2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
22 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
35 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
37 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
39 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
44 * This returns the number of iovecs needed to log the given inode item.
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
52 struct xfs_log_item
*lip
,
56 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
57 struct xfs_inode
*ip
= iip
->ili_inode
;
60 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
61 xfs_icdinode_size(ip
->i_d
.di_version
);
63 switch (ip
->i_d
.di_format
) {
64 case XFS_DINODE_FMT_EXTENTS
:
65 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
66 ip
->i_d
.di_nextents
> 0 &&
67 ip
->i_df
.if_bytes
> 0) {
68 /* worst case, doesn't subtract delalloc extents */
69 *nbytes
+= XFS_IFORK_DSIZE(ip
);
74 case XFS_DINODE_FMT_BTREE
:
75 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
76 ip
->i_df
.if_broot_bytes
> 0) {
77 *nbytes
+= ip
->i_df
.if_broot_bytes
;
82 case XFS_DINODE_FMT_LOCAL
:
83 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
84 ip
->i_df
.if_bytes
> 0) {
85 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
90 case XFS_DINODE_FMT_DEV
:
91 case XFS_DINODE_FMT_UUID
:
104 * Log any necessary attribute data.
106 switch (ip
->i_d
.di_aformat
) {
107 case XFS_DINODE_FMT_EXTENTS
:
108 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
109 ip
->i_d
.di_anextents
> 0 &&
110 ip
->i_afp
->if_bytes
> 0) {
111 /* worst case, doesn't subtract unused space */
112 *nbytes
+= XFS_IFORK_ASIZE(ip
);
117 case XFS_DINODE_FMT_BTREE
:
118 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
119 ip
->i_afp
->if_broot_bytes
> 0) {
120 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
125 case XFS_DINODE_FMT_LOCAL
:
126 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
127 ip
->i_afp
->if_bytes
> 0) {
128 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
140 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
142 * For either the data or attr fork in extent format, we need to endian convert
143 * the in-core extent as we place them into the on-disk inode. In this case, we
144 * need to do this conversion before we write the extents into the log. Because
145 * we don't have the disk inode to write into here, we allocate a buffer and
146 * format the extents into it via xfs_iextents_copy(). We free the buffer in
147 * the unlock routine after the copy for the log has been made.
149 * In the case of the data fork, the in-core and on-disk fork sizes can be
150 * different due to delayed allocation extents. We only log on-disk extents
151 * here, so always use the physical fork size to determine the size of the
152 * buffer we need to allocate.
155 xfs_inode_item_format_extents(
156 struct xfs_inode
*ip
,
157 struct xfs_log_iovec
*vecp
,
161 xfs_bmbt_rec_t
*ext_buffer
;
163 ext_buffer
= kmem_alloc(XFS_IFORK_SIZE(ip
, whichfork
), KM_SLEEP
);
164 if (whichfork
== XFS_DATA_FORK
)
165 ip
->i_itemp
->ili_extents_buf
= ext_buffer
;
167 ip
->i_itemp
->ili_aextents_buf
= ext_buffer
;
169 vecp
->i_addr
= ext_buffer
;
170 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
, whichfork
);
175 * This is called to fill in the vector of log iovecs for the
176 * given inode log item. It fills the first item with an inode
177 * log format structure, the second with the on-disk inode structure,
178 * and a possible third and/or fourth with the inode data/extents/b-tree
179 * root and inode attributes data/extents/b-tree root.
182 xfs_inode_item_format(
183 struct xfs_log_item
*lip
,
184 struct xfs_log_iovec
*vecp
)
186 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
187 struct xfs_inode
*ip
= iip
->ili_inode
;
192 vecp
->i_addr
= &iip
->ili_format
;
193 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
194 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
198 vecp
->i_addr
= &ip
->i_d
;
199 vecp
->i_len
= xfs_icdinode_size(ip
->i_d
.di_version
);
200 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
205 * If this is really an old format inode, then we need to
206 * log it as such. This means that we have to copy the link
207 * count from the new field to the old. We don't have to worry
208 * about the new fields, because nothing trusts them as long as
209 * the old inode version number is there. If the superblock already
210 * has a new version number, then we don't bother converting back.
