2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_types.h"
23 #include "xfs_log_priv.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_inode.h"
32 #include "xfs_dinode.h"
33 #include "xfs_error.h"
34 #include "xfs_filestream.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40 #include "xfs_bmap_util.h"
42 #include <linux/kthread.h>
43 #include <linux/freezer.h>
45 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
46 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
49 * Allocate and initialise an xfs_inode.
59 * if this didn't occur in transactions, we could use
60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 * code up to do this anyway.
63 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
66 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
67 kmem_zone_free(xfs_inode_zone
, ip
);
71 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
72 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
73 ASSERT(!xfs_isiflocked(ip
));
74 ASSERT(ip
->i_ino
== 0);
76 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
78 /* initialise the xfs inode */
81 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
83 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
85 ip
->i_delayed_blks
= 0;
86 memset(&ip
->i_d
, 0, sizeof(xfs_icdinode_t
));
92 xfs_inode_free_callback(
93 struct rcu_head
*head
)
95 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
96 struct xfs_inode
*ip
= XFS_I(inode
);
98 kmem_zone_free(xfs_inode_zone
, ip
);
103 struct xfs_inode
*ip
)
105 switch (ip
->i_d
.di_mode
& S_IFMT
) {
109 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
114 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
117 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
118 xfs_inode_item_destroy(ip
);
123 * Because we use RCU freeing we need to ensure the inode always
124 * appears to be reclaimed with an invalid inode number when in the
125 * free state. The ip->i_flags_lock provides the barrier against lookup
128 spin_lock(&ip
->i_flags_lock
);
129 ip
->i_flags
= XFS_IRECLAIM
;
131 spin_unlock(&ip
->i_flags_lock
);
133 /* asserts to verify all state is correct here */
134 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
135 ASSERT(!xfs_isiflocked(ip
));
137 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
141 * Check the validity of the inode we just found it the cache
145 struct xfs_perag
*pag
,
146 struct xfs_inode
*ip
,
149 int lock_flags
) __releases(RCU
)
151 struct inode
*inode
= VFS_I(ip
);
152 struct xfs_mount
*mp
= ip
->i_mount
;
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
162 spin_lock(&ip
->i_flags_lock
);
163 if (ip
->i_ino
!= ino
) {
164 trace_xfs_iget_skip(ip
);
165 XFS_STATS_INC(xs_ig_frecycle
);
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
181 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
182 trace_xfs_iget_skip(ip
);
183 XFS_STATS_INC(xs_ig_frecycle
);
189 * If lookup is racing with unlink return an error immediately.
191 if (ip
->i_d
.di_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
200 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
201 trace_xfs_iget_reclaim(ip
);
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
209 ip
->i_flags
|= XFS_IRECLAIM
;
211 spin_unlock(&ip
->i_flags_lock
);
214 error
= -inode_init_always(mp
->m_super
, inode
);
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
221 spin_lock(&ip
->i_flags_lock
);
223 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
224 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
225 trace_xfs_iget_reclaim_fail(ip
);
229 spin_lock(&pag
->pag_ici_lock
);
230 spin_lock(&ip
->i_flags_lock
);
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
237 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
238 ip
->i_flags
|= XFS_INEW
;
239 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
240 inode
->i_state
= I_NEW
;
242 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
243 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
245 spin_unlock(&ip
->i_flags_lock
);
246 spin_unlock(&pag
->pag_ici_lock
);
248 /* If the VFS inode is being torn down, pause and try again. */
250 trace_xfs_iget_skip(ip
);
255 /* We've got a live one. */
256 spin_unlock(&ip
->i_flags_lock
);
258 trace_xfs_iget_hit(ip
);
262 xfs_ilock(ip
, lock_flags
);
264 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
265 XFS_STATS_INC(xs_ig_found
);
270 spin_unlock(&ip
->i_flags_lock
);
278 struct xfs_mount
*mp
,
279 struct xfs_perag
*pag
,
282 struct xfs_inode
**ipp
,
286 struct xfs_inode
*ip
;
288 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
291 ip
= xfs_inode_alloc(mp
, ino
);
295 error
= xfs_iread(mp
, tp
, ip
, flags
);
299 trace_xfs_iget_miss(ip
);
301 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
312 if (radix_tree_preload(GFP_NOFS
)) {
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
322 if (!xfs_ilock_nowait(ip
, lock_flags
))
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
336 if (flags
& XFS_IGET_DONTCACHE
)
337 iflags
|= XFS_IDONTCACHE
;
341 xfs_iflags_set(ip
, iflags
);
343 /* insert the new inode */
344 spin_lock(&pag
->pag_ici_lock
);
345 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
346 if (unlikely(error
)) {
347 WARN_ON(error
!= -EEXIST
);
348 XFS_STATS_INC(xs_ig_dup
);
350 goto out_preload_end
;
352 spin_unlock(&pag
->pag_ici_lock
);
353 radix_tree_preload_end();
359 spin_unlock(&pag
->pag_ici_lock
);
360 radix_tree_preload_end();
362 xfs_iunlock(ip
, lock_flags
);
364 __destroy_inode(VFS_I(ip
));
370 * Look up an inode by number in the given file system.
