Linux 3.12.5
[linux/fpc-iii.git] / fs / dlm / lowcomms.c
blobd90909ec6aa6bc5dd846b0545773b8cee0bee7d8
1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
11 *******************************************************************************
12 ******************************************************************************/
15 * lowcomms.c
17 * This is the "low-level" comms layer.
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is its
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
39 * lowcomms will choose to use either TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/ipv6.h>
58 #include "dlm_internal.h"
59 #include "lowcomms.h"
60 #include "midcomms.h"
61 #include "config.h"
63 #define NEEDED_RMEM (4*1024*1024)
64 #define CONN_HASH_SIZE 32
66 /* Number of messages to send before rescheduling */
67 #define MAX_SEND_MSG_COUNT 25
69 struct cbuf {
70 unsigned int base;
71 unsigned int len;
72 unsigned int mask;
75 static void cbuf_add(struct cbuf *cb, int n)
77 cb->len += n;
80 static int cbuf_data(struct cbuf *cb)
82 return ((cb->base + cb->len) & cb->mask);
85 static void cbuf_init(struct cbuf *cb, int size)
87 cb->base = cb->len = 0;
88 cb->mask = size-1;
91 static void cbuf_eat(struct cbuf *cb, int n)
93 cb->len -= n;
94 cb->base += n;
95 cb->base &= cb->mask;
98 static bool cbuf_empty(struct cbuf *cb)
100 return cb->len == 0;
103 struct connection {
104 struct socket *sock; /* NULL if not connected */
105 uint32_t nodeid; /* So we know who we are in the list */
106 struct mutex sock_mutex;
107 unsigned long flags;
108 #define CF_READ_PENDING 1
109 #define CF_WRITE_PENDING 2
110 #define CF_CONNECT_PENDING 3
111 #define CF_INIT_PENDING 4
112 #define CF_IS_OTHERCON 5
113 #define CF_CLOSE 6
114 #define CF_APP_LIMITED 7
115 struct list_head writequeue; /* List of outgoing writequeue_entries */
116 spinlock_t writequeue_lock;
117 int (*rx_action) (struct connection *); /* What to do when active */
118 void (*connect_action) (struct connection *); /* What to do to connect */
119 struct page *rx_page;
120 struct cbuf cb;
121 int retries;
122 #define MAX_CONNECT_RETRIES 3
123 int sctp_assoc;
124 struct hlist_node list;
125 struct connection *othercon;
126 struct work_struct rwork; /* Receive workqueue */
127 struct work_struct swork; /* Send workqueue */
128 bool try_new_addr;
130 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
132 /* An entry waiting to be sent */
133 struct writequeue_entry {
134 struct list_head list;
135 struct page *page;
136 int offset;
137 int len;
138 int end;
139 int users;
140 struct connection *con;
143 struct dlm_node_addr {
144 struct list_head list;
145 int nodeid;
146 int addr_count;
147 int curr_addr_index;
148 struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
151 static LIST_HEAD(dlm_node_addrs);
152 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
154 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
155 static int dlm_local_count;
156 static int dlm_allow_conn;
158 /* Work queues */
159 static struct workqueue_struct *recv_workqueue;
160 static struct workqueue_struct *send_workqueue;
162 static struct hlist_head connection_hash[CONN_HASH_SIZE];
163 static DEFINE_MUTEX(connections_lock);
164 static struct kmem_cache *con_cache;
166 static void process_recv_sockets(struct work_struct *work);
167 static void process_send_sockets(struct work_struct *work);
170 /* This is deliberately very simple because most clusters have simple
171 sequential nodeids, so we should be able to go straight to a connection
172 struct in the array */
173 static inline int nodeid_hash(int nodeid)
175 return nodeid & (CONN_HASH_SIZE-1);
178 static struct connection *__find_con(int nodeid)
180 int r;
181 struct connection *con;
183 r = nodeid_hash(nodeid);
185 hlist_for_each_entry(con, &connection_hash[r], list) {
186 if (con->nodeid == nodeid)
187 return con;
189 return NULL;
193 * If 'allocation' is zero then we don't attempt to create a new
194 * connection structure for this node.
196 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
198 struct connection *con = NULL;
199 int r;
201 con = __find_con(nodeid);
202 if (con || !alloc)
203 return con;
205 con = kmem_cache_zalloc(con_cache, alloc);
206 if (!con)
207 return NULL;
209 r = nodeid_hash(nodeid);
210 hlist_add_head(&con->list, &connection_hash[r]);
212 con->nodeid = nodeid;
213 mutex_init(&con->sock_mutex);
214 INIT_LIST_HEAD(&con->writequeue);
215 spin_lock_init(&con->writequeue_lock);
216 INIT_WORK(&con->swork, process_send_sockets);
217 INIT_WORK(&con->rwork, process_recv_sockets);
219 /* Setup action pointers for child sockets */
220 if (con->nodeid) {
221 struct connection *zerocon = __find_con(0);
223 con->connect_action = zerocon->connect_action;
224 if (!con->rx_action)
225 con->rx_action = zerocon->rx_action;
228 return con;
231 /* Loop round all connections */
232 static void foreach_conn(void (*conn_func)(struct connection *c))
234 int i;
235 struct hlist_node *n;
236 struct connection *con;
238 for (i = 0; i < CONN_HASH_SIZE; i++) {
239 hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
240 conn_func(con);
244 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
246 struct connection *con;
248 mutex_lock(&connections_lock);
249 con = __nodeid2con(nodeid, allocation);
250 mutex_unlock(&connections_lock);
252 return con;
255 /* This is a bit drastic, but only called when things go wrong */