213 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
214 if (ip
->i_d
.di_version
== 1) {
215 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
219 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
220 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
223 * The superblock version has already been bumped,
224 * so just make the conversion to the new inode
227 ip
->i_d
.di_version
= 2;
228 ip
->i_d
.di_onlink
= 0;
229 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
233 switch (ip
->i_d
.di_format
) {
234 case XFS_DINODE_FMT_EXTENTS
:
236 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
237 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
239 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
240 ip
->i_d
.di_nextents
> 0 &&
241 ip
->i_df
.if_bytes
> 0) {
242 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
243 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
244 ASSERT(iip
->ili_extents_buf
== NULL
);
246 #ifdef XFS_NATIVE_HOST
247 if (ip
->i_d
.di_nextents
== ip
->i_df
.if_bytes
/
248 (uint
)sizeof(xfs_bmbt_rec_t
)) {
250 * There are no delayed allocation
251 * extents, so just point to the
252 * real extents array.
254 vecp
->i_addr
= ip
->i_df
.if_u1
.if_extents
;
255 vecp
->i_len
= ip
->i_df
.if_bytes
;
256 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
260 xfs_inode_item_format_extents(ip
, vecp
,
261 XFS_DATA_FORK
, XLOG_REG_TYPE_IEXT
);
263 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
264 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
268 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
272 case XFS_DINODE_FMT_BTREE
:
274 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
275 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
277 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
278 ip
->i_df
.if_broot_bytes
> 0) {
279 ASSERT(ip
->i_df
.if_broot
!= NULL
);
280 vecp
->i_addr
= ip
->i_df
.if_broot
;
281 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
282 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
285 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
287 ASSERT(!(iip
->ili_fields
&
289 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
293 case XFS_DINODE_FMT_LOCAL
:
295 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
296 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
297 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
298 ip
->i_df
.if_bytes
> 0) {
299 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
300 ASSERT(ip
->i_d
.di_size
> 0);
302 vecp
->i_addr
= ip
->i_df
.if_u1
.if_data
;
304 * Round i_bytes up to a word boundary.
305 * The underlying memory is guaranteed to
306 * to be there by xfs_idata_realloc().
308 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
309 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
310 (ip
->i_df
.if_real_bytes
== data_bytes
));
311 vecp
->i_len
= (int)data_bytes
;
312 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
315 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
317 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
321 case XFS_DINODE_FMT_DEV
:
323 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
324 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
325 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
326 iip
->ili_format
.ilf_u
.ilfu_rdev
=
327 ip
->i_df
.if_u2
.if_rdev
;
331 case XFS_DINODE_FMT_UUID
:
333 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
334 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
335 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
336 iip
->ili_format
.ilf_u
.ilfu_uuid
=
337 ip
->i_df
.if_u2
.if_uuid
;
347 * If there are no attributes associated with the file, then we're done.
349 if (!XFS_IFORK_Q(ip
)) {
351 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
355 switch (ip
->i_d
.di_aformat
) {
356 case XFS_DINODE_FMT_EXTENTS
:
358 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
360 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
361 ip
->i_d
.di_anextents
> 0 &&
362 ip
->i_afp
->if_bytes
> 0) {
363 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
364 ip
->i_d
.di_anextents
);
365 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
366 #ifdef XFS_NATIVE_HOST
368 * There are not delayed allocation extents
369 * for attributes, so just point at the array.
