2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 131072;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly
= UINT_MAX
;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat
);
68 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
69 int push_one
, gfp_t gfp
);
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
74 struct inet_connection_sock
*icsk
= inet_csk(sk
);
75 struct tcp_sock
*tp
= tcp_sk(sk
);
76 unsigned int prior_packets
= tp
->packets_out
;
78 tcp_advance_send_head(sk
, skb
);
79 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
81 tp
->packets_out
+= tcp_skb_pcount(skb
);
82 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
83 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
87 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
97 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
99 const struct tcp_sock
*tp
= tcp_sk(sk
);
101 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
104 return tcp_wnd_end(tp
);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16
tcp_advertise_mss(struct sock
*sk
)
123 struct tcp_sock
*tp
= tcp_sk(sk
);
124 const struct dst_entry
*dst
= __sk_dst_get(sk
);
125 int mss
= tp
->advmss
;
128 unsigned int metric
= dst_metric_advmss(dst
);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock
*sk
, const struct dst_entry
*dst
)
143 struct tcp_sock
*tp
= tcp_sk(sk
);
144 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
145 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
146 u32 cwnd
= tp
->snd_cwnd
;
148 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
150 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
151 restart_cwnd
= min(restart_cwnd
, cwnd
);
153 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
155 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
156 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
157 tp
->snd_cwnd_used
= 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock
*tp
,
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 const u32 now
= tcp_time_stamp
;
166 const struct dst_entry
*dst
= __sk_dst_get(sk
);
168 if (sysctl_tcp_slow_start_after_idle
&&
169 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
170 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
177 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
&&
178 (!dst
|| !dst_metric(dst
, RTAX_QUICKACK
)))
179 icsk
->icsk_ack
.pingpong
= 1;
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
185 tcp_dec_quickack_mode(sk
, pkts
);
186 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
190 u32
tcp_default_init_rwnd(u32 mss
)
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
197 u32 init_rwnd
= TCP_INIT_CWND
* 2;
200 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
211 void tcp_select_initial_window(int __space
, __u32 mss
,
212 __u32
*rcv_wnd
, __u32
*window_clamp
,
213 int wscale_ok
, __u8
*rcv_wscale
,
216 unsigned int space
= (__space
< 0 ? 0 : __space
);
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp
== 0)
220 (*window_clamp
) = (65535 << 14);
221 space
= min(*window_clamp
, space
);
223 /* Quantize space offering to a multiple of mss if possible. */
225 space
= (space
/ mss
) * mss
;
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
235 if (sysctl_tcp_workaround_signed_windows
)
236 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
245 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
246 space
= min_t(u32
, space
, *window_clamp
);
247 while (space
> 65535 && (*rcv_wscale
) < 14) {
253 if (mss
> (1 << *rcv_wscale
)) {
254 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
255 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
256 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
262 EXPORT_SYMBOL(tcp_select_initial_window
);
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
269 static u16
tcp_select_window(struct sock
*sk
)
271 struct tcp_sock
*tp
= tcp_sk(sk
);
272 u32 old_win
= tp
->rcv_wnd
;
273 u32 cur_win
= tcp_receive_window(tp
);
274 u32 new_win
= __tcp_select_window(sk
);
276 /* Never shrink the offered window */
277 if (new_win
< cur_win
) {
278 /* Danger Will Robinson!
279 * Don't update rcv_wup/rcv_wnd here or else
280 * we will not be able to advertise a zero
281 * window in time. --DaveM
283 * Relax Will Robinson.