256 static struct connection *assoc2con(int assoc_id)
258 int i;
259 struct connection *con;
261 mutex_lock(&connections_lock);
263 for (i = 0 ; i < CONN_HASH_SIZE; i++) {
264 hlist_for_each_entry(con, &connection_hash[i], list) {
265 if (con->sctp_assoc == assoc_id) {
266 mutex_unlock(&connections_lock);
267 return con;
271 mutex_unlock(&connections_lock);
272 return NULL;
275 static struct dlm_node_addr *find_node_addr(int nodeid)
277 struct dlm_node_addr *na;
279 list_for_each_entry(na, &dlm_node_addrs, list) {
280 if (na->nodeid == nodeid)
281 return na;
283 return NULL;
286 static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
288 switch (x->ss_family) {
289 case AF_INET: {
290 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
291 struct sockaddr_in *siny = (struct sockaddr_in *)y;
292 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
293 return 0;
294 if (sinx->sin_port != siny->sin_port)
295 return 0;
296 break;
298 case AF_INET6: {
299 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
300 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
301 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
302 return 0;
303 if (sinx->sin6_port != siny->sin6_port)
304 return 0;
305 break;
307 default:
308 return 0;
310 return 1;
313 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
314 struct sockaddr *sa_out, bool try_new_addr)
316 struct sockaddr_storage sas;
317 struct dlm_node_addr *na;
319 if (!dlm_local_count)
320 return -1;
322 spin_lock(&dlm_node_addrs_spin);
323 na = find_node_addr(nodeid);
324 if (na && na->addr_count) {
325 if (try_new_addr) {
326 na->curr_addr_index++;
327 if (na->curr_addr_index == na->addr_count)
328 na->curr_addr_index = 0;
331 memcpy(&sas, na->addr[na->curr_addr_index ],
332 sizeof(struct sockaddr_storage));
334 spin_unlock(&dlm_node_addrs_spin);
336 if (!na)
337 return -EEXIST;
339 if (!na->addr_count)
340 return -ENOENT;
342 if (sas_out)
343 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
345 if (!sa_out)
346 return 0;
348 if (dlm_local_addr[0]->ss_family == AF_INET) {
349 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
350 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
351 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
352 } else {
353 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
354 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
355 ret6->sin6_addr = in6->sin6_addr;
358 return 0;
361 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
363 struct dlm_node_addr *na;
364 int rv = -EEXIST;
365 int addr_i;
367 spin_lock(&dlm_node_addrs_spin);
368 list_for_each_entry(na, &dlm_node_addrs, list) {
369 if (!na->addr_count)
370 continue;
372 for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 if (addr_compare(na->addr[addr_i], addr)) {
374 *nodeid = na->nodeid;
375 rv = 0;
376 goto unlock;
380 unlock:
381 spin_unlock(&dlm_node_addrs_spin);
382 return rv;
385 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
387 struct sockaddr_storage *new_addr;
388 struct dlm_node_addr *new_node, *na;
390 new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
391 if (!new_node)
392 return -ENOMEM;
394 new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
395 if (!new_addr) {
396 kfree(new_node);
397 return -ENOMEM;
400 memcpy(new_addr, addr, len);
402 spin_lock(&dlm_node_addrs_spin);
403 na = find_node_addr(nodeid);
404 if (!na) {
405 new_node->nodeid = nodeid;
406 new_node->addr[0] = new_addr;
407 new_node->addr_count = 1;
408 list_add(&new_node->list, &dlm_node_addrs);
409 spin_unlock(&dlm_node_addrs_spin);
410 return 0;
413 if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
414 spin_unlock(&dlm_node_addrs_spin);
415 kfree(new_addr);
416 kfree(new_node);
417 return -ENOSPC;
420 na->addr[na->addr_count++] = new_addr;
421 spin_unlock(&dlm_node_addrs_spin);
422 kfree(new_node);
423 return 0;
426 /* Data available on socket or listen socket received a connect */
427 static void lowcomms_data_ready(struct sock *sk, int count_unused)
429 struct connection *con = sock2con(sk);
430 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
431 queue_work(recv_workqueue, &con->rwork);
434 static void lowcomms_write_space(struct sock *sk)
436 struct connection *con = sock2con(sk);
438 if (!con)
439 return;
441 clear_bit(SOCK_NOSPACE, &con->sock->flags);
443 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
444 con->sock->sk->sk_write_pending--;
445 clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
448 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
449 queue_work(send_workqueue, &con->swork);
452 static inline void lowcomms_connect_sock(struct connection *con)
454 if (test_bit(CF_CLOSE, &con->flags))
455 return;
456 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
457 queue_work(send_workqueue, &con->swork);
460 static void lowcomms_state_change(struct sock *sk)
462 if (sk->sk_state == TCP_ESTABLISHED)
463 lowcomms_write_space(sk);
466 int dlm_lowcomms_connect_node(int nodeid)
468 struct connection *con;
470 /* with sctp there's no connecting without sending */
471 if (dlm_config.ci_protocol != 0)
472 return 0;
474 if (nodeid == dlm_our_nodeid())
475 return 0;
477 con = nodeid2con(nodeid, GFP_NOFS);
478 if (!con)
479 return -ENOMEM;
480 lowcomms_connect_sock(con);
481 return 0;
484 /* Make a socket active */
485 static void add_sock(struct socket *sock, struct connection *con)
