2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
42 #include "ext4_jbd2.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
52 struct ext4_inode_info
*ei
)
54 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
59 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
60 raw
->i_checksum_lo
= 0;
61 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
62 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
63 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
64 raw
->i_checksum_hi
= 0;
67 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
68 EXT4_INODE_SIZE(inode
->i_sb
));
70 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
71 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
72 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
73 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
78 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
79 struct ext4_inode_info
*ei
)
81 __u32 provided
, calculated
;
83 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
84 cpu_to_le32(EXT4_OS_LINUX
) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
89 provided
= le16_to_cpu(raw
->i_checksum_lo
);
90 calculated
= ext4_inode_csum(inode
, raw
, ei
);
91 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
92 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
93 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
97 return provided
== calculated
;
100 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
101 struct ext4_inode_info
*ei
)
105 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
106 cpu_to_le32(EXT4_OS_LINUX
) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
111 csum
= ext4_inode_csum(inode
, raw
, ei
);
112 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
113 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
114 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
115 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
118 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
121 trace_ext4_begin_ordered_truncate(inode
, new_size
);
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
128 if (!EXT4_I(inode
)->jinode
)
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
131 EXT4_I(inode
)->jinode
,
135 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
136 unsigned int length
);
137 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
138 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
139 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
143 * Test whether an inode is a fast symlink.
145 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
147 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
148 (inode
->i_sb
->s_blocksize
>> 9) : 0;
150 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
170 jbd_debug(2, "restarting handle %p\n", handle
);
171 up_write(&EXT4_I(inode
)->i_data_sem
);
172 ret
= ext4_journal_restart(handle
, nblocks
);
173 down_write(&EXT4_I(inode
)->i_data_sem
);
174 ext4_discard_preallocations(inode
);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode
*inode
)
187 trace_ext4_evict_inode(inode
);
189 if (inode
->i_nlink
) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode
) &&
209 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
210 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
211 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
212 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
214 jbd2_complete_transaction(journal
, commit_tid
);
215 filemap_write_and_wait(&inode
->i_data
);
217 truncate_inode_pages(&inode
->i_data
, 0);
219 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
223 if (!is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages(&inode
->i_data
, 0);
230 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
231 if (is_bad_inode(inode
))
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode
->i_sb
);
239 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
240 ext4_blocks_for_truncate(inode
)+3);
241 if (IS_ERR(handle
)) {
242 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
248 ext4_orphan_del(NULL
, inode
);
249 sb_end_intwrite(inode
->i_sb
);
254 ext4_handle_sync(handle
);
256 err
= ext4_mark_inode_dirty(handle
, inode
);
258 ext4_warning(inode
->i_sb
,
259 "couldn't mark inode dirty (err %d)", err
);
263 ext4_truncate(inode
);
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
271 if (!ext4_handle_has_enough_credits(handle
, 3)) {
272 err
= ext4_journal_extend(handle
, 3);
274 err
= ext4_journal_restart(handle
, 3);
276 ext4_warning(inode
->i_sb
,
277 "couldn't extend journal (err %d)", err
);
279 ext4_journal_stop(handle
);
280 ext4_orphan_del(NULL
, inode
);
281 sb_end_intwrite(inode
->i_sb
);
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
294 ext4_orphan_del(handle
, inode
);
295 EXT4_I(inode
)->i_dtime
= get_seconds();
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
304 if (ext4_mark_inode_dirty(handle
, inode
))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode
);
308 ext4_free_inode(handle
, inode
);
309 ext4_journal_stop(handle
);
310 sb_end_intwrite(inode
->i_sb
);
313 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
317 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
319 return &EXT4_I(inode
)->i_reserved_quota
;
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
327 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
329 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
330 return ext4_ext_calc_metadata_amount(inode
, lblock
);
332 return ext4_ind_calc_metadata_amount(inode
, lblock
);
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
339 void ext4_da_update_reserve_space(struct inode
*inode
,
340 int used
, int quota_claim
)
342 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
343 struct ext4_inode_info
*ei
= EXT4_I(inode
);
345 spin_lock(&ei
->i_block_reservation_lock
);
346 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
347 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
348 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__
, inode
->i_ino
, used
,
351 ei
->i_reserved_data_blocks
);
353 used
= ei
->i_reserved_data_blocks
;
356 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
357 ext4_warning(inode
->i_sb
, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
361 ei
->i_reserved_meta_blocks
, used
,
362 ei
->i_reserved_data_blocks
);
364 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
367 /* Update per-inode reservations */
368 ei
->i_reserved_data_blocks
-= used
;
369 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
370 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
371 used
+ ei
->i_allocated_meta_blocks
);
372 ei
->i_allocated_meta_blocks
= 0;
374 if (ei
->i_reserved_data_blocks
== 0) {
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
380 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
381 ei
->i_reserved_meta_blocks
);
382 ei
->i_reserved_meta_blocks
= 0;
383 ei
->i_da_metadata_calc_len
= 0;
385 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
387 /* Update quota subsystem for data blocks */
389 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
396 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
404 if ((ei
->i_reserved_data_blocks
== 0) &&
405 (atomic_read(&inode
->i_writecount
) == 0))
406 ext4_discard_preallocations(inode
);
409 static int __check_block_validity(struct inode
*inode
, const char *func
,
411 struct ext4_map_blocks
*map
)
413 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
415 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map
->m_lblk
,
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
430 struct ext4_map_blocks
*es_map
,
431 struct ext4_map_blocks
*map
,
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
444 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
445 down_read((&EXT4_I(inode
)->i_data_sem
));
446 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
447 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
448 EXT4_GET_BLOCKS_KEEP_SIZE
);
450 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
451 EXT4_GET_BLOCKS_KEEP_SIZE
);
453 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
454 up_read((&EXT4_I(inode
)->i_data_sem
));
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
459 map
->m_flags
&= ~(EXT4_MAP_FROM_CLUSTER
| EXT4_MAP_BOUNDARY
);
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map
->m_lblk
!= map
->m_lblk
||
466 es_map
->m_flags
!= map
->m_flags
||
467 es_map
->m_pblk
!= map
->m_pblk
) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
472 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
473 map
->m_len
, map
->m_pblk
, map
->m_flags
,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
502 struct ext4_map_blocks
*map
, int flags
)
504 struct extent_status es
;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map
;
509 memcpy(&orig_map
, map
, sizeof(*map
));
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
515 (unsigned long) map
->m_lblk
);
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
519 ext4_es_lru_add(inode
);
520 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
521 map
->m_pblk
= ext4_es_pblock(&es
) +
522 map
->m_lblk
- es
.es_lblk
;
523 map
->m_flags
|= ext4_es_is_written(&es
) ?
524 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
525 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
526 if (retval
> map
->m_len
)
529 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle
, inode
, map
,
542 * Try to see if we can get the block without requesting a new
545 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
546 down_read((&EXT4_I(inode
)->i_data_sem
));
547 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
548 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
549 EXT4_GET_BLOCKS_KEEP_SIZE
);
551 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
552 EXT4_GET_BLOCKS_KEEP_SIZE
);
558 if (unlikely(retval
!= map
->m_len
)) {
559 ext4_warning(inode
->i_sb
,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode
->i_ino
, retval
, map
->m_len
);
566 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
567 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
568 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
569 ext4_find_delalloc_range(inode
, map
->m_lblk
,
570 map
->m_lblk
+ map
->m_len
- 1))
571 status
|= EXTENT_STATUS_DELAYED
;
572 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
573 map
->m_len
, map
->m_pblk
, status
);
577 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
578 up_read((&EXT4_I(inode
)->i_data_sem
));
581 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
582 int ret
= check_block_validity(inode
, map
);
587 /* If it is only a block(s) look up */
588 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
592 * Returns if the blocks have already allocated
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
598 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
605 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
613 down_write((&EXT4_I(inode
)->i_data_sem
));
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
621 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
622 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
627 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
628 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
630 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
632 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
638 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
648 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
649 ext4_da_update_reserve_space(inode
, retval
, 1);
651 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
652 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
658 if (unlikely(retval
!= map
->m_len
)) {
659 ext4_warning(inode
->i_sb
,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode
->i_ino
, retval
, map
->m_len
);
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
670 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
671 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
672 if (ext4_es_is_written(&es
))
675 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
676 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
677 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
678 ext4_find_delalloc_range(inode
, map
->m_lblk
,
679 map
->m_lblk
+ map
->m_len
- 1))
680 status
|= EXTENT_STATUS_DELAYED
;
681 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
682 map
->m_pblk
, status
);
688 up_write((&EXT4_I(inode
)->i_data_sem
));
689 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
690 int ret
= check_block_validity(inode
, map
);
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
700 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
701 struct buffer_head
*bh
, int flags
)
703 handle_t
*handle
= ext4_journal_current_handle();
704 struct ext4_map_blocks map
;
705 int ret
= 0, started
= 0;
708 if (ext4_has_inline_data(inode
))
712 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
714 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
715 /* Direct IO write... */
716 if (map
.m_len
> DIO_MAX_BLOCKS
)
717 map
.m_len
= DIO_MAX_BLOCKS
;
718 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
719 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
721 if (IS_ERR(handle
)) {
722 ret
= PTR_ERR(handle
);
728 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
730 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
732 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
733 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
734 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
735 set_buffer_defer_completion(bh
);
736 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
740 ext4_journal_stop(handle
);
744 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
745 struct buffer_head
*bh
, int create
)
747 return _ext4_get_block(inode
, iblock
, bh
,
748 create
? EXT4_GET_BLOCKS_CREATE
: 0);
752 * `handle' can be NULL if create is zero
754 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
755 ext4_lblk_t block
, int create
, int *errp
)
757 struct ext4_map_blocks map
;
758 struct buffer_head
*bh
;
761 J_ASSERT(handle
!= NULL
|| create
== 0);
765 err
= ext4_map_blocks(handle
, inode
, &map
,
766 create
? EXT4_GET_BLOCKS_CREATE
: 0);
768 /* ensure we send some value back into *errp */
771 if (create
&& err
== 0)
772 err
= -ENOSPC
; /* should never happen */
778 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
783 if (map
.m_flags
& EXT4_MAP_NEW
) {
784 J_ASSERT(create
!= 0);
785 J_ASSERT(handle
!= NULL
);
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
795 BUFFER_TRACE(bh
, "call get_create_access");
796 fatal
= ext4_journal_get_create_access(handle
, bh
);
797 if (!fatal
&& !buffer_uptodate(bh
)) {
798 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
799 set_buffer_uptodate(bh
);
802 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
803 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
807 BUFFER_TRACE(bh
, "not a new buffer");
817 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
818 ext4_lblk_t block
, int create
, int *err
)
820 struct buffer_head
*bh
;
822 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
825 if (buffer_uptodate(bh
))
827 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
829 if (buffer_uptodate(bh
))
836 int ext4_walk_page_buffers(handle_t
*handle
,
837 struct buffer_head
*head
,
841 int (*fn
)(handle_t
*handle
,
842 struct buffer_head
*bh
))
844 struct buffer_head
*bh
;
845 unsigned block_start
, block_end
;
846 unsigned blocksize
= head
->b_size
;
848 struct buffer_head
*next
;
850 for (bh
= head
, block_start
= 0;
851 ret
== 0 && (bh
!= head
|| !block_start
);
852 block_start
= block_end
, bh
= next
) {
853 next
= bh
->b_this_page
;
854 block_end
= block_start
+ blocksize
;
855 if (block_end
<= from
|| block_start
>= to
) {
856 if (partial
&& !buffer_uptodate(bh
))
860 err
= (*fn
)(handle
, bh
);
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
870 * close off a transaction and start a new one between the ext4_get_block()
871 * and the commit_write(). So doing the jbd2_journal_start at the start of
872 * prepare_write() is the right place.
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
879 * By accident, ext4 can be reentered when a transaction is open via
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
891 int do_journal_get_write_access(handle_t
*handle
,
892 struct buffer_head
*bh
)
894 int dirty
= buffer_dirty(bh
);
897 if (!buffer_mapped(bh
) || buffer_freed(bh
))
900 * __block_write_begin() could have dirtied some buffers. Clean
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
903 * by __block_write_begin() isn't a real problem here as we clear
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
908 clear_buffer_dirty(bh
);
909 ret
= ext4_journal_get_write_access(handle
, bh
);
911 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
915 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
916 struct buffer_head
*bh_result
, int create
);
917 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
918 loff_t pos
, unsigned len
, unsigned flags
,
919 struct page
**pagep
, void **fsdata
)
921 struct inode
*inode
= mapping
->host
;
922 int ret
, needed_blocks
;
929 trace_ext4_write_begin(inode
, pos
, len
, flags
);
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
934 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
935 index
= pos
>> PAGE_CACHE_SHIFT
;
936 from
= pos
& (PAGE_CACHE_SIZE
- 1);
939 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
940 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
956 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
962 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
963 if (IS_ERR(handle
)) {
964 page_cache_release(page
);
965 return PTR_ERR(handle
);
969 if (page
->mapping
!= mapping
) {
970 /* The page got truncated from under us */
972 page_cache_release(page
);
973 ext4_journal_stop(handle
);
976 /* In case writeback began while the page was unlocked */
977 wait_for_stable_page(page
);
979 if (ext4_should_dioread_nolock(inode
))
980 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
982 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
984 if (!ret
&& ext4_should_journal_data(inode
)) {
985 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
987 do_journal_get_write_access
);
993 * __block_write_begin may have instantiated a few blocks
994 * outside i_size. Trim these off again. Don't need
995 * i_size_read because we hold i_mutex.
997 * Add inode to orphan list in case we crash before
1000 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1001 ext4_orphan_add(handle
, inode
);
1003 ext4_journal_stop(handle
);
1004 if (pos
+ len
> inode
->i_size
) {
1005 ext4_truncate_failed_write(inode
);
1007 * If truncate failed early the inode might
1008 * still be on the orphan list; we need to
1009 * make sure the inode is removed from the
1010 * orphan list in that case.
1013 ext4_orphan_del(NULL
, inode
);
1016 if (ret
== -ENOSPC
&&
1017 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1019 page_cache_release(page
);
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1030 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1032 set_buffer_uptodate(bh
);
1033 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1034 clear_buffer_meta(bh
);
1035 clear_buffer_prio(bh
);
1040 * We need to pick up the new inode size which generic_commit_write gave us
1041 * `file' can be NULL - eg, when called from page_symlink().