286 NET_INC_STATS(sock_net(sk
),
287 LINUX_MIB_TCPWANTZEROWINDOWADV
);
288 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
290 tp
->rcv_wnd
= new_win
;
291 tp
->rcv_wup
= tp
->rcv_nxt
;
293 /* Make sure we do not exceed the maximum possible
296 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
297 new_win
= min(new_win
, MAX_TCP_WINDOW
);
299 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
301 /* RFC1323 scaling applied */
302 new_win
>>= tp
->rx_opt
.rcv_wscale
;
304 /* If we advertise zero window, disable fast path. */
308 NET_INC_STATS(sock_net(sk
),
309 LINUX_MIB_TCPTOZEROWINDOWADV
);
310 } else if (old_win
== 0) {
311 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
320 const struct tcp_sock
*tp
= tcp_sk(sk
);
322 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
323 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
324 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
325 else if (tcp_ca_needs_ecn(sk
))
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
332 struct tcp_sock
*tp
= tcp_sk(sk
);
333 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
334 tcp_ca_needs_ecn(sk
);
337 const struct dst_entry
*dst
= __sk_dst_get(sk
);
339 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
346 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
347 tp
->ecn_flags
= TCP_ECN_OK
;
348 if (tcp_ca_needs_ecn(sk
))
354 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
,
357 if (inet_rsk(req
)->ecn_ok
) {
359 if (tcp_ca_needs_ecn(sk
))
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
367 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
370 struct tcp_sock
*tp
= tcp_sk(sk
);
372 if (tp
->ecn_flags
& TCP_ECN_OK
) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb
->len
!= tcp_header_len
&&
375 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
377 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
378 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
379 tcp_hdr(skb
)->cwr
= 1;
380 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
382 } else if (!tcp_ca_needs_ecn(sk
)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk
);
386 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
387 tcp_hdr(skb
)->ece
= 1;
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
394 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
396 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
398 skb
->ip_summed
= CHECKSUM_PARTIAL
;
401 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
402 TCP_SKB_CB(skb
)->sacked
= 0;
404 tcp_skb_pcount_set(skb
, 1);
405 shinfo
->gso_size
= 0;
406 shinfo
->gso_type
= 0;
408 TCP_SKB_CB(skb
)->seq
= seq
;
409 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
411 TCP_SKB_CB(skb
)->end_seq
= seq
;
414 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
416 return tp
->snd_una
!= tp
->snd_up
;
419 #define OPTION_SACK_ADVERTISE (1 << 0)
420 #define OPTION_TS (1 << 1)
421 #define OPTION_MD5 (1 << 2)
422 #define OPTION_WSCALE (1 << 3)
423 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
425 struct tcp_out_options
{
426 u16 options
; /* bit field of OPTION_* */
427 u16 mss
; /* 0 to disable */
428 u8 ws
; /* window scale, 0 to disable */
429 u8 num_sack_blocks
; /* number of SACK blocks to include */
430 u8 hash_size
; /* bytes in hash_location */
431 __u8
*hash_location
; /* temporary pointer, overloaded */
432 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
433 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
436 /* Write previously computed TCP options to the packet.
438 * Beware: Something in the Internet is very sensitive to the ordering of
439 * TCP options, we learned this through the hard way, so be careful here.
440 * Luckily we can at least blame others for their non-compliance but from
441 * inter-operability perspective it seems that we're somewhat stuck with
442 * the ordering which we have been using if we want to keep working with
443 * those broken things (not that it currently hurts anybody as there isn't
444 * particular reason why the ordering would need to be changed).
446 * At least SACK_PERM as the first option is known to lead to a disaster
447 * (but it may well be that other scenarios fail similarly).
