2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_trace.h"
33 #include "xfs_bmap_util.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
46 struct buffer_head
*bh
, *head
;
48 *delalloc
= *unwritten
= 0;
50 bh
= head
= page_buffers(page
);
52 if (buffer_unwritten(bh
))
54 else if (buffer_delay(bh
))
56 } while ((bh
= bh
->b_this_page
) != head
);
59 STATIC
struct block_device
*
60 xfs_find_bdev_for_inode(
63 struct xfs_inode
*ip
= XFS_I(inode
);
64 struct xfs_mount
*mp
= ip
->i_mount
;
66 if (XFS_IS_REALTIME_INODE(ip
))
67 return mp
->m_rtdev_targp
->bt_bdev
;
69 return mp
->m_ddev_targp
->bt_bdev
;
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
82 struct buffer_head
*bh
, *next
;
84 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
86 bh
->b_end_io(bh
, !ioend
->io_error
);
89 mempool_free(ioend
, xfs_ioend_pool
);
93 * Fast and loose check if this write could update the on-disk inode size.
95 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
97 return ioend
->io_offset
+ ioend
->io_size
>
98 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
102 xfs_setfilesize_trans_alloc(
103 struct xfs_ioend
*ioend
)
105 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
106 struct xfs_trans
*tp
;
109 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
111 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
113 xfs_trans_cancel(tp
, 0);
117 ioend
->io_append_trans
= tp
;
120 * We may pass freeze protection with a transaction. So tell lockdep
123 rwsem_release(&ioend
->io_inode
->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
129 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
134 * Update on-disk file size now that data has been written to disk.
138 struct xfs_ioend
*ioend
)
140 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
141 struct xfs_trans
*tp
= ioend
->io_append_trans
;
145 * The transaction may have been allocated in the I/O submission thread,
146 * thus we need to mark ourselves as beeing in a transaction manually.
147 * Similarly for freeze protection.
149 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
150 rwsem_acquire_read(&VFS_I(ip
)->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
153 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
154 isize
= xfs_new_eof(ip
, ioend
->io_offset
+ ioend
->io_size
);
156 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
157 xfs_trans_cancel(tp
, 0);
161 trace_xfs_setfilesize(ip
, ioend
->io_offset
, ioend
->io_size
);
163 ip
->i_d
.di_size
= isize
;
164 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
165 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
167 return xfs_trans_commit(tp
, 0);
171 * Schedule IO completion handling on the final put of an ioend.
173 * If there is no work to do we might as well call it a day and free the
178 struct xfs_ioend
*ioend
)
180 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
181 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
183 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
184 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
185 else if (ioend
->io_append_trans
||
186 (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)))
187 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
189 xfs_destroy_ioend(ioend
);
194 * IO write completion.
198 struct work_struct
*work
)
200 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
201 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
204 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
205 ioend
->io_error
= -EIO
;
212 * For unwritten extents we need to issue transactions to convert a
213 * range to normal written extens after the data I/O has finished.
215 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
216 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
218 } else if (ioend
->io_isdirect
&& xfs_ioend_is_append(ioend
)) {
220 * For direct I/O we do not know if we need to allocate blocks
221 * or not so we can't preallocate an append transaction as that
222 * results in nested reservations and log space deadlocks. Hence
223 * allocate the transaction here. While this is sub-optimal and
224 * can block IO completion for some time, we're stuck with doing
225 * it this way until we can pass the ioend to the direct IO
226 * allocation callbacks and avoid nesting that way.
228 error
= xfs_setfilesize_trans_alloc(ioend
);
231 error
= xfs_setfilesize(ioend
);
232 } else if (ioend
->io_append_trans
) {
233 error
= xfs_setfilesize(ioend
);
235 ASSERT(!xfs_ioend_is_append(ioend
));
240 ioend
->io_error
= -error
;
241 xfs_destroy_ioend(ioend
);
245 * Call IO completion handling in caller context on the final put of an ioend.
248 xfs_finish_ioend_sync(
249 struct xfs_ioend
*ioend
)
251 if (atomic_dec_and_test(&ioend
->io_remaining
))
252 xfs_end_io(&ioend
->io_work
);
256 * Allocate and initialise an IO completion structure.
257 * We need to track unwritten extent write completion here initially.