1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1044 * buffers are managed internally.
1046 static int ext4_write_end(struct file
*file
,
1047 struct address_space
*mapping
,
1048 loff_t pos
, unsigned len
, unsigned copied
,
1049 struct page
*page
, void *fsdata
)
1051 handle_t
*handle
= ext4_journal_current_handle();
1052 struct inode
*inode
= mapping
->host
;
1054 int i_size_changed
= 0;
1056 trace_ext4_write_end(inode
, pos
, len
, copied
);
1057 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1058 ret
= ext4_jbd2_file_inode(handle
, inode
);
1061 page_cache_release(page
);
1066 if (ext4_has_inline_data(inode
)) {
1067 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1073 copied
= block_write_end(file
, mapping
, pos
,
1074 len
, copied
, page
, fsdata
);
1077 * No need to use i_size_read() here, the i_size
1078 * cannot change under us because we hole i_mutex.
1080 * But it's important to update i_size while still holding page lock:
1081 * page writeout could otherwise come in and zero beyond i_size.
1083 if (pos
+ copied
> inode
->i_size
) {
1084 i_size_write(inode
, pos
+ copied
);
1088 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1089 /* We need to mark inode dirty even if
1090 * new_i_size is less that inode->i_size
1091 * but greater than i_disksize. (hint delalloc)
1093 ext4_update_i_disksize(inode
, (pos
+ copied
));
1097 page_cache_release(page
);
1100 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 * makes the holding time of page lock longer. Second, it forces lock
1102 * ordering of page lock and transaction start for journaling
1106 ext4_mark_inode_dirty(handle
, inode
);
1108 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1109 /* if we have allocated more blocks and copied
1110 * less. We will have blocks allocated outside
1111 * inode->i_size. So truncate them
1113 ext4_orphan_add(handle
, inode
);
1115 ret2
= ext4_journal_stop(handle
);
1119 if (pos
+ len
> inode
->i_size
) {
1120 ext4_truncate_failed_write(inode
);
1122 * If truncate failed early the inode might still be
1123 * on the orphan list; we need to make sure the inode
1124 * is removed from the orphan list in that case.
1127 ext4_orphan_del(NULL
, inode
);
1130 return ret
? ret
: copied
;
1133 static int ext4_journalled_write_end(struct file
*file
,
1134 struct address_space
*mapping
,
1135 loff_t pos
, unsigned len
, unsigned copied
,
1136 struct page
*page
, void *fsdata
)
1138 handle_t
*handle
= ext4_journal_current_handle();
1139 struct inode
*inode
= mapping
->host
;
1145 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1146 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1149 BUG_ON(!ext4_handle_valid(handle
));
1151 if (ext4_has_inline_data(inode
))
1152 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1156 if (!PageUptodate(page
))
1158 page_zero_new_buffers(page
, from
+copied
, to
);
1161 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1162 to
, &partial
, write_end_fn
);
1164 SetPageUptodate(page
);
1166 new_i_size
= pos
+ copied
;
1167 if (new_i_size
> inode
->i_size
)
1168 i_size_write(inode
, pos
+copied
);
1169 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1170 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1171 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1172 ext4_update_i_disksize(inode
, new_i_size
);
1173 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1179 page_cache_release(page
);
1180 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1181 /* if we have allocated more blocks and copied
1182 * less. We will have blocks allocated outside
1183 * inode->i_size. So truncate them
1185 ext4_orphan_add(handle
, inode
);
1187 ret2
= ext4_journal_stop(handle
);
1190 if (pos
+ len
> inode
->i_size
) {
1191 ext4_truncate_failed_write(inode
);
1193 * If truncate failed early the inode might still be
1194 * on the orphan list; we need to make sure the inode
1195 * is removed from the orphan list in that case.
1198 ext4_orphan_del(NULL
, inode
);
1201 return ret
? ret
: copied
;
1205 * Reserve a metadata for a single block located at lblock
1207 static int ext4_da_reserve_metadata(struct inode
*inode
, ext4_lblk_t lblock
)
1210 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1211 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1212 unsigned int md_needed
;
1213 ext4_lblk_t save_last_lblock
;
1217 * recalculate the amount of metadata blocks to reserve
1218 * in order to allocate nrblocks
1219 * worse case is one extent per block
1222 spin_lock(&ei
->i_block_reservation_lock
);
1224 * ext4_calc_metadata_amount() has side effects, which we have
1225 * to be prepared undo if we fail to claim space.
1227 save_len
= ei
->i_da_metadata_calc_len
;
1228 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1229 md_needed
= EXT4_NUM_B2C(sbi
,
1230 ext4_calc_metadata_amount(inode
, lblock
));
1231 trace_ext4_da_reserve_space(inode
, md_needed
);
1234 * We do still charge estimated metadata to the sb though;
1235 * we cannot afford to run out of free blocks.
1237 if (ext4_claim_free_clusters(sbi
, md_needed
, 0)) {
1238 ei
->i_da_metadata_calc_len
= save_len
;
1239 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1240 spin_unlock(&ei
->i_block_reservation_lock
);
1241 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1247 ei
->i_reserved_meta_blocks
+= md_needed
;
1248 spin_unlock(&ei
->i_block_reservation_lock
);
1250 return 0; /* success */
1254 * Reserve a single cluster located at lblock
1256 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1259 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1260 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1261 unsigned int md_needed
;
1263 ext4_lblk_t save_last_lblock
;
1267 * We will charge metadata quota at writeout time; this saves
1268 * us from metadata over-estimation, though we may go over by
1269 * a small amount in the end. Here we just reserve for data.
1271 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1276 * recalculate the amount of metadata blocks to reserve
1277 * in order to allocate nrblocks
1278 * worse case is one extent per block
1281 spin_lock(&ei
->i_block_reservation_lock
);
1283 * ext4_calc_metadata_amount() has side effects, which we have
1284 * to be prepared undo if we fail to claim space.
1286 save_len
= ei
->i_da_metadata_calc_len
;
1287 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1288 md_needed
= EXT4_NUM_B2C(sbi
,
1289 ext4_calc_metadata_amount(inode
, lblock
));
1290 trace_ext4_da_reserve_space(inode
, md_needed
);
1293 * We do still charge estimated metadata to the sb though;
1294 * we cannot afford to run out of free blocks.
1296 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1297 ei
->i_da_metadata_calc_len
= save_len
;
1298 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1299 spin_unlock(&ei
->i_block_reservation_lock
);
1300 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1304 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1307 ei
->i_reserved_data_blocks
++;
1308 ei
->i_reserved_meta_blocks
+= md_needed
;
1309 spin_unlock(&ei
->i_block_reservation_lock
);
1311 return 0; /* success */
1314 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1316 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1317 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1320 return; /* Nothing to release, exit */
1322 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1324 trace_ext4_da_release_space(inode
, to_free
);
1325 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1327 * if there aren't enough reserved blocks, then the
1328 * counter is messed up somewhere. Since this
1329 * function is called from invalidate page, it's
1330 * harmless to return without any action.
1332 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1333 "ino %lu, to_free %d with only %d reserved "
1334 "data blocks", inode
->i_ino
, to_free
,
1335 ei
->i_reserved_data_blocks
);
1337 to_free
= ei
->i_reserved_data_blocks
;
1339 ei
->i_reserved_data_blocks
-= to_free
;
1341 if (ei
->i_reserved_data_blocks
== 0) {
1343 * We can release all of the reserved metadata blocks
1344 * only when we have written all of the delayed
1345 * allocation blocks.
1346 * Note that in case of bigalloc, i_reserved_meta_blocks,
1347 * i_reserved_data_blocks, etc. refer to number of clusters.
1349 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1350 ei
->i_reserved_meta_blocks
);
1351 ei
->i_reserved_meta_blocks
= 0;
1352 ei
->i_da_metadata_calc_len
= 0;
1355 /* update fs dirty data blocks counter */
1356 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1358 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1360 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1363 static void ext4_da_page_release_reservation(struct page
*page
,
1364 unsigned int offset
,
1365 unsigned int length
)
1368 struct buffer_head
*head
, *bh
;
1369 unsigned int curr_off
= 0;
1370 struct inode
*inode
= page
->mapping
->host
;
1371 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1372 unsigned int stop
= offset
+ length
;
1376 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1378 head
= page_buffers(page
);
1381 unsigned int next_off
= curr_off
+ bh
->b_size
;
1383 if (next_off
> stop
)
1386 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1388 clear_buffer_delay(bh
);
1390 curr_off
= next_off
;
1391 } while ((bh
= bh
->b_this_page
) != head
);
1394 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1395 ext4_es_remove_extent(inode
, lblk
, to_release
);
1398 /* If we have released all the blocks belonging to a cluster, then we
1399 * need to release the reserved space for that cluster. */
1400 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1401 while (num_clusters
> 0) {
1402 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1403 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1404 if (sbi
->s_cluster_ratio
== 1 ||
1405 !ext4_find_delalloc_cluster(inode
, lblk
))
1406 ext4_da_release_space(inode
, 1);
1413 * Delayed allocation stuff
1416 struct mpage_da_data
{
1417 struct inode
*inode
;
1418 struct writeback_control
*wbc
;
1420 pgoff_t first_page
; /* The first page to write */
1421 pgoff_t next_page
; /* Current page to examine */
1422 pgoff_t last_page
; /* Last page to examine */
1424 * Extent to map - this can be after first_page because that can be
1425 * fully mapped. We somewhat abuse m_flags to store whether the extent
1426 * is delalloc or unwritten.
1428 struct ext4_map_blocks map
;
1429 struct ext4_io_submit io_submit
; /* IO submission data */
1432 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1437 struct pagevec pvec
;
1438 struct inode
*inode
= mpd
->inode
;
1439 struct address_space
*mapping
= inode
->i_mapping
;
1441 /* This is necessary when next_page == 0. */
1442 if (mpd
->first_page
>= mpd
->next_page
)
1445 index
= mpd
->first_page
;
1446 end
= mpd
->next_page
- 1;
1448 ext4_lblk_t start
, last
;
1449 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1450 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1451 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1454 pagevec_init(&pvec
, 0);
1455 while (index
<= end
) {
1456 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1459 for (i
= 0; i
< nr_pages
; i
++) {
1460 struct page
*page
= pvec
.pages
[i
];
1461 if (page
->index
> end
)
1463 BUG_ON(!PageLocked(page
));
1464 BUG_ON(PageWriteback(page
));
1466 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1467 ClearPageUptodate(page
);
1471 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1472 pagevec_release(&pvec
);
1476 static void ext4_print_free_blocks(struct inode
*inode
)
1478 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1479 struct super_block
*sb
= inode
->i_sb
;
1480 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1482 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1483 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1484 ext4_count_free_clusters(sb
)));
1485 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1486 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1487 (long long) EXT4_C2B(EXT4_SB(sb
),
1488 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1489 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1490 (long long) EXT4_C2B(EXT4_SB(sb
),
1491 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1492 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1493 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1494 ei
->i_reserved_data_blocks
);
1495 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1496 ei
->i_reserved_meta_blocks
);
1497 ext4_msg(sb
, KERN_CRIT
, "i_allocated_meta_blocks=%u",
1498 ei
->i_allocated_meta_blocks
);
1502 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1504 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1508 * This function is grabs code from the very beginning of
1509 * ext4_map_blocks, but assumes that the caller is from delayed write
1510 * time. This function looks up the requested blocks and sets the
1511 * buffer delay bit under the protection of i_data_sem.
1513 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1514 struct ext4_map_blocks
*map
,
1515 struct buffer_head
*bh
)
1517 struct extent_status es
;
1519 sector_t invalid_block
= ~((sector_t
) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521 struct ext4_map_blocks orig_map
;
1523 memcpy(&orig_map
, map
, sizeof(*map
));
1526 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1532 (unsigned long) map
->m_lblk
);
1534 /* Lookup extent status tree firstly */
1535 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1536 ext4_es_lru_add(inode
);
1537 if (ext4_es_is_hole(&es
)) {
1539 down_read((&EXT4_I(inode
)->i_data_sem
));
1544 * Delayed extent could be allocated by fallocate.
1545 * So we need to check it.
1547 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1548 map_bh(bh
, inode
->i_sb
, invalid_block
);
1550 set_buffer_delay(bh
);
1554 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1555 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1556 if (retval
> map
->m_len
)
1557 retval
= map
->m_len
;
1558 map
->m_len
= retval
;
1559 if (ext4_es_is_written(&es
))
1560 map
->m_flags
|= EXT4_MAP_MAPPED
;
1561 else if (ext4_es_is_unwritten(&es
))
1562 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1566 #ifdef ES_AGGRESSIVE_TEST
1567 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1573 * Try to see if we can get the block without requesting a new
1574 * file system block.
1576 down_read((&EXT4_I(inode
)->i_data_sem
));
1577 if (ext4_has_inline_data(inode
)) {
1579 * We will soon create blocks for this page, and let
1580 * us pretend as if the blocks aren't allocated yet.
1581 * In case of clusters, we have to handle the work
1582 * of mapping from cluster so that the reserved space
1583 * is calculated properly.
1585 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1586 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1587 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1589 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1590 retval
= ext4_ext_map_blocks(NULL
, inode
, map
,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1593 retval
= ext4_ind_map_blocks(NULL
, inode
, map
,
1594 EXT4_GET_BLOCKS_NO_PUT_HOLE
);
1600 * XXX: __block_prepare_write() unmaps passed block,
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1608 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1609 ret
= ext4_da_reserve_space(inode
, iblock
);
1611 /* not enough space to reserve */
1616 ret
= ext4_da_reserve_metadata(inode
, iblock
);
1618 /* not enough space to reserve */
1624 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1625 ~0, EXTENT_STATUS_DELAYED
);
1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 * and it should not appear on the bh->b_state.