449 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
450 struct tcp_out_options
*opts
)
452 u16 options
= opts
->options
; /* mungable copy */
454 if (unlikely(OPTION_MD5
& options
)) {
455 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
456 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
457 /* overload cookie hash location */
458 opts
->hash_location
= (__u8
*)ptr
;
462 if (unlikely(opts
->mss
)) {
463 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
464 (TCPOLEN_MSS
<< 16) |
468 if (likely(OPTION_TS
& options
)) {
469 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
470 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
471 (TCPOLEN_SACK_PERM
<< 16) |
472 (TCPOPT_TIMESTAMP
<< 8) |
474 options
&= ~OPTION_SACK_ADVERTISE
;
476 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
478 (TCPOPT_TIMESTAMP
<< 8) |
481 *ptr
++ = htonl(opts
->tsval
);
482 *ptr
++ = htonl(opts
->tsecr
);
485 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
486 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
488 (TCPOPT_SACK_PERM
<< 8) |
492 if (unlikely(OPTION_WSCALE
& options
)) {
493 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
494 (TCPOPT_WINDOW
<< 16) |
495 (TCPOLEN_WINDOW
<< 8) |
499 if (unlikely(opts
->num_sack_blocks
)) {
500 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
501 tp
->duplicate_sack
: tp
->selective_acks
;
504 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
507 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
508 TCPOLEN_SACK_PERBLOCK
)));
510 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
512 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
513 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
516 tp
->rx_opt
.dsack
= 0;
519 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
520 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
522 *ptr
++ = htonl((TCPOPT_EXP
<< 24) |
523 ((TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
) << 16) |
524 TCPOPT_FASTOPEN_MAGIC
);
526 memcpy(ptr
, foc
->val
, foc
->len
);
527 if ((foc
->len
& 3) == 2) {
528 u8
*align
= ((u8
*)ptr
) + foc
->len
;
529 align
[0] = align
[1] = TCPOPT_NOP
;
531 ptr
+= (foc
->len
+ 3) >> 2;
535 /* Compute TCP options for SYN packets. This is not the final
536 * network wire format yet.
538 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
539 struct tcp_out_options
*opts
,
540 struct tcp_md5sig_key
**md5
)
542 struct tcp_sock
*tp
= tcp_sk(sk
);
543 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
544 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
546 #ifdef CONFIG_TCP_MD5SIG
547 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
549 opts
->options
|= OPTION_MD5
;
550 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
556 /* We always get an MSS option. The option bytes which will be seen in
557 * normal data packets should timestamps be used, must be in the MSS
558 * advertised. But we subtract them from tp->mss_cache so that
559 * calculations in tcp_sendmsg are simpler etc. So account for this
560 * fact here if necessary. If we don't do this correctly, as a
561 * receiver we won't recognize data packets as being full sized when we
562 * should, and thus we won't abide by the delayed ACK rules correctly.
563 * SACKs don't matter, we never delay an ACK when we have any of those
565 opts
->mss
= tcp_advertise_mss(sk
);
566 remaining
-= TCPOLEN_MSS_ALIGNED
;
568 if (likely(sysctl_tcp_timestamps
&& *md5
== NULL
)) {
569 opts
->options
|= OPTION_TS
;
570 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
571 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
572 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
574 if (likely(sysctl_tcp_window_scaling
)) {
575 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
576 opts
->options
|= OPTION_WSCALE
;
577 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
579 if (likely(sysctl_tcp_sack
)) {
580 opts
->options
|= OPTION_SACK_ADVERTISE
;
581 if (unlikely(!(OPTION_TS
& opts
->options
)))
582 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
585 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
586 u32 need
= TCPOLEN_EXP_FASTOPEN_BASE
+ fastopen
->cookie
.len
;
587 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
588 if (remaining
>= need
) {
589 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
590 opts
->fastopen_cookie
= &fastopen
->cookie
;
592 tp
->syn_fastopen
= 1;
596 return MAX_TCP_OPTION_SPACE
- remaining
;
599 /* Set up TCP options for SYN-ACKs. */
600 static unsigned int tcp_synack_options(struct sock
*sk
,
601 struct request_sock
*req
,
602 unsigned int mss
, struct sk_buff
*skb
,
603 struct tcp_out_options
*opts
,
604 struct tcp_md5sig_key
**md5
,
605 struct tcp_fastopen_cookie
*foc
)
607 struct inet_request_sock
*ireq
= inet_rsk(req
);
608 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
610 #ifdef CONFIG_TCP_MD5SIG
611 *md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
613 opts
->options
|= OPTION_MD5
;
614 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
616 /* We can't fit any SACK blocks in a packet with MD5 + TS
617 * options. There was discussion about disabling SACK
618 * rather than TS in order to fit in better with old,
619 * buggy kernels, but that was deemed to be unnecessary.