258 * We'll need to extend this for updating the ondisk inode size later
268 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
271 * Set the count to 1 initially, which will prevent an I/O
272 * completion callback from happening before we have started
273 * all the I/O from calling the completion routine too early.
275 atomic_set(&ioend
->io_remaining
, 1);
276 ioend
->io_isdirect
= 0;
278 ioend
->io_list
= NULL
;
279 ioend
->io_type
= type
;
280 ioend
->io_inode
= inode
;
281 ioend
->io_buffer_head
= NULL
;
282 ioend
->io_buffer_tail
= NULL
;
283 ioend
->io_offset
= 0;
285 ioend
->io_append_trans
= NULL
;
287 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
295 struct xfs_bmbt_irec
*imap
,
299 struct xfs_inode
*ip
= XFS_I(inode
);
300 struct xfs_mount
*mp
= ip
->i_mount
;
301 ssize_t count
= 1 << inode
->i_blkbits
;
302 xfs_fileoff_t offset_fsb
, end_fsb
;
304 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
307 if (XFS_FORCED_SHUTDOWN(mp
))
308 return -XFS_ERROR(EIO
);
310 if (type
== XFS_IO_UNWRITTEN
)
311 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
313 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
315 return -XFS_ERROR(EAGAIN
);
316 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
319 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
320 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
321 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
323 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
324 count
= mp
->m_super
->s_maxbytes
- offset
;
325 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
326 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
327 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
328 imap
, &nimaps
, bmapi_flags
);
329 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
332 return -XFS_ERROR(error
);
334 if (type
== XFS_IO_DELALLOC
&&
335 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
336 error
= xfs_iomap_write_allocate(ip
, offset
, count
, imap
);
338 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
339 return -XFS_ERROR(error
);
343 if (type
== XFS_IO_UNWRITTEN
) {
345 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
346 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
350 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
357 struct xfs_bmbt_irec
*imap
,
360 offset
>>= inode
->i_blkbits
;
362 return offset
>= imap
->br_startoff
&&
363 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
367 * BIO completion handler for buffered IO.
374 xfs_ioend_t
*ioend
= bio
->bi_private
;
376 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
377 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio
->bi_private
= NULL
;
381 bio
->bi_end_io
= NULL
;
384 xfs_finish_ioend(ioend
);
388 xfs_submit_ioend_bio(
389 struct writeback_control
*wbc
,
393 atomic_inc(&ioend
->io_remaining
);
394 bio
->bi_private
= ioend
;
395 bio
->bi_end_io
= xfs_end_bio
;
396 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
401 struct buffer_head
*bh
)
403 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
404 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
406 ASSERT(bio
->bi_private
== NULL
);
407 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
408 bio
->bi_bdev
= bh
->b_bdev
;
413 xfs_start_buffer_writeback(
414 struct buffer_head
*bh
)
416 ASSERT(buffer_mapped(bh
));
417 ASSERT(buffer_locked(bh
));
418 ASSERT(!buffer_delay(bh
));
419 ASSERT(!buffer_unwritten(bh
));
421 mark_buffer_async_write(bh
);
422 set_buffer_uptodate(bh
);
423 clear_buffer_dirty(bh
);
427 xfs_start_page_writeback(
432 ASSERT(PageLocked(page
));
433 ASSERT(!PageWriteback(page
));
435 clear_page_dirty_for_io(page
);
436 set_page_writeback(page
);
438 /* If no buffers on the page are to be written, finish it here */
440 end_page_writeback(page
);
443 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
445 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
462 * The fix is two passes across the ioend list - one to start writeback on the
463 * buffer_heads, and then submit them for I/O on the second pass.
465 * If @fail is non-zero, it means that we have a situation where some part of
466 * the submission process has failed after we have marked paged for writeback
467 * and unlocked them. In this situation, we need to fail the ioend chain rather
468 * than submit it to IO. This typically only happens on a filesystem shutdown.