1634 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1636 map_bh(bh
, inode
->i_sb
, invalid_block
);
1638 set_buffer_delay(bh
);
1639 } else if (retval
> 0) {
1641 unsigned int status
;
1643 if (unlikely(retval
!= map
->m_len
)) {
1644 ext4_warning(inode
->i_sb
,
1645 "ES len assertion failed for inode "
1646 "%lu: retval %d != map->m_len %d",
1647 inode
->i_ino
, retval
, map
->m_len
);
1651 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1652 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1653 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1654 map
->m_pblk
, status
);
1660 up_read((&EXT4_I(inode
)->i_data_sem
));
1666 * This is a special get_blocks_t callback which is used by
1667 * ext4_da_write_begin(). It will either return mapped block or
1668 * reserve space for a single block.
1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671 * We also have b_blocknr = -1 and b_bdev initialized properly
1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675 * initialized properly.
1677 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1678 struct buffer_head
*bh
, int create
)
1680 struct ext4_map_blocks map
;
1683 BUG_ON(create
== 0);
1684 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1686 map
.m_lblk
= iblock
;
1690 * first, we need to know whether the block is allocated already
1691 * preallocated blocks are unmapped but should treated
1692 * the same as allocated blocks.
1694 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1698 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1699 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1701 if (buffer_unwritten(bh
)) {
1702 /* A delayed write to unwritten bh should be marked
1703 * new and mapped. Mapped ensures that we don't do
1704 * get_block multiple times when we write to the same
1705 * offset and new ensures that we do proper zero out
1706 * for partial write.
1709 set_buffer_mapped(bh
);
1714 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1720 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1726 static int __ext4_journalled_writepage(struct page
*page
,
1729 struct address_space
*mapping
= page
->mapping
;
1730 struct inode
*inode
= mapping
->host
;
1731 struct buffer_head
*page_bufs
= NULL
;
1732 handle_t
*handle
= NULL
;
1733 int ret
= 0, err
= 0;
1734 int inline_data
= ext4_has_inline_data(inode
);
1735 struct buffer_head
*inode_bh
= NULL
;
1737 ClearPageChecked(page
);
1740 BUG_ON(page
->index
!= 0);
1741 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1742 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1743 if (inode_bh
== NULL
)
1746 page_bufs
= page_buffers(page
);
1751 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1754 /* As soon as we unlock the page, it can go away, but we have
1755 * references to buffers so we are safe */
1758 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1759 ext4_writepage_trans_blocks(inode
));
1760 if (IS_ERR(handle
)) {
1761 ret
= PTR_ERR(handle
);
1765 BUG_ON(!ext4_handle_valid(handle
));
1768 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1770 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1773 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1774 do_journal_get_write_access
);
1776 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1781 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1782 err
= ext4_journal_stop(handle
);
1786 if (!ext4_has_inline_data(inode
))
1787 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1789 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1796 * Note that we don't need to start a transaction unless we're journaling data
1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798 * need to file the inode to the transaction's list in ordered mode because if
1799 * we are writing back data added by write(), the inode is already there and if
1800 * we are writing back data modified via mmap(), no one guarantees in which
1801 * transaction the data will hit the disk. In case we are journaling data, we
1802 * cannot start transaction directly because transaction start ranks above page
1803 * lock so we have to do some magic.
1805 * This function can get called via...
1806 * - ext4_writepages after taking page lock (have journal handle)
1807 * - journal_submit_inode_data_buffers (no journal handle)
1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809 * - grab_page_cache when doing write_begin (have journal handle)
1811 * We don't do any block allocation in this function. If we have page with
1812 * multiple blocks we need to write those buffer_heads that are mapped. This
1813 * is important for mmaped based write. So if we do with blocksize 1K
1814 * truncate(f, 1024);
1815 * a = mmap(f, 0, 4096);
1817 * truncate(f, 4096);
1818 * we have in the page first buffer_head mapped via page_mkwrite call back
1819 * but other buffer_heads would be unmapped but dirty (dirty done via the
1820 * do_wp_page). So writepage should write the first block. If we modify
1821 * the mmap area beyond 1024 we will again get a page_fault and the
1822 * page_mkwrite callback will do the block allocation and mark the
1823 * buffer_heads mapped.
1825 * We redirty the page if we have any buffer_heads that is either delay or
1826 * unwritten in the page.
1828 * We can get recursively called as show below.
1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1833 * But since we don't do any block allocation we should not deadlock.
1834 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1836 static int ext4_writepage(struct page
*page
,
1837 struct writeback_control
*wbc
)
1842 struct buffer_head
*page_bufs
= NULL
;
1843 struct inode
*inode
= page
->mapping
->host
;
1844 struct ext4_io_submit io_submit
;
1846 trace_ext4_writepage(page
);
1847 size
= i_size_read(inode
);
1848 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1849 len
= size
& ~PAGE_CACHE_MASK
;
1851 len
= PAGE_CACHE_SIZE
;
1853 page_bufs
= page_buffers(page
);
1855 * We cannot do block allocation or other extent handling in this
1856 * function. If there are buffers needing that, we have to redirty
1857 * the page. But we may reach here when we do a journal commit via
1858 * journal_submit_inode_data_buffers() and in that case we must write
1859 * allocated buffers to achieve data=ordered mode guarantees.
1861 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1862 ext4_bh_delay_or_unwritten
)) {
1863 redirty_page_for_writepage(wbc
, page
);
1864 if (current
->flags
& PF_MEMALLOC
) {
1866 * For memory cleaning there's no point in writing only
1867 * some buffers. So just bail out. Warn if we came here
1868 * from direct reclaim.
1870 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1877 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1879 * It's mmapped pagecache. Add buffers and journal it. There
1880 * doesn't seem much point in redirtying the page here.
1882 return __ext4_journalled_writepage(page
, len
);
1884 ext4_io_submit_init(&io_submit
, wbc
);
1885 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1886 if (!io_submit
.io_end
) {
1887 redirty_page_for_writepage(wbc
, page
);
1891 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
);
1892 ext4_io_submit(&io_submit
);
1893 /* Drop io_end reference we got from init */
1894 ext4_put_io_end_defer(io_submit
.io_end
);
1898 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1901 loff_t size
= i_size_read(mpd
->inode
);
1904 BUG_ON(page
->index
!= mpd
->first_page
);
1905 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1906 len
= size
& ~PAGE_CACHE_MASK
;
1908 len
= PAGE_CACHE_SIZE
;
1909 clear_page_dirty_for_io(page
);
1910 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
);
1912 mpd
->wbc
->nr_to_write
--;
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1921 * mballoc gives us at most this number of blocks...
1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923 * The rest of mballoc seems to handle chunks up to full group size.
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1930 * @mpd - extent of blocks
1931 * @lblk - logical number of the block in the file
1932 * @bh - buffer head we want to add to the extent
1934 * The function is used to collect contig. blocks in the same state. If the
1935 * buffer doesn't require mapping for writeback and we haven't started the
1936 * extent of buffers to map yet, the function returns 'true' immediately - the
1937 * caller can write the buffer right away. Otherwise the function returns true
1938 * if the block has been added to the extent, false if the block couldn't be
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1942 struct buffer_head
*bh
)
1944 struct ext4_map_blocks
*map
= &mpd
->map
;
1946 /* Buffer that doesn't need mapping for writeback? */
1947 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1948 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1949 /* So far no extent to map => we write the buffer right away */
1950 if (map
->m_len
== 0)
1955 /* First block in the extent? */
1956 if (map
->m_len
== 0) {
1959 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
1963 /* Don't go larger than mballoc is willing to allocate */
1964 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
1967 /* Can we merge the block to our big extent? */
1968 if (lblk
== map
->m_lblk
+ map
->m_len
&&
1969 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1979 * @mpd - extent of blocks for mapping
1980 * @head - the first buffer in the page
1981 * @bh - buffer we should start processing from
1982 * @lblk - logical number of the block in the file corresponding to @bh
1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985 * the page for IO if all buffers in this page were mapped and there's no
1986 * accumulated extent of buffers to map or add buffers in the page to the
1987 * extent of buffers to map. The function returns 1 if the caller can continue
1988 * by processing the next page, 0 if it should stop adding buffers to the
1989 * extent to map because we cannot extend it anymore. It can also return value
1990 * < 0 in case of error during IO submission.
1992 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
1993 struct buffer_head
*head
,
1994 struct buffer_head
*bh
,
1997 struct inode
*inode
= mpd
->inode
;
1999 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
2000 >> inode
->i_blkbits
;
2003 BUG_ON(buffer_locked(bh
));
2005 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2006 /* Found extent to map? */
2009 /* Everything mapped so far and we hit EOF */
2012 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2013 /* So far everything mapped? Submit the page for IO. */
2014 if (mpd
->map
.m_len
== 0) {
2015 err
= mpage_submit_page(mpd
, head
->b_page
);
2019 return lblk
< blocks
;
2023 * mpage_map_buffers - update buffers corresponding to changed extent and
2024 * submit fully mapped pages for IO
2026 * @mpd - description of extent to map, on return next extent to map
2028 * Scan buffers corresponding to changed extent (we expect corresponding pages
2029 * to be already locked) and update buffer state according to new extent state.
2030 * We map delalloc buffers to their physical location, clear unwritten bits,
2031 * and mark buffers as uninit when we perform writes to uninitialized extents
2032 * and do extent conversion after IO is finished. If the last page is not fully
2033 * mapped, we update @map to the next extent in the last page that needs
2034 * mapping. Otherwise we submit the page for IO.
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2038 struct pagevec pvec
;
2040 struct inode
*inode
= mpd
->inode
;
2041 struct buffer_head
*head
, *bh
;
2042 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2048 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2049 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2050 lblk
= start
<< bpp_bits
;
2051 pblock
= mpd
->map
.m_pblk
;
2053 pagevec_init(&pvec
, 0);
2054 while (start
<= end
) {
2055 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2059 for (i
= 0; i
< nr_pages
; i
++) {
2060 struct page
*page
= pvec
.pages
[i
];
2062 if (page
->index
> end
)
2064 /* Up to 'end' pages must be contiguous */
2065 BUG_ON(page
->index
!= start
);
2066 bh
= head
= page_buffers(page
);
2068 if (lblk
< mpd
->map
.m_lblk
)
2070 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2072 * Buffer after end of mapped extent.
2073 * Find next buffer in the page to map.
2076 mpd
->map
.m_flags
= 0;
2078 * FIXME: If dioread_nolock supports
2079 * blocksize < pagesize, we need to make
2080 * sure we add size mapped so far to
2081 * io_end->size as the following call
2082 * can submit the page for IO.
2084 err
= mpage_process_page_bufs(mpd
, head
,
2086 pagevec_release(&pvec
);
2091 if (buffer_delay(bh
)) {
2092 clear_buffer_delay(bh
);
2093 bh
->b_blocknr
= pblock
++;
2095 clear_buffer_unwritten(bh
);
2096 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2099 * FIXME: This is going to break if dioread_nolock
2100 * supports blocksize < pagesize as we will try to
2101 * convert potentially unmapped parts of inode.
2103 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2104 /* Page fully mapped - let IO run! */
2105 err
= mpage_submit_page(mpd
, page
);
2107 pagevec_release(&pvec
);
2112 pagevec_release(&pvec
);
2114 /* Extent fully mapped and matches with page boundary. We are done. */
2116 mpd
->map
.m_flags
= 0;
2120 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2122 struct inode
*inode
= mpd
->inode
;
2123 struct ext4_map_blocks
*map
= &mpd
->map
;
2124 int get_blocks_flags
;
2127 trace_ext4_da_write_pages_extent(inode
, map
);
2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130 * to convert an uninitialized extent to be initialized (in the case
2131 * where we have written into one or more preallocated blocks). It is
2132 * possible that we're going to need more metadata blocks than
2133 * previously reserved. However we must not fail because we're in
2134 * writeback and there is nothing we can do about it so it might result
2135 * in data loss. So use reserved blocks to allocate metadata if
2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139 * in question are delalloc blocks. This affects functions in many
2140 * different parts of the allocation call path. This flag exists
2141 * primarily because we don't want to change *many* call functions, so
2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143 * once the inode's allocation semaphore is taken.
2145 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2147 if (ext4_should_dioread_nolock(inode
))
2148 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2149 if (map
->m_flags
& (1 << BH_Delay
))
2150 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2152 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2155 if (map
->m_flags
& EXT4_MAP_UNINIT
) {
2156 if (!mpd
->io_submit
.io_end
->handle
&&
2157 ext4_handle_valid(handle
)) {
2158 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2159 handle
->h_rsv_handle
= NULL
;
2161 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2164 BUG_ON(map
->m_len
== 0);
2165 if (map
->m_flags
& EXT4_MAP_NEW
) {
2166 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2169 for (i
= 0; i
< map
->m_len
; i
++)
2170 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177 * mpd->len and submit pages underlying it for IO
2179 * @handle - handle for journal operations
2180 * @mpd - extent to map
2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184 * them to initialized or split the described range from larger unwritten
2185 * extent. Note that we need not map all the described range since allocation
2186 * can return less blocks or the range is covered by more unwritten extents. We
2187 * cannot map more because we are limited by reserved transaction credits. On
2188 * the other hand we always make sure that the last touched page is fully
2189 * mapped so that it can be written out (and thus forward progress is
2190 * guaranteed). After mapping we submit all mapped pages for IO.
2192 static int mpage_map_and_submit_extent(handle_t
*handle
,
2193 struct mpage_da_data
*mpd
,
2194 bool *give_up_on_write
)
2196 struct inode
*inode
= mpd
->inode
;
2197 struct ext4_map_blocks
*map
= &mpd
->map
;
2201 mpd
->io_submit
.io_end
->offset
=
2202 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2204 err
= mpage_map_one_extent(handle
, mpd
);
2206 struct super_block
*sb
= inode
->i_sb
;
2208 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2209 goto invalidate_dirty_pages
;
2211 * Let the uper layers retry transient errors.
2212 * In the case of ENOSPC, if ext4_count_free_blocks()
2213 * is non-zero, a commit should free up blocks.