621 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
627 /* We always send an MSS option. */
629 remaining
-= TCPOLEN_MSS_ALIGNED
;
631 if (likely(ireq
->wscale_ok
)) {
632 opts
->ws
= ireq
->rcv_wscale
;
633 opts
->options
|= OPTION_WSCALE
;
634 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
636 if (likely(ireq
->tstamp_ok
)) {
637 opts
->options
|= OPTION_TS
;
638 opts
->tsval
= tcp_skb_timestamp(skb
);
639 opts
->tsecr
= req
->ts_recent
;
640 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
642 if (likely(ireq
->sack_ok
)) {
643 opts
->options
|= OPTION_SACK_ADVERTISE
;
644 if (unlikely(!ireq
->tstamp_ok
))
645 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
647 if (foc
!= NULL
&& foc
->len
>= 0) {
648 u32 need
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
649 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
650 if (remaining
>= need
) {
651 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
652 opts
->fastopen_cookie
= foc
;
657 return MAX_TCP_OPTION_SPACE
- remaining
;
660 /* Compute TCP options for ESTABLISHED sockets. This is not the
661 * final wire format yet.
663 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
664 struct tcp_out_options
*opts
,
665 struct tcp_md5sig_key
**md5
)
667 struct tcp_sock
*tp
= tcp_sk(sk
);
668 unsigned int size
= 0;
669 unsigned int eff_sacks
;
673 #ifdef CONFIG_TCP_MD5SIG
674 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
675 if (unlikely(*md5
)) {
676 opts
->options
|= OPTION_MD5
;
677 size
+= TCPOLEN_MD5SIG_ALIGNED
;
683 if (likely(tp
->rx_opt
.tstamp_ok
)) {
684 opts
->options
|= OPTION_TS
;
685 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
686 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
687 size
+= TCPOLEN_TSTAMP_ALIGNED
;
690 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
691 if (unlikely(eff_sacks
)) {
692 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
693 opts
->num_sack_blocks
=
694 min_t(unsigned int, eff_sacks
,
695 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
696 TCPOLEN_SACK_PERBLOCK
);
697 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
698 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
705 /* TCP SMALL QUEUES (TSQ)
707 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
708 * to reduce RTT and bufferbloat.
709 * We do this using a special skb destructor (tcp_wfree).
711 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
712 * needs to be reallocated in a driver.
713 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
715 * Since transmit from skb destructor is forbidden, we use a tasklet
716 * to process all sockets that eventually need to send more skbs.
717 * We use one tasklet per cpu, with its own queue of sockets.
720 struct tasklet_struct tasklet
;
721 struct list_head head
; /* queue of tcp sockets */
723 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
725 static void tcp_tsq_handler(struct sock
*sk
)
727 if ((1 << sk
->sk_state
) &
728 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
729 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
730 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
734 * One tasklet per cpu tries to send more skbs.
735 * We run in tasklet context but need to disable irqs when
736 * transferring tsq->head because tcp_wfree() might
737 * interrupt us (non NAPI drivers)
739 static void tcp_tasklet_func(unsigned long data
)
741 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
744 struct list_head
*q
, *n
;
748 local_irq_save(flags
);
749 list_splice_init(&tsq
->head
, &list
);
750 local_irq_restore(flags
);
752 list_for_each_safe(q
, n
, &list
) {
753 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
754 list_del(&tp
->tsq_node
);
756 sk
= (struct sock
*)tp
;
759 if (!sock_owned_by_user(sk
)) {
762 /* defer the work to tcp_release_cb() */
763 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
767 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
772 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
773 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
774 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
775 (1UL << TCP_MTU_REDUCED_DEFERRED))
777 * tcp_release_cb - tcp release_sock() callback
780 * called from release_sock() to perform protocol dependent
781 * actions before socket release.