472 struct writeback_control
*wbc
,
476 xfs_ioend_t
*head
= ioend
;
478 struct buffer_head
*bh
;
480 sector_t lastblock
= 0;
482 /* Pass 1 - start writeback */
484 next
= ioend
->io_list
;
485 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
486 xfs_start_buffer_writeback(bh
);
487 } while ((ioend
= next
) != NULL
);
489 /* Pass 2 - submit I/O */
492 next
= ioend
->io_list
;
496 * If we are failing the IO now, just mark the ioend with an
497 * error and finish it. This will run IO completion immediately
498 * as there is only one reference to the ioend at this point in
502 ioend
->io_error
= -fail
;
503 xfs_finish_ioend(ioend
);
507 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
511 bio
= xfs_alloc_ioend_bio(bh
);
512 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
513 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
517 if (xfs_bio_add_buffer(bio
, bh
) != bh
->b_size
) {
518 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
522 lastblock
= bh
->b_blocknr
;
525 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
526 xfs_finish_ioend(ioend
);
527 } while ((ioend
= next
) != NULL
);
531 * Cancel submission of all buffer_heads so far in this endio.
532 * Toss the endio too. Only ever called for the initial page
533 * in a writepage request, so only ever one page.
540 struct buffer_head
*bh
, *next_bh
;
543 next
= ioend
->io_list
;
544 bh
= ioend
->io_buffer_head
;
546 next_bh
= bh
->b_private
;
547 clear_buffer_async_write(bh
);
549 } while ((bh
= next_bh
) != NULL
);
551 mempool_free(ioend
, xfs_ioend_pool
);
552 } while ((ioend
= next
) != NULL
);
556 * Test to see if we've been building up a completion structure for
557 * earlier buffers -- if so, we try to append to this ioend if we
558 * can, otherwise we finish off any current ioend and start another.
559 * Return true if we've finished the given ioend.
564 struct buffer_head
*bh
,
567 xfs_ioend_t
**result
,
570 xfs_ioend_t
*ioend
= *result
;
572 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
573 xfs_ioend_t
*previous
= *result
;
575 ioend
= xfs_alloc_ioend(inode
, type
);
576 ioend
->io_offset
= offset
;
577 ioend
->io_buffer_head
= bh
;
578 ioend
->io_buffer_tail
= bh
;
580 previous
->io_list
= ioend
;
583 ioend
->io_buffer_tail
->b_private
= bh
;
584 ioend
->io_buffer_tail
= bh
;
587 bh
->b_private
= NULL
;
588 ioend
->io_size
+= bh
->b_size
;
594 struct buffer_head
*bh
,
595 struct xfs_bmbt_irec
*imap
,
599 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
600 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
601 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
603 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
604 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
606 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
607 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
609 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
612 set_buffer_mapped(bh
);
618 struct buffer_head
*bh
,
619 struct xfs_bmbt_irec
*imap
,
622 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
623 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
625 xfs_map_buffer(inode
, bh
, imap
, offset
);
626 set_buffer_mapped(bh
);
627 clear_buffer_delay(bh
);
628 clear_buffer_unwritten(bh
);
632 * Test if a given page is suitable for writing as part of an unwritten
633 * or delayed allocate extent.
640 if (PageWriteback(page
))
643 if (page
->mapping
&& page_has_buffers(page
)) {
644 struct buffer_head
*bh
, *head
;
647 bh
= head
= page_buffers(page
);
649 if (buffer_unwritten(bh
))
650 acceptable
+= (type
== XFS_IO_UNWRITTEN
);
651 else if (buffer_delay(bh
))
652 acceptable
+= (type
== XFS_IO_DELALLOC
);
653 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
654 acceptable
+= (type
== XFS_IO_OVERWRITE
);
657 } while ((bh
= bh
->b_this_page
) != head
);
667 * Allocate & map buffers for page given the extent map. Write it out.
668 * except for the original page of a writepage, this is called on
669 * delalloc/unwritten pages only, for the original page it is possible
670 * that the page has no mapping at all.
677 struct xfs_bmbt_irec
*imap
,
678 xfs_ioend_t
**ioendp
,
679 struct writeback_control
*wbc
)
681 struct buffer_head
*bh
, *head
;
682 xfs_off_t end_offset
;
683 unsigned long p_offset
;
686 int count
= 0, done
= 0, uptodate
= 1;
687 xfs_off_t offset
= page_offset(page
);
689 if (page
->index
!= tindex
)
691 if (!trylock_page(page
))
693 if (PageWriteback(page
))
694 goto fail_unlock_page
;
695 if (page
->mapping
!= inode
->i_mapping
)
696 goto fail_unlock_page
;
697 if (!xfs_check_page_type(page
, (*ioendp
)->io_type
))
698 goto fail_unlock_page
;
701 * page_dirty is initially a count of buffers on the page before
702 * EOF and is decremented as we move each into a cleanable state.