371 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_extents
;
372 vecp
->i_len
= ip
->i_afp
->if_bytes
;
373 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
375 ASSERT(iip
->ili_aextents_buf
== NULL
);
376 xfs_inode_item_format_extents(ip
, vecp
,
377 XFS_ATTR_FORK
, XLOG_REG_TYPE_IATTR_EXT
);
379 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
383 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
387 case XFS_DINODE_FMT_BTREE
:
389 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
391 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
392 ip
->i_afp
->if_broot_bytes
> 0) {
393 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
395 vecp
->i_addr
= ip
->i_afp
->if_broot
;
396 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
397 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
400 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
402 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
406 case XFS_DINODE_FMT_LOCAL
:
408 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
410 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
411 ip
->i_afp
->if_bytes
> 0) {
412 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
414 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_data
;
416 * Round i_bytes up to a word boundary.
417 * The underlying memory is guaranteed to
418 * to be there by xfs_idata_realloc().
420 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
421 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
422 (ip
->i_afp
->if_real_bytes
== data_bytes
));
423 vecp
->i_len
= (int)data_bytes
;
424 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
427 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
429 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
440 * Now update the log format that goes out to disk from the in-core
441 * values. We always write the inode core to make the arithmetic
442 * games in recovery easier, which isn't a big deal as just about any
443 * transaction would dirty it anyway.
445 iip
->ili_format
.ilf_fields
= XFS_ILOG_CORE
|
446 (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
447 iip
->ili_format
.ilf_size
= nvecs
;
452 * This is called to pin the inode associated with the inode log
453 * item in memory so it cannot be written out.
457 struct xfs_log_item
*lip
)
459 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
461 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
463 trace_xfs_inode_pin(ip
, _RET_IP_
);
464 atomic_inc(&ip
->i_pincount
);
469 * This is called to unpin the inode associated with the inode log
470 * item which was previously pinned with a call to xfs_inode_item_pin().
472 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
475 xfs_inode_item_unpin(
476 struct xfs_log_item
*lip
,
479 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
481 trace_xfs_inode_unpin(ip
, _RET_IP_
);
482 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
483 if (atomic_dec_and_test(&ip
->i_pincount
))
484 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
489 struct xfs_log_item
*lip
,
490 struct list_head
*buffer_list
)
492 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
493 struct xfs_inode
*ip
= iip
->ili_inode
;
494 struct xfs_buf
*bp
= NULL
;
495 uint rval
= XFS_ITEM_SUCCESS
;
498 if (xfs_ipincount(ip
) > 0)
499 return XFS_ITEM_PINNED
;
501 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
502 return XFS_ITEM_LOCKED
;
505 * Re-check the pincount now that we stabilized the value by
508 if (xfs_ipincount(ip
) > 0) {
509 rval
= XFS_ITEM_PINNED
;
514 * Stale inode items should force out the iclog.
516 if (ip
->i_flags
& XFS_ISTALE
) {
517 rval
= XFS_ITEM_PINNED
;
522 * Someone else is already flushing the inode. Nothing we can do
523 * here but wait for the flush to finish and remove the item from
526 if (!xfs_iflock_nowait(ip
)) {
527 rval
= XFS_ITEM_FLUSHING
;
531 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
532 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
534 spin_unlock(&lip
->li_ailp
->xa_lock
);
536 error
= xfs_iflush(ip
, &bp
);
538 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
539 rval
= XFS_ITEM_FLUSHING
;
543 spin_lock(&lip
->li_ailp
->xa_lock
);
545 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
550 * Unlock the inode associated with the inode log item.
551 * Clear the fields of the inode and inode log item that
552 * are specific to the current transaction. If the
553 * hold flags is set, do not unlock the inode.
556 xfs_inode_item_unlock(
557 struct xfs_log_item
*lip
)
559 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
560 struct xfs_inode
*ip
= iip
->ili_inode
;
561 unsigned short lock_flags
;
563 ASSERT(ip
->i_itemp
!= NULL
);
564 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
567 * If the inode needed a separate buffer with which to log
568 * its extents, then free it now.