371 * The inode is looked up in the cache held in each AG.
372 * If the inode is found in the cache, initialise the vfs inode
375 * If it is not in core, read it in from the file system's device,
376 * add it to the cache and initialise the vfs inode.
378 * The inode is locked according to the value of the lock_flags parameter.
379 * This flag parameter indicates how and if the inode's IO lock and inode lock
382 * mp -- the mount point structure for the current file system. It points
383 * to the inode hash table.
384 * tp -- a pointer to the current transaction if there is one. This is
385 * simply passed through to the xfs_iread() call.
386 * ino -- the number of the inode desired. This is the unique identifier
387 * within the file system for the inode being requested.
388 * lock_flags -- flags indicating how to lock the inode. See the comment
389 * for xfs_ilock() for a list of valid values.
406 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
407 * doesn't get freed while it's being referenced during a
408 * radix tree traversal here. It assumes this function
409 * aqcuires only the ILOCK (and therefore it has no need to
410 * involve the IOLOCK in this synchronization).
412 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
414 /* reject inode numbers outside existing AGs */
415 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
418 /* get the perag structure and ensure that it's inode capable */
419 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
420 agino
= XFS_INO_TO_AGINO(mp
, ino
);
425 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
428 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
430 goto out_error_or_again
;
433 XFS_STATS_INC(xs_ig_missed
);
435 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
438 goto out_error_or_again
;
445 * If we have a real type for an on-disk inode, we can set ops(&unlock)
446 * now. If it's a new inode being created, xfs_ialloc will handle it.
448 if (xfs_iflags_test(ip
, XFS_INEW
) && ip
->i_d
.di_mode
!= 0)
453 if (error
== EAGAIN
) {
462 * The inode lookup is done in batches to keep the amount of lock traffic and
463 * radix tree lookups to a minimum. The batch size is a trade off between
464 * lookup reduction and stack usage. This is in the reclaim path, so we can't
467 #define XFS_LOOKUP_BATCH 32
470 xfs_inode_ag_walk_grab(
471 struct xfs_inode
*ip
)
473 struct inode
*inode
= VFS_I(ip
);
475 ASSERT(rcu_read_lock_held());
478 * check for stale RCU freed inode
480 * If the inode has been reallocated, it doesn't matter if it's not in
481 * the AG we are walking - we are walking for writeback, so if it
482 * passes all the "valid inode" checks and is dirty, then we'll write
483 * it back anyway. If it has been reallocated and still being
484 * initialised, the XFS_INEW check below will catch it.
486 spin_lock(&ip
->i_flags_lock
);
488 goto out_unlock_noent
;
490 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
491 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
492 goto out_unlock_noent
;
493 spin_unlock(&ip
->i_flags_lock
);
495 /* nothing to sync during shutdown */
496 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
499 /* If we can't grab the inode, it must on it's way to reclaim. */
503 if (is_bad_inode(inode
)) {
512 spin_unlock(&ip
->i_flags_lock
);
518 struct xfs_mount
*mp
,
519 struct xfs_perag
*pag
,
520 int (*execute
)(struct xfs_inode
*ip
,
521 struct xfs_perag
*pag
, int flags
,
527 uint32_t first_index
;
539 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
546 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
547 (void **)batch
, first_index
,
550 nr_found
= radix_tree_gang_lookup_tag(
552 (void **) batch
, first_index
,
553 XFS_LOOKUP_BATCH
, tag
);
561 * Grab the inodes before we drop the lock. if we found
562 * nothing, nr == 0 and the loop will be skipped.
