,
5756 struct btrfs_dev_item
*dev_item
,
5757 struct btrfs_device
*device
)
5761 device
->devid
= btrfs_device_id(leaf
, dev_item
);
5762 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
5763 device
->total_bytes
= device
->disk_total_bytes
;
5764 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
5765 device
->type
= btrfs_device_type(leaf
, dev_item
);
5766 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
5767 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
5768 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
5769 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
5770 device
->is_tgtdev_for_dev_replace
= 0;
5772 ptr
= btrfs_device_uuid(dev_item
);
5773 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
5776 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
5778 struct btrfs_fs_devices
*fs_devices
;
5781 BUG_ON(!mutex_is_locked(&uuid_mutex
));
5783 fs_devices
= root
->fs_info
->fs_devices
->seed
;
5784 while (fs_devices
) {
5785 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5789 fs_devices
= fs_devices
->seed
;
5792 fs_devices
= find_fsid(fsid
);
5798 fs_devices
= clone_fs_devices(fs_devices
);
5799 if (IS_ERR(fs_devices
)) {
5800 ret
= PTR_ERR(fs_devices
);
5804 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
5805 root
->fs_info
->bdev_holder
);
5807 free_fs_devices(fs_devices
);
5811 if (!fs_devices
->seeding
) {
5812 __btrfs_close_devices(fs_devices
);
5813 free_fs_devices(fs_devices
);
5818 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
5819 root
->fs_info
->fs_devices
->seed
= fs_devices
;
5824 static int read_one_dev(struct btrfs_root
*root
,
5825 struct extent_buffer
*leaf
,
5826 struct btrfs_dev_item
*dev_item
)
5828 struct btrfs_device
*device
;
5831 u8 fs_uuid
[BTRFS_UUID_SIZE
];
5832 u8 dev_uuid
[BTRFS_UUID_SIZE
];
5834 devid
= btrfs_device_id(leaf
, dev_item
);
5835 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
5837 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
5840 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
5841 ret
= open_seed_devices(root
, fs_uuid
);
5842 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
5846 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
5847 if (!device
|| !device
->bdev
) {
5848 if (!btrfs_test_opt(root
, DEGRADED
))
5852 btrfs_warn(root
->fs_info
, "devid %llu missing", devid
);
5853 device
= add_missing_dev(root
, devid
, dev_uuid
);
5856 } else if (!device
->missing
) {
5858 * this happens when a device that was properly setup
5859 * in the device info lists suddenly goes bad.
5860 * device->bdev is NULL, and so we have to set
5861 * device->missing to one here
5863 root
->fs_info
->fs_devices
->missing_devices
++;
5864 device
->missing
= 1;
5868 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
5869 BUG_ON(device
->writeable
);
5870 if (device
->generation
!=
5871 btrfs_device_generation(leaf
, dev_item
))
5875 fill_device_from_item(leaf
, dev_item
, device
);
5876 device
->in_fs_metadata
= 1;
5877 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
5878 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
5879 spin_lock(&root
->fs_info
->free_chunk_lock
);
5880 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
5882 spin_unlock(&root
->fs_info
->free_chunk_lock
);
5888 int btrfs_read_sys_array(struct btrfs_root
*root
)
5890 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
5891 struct extent_buffer
*sb
;
5892 struct btrfs_disk_key
*disk_key
;
5893 struct btrfs_chunk
*chunk
;
5895 unsigned long sb_ptr
;
5901 struct btrfs_key key
;
5903 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
5904 BTRFS_SUPER_INFO_SIZE
);
5907 btrfs_set_buffer_uptodate(sb
);
5908 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
5910 * The sb extent buffer is artifical and just used to read the system array.
5911 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5912 * pages up-to-date when the page is larger: extent does not cover the
5913 * whole page and consequently check_page_uptodate does not find all
5914 * the page's extents up-to-date (the hole beyond sb),
5915 * write_extent_buffer then triggers a WARN_ON.