2215 if ((err
== -ENOMEM
) ||
2216 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)))
2218 ext4_msg(sb
, KERN_CRIT
,
2219 "Delayed block allocation failed for "
2220 "inode %lu at logical offset %llu with"
2221 " max blocks %u with error %d",
2223 (unsigned long long)map
->m_lblk
,
2224 (unsigned)map
->m_len
, -err
);
2225 ext4_msg(sb
, KERN_CRIT
,
2226 "This should not happen!! Data will "
2229 ext4_print_free_blocks(inode
);
2230 invalidate_dirty_pages
:
2231 *give_up_on_write
= true;
2235 * Update buffer state, submit mapped pages, and get us new
2238 err
= mpage_map_and_submit_buffers(mpd
);
2241 } while (map
->m_len
);
2243 /* Update on-disk size after IO is submitted */
2244 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2245 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2248 ext4_wb_update_i_disksize(inode
, disksize
);
2249 err2
= ext4_mark_inode_dirty(handle
, inode
);
2251 ext4_error(inode
->i_sb
,
2252 "Failed to mark inode %lu dirty",
2261 * Calculate the total number of credits to reserve for one writepages
2262 * iteration. This is called from ext4_writepages(). We map an extent of
2263 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2264 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2265 * bpp - 1 blocks in bpp different extents.
2267 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2269 int bpp
= ext4_journal_blocks_per_page(inode
);
2271 return ext4_meta_trans_blocks(inode
,
2272 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2276 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2277 * and underlying extent to map
2279 * @mpd - where to look for pages
2281 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2282 * IO immediately. When we find a page which isn't mapped we start accumulating
2283 * extent of buffers underlying these pages that needs mapping (formed by
2284 * either delayed or unwritten buffers). We also lock the pages containing
2285 * these buffers. The extent found is returned in @mpd structure (starting at
2286 * mpd->lblk with length mpd->len blocks).
2288 * Note that this function can attach bios to one io_end structure which are
2289 * neither logically nor physically contiguous. Although it may seem as an
2290 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2291 * case as we need to track IO to all buffers underlying a page in one io_end.
2293 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2295 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2296 struct pagevec pvec
;
2297 unsigned int nr_pages
;
2298 pgoff_t index
= mpd
->first_page
;
2299 pgoff_t end
= mpd
->last_page
;
2302 int blkbits
= mpd
->inode
->i_blkbits
;
2304 struct buffer_head
*head
;
2306 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2307 tag
= PAGECACHE_TAG_TOWRITE
;
2309 tag
= PAGECACHE_TAG_DIRTY
;
2311 pagevec_init(&pvec
, 0);
2313 mpd
->next_page
= index
;
2314 while (index
<= end
) {
2315 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2316 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2320 for (i
= 0; i
< nr_pages
; i
++) {
2321 struct page
*page
= pvec
.pages
[i
];
2324 * At this point, the page may be truncated or
2325 * invalidated (changing page->mapping to NULL), or
2326 * even swizzled back from swapper_space to tmpfs file
2327 * mapping. However, page->index will not change
2328 * because we have a reference on the page.
2330 if (page
->index
> end
)
2333 /* If we can't merge this page, we are done. */
2334 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2339 * If the page is no longer dirty, or its mapping no
2340 * longer corresponds to inode we are writing (which
2341 * means it has been truncated or invalidated), or the
2342 * page is already under writeback and we are not doing
2343 * a data integrity writeback, skip the page
2345 if (!PageDirty(page
) ||
2346 (PageWriteback(page
) &&
2347 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2348 unlikely(page
->mapping
!= mapping
)) {
2353 wait_on_page_writeback(page
);
2354 BUG_ON(PageWriteback(page
));
2356 if (mpd
->map
.m_len
== 0)
2357 mpd
->first_page
= page
->index
;
2358 mpd
->next_page
= page
->index
+ 1;
2359 /* Add all dirty buffers to mpd */
2360 lblk
= ((ext4_lblk_t
)page
->index
) <<
2361 (PAGE_CACHE_SHIFT
- blkbits
);
2362 head
= page_buffers(page
);
2363 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2369 * Accumulated enough dirty pages? This doesn't apply
2370 * to WB_SYNC_ALL mode. For integrity sync we have to
2371 * keep going because someone may be concurrently
2372 * dirtying pages, and we might have synced a lot of
2373 * newly appeared dirty pages, but have not synced all
2374 * of the old dirty pages.
2376 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&&
2377 mpd
->next_page
- mpd
->first_page
>=
2378 mpd
->wbc
->nr_to_write
)
2381 pagevec_release(&pvec
);
2386 pagevec_release(&pvec
);
2390 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2393 struct address_space
*mapping
= data
;
2394 int ret
= ext4_writepage(page
, wbc
);
2395 mapping_set_error(mapping
, ret
);
2399 static int ext4_writepages(struct address_space
*mapping
,
2400 struct writeback_control
*wbc
)
2402 pgoff_t writeback_index
= 0;
2403 long nr_to_write
= wbc
->nr_to_write
;
2404 int range_whole
= 0;
2406 handle_t
*handle
= NULL
;
2407 struct mpage_da_data mpd
;
2408 struct inode
*inode
= mapping
->host
;
2409 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2410 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2412 struct blk_plug plug
;
2413 bool give_up_on_write
= false;
2415 trace_ext4_writepages(inode
, wbc
);
2418 * No pages to write? This is mainly a kludge to avoid starting
2419 * a transaction for special inodes like journal inode on last iput()
2420 * because that could violate lock ordering on umount
2422 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2425 if (ext4_should_journal_data(inode
)) {
2426 struct blk_plug plug
;
2429 blk_start_plug(&plug
);
2430 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2431 blk_finish_plug(&plug
);
2436 * If the filesystem has aborted, it is read-only, so return
2437 * right away instead of dumping stack traces later on that
2438 * will obscure the real source of the problem. We test
2439 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2440 * the latter could be true if the filesystem is mounted
2441 * read-only, and in that case, ext4_writepages should
2442 * *never* be called, so if that ever happens, we would want
2445 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2448 if (ext4_should_dioread_nolock(inode
)) {
2450 * We may need to convert up to one extent per block in
2451 * the page and we may dirty the inode.
2453 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2457 * If we have inline data and arrive here, it means that
2458 * we will soon create the block for the 1st page, so
2459 * we'd better clear the inline data here.
2461 if (ext4_has_inline_data(inode
)) {
2462 /* Just inode will be modified... */
2463 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2464 if (IS_ERR(handle
)) {
2465 ret
= PTR_ERR(handle
);
2466 goto out_writepages
;
2468 BUG_ON(ext4_test_inode_state(inode
,
2469 EXT4_STATE_MAY_INLINE_DATA
));
2470 ext4_destroy_inline_data(handle
, inode
);
2471 ext4_journal_stop(handle
);
2474 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2477 if (wbc
->range_cyclic
) {
2478 writeback_index
= mapping
->writeback_index
;
2479 if (writeback_index
)
2481 mpd
.first_page
= writeback_index
;
2484 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2485 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2490 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2492 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2493 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2495 blk_start_plug(&plug
);
2496 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2497 /* For each extent of pages we use new io_end */
2498 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2499 if (!mpd
.io_submit
.io_end
) {
2505 * We have two constraints: We find one extent to map and we
2506 * must always write out whole page (makes a difference when
2507 * blocksize < pagesize) so that we don't block on IO when we
2508 * try to write out the rest of the page. Journalled mode is
2509 * not supported by delalloc.
2511 BUG_ON(ext4_should_journal_data(inode
));
2512 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2514 /* start a new transaction */
2515 handle
= ext4_journal_start_with_reserve(inode
,
2516 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2517 if (IS_ERR(handle
)) {
2518 ret
= PTR_ERR(handle
);
2519 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2520 "%ld pages, ino %lu; err %d", __func__
,
2521 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2522 /* Release allocated io_end */
2523 ext4_put_io_end(mpd
.io_submit
.io_end
);
2527 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2528 ret
= mpage_prepare_extent_to_map(&mpd
);
2531 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2535 * We scanned the whole range (or exhausted
2536 * nr_to_write), submitted what was mapped and
2537 * didn't find anything needing mapping. We are
2543 ext4_journal_stop(handle
);
2544 /* Submit prepared bio */
2545 ext4_io_submit(&mpd
.io_submit
);
2546 /* Unlock pages we didn't use */
2547 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2548 /* Drop our io_end reference we got from init */
2549 ext4_put_io_end(mpd
.io_submit
.io_end
);
2551 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2553 * Commit the transaction which would
2554 * free blocks released in the transaction
2557 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2561 /* Fatal error - ENOMEM, EIO... */
2565 blk_finish_plug(&plug
);
2566 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2568 mpd
.last_page
= writeback_index
- 1;
2574 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2576 * Set the writeback_index so that range_cyclic
2577 * mode will write it back later
2579 mapping
->writeback_index
= mpd
.first_page
;
2582 trace_ext4_writepages_result(inode
, wbc
, ret
,
2583 nr_to_write
- wbc
->nr_to_write
);
2587 static int ext4_nonda_switch(struct super_block
*sb
)
2589 s64 free_clusters
, dirty_clusters
;
2590 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2593 * switch to non delalloc mode if we are running low
2594 * on free block. The free block accounting via percpu
2595 * counters can get slightly wrong with percpu_counter_batch getting
2596 * accumulated on each CPU without updating global counters
2597 * Delalloc need an accurate free block accounting. So switch
2598 * to non delalloc when we are near to error range.
2601 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2603 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2605 * Start pushing delalloc when 1/2 of free blocks are dirty.
2607 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2608 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2610 if (2 * free_clusters
< 3 * dirty_clusters
||
2611 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2613 * free block count is less than 150% of dirty blocks
2614 * or free blocks is less than watermark
2621 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2622 loff_t pos
, unsigned len
, unsigned flags
,
2623 struct page
**pagep
, void **fsdata
)
2625 int ret
, retries
= 0;
2628 struct inode
*inode
= mapping
->host
;
2631 index
= pos
>> PAGE_CACHE_SHIFT
;
2633 if (ext4_nonda_switch(inode
->i_sb
)) {
2634 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2635 return ext4_write_begin(file
, mapping
, pos
,
2636 len
, flags
, pagep
, fsdata
);
2638 *fsdata
= (void *)0;
2639 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2641 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2642 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2652 * grab_cache_page_write_begin() can take a long time if the
2653 * system is thrashing due to memory pressure, or if the page
2654 * is being written back. So grab it first before we start
2655 * the transaction handle. This also allows us to allocate
2656 * the page (if needed) without using GFP_NOFS.
2659 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2665 * With delayed allocation, we don't log the i_disksize update
2666 * if there is delayed block allocation. But we still need
2667 * to journalling the i_disksize update if writes to the end
2668 * of file which has an already mapped buffer.
2671 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, 1);
2672 if (IS_ERR(handle
)) {
2673 page_cache_release(page
);
2674 return PTR_ERR(handle
);
2678 if (page
->mapping
!= mapping
) {
2679 /* The page got truncated from under us */
2681 page_cache_release(page
);
2682 ext4_journal_stop(handle
);
2685 /* In case writeback began while the page was unlocked */
2686 wait_for_stable_page(page
);
2688 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2691 ext4_journal_stop(handle
);
2693 * block_write_begin may have instantiated a few blocks
2694 * outside i_size. Trim these off again. Don't need
2695 * i_size_read because we hold i_mutex.
2697 if (pos
+ len
> inode
->i_size
)
2698 ext4_truncate_failed_write(inode
);
2700 if (ret
== -ENOSPC
&&
2701 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2704 page_cache_release(page
);
2713 * Check if we should update i_disksize
2714 * when write to the end of file but not require block allocation
2716 static int ext4_da_should_update_i_disksize(struct page
*page
,
2717 unsigned long offset
)
2719 struct buffer_head
*bh
;
2720 struct inode
*inode
= page
->mapping
->host
;
2724 bh
= page_buffers(page
);
2725 idx
= offset
>> inode
->i_blkbits
;
2727 for (i
= 0; i
< idx
; i
++)
2728 bh
= bh
->b_this_page
;
2730 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2735 static int ext4_da_write_end(struct file
*file
,
2736 struct address_space
*mapping
,
2737 loff_t pos
, unsigned len
, unsigned copied
,
2738 struct page
*page
, void *fsdata
)
2740 struct inode
*inode
= mapping
->host
;
2742 handle_t
*handle
= ext4_journal_current_handle();
2744 unsigned long start
, end
;
2745 int write_mode
= (int)(unsigned long)fsdata
;
2747 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2748 return ext4_write_end(file
, mapping
, pos
,
2749 len
, copied
, page
, fsdata
);
2751 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2752 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2753 end
= start
+ copied
- 1;
2756 * generic_write_end() will run mark_inode_dirty() if i_size
2757 * changes. So let's piggyback the i_disksize mark_inode_dirty
2760 new_i_size
= pos
+ copied
;
2761 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2762 if (ext4_has_inline_data(inode
) ||
2763 ext4_da_should_update_i_disksize(page
, end
)) {
2764 down_write(&EXT4_I(inode
)->i_data_sem
);
2765 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2766 EXT4_I(inode
)->i_disksize
= new_i_size
;
2767 up_write(&EXT4_I(inode
)->i_data_sem
);
2768 /* We need to mark inode dirty even if
2769 * new_i_size is less that inode->i_size
2770 * bu greater than i_disksize.(hint delalloc)
2772 ext4_mark_inode_dirty(handle
, inode
);
2776 if (write_mode
!= CONVERT_INLINE_DATA
&&
2777 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2778 ext4_has_inline_data(inode
))
2779 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2782 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2788 ret2
= ext4_journal_stop(handle
);
2792 return ret
? ret
: copied
;
2795 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2796 unsigned int length
)
2799 * Drop reserved blocks
2801 BUG_ON(!PageLocked(page
));
2802 if (!page_has_buffers(page
))
2805 ext4_da_page_release_reservation(page
, offset
, length
);
2808 ext4_invalidatepage(page
, offset
, length
);
2814 * Force all delayed allocation blocks to be allocated for a given inode.