564 for (i
= 0; i
< nr_found
; i
++) {
565 struct xfs_inode
*ip
= batch
[i
];
567 if (done
|| xfs_inode_ag_walk_grab(ip
))
571 * Update the index for the next lookup. Catch
572 * overflows into the next AG range which can occur if
573 * we have inodes in the last block of the AG and we
574 * are currently pointing to the last inode.
576 * Because we may see inodes that are from the wrong AG
577 * due to RCU freeing and reallocation, only update the
578 * index if it lies in this AG. It was a race that lead
579 * us to see this inode, so another lookup from the
580 * same index will not find it again.
582 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
584 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
585 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
589 /* unlock now we've grabbed the inodes. */
592 for (i
= 0; i
< nr_found
; i
++) {
595 error
= execute(batch
[i
], pag
, flags
, args
);
597 if (error
== EAGAIN
) {
601 if (error
&& last_error
!= EFSCORRUPTED
)
605 /* bail out if the filesystem is corrupted. */
606 if (error
== EFSCORRUPTED
)
611 } while (nr_found
&& !done
);
621 * Background scanning to trim post-EOF preallocated space. This is queued
622 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
626 struct xfs_mount
*mp
)
629 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
630 queue_delayed_work(mp
->m_eofblocks_workqueue
,
631 &mp
->m_eofblocks_work
,
632 msecs_to_jiffies(xfs_eofb_secs
* 1000));
637 xfs_eofblocks_worker(
638 struct work_struct
*work
)
640 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
641 struct xfs_mount
, m_eofblocks_work
);
642 xfs_icache_free_eofblocks(mp
, NULL
);
643 xfs_queue_eofblocks(mp
);
647 xfs_inode_ag_iterator(
648 struct xfs_mount
*mp
,
649 int (*execute
)(struct xfs_inode
*ip
,
650 struct xfs_perag
*pag
, int flags
,
655 struct xfs_perag
*pag
;
661 while ((pag
= xfs_perag_get(mp
, ag
))) {
662 ag
= pag
->pag_agno
+ 1;
663 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
667 if (error
== EFSCORRUPTED
)
671 return XFS_ERROR(last_error
);
675 xfs_inode_ag_iterator_tag(
676 struct xfs_mount
*mp
,
677 int (*execute
)(struct xfs_inode
*ip
,
678 struct xfs_perag
*pag
, int flags
,
684 struct xfs_perag
*pag
;
690 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
691 ag
= pag
->pag_agno
+ 1;
692 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
696 if (error
== EFSCORRUPTED
)
700 return XFS_ERROR(last_error
);
704 * Queue a new inode reclaim pass if there are reclaimable inodes and there
705 * isn't a reclaim pass already in progress. By default it runs every 5s based
706 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
707 * tunable, but that can be done if this method proves to be ineffective or too
711 xfs_reclaim_work_queue(
712 struct xfs_mount
*mp
)
716 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
717 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
718 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
724 * This is a fast pass over the inode cache to try to get reclaim moving on as
725 * many inodes as possible in a short period of time. It kicks itself every few
726 * seconds, as well as being kicked by the inode cache shrinker when memory
727 * goes low. It scans as quickly as possible avoiding locked inodes or those
728 * already being flushed, and once done schedules a future pass.
732 struct work_struct
*work
)
734 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
735 struct xfs_mount
, m_reclaim_work
);
737 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
738 xfs_reclaim_work_queue(mp
);
742 __xfs_inode_set_reclaim_tag(
743 struct xfs_perag
*pag
,
744 struct xfs_inode
*ip
)
746 radix_tree_tag_set(&pag
->pag_ici_root
,
747 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
748 XFS_ICI_RECLAIM_TAG
);
750 if (!pag
->pag_ici_reclaimable
) {
751 /* propagate the reclaim tag up into the perag radix tree */
752 spin_lock(&ip
->i_mount
->m_perag_lock
);
753 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
754 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
755 XFS_ICI_RECLAIM_TAG
);
756 spin_unlock(&ip
->i_mount
->m_perag_lock
);
758 /* schedule periodic background inode reclaim */
759 xfs_reclaim_work_queue(ip
->i_mount
);
761 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
764 pag
->pag_ici_reclaimable
++;
768 * We set the inode flag atomically with the radix tree tag.