5917 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5918 * but sb spans only this function. Add an explicit SetPageUptodate call
5919 * to silence the warning eg. on PowerPC 64.
5921 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
5922 SetPageUptodate(sb
->pages
[0]);
5924 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
5925 array_size
= btrfs_super_sys_array_size(super_copy
);
5927 ptr
= super_copy
->sys_chunk_array
;
5928 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
5931 while (cur
< array_size
) {
5932 disk_key
= (struct btrfs_disk_key
*)ptr
;
5933 btrfs_disk_key_to_cpu(&key
, disk_key
);
5935 len
= sizeof(*disk_key
); ptr
+= len
;
5939 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
5940 chunk
= (struct btrfs_chunk
*)sb_ptr
;
5941 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
5944 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
5945 len
= btrfs_chunk_item_size(num_stripes
);
5954 free_extent_buffer(sb
);
5958 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
5960 struct btrfs_path
*path
;
5961 struct extent_buffer
*leaf
;
5962 struct btrfs_key key
;
5963 struct btrfs_key found_key
;
5967 root
= root
->fs_info
->chunk_root
;
5969 path
= btrfs_alloc_path();
5973 mutex_lock(&uuid_mutex
);
5977 * Read all device items, and then all the chunk items. All
5978 * device items are found before any chunk item (their object id
5979 * is smaller than the lowest possible object id for a chunk
5980 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5982 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
5985 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5989 leaf
= path
->nodes
[0];
5990 slot
= path
->slots
[0];
5991 if (slot
>= btrfs_header_nritems(leaf
)) {
5992 ret
= btrfs_next_leaf(root
, path
);
5999 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6000 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6001 struct btrfs_dev_item
*dev_item
;
6002 dev_item
= btrfs_item_ptr(leaf
, slot
,
6003 struct btrfs_dev_item
);
6004 ret
= read_one_dev(root
, leaf
, dev_item
);
6007 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6008 struct btrfs_chunk
*chunk
;
6009 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6010 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6018 unlock_chunks(root
);
6019 mutex_unlock(&uuid_mutex
);
6021 btrfs_free_path(path
);
6025 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6027 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6028 struct btrfs_device
*device
;
6030 mutex_lock(&fs_devices
->device_list_mutex
);
6031 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6032 device
->dev_root
= fs_info
->dev_root
;
6033 mutex_unlock(&fs_devices
->device_list_mutex
);
6036 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6040 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6041 btrfs_dev_stat_reset(dev
, i
);
6044 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6046 struct btrfs_key key
;
6047 struct btrfs_key found_key
;
6048 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6049 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6050 struct extent_buffer
*eb
;
6053 struct btrfs_device
*device
;
6054 struct btrfs_path
*path
= NULL
;
6057 path
= btrfs_alloc_path();
6063 mutex_lock(&fs_devices
->device_list_mutex
);
6064 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6066 struct btrfs_dev_stats_item
*ptr
;
6069 key
.type
= BTRFS_DEV_STATS_KEY
;
6070 key
.offset
= device
->devid
;
6071 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6073 __btrfs_reset_dev_stats(device
);
6074 device
->dev_stats_valid
= 1;
6075 btrfs_release_path(path
);
6078 slot
= path
->slots
[0];
6079 eb
= path
->nodes
[0];
6080 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6081 item_size
= btrfs_item_size_nr(eb
, slot
);
6083 ptr
= btrfs_item_ptr(eb
, slot
,
6084 struct btrfs_dev_stats_item
);
6086 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6087 if (item_size
>= (1 + i
) * sizeof(__le64
))
6088 btrfs_dev_stat_set(device
, i
,
6089 btrfs_dev_stats_value(eb
, ptr
, i
));
6091 btrfs_dev_stat_reset(device
, i
);
6094 device
->dev_stats_valid
= 1;
6095 btrfs_dev_stat_print_on_load(device
);
6096 btrfs_release_path(path
);
6098 mutex_unlock(&fs_devices
->device_list_mutex
);
6101 btrfs_free_path(path
);
6102 return ret
< 0 ? ret
: 0;
6105 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6106 struct btrfs_root
*dev_root
,
6107 struct btrfs_device
*device
)
6109 struct btrfs_path
*path
;
6110 struct btrfs_key key
;
6111 struct extent_buffer
*eb
;
6112 struct btrfs_dev_stats_item
*ptr
;
6117 key