2816 int ext4_alloc_da_blocks(struct inode
*inode
)
2818 trace_ext4_alloc_da_blocks(inode
);
2820 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2821 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2825 * We do something simple for now. The filemap_flush() will
2826 * also start triggering a write of the data blocks, which is
2827 * not strictly speaking necessary (and for users of
2828 * laptop_mode, not even desirable). However, to do otherwise
2829 * would require replicating code paths in:
2831 * ext4_writepages() ->
2832 * write_cache_pages() ---> (via passed in callback function)
2833 * __mpage_da_writepage() -->
2834 * mpage_add_bh_to_extent()
2835 * mpage_da_map_blocks()
2837 * The problem is that write_cache_pages(), located in
2838 * mm/page-writeback.c, marks pages clean in preparation for
2839 * doing I/O, which is not desirable if we're not planning on
2842 * We could call write_cache_pages(), and then redirty all of
2843 * the pages by calling redirty_page_for_writepage() but that
2844 * would be ugly in the extreme. So instead we would need to
2845 * replicate parts of the code in the above functions,
2846 * simplifying them because we wouldn't actually intend to
2847 * write out the pages, but rather only collect contiguous
2848 * logical block extents, call the multi-block allocator, and
2849 * then update the buffer heads with the block allocations.
2851 * For now, though, we'll cheat by calling filemap_flush(),
2852 * which will map the blocks, and start the I/O, but not
2853 * actually wait for the I/O to complete.
2855 return filemap_flush(inode
->i_mapping
);
2859 * bmap() is special. It gets used by applications such as lilo and by
2860 * the swapper to find the on-disk block of a specific piece of data.
2862 * Naturally, this is dangerous if the block concerned is still in the
2863 * journal. If somebody makes a swapfile on an ext4 data-journaling
2864 * filesystem and enables swap, then they may get a nasty shock when the
2865 * data getting swapped to that swapfile suddenly gets overwritten by
2866 * the original zero's written out previously to the journal and
2867 * awaiting writeback in the kernel's buffer cache.
2869 * So, if we see any bmap calls here on a modified, data-journaled file,
2870 * take extra steps to flush any blocks which might be in the cache.
2872 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2874 struct inode
*inode
= mapping
->host
;
2879 * We can get here for an inline file via the FIBMAP ioctl
2881 if (ext4_has_inline_data(inode
))
2884 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2885 test_opt(inode
->i_sb
, DELALLOC
)) {
2887 * With delalloc we want to sync the file
2888 * so that we can make sure we allocate
2891 filemap_write_and_wait(mapping
);
2894 if (EXT4_JOURNAL(inode
) &&
2895 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2897 * This is a REALLY heavyweight approach, but the use of
2898 * bmap on dirty files is expected to be extremely rare:
2899 * only if we run lilo or swapon on a freshly made file
2900 * do we expect this to happen.
2902 * (bmap requires CAP_SYS_RAWIO so this does not
2903 * represent an unprivileged user DOS attack --- we'd be
2904 * in trouble if mortal users could trigger this path at
2907 * NB. EXT4_STATE_JDATA is not set on files other than
2908 * regular files. If somebody wants to bmap a directory
2909 * or symlink and gets confused because the buffer
2910 * hasn't yet been flushed to disk, they deserve
2911 * everything they get.
2914 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2915 journal
= EXT4_JOURNAL(inode
);
2916 jbd2_journal_lock_updates(journal
);
2917 err
= jbd2_journal_flush(journal
);
2918 jbd2_journal_unlock_updates(journal
);
2924 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2927 static int ext4_readpage(struct file
*file
, struct page
*page
)
2930 struct inode
*inode
= page
->mapping
->host
;
2932 trace_ext4_readpage(page
);
2934 if (ext4_has_inline_data(inode
))
2935 ret
= ext4_readpage_inline(inode
, page
);
2938 return mpage_readpage(page
, ext4_get_block
);
2944 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2945 struct list_head
*pages
, unsigned nr_pages
)
2947 struct inode
*inode
= mapping
->host
;
2949 /* If the file has inline data, no need to do readpages. */
2950 if (ext4_has_inline_data(inode
))
2953 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2956 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
2957 unsigned int length
)
2959 trace_ext4_invalidatepage(page
, offset
, length
);
2961 /* No journalling happens on data buffers when this function is used */
2962 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
2964 block_invalidatepage(page
, offset
, length
);
2967 static int __ext4_journalled_invalidatepage(struct page
*page
,
2968 unsigned int offset
,
2969 unsigned int length
)
2971 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2973 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
2976 * If it's a full truncate we just forget about the pending dirtying
2978 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
2979 ClearPageChecked(page
);
2981 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
2984 /* Wrapper for aops... */
2985 static void ext4_journalled_invalidatepage(struct page
*page
,
2986 unsigned int offset
,
2987 unsigned int length
)
2989 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
2992 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2994 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2996 trace_ext4_releasepage(page
);
2998 /* Page has dirty journalled data -> cannot release */
2999 if (PageChecked(page
))
3002 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3004 return try_to_free_buffers(page
);
3008 * ext4_get_block used when preparing for a DIO write or buffer write.
3009 * We allocate an uinitialized extent if blocks haven't been allocated.
3010 * The extent will be converted to initialized after the IO is complete.
3012 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3013 struct buffer_head
*bh_result
, int create
)
3015 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3016 inode
->i_ino
, create
);
3017 return _ext4_get_block(inode
, iblock
, bh_result
,
3018 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3021 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3022 struct buffer_head
*bh_result
, int create
)
3024 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3025 inode
->i_ino
, create
);
3026 return _ext4_get_block(inode
, iblock
, bh_result
,
3027 EXT4_GET_BLOCKS_NO_LOCK
);
3030 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3031 ssize_t size
, void *private)
3033 ext4_io_end_t
*io_end
= iocb
->private;
3035 /* if not async direct IO just return */
3039 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3040 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3041 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3044 iocb
->private = NULL
;
3045 io_end
->offset
= offset
;
3046 io_end
->size
= size
;
3047 ext4_put_io_end(io_end
);
3051 * For ext4 extent files, ext4 will do direct-io write to holes,
3052 * preallocated extents, and those write extend the file, no need to
3053 * fall back to buffered IO.
3055 * For holes, we fallocate those blocks, mark them as uninitialized
3056 * If those blocks were preallocated, we mark sure they are split, but
3057 * still keep the range to write as uninitialized.
3059 * The unwritten extents will be converted to written when DIO is completed.
3060 * For async direct IO, since the IO may still pending when return, we
3061 * set up an end_io call back function, which will do the conversion
3062 * when async direct IO completed.
3064 * If the O_DIRECT write will extend the file then add this inode to the
3065 * orphan list. So recovery will truncate it back to the original size
3066 * if the machine crashes during the write.
3069 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3070 const struct iovec
*iov
, loff_t offset
,
3071 unsigned long nr_segs
)
3073 struct file
*file
= iocb
->ki_filp
;
3074 struct inode
*inode
= file
->f_mapping
->host
;
3076 size_t count
= iov_length(iov
, nr_segs
);
3078 get_block_t
*get_block_func
= NULL
;
3080 loff_t final_size
= offset
+ count
;
3081 ext4_io_end_t
*io_end
= NULL
;
3083 /* Use the old path for reads and writes beyond i_size. */
3084 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3085 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3087 BUG_ON(iocb
->private == NULL
);
3090 * Make all waiters for direct IO properly wait also for extent
3091 * conversion. This also disallows race between truncate() and
3092 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3095 atomic_inc(&inode
->i_dio_count
);
3097 /* If we do a overwrite dio, i_mutex locking can be released */
3098 overwrite
= *((int *)iocb
->private);
3101 down_read(&EXT4_I(inode
)->i_data_sem
);
3102 mutex_unlock(&inode
->i_mutex
);
3106 * We could direct write to holes and fallocate.
3108 * Allocated blocks to fill the hole are marked as
3109 * uninitialized to prevent parallel buffered read to expose
3110 * the stale data before DIO complete the data IO.
3112 * As to previously fallocated extents, ext4 get_block will
3113 * just simply mark the buffer mapped but still keep the
3114 * extents uninitialized.
3116 * For non AIO case, we will convert those unwritten extents
3117 * to written after return back from blockdev_direct_IO.
3119 * For async DIO, the conversion needs to be deferred when the
3120 * IO is completed. The ext4 end_io callback function will be
3121 * called to take care of the conversion work. Here for async
3122 * case, we allocate an io_end structure to hook to the iocb.
3124 iocb
->private = NULL
;
3125 ext4_inode_aio_set(inode
, NULL
);
3126 if (!is_sync_kiocb(iocb
)) {
3127 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3133 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3135 iocb
->private = ext4_get_io_end(io_end
);
3137 * we save the io structure for current async direct
3138 * IO, so that later ext4_map_blocks() could flag the
3139 * io structure whether there is a unwritten extents
3140 * needs to be converted when IO is completed.
3142 ext4_inode_aio_set(inode
, io_end
);
3146 get_block_func
= ext4_get_block_write_nolock
;
3148 get_block_func
= ext4_get_block_write
;
3149 dio_flags
= DIO_LOCKING
;
3151 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3152 inode
->i_sb
->s_bdev
, iov
,
3160 * Put our reference to io_end. This can free the io_end structure e.g.
3161 * in sync IO case or in case of error. It can even perform extent
3162 * conversion if all bios we submitted finished before we got here.
3163 * Note that in that case iocb->private can be already set to NULL
3167 ext4_inode_aio_set(inode
, NULL
);
3168 ext4_put_io_end(io_end
);
3170 * When no IO was submitted ext4_end_io_dio() was not
3171 * called so we have to put iocb's reference.
3173 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3174 WARN_ON(iocb
->private != io_end
);
3175 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3176 ext4_put_io_end(io_end
);
3177 iocb
->private = NULL
;
3180 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3181 EXT4_STATE_DIO_UNWRITTEN
)) {
3184 * for non AIO case, since the IO is already
3185 * completed, we could do the conversion right here
3187 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3191 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3196 inode_dio_done(inode
);
3197 /* take i_mutex locking again if we do a ovewrite dio */
3199 up_read(&EXT4_I(inode
)->i_data_sem
);
3200 mutex_lock(&inode
->i_mutex
);
3206 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3207 const struct iovec
*iov
, loff_t offset
,
3208 unsigned long nr_segs
)
3210 struct file
*file
= iocb
->ki_filp
;
3211 struct inode
*inode
= file
->f_mapping
->host
;
3215 * If we are doing data journalling we don't support O_DIRECT
3217 if (ext4_should_journal_data(inode
))
3220 /* Let buffer I/O handle the inline data case. */
3221 if (ext4_has_inline_data(inode
))
3224 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3225 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3226 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3228 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3229 trace_ext4_direct_IO_exit(inode
, offset
,
3230 iov_length(iov
, nr_segs
), rw
, ret
);
3235 * Pages can be marked dirty completely asynchronously from ext4's journalling
3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3237 * much here because ->set_page_dirty is called under VFS locks. The page is
3238 * not necessarily locked.
3240 * We cannot just dirty the page and leave attached buffers clean, because the
3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3242 * or jbddirty because all the journalling code will explode.
3244 * So what we do is to mark the page "pending dirty" and next time writepage
3245 * is called, propagate that into the buffers appropriately.
3247 static int ext4_journalled_set_page_dirty(struct page
*page
)
3249 SetPageChecked(page
);
3250 return __set_page_dirty_nobuffers(page
);
3253 static const struct address_space_operations ext4_aops
= {
3254 .readpage
= ext4_readpage
,
3255 .readpages
= ext4_readpages
,
3256 .writepage
= ext4_writepage
,
3257 .writepages
= ext4_writepages
,
3258 .write_begin
= ext4_write_begin
,
3259 .write_end
= ext4_write_end
,
3261 .invalidatepage
= ext4_invalidatepage
,
3262 .releasepage
= ext4_releasepage
,
3263 .direct_IO
= ext4_direct_IO
,
3264 .migratepage
= buffer_migrate_page
,
3265 .is_partially_uptodate
= block_is_partially_uptodate
,
3266 .error_remove_page
= generic_error_remove_page
,
3269 static const struct address_space_operations ext4_journalled_aops
= {
3270 .readpage
= ext4_readpage
,
3271 .readpages
= ext4_readpages
,
3272 .writepage
= ext4_writepage
,
3273 .writepages
= ext4_writepages
,
3274 .write_begin
= ext4_write_begin
,
3275 .write_end
= ext4_journalled_write_end
,
3276 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3278 .invalidatepage
= ext4_journalled_invalidatepage
,
3279 .releasepage
= ext4_releasepage
,
3280 .direct_IO
= ext4_direct_IO
,
3281 .is_partially_uptodate
= block_is_partially_uptodate
,
3282 .error_remove_page
= generic_error_remove_page
,
3285 static const struct address_space_operations ext4_da_aops
= {
3286 .readpage
= ext4_readpage
,
3287 .readpages
= ext4_readpages
,
3288 .writepage
= ext4_writepage
,
3289 .writepages
= ext4_writepages
,
3290 .write_begin
= ext4_da_write_begin
,
3291 .write_end
= ext4_da_write_end
,
3293 .invalidatepage
= ext4_da_invalidatepage
,
3294 .releasepage
= ext4_releasepage
,
3295 .direct_IO
= ext4_direct_IO
,
3296 .migratepage
= buffer_migrate_page
,
3297 .is_partially_uptodate
= block_is_partially_uptodate
,
3298 .error_remove_page
= generic_error_remove_page
,
3301 void ext4_set_aops(struct inode
*inode
)
3303 switch (ext4_inode_journal_mode(inode
)) {
3304 case EXT4_INODE_ORDERED_DATA_MODE
:
3305 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3307 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3308 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3310 case EXT4_INODE_JOURNAL_DATA_MODE
:
3311 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3316 if (test_opt(inode
->i_sb
, DELALLOC
))
3317 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3319 inode
->i_mapping
->a_ops
= &ext4_aops
;
3323 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3324 * up to the end of the block which corresponds to `from'.
3325 * This required during truncate. We need to physically zero the tail end
3326 * of that block so it doesn't yield old data if the file is later grown.