487 con->sock = sock;
489 /* Install a data_ready callback */
490 con->sock->sk->sk_data_ready = lowcomms_data_ready;
491 con->sock->sk->sk_write_space = lowcomms_write_space;
492 con->sock->sk->sk_state_change = lowcomms_state_change;
493 con->sock->sk->sk_user_data = con;
494 con->sock->sk->sk_allocation = GFP_NOFS;
497 /* Add the port number to an IPv6 or 4 sockaddr and return the address
498 length */
499 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
500 int *addr_len)
502 saddr->ss_family = dlm_local_addr[0]->ss_family;
503 if (saddr->ss_family == AF_INET) {
504 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
505 in4_addr->sin_port = cpu_to_be16(port);
506 *addr_len = sizeof(struct sockaddr_in);
507 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
508 } else {
509 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
510 in6_addr->sin6_port = cpu_to_be16(port);
511 *addr_len = sizeof(struct sockaddr_in6);
513 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
516 /* Close a remote connection and tidy up */
517 static void close_connection(struct connection *con, bool and_other)
519 mutex_lock(&con->sock_mutex);
521 if (con->sock) {
522 sock_release(con->sock);
523 con->sock = NULL;
525 if (con->othercon && and_other) {
526 /* Will only re-enter once. */
527 close_connection(con->othercon, false);
529 if (con->rx_page) {
530 __free_page(con->rx_page);
531 con->rx_page = NULL;
534 con->retries = 0;
535 mutex_unlock(&con->sock_mutex);
538 /* We only send shutdown messages to nodes that are not part of the cluster */
539 static void sctp_send_shutdown(sctp_assoc_t associd)
541 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
542 struct msghdr outmessage;
543 struct cmsghdr *cmsg;
544 struct sctp_sndrcvinfo *sinfo;
545 int ret;
546 struct connection *con;
548 con = nodeid2con(0,0);
549 BUG_ON(con == NULL);
551 outmessage.msg_name = NULL;
552 outmessage.msg_namelen = 0;
553 outmessage.msg_control = outcmsg;
554 outmessage.msg_controllen = sizeof(outcmsg);
555 outmessage.msg_flags = MSG_EOR;
557 cmsg = CMSG_FIRSTHDR(&outmessage);
558 cmsg->cmsg_level = IPPROTO_SCTP;
559 cmsg->cmsg_type = SCTP_SNDRCV;
560 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
561 outmessage.msg_controllen = cmsg->cmsg_len;
562 sinfo = CMSG_DATA(cmsg);
563 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
565 sinfo->sinfo_flags |= MSG_EOF;
566 sinfo->sinfo_assoc_id = associd;
568 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
570 if (ret != 0)
571 log_print("send EOF to node failed: %d", ret);
574 static void sctp_init_failed_foreach(struct connection *con)
578 * Don't try to recover base con and handle race where the
579 * other node's assoc init creates a assoc and we get that
580 * notification, then we get a notification that our attempt
581 * failed due. This happens when we are still trying the primary
582 * address, but the other node has already tried secondary addrs
583 * and found one that worked.
585 if (!con->nodeid || con->sctp_assoc)
586 return;
588 log_print("Retrying SCTP association init for node %d\n", con->nodeid);
590 con->try_new_addr = true;
591 con->sctp_assoc = 0;
592 if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
593 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
594 queue_work(send_workqueue, &con->swork);
598 /* INIT failed but we don't know which node...
599 restart INIT on all pending nodes */
600 static void sctp_init_failed(void)
602 mutex_lock(&connections_lock);
604 foreach_conn(sctp_init_failed_foreach);
606 mutex_unlock(&connections_lock);
609 static void retry_failed_sctp_send(struct connection *recv_con,
610 struct sctp_send_failed *sn_send_failed,
611 char *buf)
613 int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
614 struct dlm_mhandle *mh;
615 struct connection *con;
616 char *retry_buf;
617 int nodeid = sn_send_failed->ssf_info.sinfo_ppid;
619 log_print("Retry sending %d bytes to node id %d", len, nodeid);
621 con = nodeid2con(nodeid, 0);
622 if (!con) {
623 log_print("Could not look up con for nodeid %d\n",
624 nodeid);
625 return;
628 mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
629 if (!mh) {
630 log_print("Could not allocate buf for retry.");
631 return;
633 memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
634 dlm_lowcomms_commit_buffer(mh);
637 * If we got a assoc changed event before the send failed event then
638 * we only need to retry the send.
640 if (con->sctp_assoc) {
641 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
642 queue_work(send_workqueue, &con->swork);
643 } else
644 sctp_init_failed_foreach(con);
647 /* Something happened to an association */
648 static void process_sctp_notification(struct connection *con,
649 struct msghdr *msg, char *buf)
651 union sctp_notification *sn = (union sctp_notification *)buf;
653 switch (sn->sn_header.sn_type) {
654 case SCTP_SEND_FAILED:
655 retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
656 break;
657 case SCTP_ASSOC_CHANGE:
658 switch (sn->sn_assoc_change.sac_state) {
659 case SCTP_COMM_UP:
660 case SCTP_RESTART:
662 /* Check that the new node is in the lockspace */
663 struct sctp_prim prim;
664 int nodeid;
665 int prim_len, ret;
666 int addr_len;
667 struct connection *new_con;
670 * We get this before any data for an association.
671 * We verify that the node is in the cluster and
672 * then peel off a socket for it.