570 if (iip
->ili_extents_buf
!= NULL
) {
571 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
572 ASSERT(ip
->i_d
.di_nextents
> 0);
573 ASSERT(iip
->ili_fields
& XFS_ILOG_DEXT
);
574 ASSERT(ip
->i_df
.if_bytes
> 0);
575 kmem_free(iip
->ili_extents_buf
);
576 iip
->ili_extents_buf
= NULL
;
578 if (iip
->ili_aextents_buf
!= NULL
) {
579 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
580 ASSERT(ip
->i_d
.di_anextents
> 0);
581 ASSERT(iip
->ili_fields
& XFS_ILOG_AEXT
);
582 ASSERT(ip
->i_afp
->if_bytes
> 0);
583 kmem_free(iip
->ili_aextents_buf
);
584 iip
->ili_aextents_buf
= NULL
;
587 lock_flags
= iip
->ili_lock_flags
;
588 iip
->ili_lock_flags
= 0;
590 xfs_iunlock(ip
, lock_flags
);
594 * This is called to find out where the oldest active copy of the inode log
595 * item in the on disk log resides now that the last log write of it completed
596 * at the given lsn. Since we always re-log all dirty data in an inode, the
597 * latest copy in the on disk log is the only one that matters. Therefore,
598 * simply return the given lsn.
600 * If the inode has been marked stale because the cluster is being freed, we
601 * don't want to (re-)insert this inode into the AIL. There is a race condition
602 * where the cluster buffer may be unpinned before the inode is inserted into
603 * the AIL during transaction committed processing. If the buffer is unpinned
604 * before the inode item has been committed and inserted, then it is possible
605 * for the buffer to be written and IO completes before the inode is inserted
606 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
607 * AIL which will never get removed. It will, however, get reclaimed which
608 * triggers an assert in xfs_inode_free() complaining about freein an inode
611 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
612 * transaction committed code knows that it does not need to do any further
613 * processing on the item.
616 xfs_inode_item_committed(
617 struct xfs_log_item
*lip
,
620 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
621 struct xfs_inode
*ip
= iip
->ili_inode
;
623 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
624 xfs_inode_item_unpin(lip
, 0);
631 * XXX rcc - this one really has to do something. Probably needs
632 * to stamp in a new field in the incore inode.
635 xfs_inode_item_committing(
636 struct xfs_log_item
*lip
,
639 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
643 * This is the ops vector shared by all buf log items.
645 static const struct xfs_item_ops xfs_inode_item_ops
= {
646 .iop_size
= xfs_inode_item_size
,
647 .iop_format
= xfs_inode_item_format
,
648 .iop_pin
= xfs_inode_item_pin
,
649 .iop_unpin
= xfs_inode_item_unpin
,
650 .iop_unlock
= xfs_inode_item_unlock
,
651 .iop_committed
= xfs_inode_item_committed
,
652 .iop_push
= xfs_inode_item_push
,
653 .iop_committing
= xfs_inode_item_committing
658 * Initialize the inode log item for a newly allocated (in-core) inode.
662 struct xfs_inode
*ip
,
663 struct xfs_mount
*mp
)
665 struct xfs_inode_log_item
*iip
;
667 ASSERT(ip
->i_itemp
== NULL
);
668 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
671 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
672 &xfs_inode_item_ops
);
673 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
674 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
675 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
676 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
677 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
681 * Free the inode log item and any memory hanging off of it.
684 xfs_inode_item_destroy(
687 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
692 * This is the inode flushing I/O completion routine. It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk. It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
706 struct xfs_log_item
*lip
)
708 struct xfs_inode_log_item
*iip
;
709 struct xfs_log_item
*blip
;
710 struct xfs_log_item
*next
;
711 struct xfs_log_item
*prev
;
712 struct xfs_ail
*ailp
= lip
->li_ailp
;
716 * Scan the buffer IO completions for other inodes being completed and
717 * attach them to the current inode log item.