3328 int ext4_block_truncate_page(handle_t
*handle
,
3329 struct address_space
*mapping
, loff_t from
)
3331 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3334 struct inode
*inode
= mapping
->host
;
3336 blocksize
= inode
->i_sb
->s_blocksize
;
3337 length
= blocksize
- (offset
& (blocksize
- 1));
3339 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3343 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3344 * starting from file offset 'from'. The range to be zero'd must
3345 * be contained with in one block. If the specified range exceeds
3346 * the end of the block it will be shortened to end of the block
3347 * that cooresponds to 'from'
3349 int ext4_block_zero_page_range(handle_t
*handle
,
3350 struct address_space
*mapping
, loff_t from
, loff_t length
)
3352 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3353 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3354 unsigned blocksize
, max
, pos
;
3356 struct inode
*inode
= mapping
->host
;
3357 struct buffer_head
*bh
;
3361 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3362 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3366 blocksize
= inode
->i_sb
->s_blocksize
;
3367 max
= blocksize
- (offset
& (blocksize
- 1));
3370 * correct length if it does not fall between
3371 * 'from' and the end of the block
3373 if (length
> max
|| length
< 0)
3376 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3378 if (!page_has_buffers(page
))
3379 create_empty_buffers(page
, blocksize
, 0);
3381 /* Find the buffer that contains "offset" */
3382 bh
= page_buffers(page
);
3384 while (offset
>= pos
) {
3385 bh
= bh
->b_this_page
;
3389 if (buffer_freed(bh
)) {
3390 BUFFER_TRACE(bh
, "freed: skip");
3393 if (!buffer_mapped(bh
)) {
3394 BUFFER_TRACE(bh
, "unmapped");
3395 ext4_get_block(inode
, iblock
, bh
, 0);
3396 /* unmapped? It's a hole - nothing to do */
3397 if (!buffer_mapped(bh
)) {
3398 BUFFER_TRACE(bh
, "still unmapped");
3403 /* Ok, it's mapped. Make sure it's up-to-date */
3404 if (PageUptodate(page
))
3405 set_buffer_uptodate(bh
);
3407 if (!buffer_uptodate(bh
)) {
3409 ll_rw_block(READ
, 1, &bh
);
3411 /* Uhhuh. Read error. Complain and punt. */
3412 if (!buffer_uptodate(bh
))
3415 if (ext4_should_journal_data(inode
)) {
3416 BUFFER_TRACE(bh
, "get write access");
3417 err
= ext4_journal_get_write_access(handle
, bh
);
3421 zero_user(page
, offset
, length
);
3422 BUFFER_TRACE(bh
, "zeroed end of block");
3424 if (ext4_should_journal_data(inode
)) {
3425 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3428 mark_buffer_dirty(bh
);
3429 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3430 err
= ext4_jbd2_file_inode(handle
, inode
);
3435 page_cache_release(page
);
3439 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3440 loff_t lstart
, loff_t length
)
3442 struct super_block
*sb
= inode
->i_sb
;
3443 struct address_space
*mapping
= inode
->i_mapping
;
3444 unsigned partial_start
, partial_end
;
3445 ext4_fsblk_t start
, end
;
3446 loff_t byte_end
= (lstart
+ length
- 1);
3449 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3450 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3452 start
= lstart
>> sb
->s_blocksize_bits
;
3453 end
= byte_end
>> sb
->s_blocksize_bits
;
3455 /* Handle partial zero within the single block */
3457 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3458 err
= ext4_block_zero_page_range(handle
, mapping
,
3462 /* Handle partial zero out on the start of the range */
3463 if (partial_start
) {
3464 err
= ext4_block_zero_page_range(handle
, mapping
,
3465 lstart
, sb
->s_blocksize
);
3469 /* Handle partial zero out on the end of the range */
3470 if (partial_end
!= sb
->s_blocksize
- 1)
3471 err
= ext4_block_zero_page_range(handle
, mapping
,
3472 byte_end
- partial_end
,
3477 int ext4_can_truncate(struct inode
*inode
)
3479 if (S_ISREG(inode
->i_mode
))
3481 if (S_ISDIR(inode
->i_mode
))
3483 if (S_ISLNK(inode
->i_mode
))
3484 return !ext4_inode_is_fast_symlink(inode
);
3489 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3490 * associated with the given offset and length
3492 * @inode: File inode
3493 * @offset: The offset where the hole will begin
3494 * @len: The length of the hole
3496 * Returns: 0 on success or negative on failure
3499 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3501 struct super_block
*sb
= inode
->i_sb
;
3502 ext4_lblk_t first_block
, stop_block
;
3503 struct address_space
*mapping
= inode
->i_mapping
;
3504 loff_t first_block_offset
, last_block_offset
;
3506 unsigned int credits
;
3509 if (!S_ISREG(inode
->i_mode
))
3512 if (EXT4_SB(sb
)->s_cluster_ratio
> 1) {
3513 /* TODO: Add support for bigalloc file systems */
3517 trace_ext4_punch_hole(inode
, offset
, length
);
3520 * Write out all dirty pages to avoid race conditions
3521 * Then release them.
3523 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3524 ret
= filemap_write_and_wait_range(mapping
, offset
,
3525 offset
+ length
- 1);
3530 mutex_lock(&inode
->i_mutex
);
3531 /* It's not possible punch hole on append only file */
3532 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
3536 if (IS_SWAPFILE(inode
)) {
3541 /* No need to punch hole beyond i_size */
3542 if (offset
>= inode
->i_size
)
3546 * If the hole extends beyond i_size, set the hole
3547 * to end after the page that contains i_size
3549 if (offset
+ length
> inode
->i_size
) {
3550 length
= inode
->i_size
+
3551 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3555 if (offset
& (sb
->s_blocksize
- 1) ||
3556 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3558 * Attach jinode to inode for jbd2 if we do any zeroing of
3561 ret
= ext4_inode_attach_jinode(inode
);
3567 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3568 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3570 /* Now release the pages and zero block aligned part of pages*/
3571 if (last_block_offset
> first_block_offset
)
3572 truncate_pagecache_range(inode
, first_block_offset
,
3575 /* Wait all existing dio workers, newcomers will block on i_mutex */
3576 ext4_inode_block_unlocked_dio(inode
);
3577 inode_dio_wait(inode
);
3579 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3580 credits
= ext4_writepage_trans_blocks(inode
);
3582 credits
= ext4_blocks_for_truncate(inode
);
3583 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3584 if (IS_ERR(handle
)) {
3585 ret
= PTR_ERR(handle
);
3586 ext4_std_error(sb
, ret
);
3590 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3595 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3596 EXT4_BLOCK_SIZE_BITS(sb
);
3597 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3599 /* If there are no blocks to remove, return now */
3600 if (first_block
>= stop_block
)
3603 down_write(&EXT4_I(inode
)->i_data_sem
);
3604 ext4_discard_preallocations(inode
);
3606 ret
= ext4_es_remove_extent(inode
, first_block
,
3607 stop_block
- first_block
);
3609 up_write(&EXT4_I(inode
)->i_data_sem
);
3613 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3614 ret
= ext4_ext_remove_space(inode
, first_block
,
3617 ret
= ext4_free_hole_blocks(handle
, inode
, first_block
,
3620 ext4_discard_preallocations(inode
);
3621 up_write(&EXT4_I(inode
)->i_data_sem
);
3623 ext4_handle_sync(handle
);
3624 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3625 ext4_mark_inode_dirty(handle
, inode
);
3627 ext4_journal_stop(handle
);
3629 ext4_inode_resume_unlocked_dio(inode
);
3631 mutex_unlock(&inode
->i_mutex
);
3635 int ext4_inode_attach_jinode(struct inode
*inode
)
3637 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3638 struct jbd2_inode
*jinode
;
3640 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3643 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3644 spin_lock(&inode
->i_lock
);
3647 spin_unlock(&inode
->i_lock
);
3650 ei
->jinode
= jinode
;
3651 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3654 spin_unlock(&inode
->i_lock
);
3655 if (unlikely(jinode
!= NULL
))
3656 jbd2_free_inode(jinode
);
3663 * We block out ext4_get_block() block instantiations across the entire
3664 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3665 * simultaneously on behalf of the same inode.
3667 * As we work through the truncate and commit bits of it to the journal there
3668 * is one core, guiding principle: the file's tree must always be consistent on
3669 * disk. We must be able to restart the truncate after a crash.
3671 * The file's tree may be transiently inconsistent in memory (although it
3672 * probably isn't), but whenever we close off and commit a journal transaction,
3673 * the contents of (the filesystem + the journal) must be consistent and
3674 * restartable. It's pretty simple, really: bottom up, right to left (although
3675 * left-to-right works OK too).
3677 * Note that at recovery time, journal replay occurs *before* the restart of
3678 * truncate against the orphan inode list.
3680 * The committed inode has the new, desired i_size (which is the same as
3681 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3682 * that this inode's truncate did not complete and it will again call
3683 * ext4_truncate() to have another go. So there will be instantiated blocks
3684 * to the right of the truncation point in a crashed ext4 filesystem. But
3685 * that's fine - as long as they are linked from the inode, the post-crash
3686 * ext4_truncate() run will find them and release them.
3688 void ext4_truncate(struct inode
*inode
)
3690 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3691 unsigned int credits
;
3693 struct address_space
*mapping
= inode
->i_mapping
;
3696 * There is a possibility that we're either freeing the inode
3697 * or it completely new indode. In those cases we might not
3698 * have i_mutex locked because it's not necessary.
3700 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3701 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3702 trace_ext4_truncate_enter(inode
);
3704 if (!ext4_can_truncate(inode
))
3707 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3709 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3710 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3712 if (ext4_has_inline_data(inode
)) {
3715 ext4_inline_data_truncate(inode
, &has_inline
);
3720 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3721 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3722 if (ext4_inode_attach_jinode(inode
) < 0)
3726 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3727 credits
= ext4_writepage_trans_blocks(inode
);
3729 credits
= ext4_blocks_for_truncate(inode
);
3731 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3732 if (IS_ERR(handle
)) {
3733 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3737 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3738 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3741 * We add the inode to the orphan list, so that if this
3742 * truncate spans multiple transactions, and we crash, we will
3743 * resume the truncate when the filesystem recovers. It also
3744 * marks the inode dirty, to catch the new size.
3746 * Implication: the file must always be in a sane, consistent
3747 * truncatable state while each transaction commits.
3749 if (ext4_orphan_add(handle
, inode
))
3752 down_write(&EXT4_I(inode
)->i_data_sem
);
3754 ext4_discard_preallocations(inode
);
3756 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3757 ext4_ext_truncate(handle
, inode
);
3759 ext4_ind_truncate(handle
, inode
);
3761 up_write(&ei
->i_data_sem
);
3764 ext4_handle_sync(handle
);
3768 * If this was a simple ftruncate() and the file will remain alive,
3769 * then we need to clear up the orphan record which we created above.
3770 * However, if this was a real unlink then we were called by
3771 * ext4_delete_inode(), and we allow that function to clean up the
3772 * orphan info for us.
3775 ext4_orphan_del(handle
, inode
);
3777 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3778 ext4_mark_inode_dirty(handle
, inode
);
3779 ext4_journal_stop(handle
);
3781 trace_ext4_truncate_exit(inode
);
3785 * ext4_get_inode_loc returns with an extra refcount against the inode's
3786 * underlying buffer_head on success. If 'in_mem' is true, we have all
3787 * data in memory that is needed to recreate the on-disk version of this
3790 static int __ext4_get_inode_loc(struct inode
*inode
,
3791 struct ext4_iloc
*iloc
, int in_mem
)
3793 struct ext4_group_desc
*gdp
;
3794 struct buffer_head
*bh
;
3795 struct super_block
*sb
= inode
->i_sb
;
3797 int inodes_per_block
, inode_offset
;
3800 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3803 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3804 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3809 * Figure out the offset within the block group inode table
3811 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3812 inode_offset
= ((inode
->i_ino
- 1) %
3813 EXT4_INODES_PER_GROUP(sb
));
3814 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3815 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3817 bh
= sb_getblk(sb
, block
);
3820 if (!buffer_uptodate(bh
)) {
3824 * If the buffer has the write error flag, we have failed
3825 * to write out another inode in the same block. In this
3826 * case, we don't have to read the block because we may
3827 * read the old inode data successfully.
3829 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3830 set_buffer_uptodate(bh
);
3832 if (buffer_uptodate(bh
)) {
3833 /* someone brought it uptodate while we waited */
3839 * If we have all information of the inode in memory and this
3840 * is the only valid inode in the block, we need not read the
3844 struct buffer_head
*bitmap_bh
;
3847 start
= inode_offset
& ~(inodes_per_block
- 1);
3849 /* Is the inode bitmap in cache? */
3850 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3851 if (unlikely(!bitmap_bh
))
3855 * If the inode bitmap isn't in cache then the
3856 * optimisation may end up performing two reads instead
3857 * of one, so skip it.
3859 if (!buffer_uptodate(bitmap_bh
)) {
3863 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3864 if (i
== inode_offset
)
3866 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3870 if (i
== start
+ inodes_per_block
) {
3871 /* all other inodes are free, so skip I/O */
3872 memset(bh
->b_data
, 0, bh
->b_size
);
3873 set_buffer_uptodate(bh
);
3881 * If we need to do any I/O, try to pre-readahead extra
3882 * blocks from the inode table.
3884 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3885 ext4_fsblk_t b
, end
, table
;
3887 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3889 table
= ext4_inode_table(sb
, gdp
);
3890 /* s_inode_readahead_blks is always a power of 2 */
3891 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
3895 num
= EXT4_INODES_PER_GROUP(sb
);
3896 if (ext4_has_group_desc_csum(sb
))
3897 num
-= ext4_itable_unused_count(sb
, gdp
);
3898 table
+= num
/ inodes_per_block
;
3902 sb_breadahead(sb
, b
++);
3906 * There are other valid inodes in the buffer, this inode
3907 * has in-inode xattrs, or we don't have this inode in memory.
3908 * Read the block from disk.