706 * End offset is the highest offset that this page should represent.
707 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
708 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
709 * hence give us the correct page_dirty count. On any other page,
710 * it will be zero and in that case we need page_dirty to be the
711 * count of buffers on the page.
713 end_offset
= min_t(unsigned long long,
714 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
718 * If the current map does not span the entire page we are about to try
719 * to write, then give up. The only way we can write a page that spans
720 * multiple mappings in a single writeback iteration is via the
721 * xfs_vm_writepage() function. Data integrity writeback requires the
722 * entire page to be written in a single attempt, otherwise the part of
723 * the page we don't write here doesn't get written as part of the data
726 * For normal writeback, we also don't attempt to write partial pages
727 * here as it simply means that write_cache_pages() will see it under
728 * writeback and ignore the page until some point in the future, at
729 * which time this will be the only page in the file that needs
730 * writeback. Hence for more optimal IO patterns, we should always
731 * avoid partial page writeback due to multiple mappings on a page here.
733 if (!xfs_imap_valid(inode
, imap
, end_offset
))
734 goto fail_unlock_page
;
736 len
= 1 << inode
->i_blkbits
;
737 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
739 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
740 page_dirty
= p_offset
/ len
;
742 bh
= head
= page_buffers(page
);
744 if (offset
>= end_offset
)
746 if (!buffer_uptodate(bh
))
748 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
753 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
755 if (buffer_unwritten(bh
))
756 type
= XFS_IO_UNWRITTEN
;
757 else if (buffer_delay(bh
))
758 type
= XFS_IO_DELALLOC
;
760 type
= XFS_IO_OVERWRITE
;
762 if (!xfs_imap_valid(inode
, imap
, offset
)) {
768 if (type
!= XFS_IO_OVERWRITE
)
769 xfs_map_at_offset(inode
, bh
, imap
, offset
);
770 xfs_add_to_ioend(inode
, bh
, offset
, type
,
778 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
780 if (uptodate
&& bh
== head
)
781 SetPageUptodate(page
);
784 if (--wbc
->nr_to_write
<= 0 &&
785 wbc
->sync_mode
== WB_SYNC_NONE
)
788 xfs_start_page_writeback(page
, !page_dirty
, count
);
798 * Convert & write out a cluster of pages in the same extent as defined
799 * by mp and following the start page.
805 struct xfs_bmbt_irec
*imap
,
806 xfs_ioend_t
**ioendp
,
807 struct writeback_control
*wbc
,
813 pagevec_init(&pvec
, 0);
814 while (!done
&& tindex
<= tlast
) {
815 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
817 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
820 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
821 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
827 pagevec_release(&pvec
);
833 xfs_vm_invalidatepage(
838 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
840 block_invalidatepage(page
, offset
, length
);
844 * If the page has delalloc buffers on it, we need to punch them out before we
845 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
846 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
847 * is done on that same region - the delalloc extent is returned when none is
848 * supposed to be there.
850 * We prevent this by truncating away the delalloc regions on the page before
851 * invalidating it. Because they are delalloc, we can do this without needing a
852 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
853 * truncation without a transaction as there is no space left for block
854 * reservation (typically why we see a ENOSPC in writeback).
856 * This is not a performance critical path, so for now just do the punching a
857 * buffer head at a time.
860 xfs_aops_discard_page(
863 struct inode
*inode
= page
->mapping
->host
;
864 struct xfs_inode
*ip
= XFS_I(inode
);
865 struct buffer_head
*bh
, *head
;
866 loff_t offset
= page_offset(page
);
868 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
))
871 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
874 xfs_alert(ip
->i_mount
,
875 "page discard on page %p, inode 0x%llx, offset %llu.",
876 page
, ip
->i_ino
, offset
);
878 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
879 bh
= head
= page_buffers(page
);
882 xfs_fileoff_t start_fsb
;
884 if (!buffer_delay(bh
))
887 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
888 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
890 /* something screwed, just bail */
891 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
892 xfs_alert(ip
->i_mount
,
893 "page discard unable to remove delalloc mapping.");
898 offset
+= 1 << inode
->i_blkbits
;
900 } while ((bh
= bh
->b_this_page
) != head
);
902 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
904 xfs_vm_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
909 * Write out a dirty page.