769 * Once we get tag lookups on the radix tree, this inode flag
773 xfs_inode_set_reclaim_tag(
776 struct xfs_mount
*mp
= ip
->i_mount
;
777 struct xfs_perag
*pag
;
779 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
780 spin_lock(&pag
->pag_ici_lock
);
781 spin_lock(&ip
->i_flags_lock
);
782 __xfs_inode_set_reclaim_tag(pag
, ip
);
783 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
784 spin_unlock(&ip
->i_flags_lock
);
785 spin_unlock(&pag
->pag_ici_lock
);
790 __xfs_inode_clear_reclaim(
794 pag
->pag_ici_reclaimable
--;
795 if (!pag
->pag_ici_reclaimable
) {
796 /* clear the reclaim tag from the perag radix tree */
797 spin_lock(&ip
->i_mount
->m_perag_lock
);
798 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
799 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
800 XFS_ICI_RECLAIM_TAG
);
801 spin_unlock(&ip
->i_mount
->m_perag_lock
);
802 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
808 __xfs_inode_clear_reclaim_tag(
813 radix_tree_tag_clear(&pag
->pag_ici_root
,
814 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
815 __xfs_inode_clear_reclaim(pag
, ip
);
819 * Grab the inode for reclaim exclusively.
820 * Return 0 if we grabbed it, non-zero otherwise.
823 xfs_reclaim_inode_grab(
824 struct xfs_inode
*ip
,
827 ASSERT(rcu_read_lock_held());
829 /* quick check for stale RCU freed inode */
834 * If we are asked for non-blocking operation, do unlocked checks to
835 * see if the inode already is being flushed or in reclaim to avoid
838 if ((flags
& SYNC_TRYLOCK
) &&
839 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
843 * The radix tree lock here protects a thread in xfs_iget from racing
844 * with us starting reclaim on the inode. Once we have the
845 * XFS_IRECLAIM flag set it will not touch us.
847 * Due to RCU lookup, we may find inodes that have been freed and only
848 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
849 * aren't candidates for reclaim at all, so we must check the
850 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
852 spin_lock(&ip
->i_flags_lock
);
853 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
854 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
855 /* not a reclaim candidate. */
856 spin_unlock(&ip
->i_flags_lock
);
859 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
860 spin_unlock(&ip
->i_flags_lock
);
865 * Inodes in different states need to be treated differently. The following
866 * table lists the inode states and the reclaim actions necessary:
868 * inode state iflush ret required action
869 * --------------- ---------- ---------------
871 * shutdown EIO unpin and reclaim
872 * clean, unpinned 0 reclaim
873 * stale, unpinned 0 reclaim
874 * clean, pinned(*) 0 requeue
875 * stale, pinned EAGAIN requeue
876 * dirty, async - requeue
877 * dirty, sync 0 reclaim
879 * (*) dgc: I don't think the clean, pinned state is possible but it gets
880 * handled anyway given the order of checks implemented.
882 * Also, because we get the flush lock first, we know that any inode that has
883 * been flushed delwri has had the flush completed by the time we check that
884 * the inode is clean.
886 * Note that because the inode is flushed delayed write by AIL pushing, the
887 * flush lock may already be held here and waiting on it can result in very
888 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
889 * the caller should push the AIL first before trying to reclaim inodes to
890 * minimise the amount of time spent waiting. For background relaim, we only
891 * bother to reclaim clean inodes anyway.
893 * Hence the order of actions after gaining the locks should be:
895 * shutdown => unpin and reclaim
896 * pinned, async => requeue
897 * pinned, sync => unpin
900 * dirty, async => requeue
901 * dirty, sync => flush, wait and reclaim
905 struct xfs_inode
*ip
,
906 struct xfs_perag
*pag
,
909 struct xfs_buf
*bp
= NULL
;
914 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
915 if (!xfs_iflock_nowait(ip
)) {
916 if (!(sync_mode
& SYNC_WAIT
))
921 if (is_bad_inode(VFS_I(ip
)))
923 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
925 xfs_iflush_abort(ip
, false);
928 if (xfs_ipincount(ip
)) {
929 if (!(sync_mode
& SYNC_WAIT
))
933 if (xfs_iflags_test(ip
, XFS_ISTALE
))
935 if (xfs_inode_clean(ip
))
939 * Never flush out dirty data during non-blocking reclaim, as it would
940 * just contend with AIL pushing trying to do the same job.