674 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
675 log_print("COMM_UP for invalid assoc ID %d",
676 (int)sn->sn_assoc_change.sac_assoc_id);
677 sctp_init_failed();
678 return;
680 memset(&prim, 0, sizeof(struct sctp_prim));
681 prim_len = sizeof(struct sctp_prim);
682 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
684 ret = kernel_getsockopt(con->sock,
685 IPPROTO_SCTP,
686 SCTP_PRIMARY_ADDR,
687 (char*)&prim,
688 &prim_len);
689 if (ret < 0) {
690 log_print("getsockopt/sctp_primary_addr on "
691 "new assoc %d failed : %d",
692 (int)sn->sn_assoc_change.sac_assoc_id,
693 ret);
695 /* Retry INIT later */
696 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
697 if (new_con)
698 clear_bit(CF_CONNECT_PENDING, &con->flags);
699 return;
701 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
702 if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
703 unsigned char *b=(unsigned char *)&prim.ssp_addr;
704 log_print("reject connect from unknown addr");
705 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
706 b, sizeof(struct sockaddr_storage));
707 sctp_send_shutdown(prim.ssp_assoc_id);
708 return;
711 new_con = nodeid2con(nodeid, GFP_NOFS);
712 if (!new_con)
713 return;
715 /* Peel off a new sock */
716 sctp_lock_sock(con->sock->sk);
717 ret = sctp_do_peeloff(con->sock->sk,
718 sn->sn_assoc_change.sac_assoc_id,
719 &new_con->sock);
720 sctp_release_sock(con->sock->sk);
721 if (ret < 0) {
722 log_print("Can't peel off a socket for "
723 "connection %d to node %d: err=%d",
724 (int)sn->sn_assoc_change.sac_assoc_id,
725 nodeid, ret);
726 return;
728 add_sock(new_con->sock, new_con);
730 log_print("connecting to %d sctp association %d",
731 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);
733 new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
734 new_con->try_new_addr = false;
735 /* Send any pending writes */
736 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
737 clear_bit(CF_INIT_PENDING, &new_con->flags);
738 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
739 queue_work(send_workqueue, &new_con->swork);
741 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
742 queue_work(recv_workqueue, &new_con->rwork);
744 break;
746 case SCTP_COMM_LOST:
747 case SCTP_SHUTDOWN_COMP:
749 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
750 if (con) {
751 con->sctp_assoc = 0;
754 break;
756 case SCTP_CANT_STR_ASSOC:
758 /* Will retry init when we get the send failed notification */
759 log_print("Can't start SCTP association - retrying");
761 break;
763 default:
764 log_print("unexpected SCTP assoc change id=%d state=%d",
765 (int)sn->sn_assoc_change.sac_assoc_id,
766 sn->sn_assoc_change.sac_state);
768 default:
769 ; /* fall through */
773 /* Data received from remote end */
774 static int receive_from_sock(struct connection *con)
776 int ret = 0;
777 struct msghdr msg = {};
778 struct kvec iov[2];
779 unsigned len;
780 int r;
781 int call_again_soon = 0;
782 int nvec;
783 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
785 mutex_lock(&con->sock_mutex);
787 if (con->sock == NULL) {
788 ret = -EAGAIN;
789 goto out_close;
792 if (con->rx_page == NULL) {
794 * This doesn't need to be atomic, but I think it should
795 * improve performance if it is.
797 con->rx_page = alloc_page(GFP_ATOMIC);
798 if (con->rx_page == NULL)
799 goto out_resched;
800 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
803 /* Only SCTP needs these really */
804 memset(&incmsg, 0, sizeof(incmsg));
805 msg.msg_control = incmsg;
806 msg.msg_controllen = sizeof(incmsg);
809 * iov[0] is the bit of the circular buffer between the current end
810 * point (cb.base + cb.len) and the end of the buffer.
812 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
813 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
814 iov[1].iov_len = 0;
815 nvec = 1;
818 * iov[1] is the bit of the circular buffer between the start of the
819 * buffer and the start of the currently used section (cb.base)
821 if (cbuf_data(&con->cb) >= con->cb.base) {
822 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
823 iov[1].iov_len = con->cb.base;
824 iov[1].iov_base = page_address(con->rx_page);
825 nvec = 2;
827 len = iov[0].iov_len + iov[1].iov_len;
829 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
830 MSG_DONTWAIT | MSG_NOSIGNAL);
831 if (ret <= 0)
832 goto out_close;
834 /* Process SCTP notifications */
835 if (msg.msg_flags & MSG_NOTIFICATION) {
836 msg.msg_control = incmsg;
837 msg.msg_controllen = sizeof(incmsg);
839 process_sctp_notification(con, &msg,
840 page_address(con->rx_page) + con->cb.base);
841 mutex_unlock(&con->sock_mutex);
842 return 0;
844 BUG_ON(con->nodeid == 0);
846 if (ret == len)
847 call_again_soon = 1;
848 cbuf_add(&con->cb, ret);
849 ret = dlm_process_incoming_buffer(con->nodeid,
850 page_address(con->rx_page),
851 con->cb.base, con->cb.len,
852 PAGE_CACHE_SIZE);
853 if (ret == -EBADMSG) {
854 log_print("lowcomms: addr=%p, base=%u, len=%u, "
855 "iov_len=%u, iov_base[0]=%p, read=%d",
856 page_address(con->rx_page), con->cb.base, con->cb.len,
857 len, iov[0].iov_base, r);
859 if (ret < 0)
860 goto out_close;
861 cbuf_eat(&con->cb, ret);
863 if (cbuf_empty(&con->cb) && !call_again_soon) {
864 __free_page(con->rx_page);
865 con->rx_page = NULL;
868 if (call_again_soon)
869 goto out_resched;
870 mutex_unlock(&con->sock_mutex);
871 return 0;
873 out_resched:
874 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
875 queue_work(recv_workqueue, &con->rwork);
876 mutex_unlock(&con->sock_mutex);
877 return -EAGAIN;
879 out_close:
880 mutex_unlock(&con->sock_mutex);
881 if (ret != -EAGAIN) {
882 close_connection(con, false);
883 /* Reconnect when there is something to send */
885 /* Don't return success if we really got EOF */
886 if (ret == 0)
887 ret = -EAGAIN;
889 return ret;
892 /* Listening socket is busy, accept a connection */
893 static int tcp_accept_from_sock(struct connection *con)
895 int result;
896 struct sockaddr_storage peeraddr;
897 struct socket *newsock;
898 int len;
899 int nodeid;
900 struct connection *newcon;
901 struct connection *addcon;
903 mutex_lock(&connections_lock);
904 if (!dlm_allow_conn) {
905 mutex_unlock(&connections_lock);
906 return -1;
908 mutex_unlock(&connections_lock);
910 memset(&peeraddr, 0, sizeof(peeraddr));
911 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
912 IPPROTO_TCP, &newsock);
913 if (result < 0)
914 return -ENOMEM;
916 mutex_lock_nested(&con->sock_mutex, 0);
918 result = -ENOTCONN;
919 if (con->sock == NULL)
920 goto accept_err;
922 newsock->type = con->sock->type;
923 newsock->ops = con->sock->ops;
925 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
926 if (result < 0)
927 goto accept_err;
929 /* Get the connected socket's peer */
930 memset(&peeraddr, 0, sizeof(peeraddr));
931 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
932 &len, 2)) {
933 result = -ECONNABORTED;
934 goto accept_err;
937 /* Get the new node's NODEID */
938 make_sockaddr(&peeraddr, 0, &len);
939 if (addr_to_nodeid(&peeraddr, &nodeid)) {
940 unsigned char *b=(unsigned char *)&peeraddr;
941 log_print("connect from non cluster node");
942 print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
943 b, sizeof(struct sockaddr_storage));
944 sock_release(newsock);
945 mutex_unlock(&con->sock_mutex);
946 return -1;
949 log_print("got connection from %d", nodeid);
951 /* Check to see if we already have a connection to this node. This
952 * could happen if the two nodes initiate a connection at roughly
953 * the same time and the connections cross on the wire.