911 * For delalloc space on the page we need to allocate space and flush it.
912 * For unwritten space on the page we need to start the conversion to
913 * regular allocated space.
914 * For any other dirty buffer heads on the page we should flush them.
919 struct writeback_control
*wbc
)
921 struct inode
*inode
= page
->mapping
->host
;
922 struct buffer_head
*bh
, *head
;
923 struct xfs_bmbt_irec imap
;
924 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
927 __uint64_t end_offset
;
928 pgoff_t end_index
, last_index
;
930 int err
, imap_valid
= 0, uptodate
= 1;
934 trace_xfs_writepage(inode
, page
, 0, 0);
936 ASSERT(page_has_buffers(page
));
939 * Refuse to write the page out if we are called from reclaim context.
941 * This avoids stack overflows when called from deeply used stacks in
942 * random callers for direct reclaim or memcg reclaim. We explicitly
943 * allow reclaim from kswapd as the stack usage there is relatively low.
945 * This should never happen except in the case of a VM regression so
948 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
953 * Given that we do not allow direct reclaim to call us, we should
954 * never be called while in a filesystem transaction.
956 if (WARN_ON(current
->flags
& PF_FSTRANS
))
959 /* Is this page beyond the end of the file? */
960 offset
= i_size_read(inode
);
961 end_index
= offset
>> PAGE_CACHE_SHIFT
;
962 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
963 if (page
->index
>= end_index
) {
964 unsigned offset_into_page
= offset
& (PAGE_CACHE_SIZE
- 1);
967 * Skip the page if it is fully outside i_size, e.g. due to a
968 * truncate operation that is in progress. We must redirty the
969 * page so that reclaim stops reclaiming it. Otherwise
970 * xfs_vm_releasepage() is called on it and gets confused.
972 if (page
->index
>= end_index
+ 1 || offset_into_page
== 0)
976 * The page straddles i_size. It must be zeroed out on each
977 * and every writepage invocation because it may be mmapped.
978 * "A file is mapped in multiples of the page size. For a file
979 * that is not a multiple of the page size, the remaining
980 * memory is zeroed when mapped, and writes to that region are
981 * not written out to the file."
983 zero_user_segment(page
, offset_into_page
, PAGE_CACHE_SIZE
);
986 end_offset
= min_t(unsigned long long,
987 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
989 len
= 1 << inode
->i_blkbits
;
991 bh
= head
= page_buffers(page
);
992 offset
= page_offset(page
);
993 type
= XFS_IO_OVERWRITE
;
995 if (wbc
->sync_mode
== WB_SYNC_NONE
)
1001 if (offset
>= end_offset
)
1003 if (!buffer_uptodate(bh
))
1007 * set_page_dirty dirties all buffers in a page, independent
1008 * of their state. The dirty state however is entirely
1009 * meaningless for holes (!mapped && uptodate), so skip
1010 * buffers covering holes here.
1012 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
1017 if (buffer_unwritten(bh
)) {
1018 if (type
!= XFS_IO_UNWRITTEN
) {
1019 type
= XFS_IO_UNWRITTEN
;
1022 } else if (buffer_delay(bh
)) {
1023 if (type
!= XFS_IO_DELALLOC
) {
1024 type
= XFS_IO_DELALLOC
;
1027 } else if (buffer_uptodate(bh
)) {
1028 if (type
!= XFS_IO_OVERWRITE
) {
1029 type
= XFS_IO_OVERWRITE
;
1033 if (PageUptodate(page
))
1034 ASSERT(buffer_mapped(bh
));
1036 * This buffer is not uptodate and will not be
1037 * written to disk. Ensure that we will put any
1038 * subsequent writeable buffers into a new
1046 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1049 * If we didn't have a valid mapping then we need to
1050 * put the new mapping into a separate ioend structure.
1051 * This ensures non-contiguous extents always have
1052 * separate ioends, which is particularly important
1053 * for unwritten extent conversion at I/O completion
1057 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1061 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1065 if (type
!= XFS_IO_OVERWRITE
)
1066 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1067 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1075 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1077 if (uptodate
&& bh
== head
)
1078 SetPageUptodate(page
);
1080 xfs_start_page_writeback(page
, 1, count
);
1082 /* if there is no IO to be submitted for this page, we are done */
1089 * Any errors from this point onwards need tobe reported through the IO
1090 * completion path as we have marked the initial page as under writeback
1094 xfs_off_t end_index
;
1096 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1099 end_index
<<= inode
->i_blkbits
;
1102 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1104 /* check against file size */
1105 if (end_index
> last_index
)
1106 end_index
= last_index
;
1108 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1114 * Reserve log space if we might write beyond the on-disk inode size.