942 if (!(sync_mode
& SYNC_WAIT
))
946 * Now we have an inode that needs flushing.
948 * Note that xfs_iflush will never block on the inode buffer lock, as
949 * xfs_ifree_cluster() can lock the inode buffer before it locks the
950 * ip->i_lock, and we are doing the exact opposite here. As a result,
951 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
952 * result in an ABBA deadlock with xfs_ifree_cluster().
954 * As xfs_ifree_cluser() must gather all inodes that are active in the
955 * cache to mark them stale, if we hit this case we don't actually want
956 * to do IO here - we want the inode marked stale so we can simply
957 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
958 * inode, back off and try again. Hopefully the next pass through will
959 * see the stale flag set on the inode.
961 error
= xfs_iflush(ip
, &bp
);
962 if (error
== EAGAIN
) {
963 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
964 /* backoff longer than in xfs_ifree_cluster */
970 error
= xfs_bwrite(bp
);
977 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
979 XFS_STATS_INC(xs_ig_reclaims
);
981 * Remove the inode from the per-AG radix tree.
983 * Because radix_tree_delete won't complain even if the item was never
984 * added to the tree assert that it's been there before to catch
985 * problems with the inode life time early on.
987 spin_lock(&pag
->pag_ici_lock
);
988 if (!radix_tree_delete(&pag
->pag_ici_root
,
989 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
991 __xfs_inode_clear_reclaim(pag
, ip
);
992 spin_unlock(&pag
->pag_ici_lock
);
995 * Here we do an (almost) spurious inode lock in order to coordinate
996 * with inode cache radix tree lookups. This is because the lookup
997 * can reference the inodes in the cache without taking references.
999 * We make that OK here by ensuring that we wait until the inode is
1000 * unlocked after the lookup before we go ahead and free it.
1002 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1003 xfs_qm_dqdetach(ip
);
1004 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1012 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1013 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1015 * We could return EAGAIN here to make reclaim rescan the inode tree in
1016 * a short while. However, this just burns CPU time scanning the tree
1017 * waiting for IO to complete and the reclaim work never goes back to
1018 * the idle state. Instead, return 0 to let the next scheduled
1019 * background reclaim attempt to reclaim the inode again.
1025 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1026 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1027 * then a shut down during filesystem unmount reclaim walk leak all the
1028 * unreclaimed inodes.
1031 xfs_reclaim_inodes_ag(
1032 struct xfs_mount
*mp
,
1036 struct xfs_perag
*pag
;
1040 int trylock
= flags
& SYNC_TRYLOCK
;
1046 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1047 unsigned long first_index
= 0;
1051 ag
= pag
->pag_agno
+ 1;
1054 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1059 first_index
= pag
->pag_ici_reclaim_cursor
;
1061 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1064 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1068 nr_found
= radix_tree_gang_lookup_tag(
1070 (void **)batch
, first_index
,
1072 XFS_ICI_RECLAIM_TAG
);
1080 * Grab the inodes before we drop the lock. if we found
1081 * nothing, nr == 0 and the loop will be skipped.
1083 for (i
= 0; i
< nr_found
; i
++) {
1084 struct xfs_inode
*ip
= batch
[i
];
1086 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1090 * Update the index for the next lookup. Catch
1091 * overflows into the next AG range which can
1092 * occur if we have inodes in the last block of
1093 * the AG and we are currently pointing to the
1096 * Because we may see inodes that are from the
1097 * wrong AG due to RCU freeing and
1098 * reallocation, only update the index if it
1099 * lies in this AG. It was a race that lead us
1100 * to see this inode, so another lookup from
1101 * the same index will not find it again.
1103 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1106 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1107 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1111 /* unlock now we've grabbed the inodes. */
1114 for (i
= 0; i
< nr_found
; i
++) {
1117 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1118 if (error
&& last_error
!= EFSCORRUPTED
)
1122 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1126 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1128 if (trylock
&& !done
)
1129 pag
->pag_ici_reclaim_cursor
= first_index
;
1131 pag
->pag_ici_reclaim_cursor
= 0;
1132 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1137 * if we skipped any AG, and we still have scan count remaining, do
1138 * another pass this time using blocking reclaim semantics (i.e
1139 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1140 * ensure that when we get more reclaimers than AGs we block rather
1141 * than spin trying to execute reclaim.