954 * In this case we store the incoming one in "othercon"
956 newcon = nodeid2con(nodeid, GFP_NOFS);
957 if (!newcon) {
958 result = -ENOMEM;
959 goto accept_err;
961 mutex_lock_nested(&newcon->sock_mutex, 1);
962 if (newcon->sock) {
963 struct connection *othercon = newcon->othercon;
965 if (!othercon) {
966 othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
967 if (!othercon) {
968 log_print("failed to allocate incoming socket");
969 mutex_unlock(&newcon->sock_mutex);
970 result = -ENOMEM;
971 goto accept_err;
973 othercon->nodeid = nodeid;
974 othercon->rx_action = receive_from_sock;
975 mutex_init(&othercon->sock_mutex);
976 INIT_WORK(&othercon->swork, process_send_sockets);
977 INIT_WORK(&othercon->rwork, process_recv_sockets);
978 set_bit(CF_IS_OTHERCON, &othercon->flags);
980 if (!othercon->sock) {
981 newcon->othercon = othercon;
982 othercon->sock = newsock;
983 newsock->sk->sk_user_data = othercon;
984 add_sock(newsock, othercon);
985 addcon = othercon;
987 else {
988 printk("Extra connection from node %d attempted\n", nodeid);
989 result = -EAGAIN;
990 mutex_unlock(&newcon->sock_mutex);
991 goto accept_err;
994 else {
995 newsock->sk->sk_user_data = newcon;
996 newcon->rx_action = receive_from_sock;
997 add_sock(newsock, newcon);
998 addcon = newcon;
1001 mutex_unlock(&newcon->sock_mutex);
1004 * Add it to the active queue in case we got data
1005 * between processing the accept adding the socket
1006 * to the read_sockets list
1008 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1009 queue_work(recv_workqueue, &addcon->rwork);
1010 mutex_unlock(&con->sock_mutex);
1012 return 0;
1014 accept_err:
1015 mutex_unlock(&con->sock_mutex);
1016 sock_release(newsock);
1018 if (result != -EAGAIN)
1019 log_print("error accepting connection from node: %d", result);
1020 return result;
1023 static void free_entry(struct writequeue_entry *e)
1025 __free_page(e->page);
1026 kfree(e);
1030 * writequeue_entry_complete - try to delete and free write queue entry
1031 * @e: write queue entry to try to delete
1032 * @completed: bytes completed
1034 * writequeue_lock must be held.
1036 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1038 e->offset += completed;
1039 e->len -= completed;
1041 if (e->len == 0 && e->users == 0) {
1042 list_del(&e->list);
1043 free_entry(e);
1047 /* Initiate an SCTP association.
1048 This is a special case of send_to_sock() in that we don't yet have a
1049 peeled-off socket for this association, so we use the listening socket
1050 and add the primary IP address of the remote node.
1052 static void sctp_init_assoc(struct connection *con)
1054 struct sockaddr_storage rem_addr;
1055 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1056 struct msghdr outmessage;
1057 struct cmsghdr *cmsg;
1058 struct sctp_sndrcvinfo *sinfo;
1059 struct connection *base_con;
1060 struct writequeue_entry *e;
1061 int len, offset;
1062 int ret;
1063 int addrlen;
1064 struct kvec iov[1];
1066 mutex_lock(&con->sock_mutex);
1067 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
1068 goto unlock;
1070 if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
1071 con->try_new_addr)) {
1072 log_print("no address for nodeid %d", con->nodeid);
1073 goto unlock;
1075 base_con = nodeid2con(0, 0);
1076 BUG_ON(base_con == NULL);
1078 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
1080 outmessage.msg_name = &rem_addr;
1081 outmessage.msg_namelen = addrlen;
1082 outmessage.msg_control = outcmsg;
1083 outmessage.msg_controllen = sizeof(outcmsg);
1084 outmessage.msg_flags = MSG_EOR;
1086 spin_lock(&con->writequeue_lock);
1088 if (list_empty(&con->writequeue)) {
1089 spin_unlock(&con->writequeue_lock);
1090 log_print("writequeue empty for nodeid %d", con->nodeid);
1091 goto unlock;
1094 e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1095 len = e->len;
1096 offset = e->offset;
1098 /* Send the first block off the write queue */
1099 iov[0].iov_base = page_address(e->page)+offset;
1100 iov[0].iov_len = len;
1101 spin_unlock(&con->writequeue_lock);
1103 if (rem_addr.ss_family == AF_INET) {
1104 struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
1105 log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
1106 } else {
1107 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
1108 log_print("Trying to connect to %pI6", &sin6->sin6_addr);
1111 cmsg = CMSG_FIRSTHDR(&outmessage);
1112 cmsg->cmsg_level = IPPROTO_SCTP;
1113 cmsg->cmsg_type = SCTP_SNDRCV;
1114 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1115 sinfo = CMSG_DATA(cmsg);
1116 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
1117 sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
1118 outmessage.msg_controllen = cmsg->cmsg_len;
1119 sinfo->sinfo_flags |= SCTP_ADDR_OVER;
1121 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
1122 if (ret < 0) {
1123 log_print("Send first packet to node %d failed: %d",
1124 con->nodeid, ret);
1126 /* Try again later */
1127 clear_bit(CF_CONNECT_PENDING, &con->flags);
1128 clear_bit(CF_INIT_PENDING, &con->flags);
1130 else {
1131 spin_lock(&con->writequeue_lock);
1132 writequeue_entry_complete(e, ret);
1133 spin_unlock(&con->writequeue_lock);
1136 unlock:
1137 mutex_unlock(&con->sock_mutex);
1140 /* Connect a new socket to its peer */
1141 static void tcp_connect_to_sock(struct connection *con)
1143 struct sockaddr_storage saddr, src_addr;
1144 int addr_len;