1117 if (ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
1118 err
= xfs_setfilesize_trans_alloc(ioend
);
1120 xfs_submit_ioend(wbc
, iohead
, err
);
1126 xfs_cancel_ioend(iohead
);
1131 xfs_aops_discard_page(page
);
1132 ClearPageUptodate(page
);
1137 redirty_page_for_writepage(wbc
, page
);
1144 struct address_space
*mapping
,
1145 struct writeback_control
*wbc
)
1147 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1148 return generic_writepages(mapping
, wbc
);
1152 * Called to move a page into cleanable state - and from there
1153 * to be released. The page should already be clean. We always
1154 * have buffer heads in this call.
1156 * Returns 1 if the page is ok to release, 0 otherwise.
1163 int delalloc
, unwritten
;
1165 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1167 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1169 if (WARN_ON(delalloc
))
1171 if (WARN_ON(unwritten
))
1174 return try_to_free_buffers(page
);
1179 struct inode
*inode
,
1181 struct buffer_head
*bh_result
,
1185 struct xfs_inode
*ip
= XFS_I(inode
);
1186 struct xfs_mount
*mp
= ip
->i_mount
;
1187 xfs_fileoff_t offset_fsb
, end_fsb
;
1190 struct xfs_bmbt_irec imap
;
1196 if (XFS_FORCED_SHUTDOWN(mp
))
1197 return -XFS_ERROR(EIO
);
1199 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1200 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1201 size
= bh_result
->b_size
;
1203 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1207 * Direct I/O is usually done on preallocated files, so try getting
1208 * a block mapping without an exclusive lock first. For buffered
1209 * writes we already have the exclusive iolock anyway, so avoiding
1210 * a lock roundtrip here by taking the ilock exclusive from the
1211 * beginning is a useful micro optimization.
1213 if (create
&& !direct
) {
1214 lockmode
= XFS_ILOCK_EXCL
;
1215 xfs_ilock(ip
, lockmode
);
1217 lockmode
= xfs_ilock_map_shared(ip
);
1220 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1221 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1222 size
= mp
->m_super
->s_maxbytes
- offset
;
1223 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1224 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1226 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1227 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1233 (imap
.br_startblock
== HOLESTARTBLOCK
||
1234 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1235 if (direct
|| xfs_get_extsz_hint(ip
)) {
1237 * Drop the ilock in preparation for starting the block
1238 * allocation transaction. It will be retaken
1239 * exclusively inside xfs_iomap_write_direct for the
1240 * actual allocation.
1242 xfs_iunlock(ip
, lockmode
);
1243 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1250 * Delalloc reservations do not require a transaction,
1251 * we can go on without dropping the lock here. If we
1252 * are allocating a new delalloc block, make sure that
1253 * we set the new flag so that we mark the buffer new so
1254 * that we know that it is newly allocated if the write
1257 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1259 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1263 xfs_iunlock(ip
, lockmode
);
1266 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1267 } else if (nimaps
) {
1268 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1269 xfs_iunlock(ip
, lockmode
);
1271 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1275 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1276 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1278 * For unwritten extents do not report a disk address on
1279 * the read case (treat as if we're reading into a hole).
1281 if (create
|| !ISUNWRITTEN(&imap
))
1282 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1283 if (create
&& ISUNWRITTEN(&imap
)) {
1285 bh_result
->b_private
= inode
;
1286 set_buffer_defer_completion(bh_result
);
1288 set_buffer_unwritten(bh_result
);
1293 * If this is a realtime file, data may be on a different device.
1294 * to that pointed to from the buffer_head b_bdev currently.
1296 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1299 * If we previously allocated a block out beyond eof and we are now
1300 * coming back to use it then we will need to flag it as new even if it
1301 * has a disk address.