721 while (blip
!= NULL
) {
722 if (lip
->li_cb
!= xfs_iflush_done
) {
724 blip
= blip
->li_bio_list
;
728 /* remove from list */
729 next
= blip
->li_bio_list
;
733 prev
->li_bio_list
= next
;
736 /* add to current list */
737 blip
->li_bio_list
= lip
->li_bio_list
;
738 lip
->li_bio_list
= blip
;
741 * while we have the item, do the unlocked check for needing
744 iip
= INODE_ITEM(blip
);
745 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
751 /* make sure we capture the state of the initial inode. */
752 iip
= INODE_ITEM(lip
);
753 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
757 * We only want to pull the item from the AIL if it is
758 * actually there and its location in the log has not
759 * changed since we started the flush. Thus, we only bother
760 * if the ili_logged flag is set and the inode's lsn has not
761 * changed. First we check the lsn outside
762 * the lock since it's cheaper, and then we recheck while
763 * holding the lock before removing the inode from the AIL.
766 struct xfs_log_item
*log_items
[need_ail
];
768 spin_lock(&ailp
->xa_lock
);
769 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
770 iip
= INODE_ITEM(blip
);
771 if (iip
->ili_logged
&&
772 blip
->li_lsn
== iip
->ili_flush_lsn
) {
773 log_items
[i
++] = blip
;
775 ASSERT(i
<= need_ail
);
777 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
778 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
,
779 SHUTDOWN_CORRUPT_INCORE
);
784 * clean up and unlock the flush lock now we are done. We can clear the
785 * ili_last_fields bits now that we know that the data corresponding to
786 * them is safely on disk.
788 for (blip
= lip
; blip
; blip
= next
) {
789 next
= blip
->li_bio_list
;
790 blip
->li_bio_list
= NULL
;
792 iip
= INODE_ITEM(blip
);
794 iip
->ili_last_fields
= 0;
795 xfs_ifunlock(iip
->ili_inode
);
800 * This is the inode flushing abort routine. It is called from xfs_iflush when
801 * the filesystem is shutting down to clean up the inode state. It is
802 * responsible for removing the inode item from the AIL if it has not been
803 * re-logged, and unlocking the inode's flush lock.
810 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
813 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
814 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
815 spin_lock(&ailp
->xa_lock
);
816 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
817 /* xfs_trans_ail_delete() drops the AIL lock. */
818 xfs_trans_ail_delete(ailp
, &iip
->ili_item
,
820 SHUTDOWN_LOG_IO_ERROR
:
821 SHUTDOWN_CORRUPT_INCORE
);
823 spin_unlock(&ailp
->xa_lock
);
827 * Clear the ili_last_fields bits now that we know that the
828 * data corresponding to them is safely on disk.
830 iip
->ili_last_fields
= 0;
832 * Clear the inode logging fields so no more flushes are
838 * Release the inode's flush lock since we're done with it.
846 struct xfs_log_item
*lip
)
848 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
852 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
853 * (which can have different field alignments) to the native version
856 xfs_inode_item_format_convert(
857 xfs_log_iovec_t
*buf
,
858 xfs_inode_log_format_t
*in_f
)
860 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
861 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
863 in_f
->ilf_type
= in_f32
->ilf_type
;
864 in_f
->ilf_size
= in_f32
->ilf_size
;
865 in_f
->ilf_fields
= in_f32
->ilf_fields
;
866 in_f
->ilf_asize
= in_f32
->ilf_asize
;
867 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
868 in_f
->ilf_ino
= in_f32
->ilf_ino
;
869 /* copy biggest field of ilf_u */
870 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
871 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
873 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
874 in_f
->ilf_len
= in_f32
->ilf_len
;
875 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
877 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
878 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
880 in_f
->ilf_type
= in_f64
->ilf_type
;
881 in_f
->ilf_size
= in_f64
->ilf_size
;
882 in_f
->ilf_fields
= in_f64
->ilf_fields
;
883 in_f
->ilf_asize
= in_f64
->ilf_asize
;
884 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
885 in_f
->ilf_ino
= in_f64
->ilf_ino
;
886 /* copy biggest field of ilf_u */
887 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
888 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
890 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
891 in_f
->ilf_len
= in_f64
->ilf_len
;
892 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;