3910 trace_ext4_load_inode(inode
);
3912 bh
->b_end_io
= end_buffer_read_sync
;
3913 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3915 if (!buffer_uptodate(bh
)) {
3916 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3917 "unable to read itable block");
3927 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3929 /* We have all inode data except xattrs in memory here. */
3930 return __ext4_get_inode_loc(inode
, iloc
,
3931 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3934 void ext4_set_inode_flags(struct inode
*inode
)
3936 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3938 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3939 if (flags
& EXT4_SYNC_FL
)
3940 inode
->i_flags
|= S_SYNC
;
3941 if (flags
& EXT4_APPEND_FL
)
3942 inode
->i_flags
|= S_APPEND
;
3943 if (flags
& EXT4_IMMUTABLE_FL
)
3944 inode
->i_flags
|= S_IMMUTABLE
;
3945 if (flags
& EXT4_NOATIME_FL
)
3946 inode
->i_flags
|= S_NOATIME
;
3947 if (flags
& EXT4_DIRSYNC_FL
)
3948 inode
->i_flags
|= S_DIRSYNC
;
3951 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3952 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3954 unsigned int vfs_fl
;
3955 unsigned long old_fl
, new_fl
;
3958 vfs_fl
= ei
->vfs_inode
.i_flags
;
3959 old_fl
= ei
->i_flags
;
3960 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3961 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3963 if (vfs_fl
& S_SYNC
)
3964 new_fl
|= EXT4_SYNC_FL
;
3965 if (vfs_fl
& S_APPEND
)
3966 new_fl
|= EXT4_APPEND_FL
;
3967 if (vfs_fl
& S_IMMUTABLE
)
3968 new_fl
|= EXT4_IMMUTABLE_FL
;
3969 if (vfs_fl
& S_NOATIME
)
3970 new_fl
|= EXT4_NOATIME_FL
;
3971 if (vfs_fl
& S_DIRSYNC
)
3972 new_fl
|= EXT4_DIRSYNC_FL
;
3973 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3976 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3977 struct ext4_inode_info
*ei
)
3980 struct inode
*inode
= &(ei
->vfs_inode
);
3981 struct super_block
*sb
= inode
->i_sb
;
3983 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3984 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3985 /* we are using combined 48 bit field */
3986 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3987 le32_to_cpu(raw_inode
->i_blocks_lo
);
3988 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3989 /* i_blocks represent file system block size */
3990 return i_blocks
<< (inode
->i_blkbits
- 9);
3995 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3999 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4000 struct ext4_inode
*raw_inode
,
4001 struct ext4_inode_info
*ei
)
4003 __le32
*magic
= (void *)raw_inode
+
4004 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4005 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4006 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4007 ext4_find_inline_data_nolock(inode
);
4009 EXT4_I(inode
)->i_inline_off
= 0;
4012 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4014 struct ext4_iloc iloc
;
4015 struct ext4_inode
*raw_inode
;
4016 struct ext4_inode_info
*ei
;
4017 struct inode
*inode
;
4018 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4024 inode
= iget_locked(sb
, ino
);
4026 return ERR_PTR(-ENOMEM
);
4027 if (!(inode
->i_state
& I_NEW
))
4033 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4036 raw_inode
= ext4_raw_inode(&iloc
);
4038 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4039 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4040 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4041 EXT4_INODE_SIZE(inode
->i_sb
)) {
4042 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4043 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4044 EXT4_INODE_SIZE(inode
->i_sb
));
4049 ei
->i_extra_isize
= 0;
4051 /* Precompute checksum seed for inode metadata */
4052 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4053 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
4054 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4056 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4057 __le32 gen
= raw_inode
->i_generation
;
4058 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4060 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4064 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4065 EXT4_ERROR_INODE(inode
, "checksum invalid");
4070 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4071 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4072 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4073 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4074 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4075 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4077 i_uid_write(inode
, i_uid
);
4078 i_gid_write(inode
, i_gid
);
4079 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4081 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4082 ei
->i_inline_off
= 0;
4083 ei
->i_dir_start_lookup
= 0;
4084 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4085 /* We now have enough fields to check if the inode was active or not.
4086 * This is needed because nfsd might try to access dead inodes
4087 * the test is that same one that e2fsck uses
4088 * NeilBrown 1999oct15
4090 if (inode
->i_nlink
== 0) {
4091 if ((inode
->i_mode
== 0 ||
4092 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4093 ino
!= EXT4_BOOT_LOADER_INO
) {
4094 /* this inode is deleted */
4098 /* The only unlinked inodes we let through here have
4099 * valid i_mode and are being read by the orphan
4100 * recovery code: that's fine, we're about to complete
4101 * the process of deleting those.
4102 * OR it is the EXT4_BOOT_LOADER_INO which is
4103 * not initialized on a new filesystem. */
4105 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4106 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4107 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4108 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4110 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4111 inode
->i_size
= ext4_isize(raw_inode
);
4112 ei
->i_disksize
= inode
->i_size
;
4114 ei
->i_reserved_quota
= 0;
4116 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4117 ei
->i_block_group
= iloc
.block_group
;
4118 ei
->i_last_alloc_group
= ~0;
4120 * NOTE! The in-memory inode i_data array is in little-endian order
4121 * even on big-endian machines: we do NOT byteswap the block numbers!
4123 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4124 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4125 INIT_LIST_HEAD(&ei
->i_orphan
);
4128 * Set transaction id's of transactions that have to be committed
4129 * to finish f[data]sync. We set them to currently running transaction
4130 * as we cannot be sure that the inode or some of its metadata isn't
4131 * part of the transaction - the inode could have been reclaimed and
4132 * now it is reread from disk.
4135 transaction_t
*transaction
;
4138 read_lock(&journal
->j_state_lock
);
4139 if (journal
->j_running_transaction
)
4140 transaction
= journal
->j_running_transaction
;
4142 transaction
= journal
->j_committing_transaction
;
4144 tid
= transaction
->t_tid
;
4146 tid
= journal
->j_commit_sequence
;
4147 read_unlock(&journal
->j_state_lock
);
4148 ei
->i_sync_tid
= tid
;
4149 ei
->i_datasync_tid
= tid
;
4152 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4153 if (ei
->i_extra_isize
== 0) {
4154 /* The extra space is currently unused. Use it. */
4155 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4156 EXT4_GOOD_OLD_INODE_SIZE
;
4158 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4162 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4163 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4164 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4165 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4167 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4168 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4169 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4171 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4175 if (ei
->i_file_acl
&&
4176 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4177 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4181 } else if (!ext4_has_inline_data(inode
)) {
4182 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4183 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4184 (S_ISLNK(inode
->i_mode
) &&
4185 !ext4_inode_is_fast_symlink(inode
))))
4186 /* Validate extent which is part of inode */
4187 ret
= ext4_ext_check_inode(inode
);
4188 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4189 (S_ISLNK(inode
->i_mode
) &&
4190 !ext4_inode_is_fast_symlink(inode
))) {
4191 /* Validate block references which are part of inode */
4192 ret
= ext4_ind_check_inode(inode
);
4198 if (S_ISREG(inode
->i_mode
)) {
4199 inode
->i_op
= &ext4_file_inode_operations
;
4200 inode
->i_fop
= &ext4_file_operations
;
4201 ext4_set_aops(inode
);
4202 } else if (S_ISDIR(inode
->i_mode
)) {
4203 inode
->i_op
= &ext4_dir_inode_operations
;
4204 inode
->i_fop
= &ext4_dir_operations
;
4205 } else if (S_ISLNK(inode
->i_mode
)) {
4206 if (ext4_inode_is_fast_symlink(inode
)) {
4207 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4208 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4209 sizeof(ei
->i_data
) - 1);
4211 inode
->i_op
= &ext4_symlink_inode_operations
;
4212 ext4_set_aops(inode
);
4214 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4215 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4216 inode
->i_op
= &ext4_special_inode_operations
;
4217 if (raw_inode
->i_block
[0])
4218 init_special_inode(inode
, inode
->i_mode
,
4219 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4221 init_special_inode(inode
, inode
->i_mode
,
4222 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4223 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4224 make_bad_inode(inode
);
4227 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4231 ext4_set_inode_flags(inode
);
4232 unlock_new_inode(inode
);
4238 return ERR_PTR(ret
);
4241 static int ext4_inode_blocks_set(handle_t
*handle
,
4242 struct ext4_inode
*raw_inode
,
4243 struct ext4_inode_info
*ei
)
4245 struct inode
*inode
= &(ei
->vfs_inode
);
4246 u64 i_blocks
= inode
->i_blocks
;
4247 struct super_block
*sb
= inode
->i_sb
;
4249 if (i_blocks
<= ~0U) {
4251 * i_blocks can be represented in a 32 bit variable
4252 * as multiple of 512 bytes
4254 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4255 raw_inode
->i_blocks_high
= 0;
4256 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4259 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4262 if (i_blocks
<= 0xffffffffffffULL
) {
4264 * i_blocks can be represented in a 48 bit variable
4265 * as multiple of 512 bytes
4267 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4268 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4269 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4271 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4272 /* i_block is stored in file system block size */
4273 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4274 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4275 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4281 * Post the struct inode info into an on-disk inode location in the
4282 * buffer-cache. This gobbles the caller's reference to the
4283 * buffer_head in the inode location struct.
4285 * The caller must have write access to iloc->bh.
4287 static int ext4_do_update_inode(handle_t
*handle
,
4288 struct inode
*inode
,
4289 struct ext4_iloc
*iloc
)
4291 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4292 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4293 struct buffer_head
*bh
= iloc
->bh
;
4294 int err
= 0, rc
, block
;
4295 int need_datasync
= 0;
4299 /* For fields not not tracking in the in-memory inode,
4300 * initialise them to zero for new inodes. */
4301 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4302 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4304 ext4_get_inode_flags(ei
);
4305 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4306 i_uid
= i_uid_read(inode
);
4307 i_gid
= i_gid_read(inode
);
4308 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4309 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4310 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4312 * Fix up interoperability with old kernels. Otherwise, old inodes get
4313 * re-used with the upper 16 bits of the uid/gid intact
4316 raw_inode
->i_uid_high
=
4317 cpu_to_le16(high_16_bits(i_uid
));
4318 raw_inode
->i_gid_high
=
4319 cpu_to_le16(high_16_bits(i_gid
));
4321 raw_inode
->i_uid_high
= 0;
4322 raw_inode
->i_gid_high
= 0;
4325 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4326 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4327 raw_inode
->i_uid_high
= 0;
4328 raw_inode
->i_gid_high
= 0;
4330 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4332 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4333 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4334 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4335 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4337 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4339 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4340 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4341 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4342 cpu_to_le32(EXT4_OS_HURD
))
4343 raw_inode
->i_file_acl_high
=
4344 cpu_to_le16(ei
->i_file_acl
>> 32);
4345 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4346 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4347 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4350 if (ei
->i_disksize
> 0x7fffffffULL
) {
4351 struct super_block
*sb
= inode
->i_sb
;
4352 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4353 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4354 EXT4_SB(sb
)->s_es
->s_rev_level
==
4355 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4356 /* If this is the first large file
4357 * created, add a flag to the superblock.
4359 err
= ext4_journal_get_write_access(handle
,
4360 EXT4_SB(sb
)->s_sbh
);
4363 ext4_update_dynamic_rev(sb
);
4364 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4366 ext4_handle_sync(handle
);
4367 err
= ext4_handle_dirty_super(handle
, sb
);
4370 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4371 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4372 if (old_valid_dev(inode
->i_rdev
)) {
4373 raw_inode
->i_block
[0] =
4374 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4375 raw_inode
->i_block
[1] = 0;
4377 raw_inode
->i_block
[0] = 0;
4378 raw_inode
->i_block
[1] =
4379 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4380 raw_inode
->i_block
[2] = 0;
4382 } else if (!ext4_has_inline_data(inode
)) {
4383 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4384 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4387 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4388 if (ei
->i_extra_isize
) {
4389 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4390 raw_inode
->i_version_hi
=
4391 cpu_to_le32(inode
->i_version
>> 32);
4392 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4395 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4397 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4398 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4401 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4403 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4406 ext4_std_error(inode
->i_sb
, err
);
4411 * ext4_write_inode()
4413 * We are called from a few places:
4415 * - Within generic_file_write() for O_SYNC files.
4416 * Here, there will be no transaction running. We wait for any running
4417 * transaction to commit.
4419 * - Within sys_sync(), kupdate and such.
4420 * We wait on commit, if tol to.
4422 * - Within prune_icache() (PF_MEMALLOC == true)
4423 * Here we simply return. We can't afford to block kswapd on the
4426 * In all cases it is actually safe for us to return without doing anything,
4427 * because the inode has been copied into a raw inode buffer in
4428 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4431 * Note that we are absolutely dependent upon all inode dirtiers doing the
4432 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4433 * which we are interested.
4435 * It would be a bug for them to not do this. The code:
4437 * mark_inode_dirty(inode)
4439 * inode->i_size = expr;
4441 * is in error because a kswapd-driven write_inode() could occur while
4442 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4443 * will no longer be on the superblock's dirty inode list.
4445 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4449 if (current
->flags
& PF_MEMALLOC
)
4452 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4453 if (ext4_journal_current_handle()) {
4454 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4459 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4462 err
= ext4_force_commit(inode
->i_sb
);
4464 struct ext4_iloc iloc
;
4466 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4469 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4470 sync_dirty_buffer(iloc
.bh
);
4471 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4472 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4473 "IO error syncing inode");
4482 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4483 * buffers that are attached to a page stradding i_size and are undergoing
4484 * commit. In that case we have to wait for commit to finish and try again.
4486 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4490 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4491 tid_t commit_tid
= 0;
4494 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4496 * All buffers in the last page remain valid? Then there's nothing to
4497 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4500 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4503 page
= find_lock_page(inode
->i_mapping
,
4504 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4507 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4508 PAGE_CACHE_SIZE
- offset
);
4510 page_cache_release(page
);
4514 read_lock(&journal
->j_state_lock
);
4515 if (journal
->j_committing_transaction
)
4516 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4517 read_unlock(&journal
->j_state_lock
);
4519 jbd2_log_wait_commit(journal
, commit_tid
);
4526 * Called from notify_change.
4528 * We want to trap VFS attempts to truncate the file as soon as
4529 * possible. In particular, we want to make sure that when the VFS
4530 * shrinks i_size, we put the inode on the orphan list and modify
4531 * i_disksize immediately, so that during the subsequent flushing of
4532 * dirty pages and freeing of disk blocks, we can guarantee that any
4533 * commit will leave the blocks being flushed in an unused state on
4534 * disk. (On recovery, the inode will get truncated and the blocks will
4535 * be freed, so we have a strong guarantee that no future commit will
4536 * leave these blocks visible to the user.)
4538 * Another thing we have to assure is that if we are in ordered mode
4539 * and inode is still attached to the committing transaction, we must
4540 * we start writeout of all the dirty pages which are being truncated.
4541 * This way we are sure that all the data written in the previous
4542 * transaction are already on disk (truncate waits for pages under
4545 * Called with inode->i_mutex down.