1303 * With sub-block writes into unwritten extents we also need to mark
1304 * the buffer as new so that the unwritten parts of the buffer gets
1308 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1309 (offset
>= i_size_read(inode
)) ||
1310 (new || ISUNWRITTEN(&imap
))))
1311 set_buffer_new(bh_result
);
1313 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1316 set_buffer_uptodate(bh_result
);
1317 set_buffer_mapped(bh_result
);
1318 set_buffer_delay(bh_result
);
1323 * If this is O_DIRECT or the mpage code calling tell them how large
1324 * the mapping is, so that we can avoid repeated get_blocks calls.
1326 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1327 xfs_off_t mapping_size
;
1329 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1330 mapping_size
<<= inode
->i_blkbits
;
1332 ASSERT(mapping_size
> 0);
1333 if (mapping_size
> size
)
1334 mapping_size
= size
;
1335 if (mapping_size
> LONG_MAX
)
1336 mapping_size
= LONG_MAX
;
1338 bh_result
->b_size
= mapping_size
;
1344 xfs_iunlock(ip
, lockmode
);
1350 struct inode
*inode
,
1352 struct buffer_head
*bh_result
,
1355 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1359 xfs_get_blocks_direct(
1360 struct inode
*inode
,
1362 struct buffer_head
*bh_result
,
1365 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1369 * Complete a direct I/O write request.
1371 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1372 * need to issue a transaction to convert the range from unwritten to written
1373 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1374 * to do this and we are done. But in case this was a successful AIO
1375 * request this handler is called from interrupt context, from which we
1376 * can't start transactions. In that case offload the I/O completion to
1377 * the workqueues we also use for buffered I/O completion.
1380 xfs_end_io_direct_write(
1386 struct xfs_ioend
*ioend
= iocb
->private;
1389 * While the generic direct I/O code updates the inode size, it does
1390 * so only after the end_io handler is called, which means our
1391 * end_io handler thinks the on-disk size is outside the in-core
1392 * size. To prevent this just update it a little bit earlier here.
1394 if (offset
+ size
> i_size_read(ioend
->io_inode
))
1395 i_size_write(ioend
->io_inode
, offset
+ size
);
1398 * blockdev_direct_IO can return an error even after the I/O
1399 * completion handler was called. Thus we need to protect
1400 * against double-freeing.
1402 iocb
->private = NULL
;
1404 ioend
->io_offset
= offset
;
1405 ioend
->io_size
= size
;
1406 if (private && size
> 0)
1407 ioend
->io_type
= XFS_IO_UNWRITTEN
;
1409 xfs_finish_ioend_sync(ioend
);
1416 const struct iovec
*iov
,
1418 unsigned long nr_segs
)
1420 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1421 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1422 struct xfs_ioend
*ioend
= NULL
;
1426 size_t size
= iov_length(iov
, nr_segs
);
1429 * We cannot preallocate a size update transaction here as we
1430 * don't know whether allocation is necessary or not. Hence we
1431 * can only tell IO completion that one is necessary if we are
1432 * not doing unwritten extent conversion.
1434 iocb
->private = ioend
= xfs_alloc_ioend(inode
, XFS_IO_DIRECT
);
1435 if (offset
+ size
> XFS_I(inode
)->i_d
.di_size
)
1436 ioend
->io_isdirect
= 1;
1438 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1440 xfs_get_blocks_direct
,
1441 xfs_end_io_direct_write
, NULL
, 0);
1442 if (ret
!= -EIOCBQUEUED
&& iocb
->private)
1443 goto out_destroy_ioend
;
1445 ret
= __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
,
1447 xfs_get_blocks_direct
,
1454 xfs_destroy_ioend(ioend
);
1459 * Punch out the delalloc blocks we have already allocated.
1461 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1462 * as the page is still locked at this point.
1465 xfs_vm_kill_delalloc_range(
1466 struct inode
*inode
,
1470 struct xfs_inode
*ip
= XFS_I(inode
);
1471 xfs_fileoff_t start_fsb
;
1472 xfs_fileoff_t end_fsb
;
1475 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1476 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1477 if (end_fsb
<= start_fsb
)
1480 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1481 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1482 end_fsb
- start_fsb
);
1484 /* something screwed, just bail */
1485 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1486 xfs_alert(ip
->i_mount
,
1487 "xfs_vm_write_failed: unable to clean up ino %lld",
1491 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1495 xfs_vm_write_failed(
1496 struct inode
*inode
,
1501 loff_t block_offset
;
1504 loff_t from
= pos
& (PAGE_CACHE_SIZE
- 1);
1505 loff_t to
= from
+ len
;
1506 struct buffer_head
*bh
, *head
;
1509 * The request pos offset might be 32 or 64 bit, this is all fine
1510 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1511 * platform, the high 32-bit will be masked off if we evaluate the
1512 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1513 * 0xfffff000 as an unsigned long, hence the result is incorrect
1514 * which could cause the following ASSERT failed in most cases.