1145 struct socket *sock = NULL;
1146 int one = 1;
1147 int result;
1149 if (con->nodeid == 0) {
1150 log_print("attempt to connect sock 0 foiled");
1151 return;
1154 mutex_lock(&con->sock_mutex);
1155 if (con->retries++ > MAX_CONNECT_RETRIES)
1156 goto out;
1158 /* Some odd races can cause double-connects, ignore them */
1159 if (con->sock)
1160 goto out;
1162 /* Create a socket to communicate with */
1163 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1164 IPPROTO_TCP, &sock);
1165 if (result < 0)
1166 goto out_err;
1168 memset(&saddr, 0, sizeof(saddr));
1169 result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1170 if (result < 0) {
1171 log_print("no address for nodeid %d", con->nodeid);
1172 goto out_err;
1175 sock->sk->sk_user_data = con;
1176 con->rx_action = receive_from_sock;
1177 con->connect_action = tcp_connect_to_sock;
1178 add_sock(sock, con);
1180 /* Bind to our cluster-known address connecting to avoid
1181 routing problems */
1182 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1183 make_sockaddr(&src_addr, 0, &addr_len);
1184 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1185 addr_len);
1186 if (result < 0) {
1187 log_print("could not bind for connect: %d", result);
1188 /* This *may* not indicate a critical error */
1191 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1193 log_print("connecting to %d", con->nodeid);
1195 /* Turn off Nagle's algorithm */
1196 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1197 sizeof(one));
1199 result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1200 O_NONBLOCK);
1201 if (result == -EINPROGRESS)
1202 result = 0;
1203 if (result == 0)
1204 goto out;
1206 out_err:
1207 if (con->sock) {
1208 sock_release(con->sock);
1209 con->sock = NULL;
1210 } else if (sock) {
1211 sock_release(sock);
1214 * Some errors are fatal and this list might need adjusting. For other
1215 * errors we try again until the max number of retries is reached.
1217 if (result != -EHOSTUNREACH &&
1218 result != -ENETUNREACH &&
1219 result != -ENETDOWN &&
1220 result != -EINVAL &&
1221 result != -EPROTONOSUPPORT) {
1222 log_print("connect %d try %d error %d", con->nodeid,
1223 con->retries, result);
1224 mutex_unlock(&con->sock_mutex);
1225 msleep(1000);
1226 lowcomms_connect_sock(con);
1227 return;
1229 out:
1230 mutex_unlock(&con->sock_mutex);
1231 return;
1234 static struct socket *tcp_create_listen_sock(struct connection *con,
1235 struct sockaddr_storage *saddr)
1237 struct socket *sock = NULL;
1238 int result = 0;
1239 int one = 1;
1240 int addr_len;
1242 if (dlm_local_addr[0]->ss_family == AF_INET)
1243 addr_len = sizeof(struct sockaddr_in);
1244 else
1245 addr_len = sizeof(struct sockaddr_in6);
1247 /* Create a socket to communicate with */
1248 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
1249 IPPROTO_TCP, &sock);
1250 if (result < 0) {
1251 log_print("Can't create listening comms socket");
1252 goto create_out;
1255 /* Turn off Nagle's algorithm */
1256 kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
1257 sizeof(one));
1259 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1260 (char *)&one, sizeof(one));
1262 if (result < 0) {
1263 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1265 con->rx_action = tcp_accept_from_sock;
1266 con->connect_action = tcp_connect_to_sock;
1268 /* Bind to our port */
1269 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1270 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1271 if (result < 0) {
1272 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1273 sock_release(sock);
1274 sock = NULL;
1275 con->sock = NULL;
1276 goto create_out;
1278 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1279 (char *)&one, sizeof(one));
1280 if (result < 0) {
1281 log_print("Set keepalive failed: %d", result);
1284 result = sock->ops->listen(sock, 5);
1285 if (result < 0) {
1286 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1287 sock_release(sock);
1288 sock = NULL;
1289 goto create_out;
1292 create_out:
1293 return sock;
1296 /* Get local addresses */
1297 static void init_local(void)
1299 struct sockaddr_storage sas, *addr;
1300 int i;
1302 dlm_local_count = 0;
1303 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1304 if (dlm_our_addr(&sas, i))
1305 break;
1307 addr = kmalloc(sizeof(*addr), GFP_NOFS);
1308 if (!addr)
1309 break;
1310 memcpy(addr, &sas, sizeof(*addr));
1311 dlm_local_addr[dlm_local_count++] = addr;
1315 /* Bind to an IP address. SCTP allows multiple address so it can do
1316 multi-homing */
1317 static int add_sctp_bind_addr(struct connection *sctp_con,
1318 struct sockaddr_storage *addr,
1319 int addr_len, int num)
1321 int result = 0;
1323 if (num == 1)
1324 result = kernel_bind(sctp_con->sock,
1325 (struct sockaddr *) addr,
1326 addr_len);
1327 else
1328 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1329 SCTP_SOCKOPT_BINDX_ADD,
1330 (char *)addr, addr_len);
1332 if (result < 0)
1333 log_print("Can't bind to port %d addr number %d",
1334 dlm_config.ci_tcp_port, num);
1336 return result;
1339 /* Initialise SCTP socket and bind to all interfaces */
1340 static int sctp_listen_for_all(void)
1342 struct socket *sock = NULL;
1343 struct sockaddr_storage localaddr;
1344 struct sctp_event_subscribe subscribe;
1345 int result = -EINVAL, num = 1, i, addr_len;
1346 struct connection *con = nodeid2con(0, GFP_NOFS);
1347 int bufsize = NEEDED_RMEM;
1348 int one = 1;