1143 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1147 return XFS_ERROR(last_error
);
1155 int nr_to_scan
= INT_MAX
;
1157 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1161 * Scan a certain number of inodes for reclaim.
1163 * When called we make sure that there is a background (fast) inode reclaim in
1164 * progress, while we will throttle the speed of reclaim via doing synchronous
1165 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1166 * them to be cleaned, which we hope will not be very long due to the
1167 * background walker having already kicked the IO off on those dirty inodes.
1170 xfs_reclaim_inodes_nr(
1171 struct xfs_mount
*mp
,
1174 /* kick background reclaimer and push the AIL */
1175 xfs_reclaim_work_queue(mp
);
1176 xfs_ail_push_all(mp
->m_ail
);
1178 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1182 * Return the number of reclaimable inodes in the filesystem for
1183 * the shrinker to determine how much to reclaim.
1186 xfs_reclaim_inodes_count(
1187 struct xfs_mount
*mp
)
1189 struct xfs_perag
*pag
;
1190 xfs_agnumber_t ag
= 0;
1191 int reclaimable
= 0;
1193 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1194 ag
= pag
->pag_agno
+ 1;
1195 reclaimable
+= pag
->pag_ici_reclaimable
;
1203 struct xfs_inode
*ip
,
1204 struct xfs_eofblocks
*eofb
)
1206 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1207 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1210 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1211 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1214 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1215 xfs_get_projid(ip
) != eofb
->eof_prid
)
1222 xfs_inode_free_eofblocks(
1223 struct xfs_inode
*ip
,
1224 struct xfs_perag
*pag
,
1229 struct xfs_eofblocks
*eofb
= args
;
1231 if (!xfs_can_free_eofblocks(ip
, false)) {
1232 /* inode could be preallocated or append-only */
1233 trace_xfs_inode_free_eofblocks_invalid(ip
);
1234 xfs_inode_clear_eofblocks_tag(ip
);
1239 * If the mapping is dirty the operation can block and wait for some
1240 * time. Unless we are waiting, skip it.
1242 if (!(flags
& SYNC_WAIT
) &&
1243 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1247 if (!xfs_inode_match_id(ip
, eofb
))
1250 /* skip the inode if the file size is too small */
1251 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1252 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1256 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, true);
1258 /* don't revisit the inode if we're not waiting */
1259 if (ret
== EAGAIN
&& !(flags
& SYNC_WAIT
))
1266 xfs_icache_free_eofblocks(
1267 struct xfs_mount
*mp
,
1268 struct xfs_eofblocks
*eofb
)
1270 int flags
= SYNC_TRYLOCK
;
1272 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1275 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1276 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1280 xfs_inode_set_eofblocks_tag(
1283 struct xfs_mount
*mp
= ip
->i_mount
;
1284 struct xfs_perag
*pag
;
1287 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1288 spin_lock(&pag
->pag_ici_lock
);
1289 trace_xfs_inode_set_eofblocks_tag(ip
);
1291 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1292 XFS_ICI_EOFBLOCKS_TAG
);
1293 radix_tree_tag_set(&pag
->pag_ici_root
,
1294 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1295 XFS_ICI_EOFBLOCKS_TAG
);
1297 /* propagate the eofblocks tag up into the perag radix tree */
1298 spin_lock(&ip
->i_mount
->m_perag_lock
);
1299 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1300 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1301 XFS_ICI_EOFBLOCKS_TAG
);
1302 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1304 /* kick off background trimming */
1305 xfs_queue_eofblocks(ip
->i_mount
);
1307 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1311 spin_unlock(&pag
->pag_ici_lock
);
1316 xfs_inode_clear_eofblocks_tag(
1319 struct xfs_mount
*mp
= ip
->i_mount
;
1320 struct xfs_perag
*pag
;
1322 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1323 spin_lock(&pag
->pag_ici_lock
);
1324 trace_xfs_inode_clear_eofblocks_tag(ip
);
1326 radix_tree_tag_clear(&pag
->pag_ici_root
,
1327 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1328 XFS_ICI_EOFBLOCKS_TAG
);
1329 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1330 /* clear the eofblocks tag from the perag radix tree */
1331 spin_lock(&ip
->i_mount
->m_perag_lock
);
1332 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1333 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1334 XFS_ICI_EOFBLOCKS_TAG
);
1335 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1336 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1340 spin_unlock(&pag
->pag_ici_lock
);