.type
= BTRFS_DEV_STATS_KEY
;
6118 key
.offset
= device
->devid
;
6120 path
= btrfs_alloc_path();
6122 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6124 printk_in_rcu(KERN_WARNING
"btrfs: error %d while searching for dev_stats item for device %s!\n",
6125 ret
, rcu_str_deref(device
->name
));
6130 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6131 /* need to delete old one and insert a new one */
6132 ret
= btrfs_del_item(trans
, dev_root
, path
);
6134 printk_in_rcu(KERN_WARNING
"btrfs: delete too small dev_stats item for device %s failed %d!\n",
6135 rcu_str_deref(device
->name
), ret
);
6142 /* need to insert a new item */
6143 btrfs_release_path(path
);
6144 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6145 &key
, sizeof(*ptr
));
6147 printk_in_rcu(KERN_WARNING
"btrfs: insert dev_stats item for device %s failed %d!\n",
6148 rcu_str_deref(device
->name
), ret
);
6153 eb
= path
->nodes
[0];
6154 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6155 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6156 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6157 btrfs_dev_stat_read(device
, i
));
6158 btrfs_mark_buffer_dirty(eb
);
6161 btrfs_free_path(path
);
6166 * called from commit_transaction. Writes all changed device stats to disk.
6168 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6169 struct btrfs_fs_info
*fs_info
)
6171 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6172 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6173 struct btrfs_device
*device
;
6176 mutex_lock(&fs_devices
->device_list_mutex
);
6177 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6178 if (!device
->dev_stats_valid
|| !device
->dev_stats_dirty
)
6181 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6183 device
->dev_stats_dirty
= 0;
6185 mutex_unlock(&fs_devices
->device_list_mutex
);
6190 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6192 btrfs_dev_stat_inc(dev
, index
);
6193 btrfs_dev_stat_print_on_error(dev
);
6196 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6198 if (!dev
->dev_stats_valid
)
6200 printk_ratelimited_in_rcu(KERN_ERR
6201 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6202 rcu_str_deref(dev
->name
),
6203 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6204 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6205 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6206 btrfs_dev_stat_read(dev
,
6207 BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6208 btrfs_dev_stat_read(dev
,
6209 BTRFS_DEV_STAT_GENERATION_ERRS
));
6212 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6216 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6217 if (btrfs_dev_stat_read(dev
, i
) != 0)
6219 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6220 return; /* all values == 0, suppress message */
6222 printk_in_rcu(KERN_INFO
"btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6223 rcu_str_deref(dev
->name
),
6224 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6225 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6226 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6227 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6228 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6231 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6232 struct btrfs_ioctl_get_dev_stats
*stats
)
6234 struct btrfs_device
*dev
;
6235 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6238 mutex_lock(&fs_devices
->device_list_mutex
);
6239 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6240 mutex_unlock(&fs_devices
->device_list_mutex
);
6244 "btrfs: get dev_stats failed, device not found\n");
6246 } else if (!dev
->dev_stats_valid
) {
6248 "btrfs: get dev_stats failed, not yet valid\n");
6250 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6251 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6252 if (stats
->nr_items
> i
)
6254 btrfs_dev_stat_read_and_reset(dev
, i
);
6256 btrfs_dev_stat_reset(dev
, i
);
6259 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6260 if (stats
->nr_items
> i
)
6261 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6263 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6264 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6268 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6270 struct buffer_head
*bh
;
6271 struct btrfs_super_block
*disk_super
;
6273 bh
= btrfs_read_dev_super(device
->bdev
);
6276 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6278 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6279 set_buffer_dirty(bh
);
6280 sync_dirty_buffer(bh
);