1350 if (!con)
1351 return -ENOMEM;
1353 log_print("Using SCTP for communications");
1355 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1356 IPPROTO_SCTP, &sock);
1357 if (result < 0) {
1358 log_print("Can't create comms socket, check SCTP is loaded");
1359 goto out;
1362 /* Listen for events */
1363 memset(&subscribe, 0, sizeof(subscribe));
1364 subscribe.sctp_data_io_event = 1;
1365 subscribe.sctp_association_event = 1;
1366 subscribe.sctp_send_failure_event = 1;
1367 subscribe.sctp_shutdown_event = 1;
1368 subscribe.sctp_partial_delivery_event = 1;
1370 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1371 (char *)&bufsize, sizeof(bufsize));
1372 if (result)
1373 log_print("Error increasing buffer space on socket %d", result);
1375 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1376 (char *)&subscribe, sizeof(subscribe));
1377 if (result < 0) {
1378 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1379 result);
1380 goto create_delsock;
1383 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
1384 sizeof(one));
1385 if (result < 0)
1386 log_print("Could not set SCTP NODELAY error %d\n", result);
1388 /* Init con struct */
1389 sock->sk->sk_user_data = con;
1390 con->sock = sock;
1391 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1392 con->rx_action = receive_from_sock;
1393 con->connect_action = sctp_init_assoc;
1395 /* Bind to all interfaces. */
1396 for (i = 0; i < dlm_local_count; i++) {
1397 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1398 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1400 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1401 if (result)
1402 goto create_delsock;
1403 ++num;
1406 result = sock->ops->listen(sock, 5);
1407 if (result < 0) {
1408 log_print("Can't set socket listening");
1409 goto create_delsock;
1412 return 0;
1414 create_delsock:
1415 sock_release(sock);
1416 con->sock = NULL;
1417 out:
1418 return result;
1421 static int tcp_listen_for_all(void)
1423 struct socket *sock = NULL;
1424 struct connection *con = nodeid2con(0, GFP_NOFS);
1425 int result = -EINVAL;
1427 if (!con)
1428 return -ENOMEM;
1430 /* We don't support multi-homed hosts */
1431 if (dlm_local_addr[1] != NULL) {
1432 log_print("TCP protocol can't handle multi-homed hosts, "
1433 "try SCTP");
1434 return -EINVAL;
1437 log_print("Using TCP for communications");
1439 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1440 if (sock) {
1441 add_sock(sock, con);
1442 result = 0;
1444 else {
1445 result = -EADDRINUSE;
1448 return result;
1453 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1454 gfp_t allocation)
1456 struct writequeue_entry *entry;
1458 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1459 if (!entry)
1460 return NULL;
1462 entry->page = alloc_page(allocation);
1463 if (!entry->page) {
1464 kfree(entry);
1465 return NULL;
1468 entry->offset = 0;
1469 entry->len = 0;
1470 entry->end = 0;
1471 entry->users = 0;
1472 entry->con = con;
1474 return entry;
1477 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1479 struct connection *con;
1480 struct writequeue_entry *e;
1481 int offset = 0;
1483 con = nodeid2con(nodeid, allocation);
1484 if (!con)
1485 return NULL;
1487 spin_lock(&con->writequeue_lock);
1488 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1489 if ((&e->list == &con->writequeue) ||
1490 (PAGE_CACHE_SIZE - e->end < len)) {
1491 e = NULL;
1492 } else {
1493 offset = e->end;
1494 e->end += len;
1495 e->users++;
1497 spin_unlock(&con->writequeue_lock);
1499 if (e) {
1500 got_one:
1501 *ppc = page_address(e->page) + offset;
1502 return e;
1505 e = new_writequeue_entry(con, allocation);
1506 if (e) {
1507 spin_lock(&con->writequeue_lock);
1508 offset = e->end;
1509 e->end += len;
1510 e->users++;
1511 list_add_tail(&e->list, &con->writequeue);
1512 spin_unlock(&con->writequeue_lock);
1513 goto got_one;
1515 return NULL;
1518 void dlm_lowcomms_commit_buffer(void *mh)
1520 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1521 struct connection *con = e->con;
1522 int users;
1524 spin_lock(&con->writequeue_lock);
1525 users = --e->users;
1526 if (users)
1527 goto out;
1528 e->len = e->end - e->offset;
1529 spin_unlock(&con->writequeue_lock);
1531 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1532 queue_work(send_workqueue, &con->swork);
1534 return;
1536 out:
1537 spin_unlock(&con->writequeue_lock);
1538 return;
1541 /* Send a message */
1542 static void send_to_sock(struct connection *con)
1544 int ret = 0;
1545 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1546 struct writequeue_entry *e;
1547 int len, offset;
1548 int count = 0;
1550 mutex_lock(&con->sock_mutex);
1551 if (con->sock == NULL)
1552 goto out_connect;
1554 spin_lock(&con->writequeue_lock);
1555 for (;;) {
1556 e = list_entry(con->writequeue.next, struct writequeue_entry,
1557 list);
1558 if ((struct list_head *) e == &con->writequeue)
1559 break;
1561 len = e->len;
1562 offset = e->offset;
1563 BUG_ON(len == 0 && e->users == 0);
1564 spin_unlock(&con->writequeue_lock);
1566 ret = 0;
1567 if (len) {
1568 ret = kernel_sendpage(con->sock, e->page, offset, len,
1569 msg_flags);
1570 if (ret == -EAGAIN || ret == 0) {
1571 if (ret == -EAGAIN &&
1572 test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
1573 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1574 /* Notify TCP that we're limited by the
1575 * application window size.