1515 * In order to avoid this, we can evaluate the block_offset of the
1516 * start of the page by using shifts rather than masks the mismatch
1519 block_offset
= (pos
>> PAGE_CACHE_SHIFT
) << PAGE_CACHE_SHIFT
;
1521 ASSERT(block_offset
+ from
== pos
);
1523 head
= page_buffers(page
);
1525 for (bh
= head
; bh
!= head
|| !block_start
;
1526 bh
= bh
->b_this_page
, block_start
= block_end
,
1527 block_offset
+= bh
->b_size
) {
1528 block_end
= block_start
+ bh
->b_size
;
1530 /* skip buffers before the write */
1531 if (block_end
<= from
)
1534 /* if the buffer is after the write, we're done */
1535 if (block_start
>= to
)
1538 if (!buffer_delay(bh
))
1541 if (!buffer_new(bh
) && block_offset
< i_size_read(inode
))
1544 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1545 block_offset
+ bh
->b_size
);
1551 * This used to call block_write_begin(), but it unlocks and releases the page
1552 * on error, and we need that page to be able to punch stale delalloc blocks out
1553 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1554 * the appropriate point.
1559 struct address_space
*mapping
,
1563 struct page
**pagep
,
1566 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1570 ASSERT(len
<= PAGE_CACHE_SIZE
);
1572 page
= grab_cache_page_write_begin(mapping
, index
,
1573 flags
| AOP_FLAG_NOFS
);
1577 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1578 if (unlikely(status
)) {
1579 struct inode
*inode
= mapping
->host
;
1581 xfs_vm_write_failed(inode
, page
, pos
, len
);
1584 if (pos
+ len
> i_size_read(inode
))
1585 truncate_pagecache(inode
, i_size_read(inode
));
1587 page_cache_release(page
);
1596 * On failure, we only need to kill delalloc blocks beyond EOF because they
1597 * will never be written. For blocks within EOF, generic_write_end() zeros them
1598 * so they are safe to leave alone and be written with all the other valid data.
1603 struct address_space
*mapping
,
1612 ASSERT(len
<= PAGE_CACHE_SIZE
);
1614 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1615 if (unlikely(ret
< len
)) {
1616 struct inode
*inode
= mapping
->host
;
1617 size_t isize
= i_size_read(inode
);
1618 loff_t to
= pos
+ len
;
1621 truncate_pagecache(inode
, isize
);
1622 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1630 struct address_space
*mapping
,
1633 struct inode
*inode
= (struct inode
*)mapping
->host
;
1634 struct xfs_inode
*ip
= XFS_I(inode
);
1636 trace_xfs_vm_bmap(XFS_I(inode
));
1637 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1638 filemap_write_and_wait(mapping
);
1639 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1640 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1645 struct file
*unused
,
1648 return mpage_readpage(page
, xfs_get_blocks
);
1653 struct file
*unused
,
1654 struct address_space
*mapping
,
1655 struct list_head
*pages
,
1658 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1661 const struct address_space_operations xfs_address_space_operations
= {
1662 .readpage
= xfs_vm_readpage
,
1663 .readpages
= xfs_vm_readpages
,
1664 .writepage
= xfs_vm_writepage
,
1665 .writepages
= xfs_vm_writepages
,
1666 .releasepage
= xfs_vm_releasepage
,
1667 .invalidatepage
= xfs_vm_invalidatepage
,
1668 .write_begin
= xfs_vm_write_begin
,
1669 .write_end
= xfs_vm_write_end
,
1670 .bmap
= xfs_vm_bmap
,
1671 .direct_IO
= xfs_vm_direct_IO
,
1672 .migratepage
= buffer_migrate_page
,
1673 .is_partially_uptodate
= block_is_partially_uptodate
,
1674 .error_remove_page
= generic_error_remove_page
,