4547 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4549 struct inode
*inode
= dentry
->d_inode
;
4552 const unsigned int ia_valid
= attr
->ia_valid
;
4554 error
= inode_change_ok(inode
, attr
);
4558 if (is_quota_modification(inode
, attr
))
4559 dquot_initialize(inode
);
4560 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4561 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4564 /* (user+group)*(old+new) structure, inode write (sb,
4565 * inode block, ? - but truncate inode update has it) */
4566 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4567 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4568 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4569 if (IS_ERR(handle
)) {
4570 error
= PTR_ERR(handle
);
4573 error
= dquot_transfer(inode
, attr
);
4575 ext4_journal_stop(handle
);
4578 /* Update corresponding info in inode so that everything is in
4579 * one transaction */
4580 if (attr
->ia_valid
& ATTR_UID
)
4581 inode
->i_uid
= attr
->ia_uid
;
4582 if (attr
->ia_valid
& ATTR_GID
)
4583 inode
->i_gid
= attr
->ia_gid
;
4584 error
= ext4_mark_inode_dirty(handle
, inode
);
4585 ext4_journal_stop(handle
);
4588 if (attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
!= inode
->i_size
) {
4591 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4592 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4594 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4597 if (S_ISREG(inode
->i_mode
) &&
4598 (attr
->ia_size
< inode
->i_size
)) {
4599 if (ext4_should_order_data(inode
)) {
4600 error
= ext4_begin_ordered_truncate(inode
,
4605 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4606 if (IS_ERR(handle
)) {
4607 error
= PTR_ERR(handle
);
4610 if (ext4_handle_valid(handle
)) {
4611 error
= ext4_orphan_add(handle
, inode
);
4614 down_write(&EXT4_I(inode
)->i_data_sem
);
4615 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4616 rc
= ext4_mark_inode_dirty(handle
, inode
);
4620 * We have to update i_size under i_data_sem together
4621 * with i_disksize to avoid races with writeback code
4622 * running ext4_wb_update_i_disksize().
4625 i_size_write(inode
, attr
->ia_size
);
4626 up_write(&EXT4_I(inode
)->i_data_sem
);
4627 ext4_journal_stop(handle
);
4629 ext4_orphan_del(NULL
, inode
);
4633 i_size_write(inode
, attr
->ia_size
);
4636 * Blocks are going to be removed from the inode. Wait
4637 * for dio in flight. Temporarily disable
4638 * dioread_nolock to prevent livelock.
4641 if (!ext4_should_journal_data(inode
)) {
4642 ext4_inode_block_unlocked_dio(inode
);
4643 inode_dio_wait(inode
);
4644 ext4_inode_resume_unlocked_dio(inode
);
4646 ext4_wait_for_tail_page_commit(inode
);
4649 * Truncate pagecache after we've waited for commit
4650 * in data=journal mode to make pages freeable.
4652 truncate_pagecache(inode
, inode
->i_size
);
4655 * We want to call ext4_truncate() even if attr->ia_size ==
4656 * inode->i_size for cases like truncation of fallocated space
4658 if (attr
->ia_valid
& ATTR_SIZE
)
4659 ext4_truncate(inode
);
4662 setattr_copy(inode
, attr
);
4663 mark_inode_dirty(inode
);
4667 * If the call to ext4_truncate failed to get a transaction handle at
4668 * all, we need to clean up the in-core orphan list manually.
4670 if (orphan
&& inode
->i_nlink
)
4671 ext4_orphan_del(NULL
, inode
);
4673 if (!rc
&& (ia_valid
& ATTR_MODE
))
4674 rc
= ext4_acl_chmod(inode
);
4677 ext4_std_error(inode
->i_sb
, error
);
4683 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4686 struct inode
*inode
;
4687 unsigned long long delalloc_blocks
;
4689 inode
= dentry
->d_inode
;
4690 generic_fillattr(inode
, stat
);
4693 * We can't update i_blocks if the block allocation is delayed
4694 * otherwise in the case of system crash before the real block
4695 * allocation is done, we will have i_blocks inconsistent with
4696 * on-disk file blocks.
4697 * We always keep i_blocks updated together with real
4698 * allocation. But to not confuse with user, stat
4699 * will return the blocks that include the delayed allocation
4700 * blocks for this file.
4702 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4703 EXT4_I(inode
)->i_reserved_data_blocks
);
4705 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
-9);
4709 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4712 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4713 return ext4_ind_trans_blocks(inode
, lblocks
);
4714 return ext4_ext_index_trans_blocks(inode
, pextents
);
4718 * Account for index blocks, block groups bitmaps and block group
4719 * descriptor blocks if modify datablocks and index blocks
4720 * worse case, the indexs blocks spread over different block groups
4722 * If datablocks are discontiguous, they are possible to spread over
4723 * different block groups too. If they are contiguous, with flexbg,
4724 * they could still across block group boundary.
4726 * Also account for superblock, inode, quota and xattr blocks
4728 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4731 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4737 * How many index blocks need to touch to map @lblocks logical blocks
4738 * to @pextents physical extents?
4740 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4745 * Now let's see how many group bitmaps and group descriptors need
4748 groups
= idxblocks
+ pextents
;
4750 if (groups
> ngroups
)
4752 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4753 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4755 /* bitmaps and block group descriptor blocks */
4756 ret
+= groups
+ gdpblocks
;
4758 /* Blocks for super block, inode, quota and xattr blocks */
4759 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4765 * Calculate the total number of credits to reserve to fit
4766 * the modification of a single pages into a single transaction,
4767 * which may include multiple chunks of block allocations.
4769 * This could be called via ext4_write_begin()
4771 * We need to consider the worse case, when
4772 * one new block per extent.
4774 int ext4_writepage_trans_blocks(struct inode
*inode
)
4776 int bpp
= ext4_journal_blocks_per_page(inode
);
4779 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4781 /* Account for data blocks for journalled mode */
4782 if (ext4_should_journal_data(inode
))
4788 * Calculate the journal credits for a chunk of data modification.
4790 * This is called from DIO, fallocate or whoever calling
4791 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4793 * journal buffers for data blocks are not included here, as DIO
4794 * and fallocate do no need to journal data buffers.
4796 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4798 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4802 * The caller must have previously called ext4_reserve_inode_write().
4803 * Give this, we know that the caller already has write access to iloc->bh.
4805 int ext4_mark_iloc_dirty(handle_t
*handle
,
4806 struct inode
*inode
, struct ext4_iloc
*iloc
)
4810 if (IS_I_VERSION(inode
))
4811 inode_inc_iversion(inode
);
4813 /* the do_update_inode consumes one bh->b_count */
4816 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4817 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4823 * On success, We end up with an outstanding reference count against
4824 * iloc->bh. This _must_ be cleaned up later.
4828 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4829 struct ext4_iloc
*iloc
)
4833 err
= ext4_get_inode_loc(inode
, iloc
);
4835 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4836 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4842 ext4_std_error(inode
->i_sb
, err
);
4847 * Expand an inode by new_extra_isize bytes.
4848 * Returns 0 on success or negative error number on failure.
4850 static int ext4_expand_extra_isize(struct inode
*inode
,
4851 unsigned int new_extra_isize
,
4852 struct ext4_iloc iloc
,
4855 struct ext4_inode
*raw_inode
;
4856 struct ext4_xattr_ibody_header
*header
;
4858 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4861 raw_inode
= ext4_raw_inode(&iloc
);
4863 header
= IHDR(inode
, raw_inode
);
4865 /* No extended attributes present */
4866 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4867 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4868 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4870 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4874 /* try to expand with EAs present */
4875 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4880 * What we do here is to mark the in-core inode as clean with respect to inode
4881 * dirtiness (it may still be data-dirty).
4882 * This means that the in-core inode may be reaped by prune_icache
4883 * without having to perform any I/O. This is a very good thing,
4884 * because *any* task may call prune_icache - even ones which
4885 * have a transaction open against a different journal.
4887 * Is this cheating? Not really. Sure, we haven't written the
4888 * inode out, but prune_icache isn't a user-visible syncing function.
4889 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4890 * we start and wait on commits.
4892 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4894 struct ext4_iloc iloc
;
4895 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4896 static unsigned int mnt_count
;
4900 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4901 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4902 if (ext4_handle_valid(handle
) &&
4903 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4904 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4906 * We need extra buffer credits since we may write into EA block
4907 * with this same handle. If journal_extend fails, then it will
4908 * only result in a minor loss of functionality for that inode.
4909 * If this is felt to be critical, then e2fsck should be run to
4910 * force a large enough s_min_extra_isize.
4912 if ((jbd2_journal_extend(handle
,
4913 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4914 ret
= ext4_expand_extra_isize(inode
,
4915 sbi
->s_want_extra_isize
,
4918 ext4_set_inode_state(inode
,
4919 EXT4_STATE_NO_EXPAND
);
4921 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4922 ext4_warning(inode
->i_sb
,
4923 "Unable to expand inode %lu. Delete"
4924 " some EAs or run e2fsck.",
4927 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4933 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4938 * ext4_dirty_inode() is called from __mark_inode_dirty()
4940 * We're really interested in the case where a file is being extended.
4941 * i_size has been changed by generic_commit_write() and we thus need
4942 * to include the updated inode in the current transaction.
4944 * Also, dquot_alloc_block() will always dirty the inode when blocks
4945 * are allocated to the file.
4947 * If the inode is marked synchronous, we don't honour that here - doing
4948 * so would cause a commit on atime updates, which we don't bother doing.
4949 * We handle synchronous inodes at the highest possible level.
4951 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4955 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
4959 ext4_mark_inode_dirty(handle
, inode
);
4961 ext4_journal_stop(handle
);
4968 * Bind an inode's backing buffer_head into this transaction, to prevent
4969 * it from being flushed to disk early. Unlike
4970 * ext4_reserve_inode_write, this leaves behind no bh reference and
4971 * returns no iloc structure, so the caller needs to repeat the iloc
4972 * lookup to mark the inode dirty later.
4974 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4976 struct ext4_iloc iloc
;
4980 err
= ext4_get_inode_loc(inode
, &iloc
);
4982 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4983 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4985 err
= ext4_handle_dirty_metadata(handle
,
4991 ext4_std_error(inode
->i_sb
, err
);
4996 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5003 * We have to be very careful here: changing a data block's
5004 * journaling status dynamically is dangerous. If we write a
5005 * data block to the journal, change the status and then delete
5006 * that block, we risk forgetting to revoke the old log record
5007 * from the journal and so a subsequent replay can corrupt data.
5008 * So, first we make sure that the journal is empty and that
5009 * nobody is changing anything.
5012 journal
= EXT4_JOURNAL(inode
);
5015 if (is_journal_aborted(journal
))
5017 /* We have to allocate physical blocks for delalloc blocks
5018 * before flushing journal. otherwise delalloc blocks can not
5019 * be allocated any more. even more truncate on delalloc blocks
5020 * could trigger BUG by flushing delalloc blocks in journal.
5021 * There is no delalloc block in non-journal data mode.
5023 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5024 err
= ext4_alloc_da_blocks(inode
);
5029 /* Wait for all existing dio workers */
5030 ext4_inode_block_unlocked_dio(inode
);
5031 inode_dio_wait(inode
);
5033 jbd2_journal_lock_updates(journal
);
5036 * OK, there are no updates running now, and all cached data is
5037 * synced to disk. We are now in a completely consistent state
5038 * which doesn't have anything in the journal, and we know that
5039 * no filesystem updates are running, so it is safe to modify
5040 * the inode's in-core data-journaling state flag now.
5044 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5046 jbd2_journal_flush(journal
);
5047 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5049 ext4_set_aops(inode
);
5051 jbd2_journal_unlock_updates(journal
);
5052 ext4_inode_resume_unlocked_dio(inode
);
5054 /* Finally we can mark the inode as dirty. */
5056 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5058 return PTR_ERR(handle
);
5060 err
= ext4_mark_inode_dirty(handle
, inode
);
5061 ext4_handle_sync(handle
);
5062 ext4_journal_stop(handle
);
5063 ext4_std_error(inode
->i_sb
, err
);
5068 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5070 return !buffer_mapped(bh
);
5073 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5075 struct page
*page
= vmf
->page
;
5079 struct file
*file
= vma
->vm_file
;
5080 struct inode
*inode
= file_inode(file
);
5081 struct address_space
*mapping
= inode
->i_mapping
;
5083 get_block_t
*get_block
;
5086 sb_start_pagefault(inode
->i_sb
);
5087 file_update_time(vma
->vm_file
);
5088 /* Delalloc case is easy... */
5089 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5090 !ext4_should_journal_data(inode
) &&
5091 !ext4_nonda_switch(inode
->i_sb
)) {
5093 ret
= __block_page_mkwrite(vma
, vmf
,
5094 ext4_da_get_block_prep
);
5095 } while (ret
== -ENOSPC
&&
5096 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5101 size
= i_size_read(inode
);
5102 /* Page got truncated from under us? */
5103 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5105 ret
= VM_FAULT_NOPAGE
;
5109 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5110 len
= size
& ~PAGE_CACHE_MASK
;
5112 len
= PAGE_CACHE_SIZE
;
5114 * Return if we have all the buffers mapped. This avoids the need to do
5115 * journal_start/journal_stop which can block and take a long time
5117 if (page_has_buffers(page
)) {
5118 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5120 ext4_bh_unmapped
)) {
5121 /* Wait so that we don't change page under IO */
5122 wait_for_stable_page(page
);
5123 ret
= VM_FAULT_LOCKED
;
5128 /* OK, we need to fill the hole... */
5129 if (ext4_should_dioread_nolock(inode
))
5130 get_block
= ext4_get_block_write
;
5132 get_block
= ext4_get_block
;
5134 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5135 ext4_writepage_trans_blocks(inode
));
5136 if (IS_ERR(handle
)) {
5137 ret
= VM_FAULT_SIGBUS
;
5140 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5141 if (!ret
&& ext4_should_journal_data(inode
)) {
5142 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5143 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5145 ret
= VM_FAULT_SIGBUS
;
5146 ext4_journal_stop(handle
);
5149 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5151 ext4_journal_stop(handle
);
5152 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5155 ret
= block_page_mkwrite_return(ret
);
5157 sb_end_pagefault(inode
->i_sb
);