1577 set_bit(SOCK_NOSPACE, &con->sock->flags);
1578 con->sock->sk->sk_write_pending++;
1580 cond_resched();
1581 goto out;
1582 } else if (ret < 0)
1583 goto send_error;
1586 /* Don't starve people filling buffers */
1587 if (++count >= MAX_SEND_MSG_COUNT) {
1588 cond_resched();
1589 count = 0;
1592 spin_lock(&con->writequeue_lock);
1593 writequeue_entry_complete(e, ret);
1595 spin_unlock(&con->writequeue_lock);
1596 out:
1597 mutex_unlock(&con->sock_mutex);
1598 return;
1600 send_error:
1601 mutex_unlock(&con->sock_mutex);
1602 close_connection(con, false);
1603 lowcomms_connect_sock(con);
1604 return;
1606 out_connect:
1607 mutex_unlock(&con->sock_mutex);
1608 if (!test_bit(CF_INIT_PENDING, &con->flags))
1609 lowcomms_connect_sock(con);
1612 static void clean_one_writequeue(struct connection *con)
1614 struct writequeue_entry *e, *safe;
1616 spin_lock(&con->writequeue_lock);
1617 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1618 list_del(&e->list);
1619 free_entry(e);
1621 spin_unlock(&con->writequeue_lock);
1624 /* Called from recovery when it knows that a node has
1625 left the cluster */
1626 int dlm_lowcomms_close(int nodeid)
1628 struct connection *con;
1629 struct dlm_node_addr *na;
1631 log_print("closing connection to node %d", nodeid);
1632 con = nodeid2con(nodeid, 0);
1633 if (con) {
1634 clear_bit(CF_CONNECT_PENDING, &con->flags);
1635 clear_bit(CF_WRITE_PENDING, &con->flags);
1636 set_bit(CF_CLOSE, &con->flags);
1637 if (cancel_work_sync(&con->swork))
1638 log_print("canceled swork for node %d", nodeid);
1639 if (cancel_work_sync(&con->rwork))
1640 log_print("canceled rwork for node %d", nodeid);
1641 clean_one_writequeue(con);
1642 close_connection(con, true);
1645 spin_lock(&dlm_node_addrs_spin);
1646 na = find_node_addr(nodeid);
1647 if (na) {
1648 list_del(&na->list);
1649 while (na->addr_count--)
1650 kfree(na->addr[na->addr_count]);
1651 kfree(na);
1653 spin_unlock(&dlm_node_addrs_spin);
1655 return 0;
1658 /* Receive workqueue function */
1659 static void process_recv_sockets(struct work_struct *work)
1661 struct connection *con = container_of(work, struct connection, rwork);
1662 int err;
1664 clear_bit(CF_READ_PENDING, &con->flags);
1665 do {
1666 err = con->rx_action(con);
1667 } while (!err);
1670 /* Send workqueue function */
1671 static void process_send_sockets(struct work_struct *work)
1673 struct connection *con = container_of(work, struct connection, swork);
1675 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1676 con->connect_action(con);
1677 set_bit(CF_WRITE_PENDING, &con->flags);
1679 if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1680 send_to_sock(con);
1684 /* Discard all entries on the write queues */
1685 static void clean_writequeues(void)
1687 foreach_conn(clean_one_writequeue);
1690 static void work_stop(void)
1692 destroy_workqueue(recv_workqueue);
1693 destroy_workqueue(send_workqueue);
1696 static int work_start(void)
1698 recv_workqueue = alloc_workqueue("dlm_recv",
1699 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1700 if (!recv_workqueue) {
1701 log_print("can't start dlm_recv");
1702 return -ENOMEM;
1705 send_workqueue = alloc_workqueue("dlm_send",
1706 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1707 if (!send_workqueue) {
1708 log_print("can't start dlm_send");
1709 destroy_workqueue(recv_workqueue);
1710 return -ENOMEM;
1713 return 0;
1716 static void stop_conn(struct connection *con)
1718 con->flags |= 0x0F;
1719 if (con->sock && con->sock->sk)
1720 con->sock->sk->sk_user_data = NULL;
1723 static void free_conn(struct connection *con)
1725 close_connection(con, true);
1726 if (con->othercon)
1727 kmem_cache_free(con_cache, con->othercon);
1728 hlist_del(&con->list);
1729 kmem_cache_free(con_cache, con);
1732 void dlm_lowcomms_stop(void)
1734 /* Set all the flags to prevent any
1735 socket activity.
1737 mutex_lock(&connections_lock);
1738 dlm_allow_conn = 0;
1739 foreach_conn(stop_conn);
1740 mutex_unlock(&connections_lock);
1742 work_stop();
1744 mutex_lock(&connections_lock);
1745 clean_writequeues();
1747 foreach_conn(free_conn);
1749 mutex_unlock(&connections_lock);
1750 kmem_cache_destroy(con_cache);
1753 int dlm_lowcomms_start(void)
1755 int error = -EINVAL;
1756 struct connection *con;
1757 int i;
1759 for (i = 0; i < CONN_HASH_SIZE; i++)
1760 INIT_HLIST_HEAD(&connection_hash[i]);
1762 init_local();
1763 if (!dlm_local_count) {
1764 error = -ENOTCONN;
1765 log_print("no local IP address has been set");
1766 goto fail;
1769 error = -ENOMEM;
1770 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1771 __alignof__(struct connection), 0,
1772 NULL);
1773 if (!con_cache)
1774 goto fail;
1776 error = work_start();
1777 if (error)
1778 goto fail_destroy;
1780 dlm_allow_conn = 1;
1782 /* Start listening */
1783 if (dlm_config.ci_protocol == 0)
1784 error = tcp_listen_for_all();
1785 else
1786 error = sctp_listen_for_all();
1787 if (error)
1788 goto fail_unlisten;
1790 return 0;
1792 fail_unlisten:
1793 dlm_allow_conn = 0;
1794 con = nodeid2con(0,0);
1795 if (con) {
1796 close_connection(con, false);
1797 kmem_cache_free(con_cache, con);
1799 fail_destroy:
1800 kmem_cache_destroy(con_cache);
1801 fail:
1802 return error;
1805 void dlm_lowcomms_exit(void)
1807 struct dlm_node_addr *na, *safe;
1809 spin_lock(&dlm_node_addrs_spin);
1810 list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1811 list_del(&na->list);
1812 while (na->addr_count--)
1813 kfree(na->addr[na->addr_count]);
1814 kfree(na);
1816 spin_unlock(&dlm_node_addrs_spin);