783 void tcp_release_cb(struct sock
*sk
)
785 struct tcp_sock
*tp
= tcp_sk(sk
);
786 unsigned long flags
, nflags
;
788 /* perform an atomic operation only if at least one flag is set */
790 flags
= tp
->tsq_flags
;
791 if (!(flags
& TCP_DEFERRED_ALL
))
793 nflags
= flags
& ~TCP_DEFERRED_ALL
;
794 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
796 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
799 /* Here begins the tricky part :
800 * We are called from release_sock() with :
802 * 2) sk_lock.slock spinlock held
803 * 3) socket owned by us (sk->sk_lock.owned == 1)
805 * But following code is meant to be called from BH handlers,
806 * so we should keep BH disabled, but early release socket ownership
808 sock_release_ownership(sk
);
810 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
811 tcp_write_timer_handler(sk
);
814 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
815 tcp_delack_timer_handler(sk
);
818 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
819 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
823 EXPORT_SYMBOL(tcp_release_cb
);
825 void __init
tcp_tasklet_init(void)
829 for_each_possible_cpu(i
) {
830 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
832 INIT_LIST_HEAD(&tsq
->head
);
833 tasklet_init(&tsq
->tasklet
,
840 * Write buffer destructor automatically called from kfree_skb.
841 * We can't xmit new skbs from this context, as we might already
844 void tcp_wfree(struct sk_buff
*skb
)
846 struct sock
*sk
= skb
->sk
;
847 struct tcp_sock
*tp
= tcp_sk(sk
);
850 /* Keep one reference on sk_wmem_alloc.
851 * Will be released by sk_free() from here or tcp_tasklet_func()
853 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
855 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
856 * Wait until our queues (qdisc + devices) are drained.
858 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
859 * - chance for incoming ACK (processed by another cpu maybe)
860 * to migrate this flow (skb->ooo_okay will be eventually set)
862 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
865 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
866 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
868 struct tsq_tasklet
*tsq
;
870 /* queue this socket to tasklet queue */
871 local_irq_save(flags
);
872 tsq
= this_cpu_ptr(&tsq_tasklet
);
873 list_add(&tp
->tsq_node
, &tsq
->head
);
874 tasklet_schedule(&tsq
->tasklet
);
875 local_irq_restore(flags
);
882 /* This routine actually transmits TCP packets queued in by
883 * tcp_do_sendmsg(). This is used by both the initial
884 * transmission and possible later retransmissions.
885 * All SKB's seen here are completely headerless. It is our
886 * job to build the TCP header, and pass the packet down to
887 * IP so it can do the same plus pass the packet off to the
890 * We are working here with either a clone of the original
891 * SKB, or a fresh unique copy made by the retransmit engine.
893 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
896 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
897 struct inet_sock
*inet
;
899 struct tcp_skb_cb
*tcb
;
900 struct tcp_out_options opts
;
901 unsigned int tcp_options_size
, tcp_header_size
;
902 struct tcp_md5sig_key
*md5
;
906 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
909 skb_mstamp_get(&skb
->skb_mstamp
);
911 if (unlikely(skb_cloned(skb
)))
912 skb
= pskb_copy(skb
, gfp_mask
);
914 skb
= skb_clone(skb
, gfp_mask
);
921 tcb
= TCP_SKB_CB(skb
);
922 memset(&opts
, 0, sizeof(opts
));
924 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
925 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
927 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
929 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
931 if (tcp_packets_in_flight(tp
) == 0)
932 tcp_ca_event(sk
, CA_EVENT_TX_START
);
934 /* if no packet is in qdisc/device queue, then allow XPS to select
935 * another queue. We can be called from tcp_tsq_handler()
936 * which holds one reference to sk_wmem_alloc.
938 * TODO: Ideally, in-flight pure ACK packets should not matter here.
939 * One way to get this would be to set skb->truesize = 2 on them.
941 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
943 skb_push(skb
, tcp_header_size
);
944 skb_reset_transport_header(skb
);
948 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? sock_wfree
: tcp_wfree
;
949 skb_set_hash_from_sk(skb
, sk
);
950 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
952 /* Build TCP header and checksum it. */
954 th
->source
= inet
->inet_sport
;
955 th
->dest
= inet
->inet_dport
;
956 th
->seq
= htonl(tcb
->seq
);
957 th
->ack_seq
= htonl(tp
->rcv_nxt
);
958 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
961 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
962 /* RFC1323: The window in SYN & SYN/ACK segments
965 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
967 th
->window
= htons(tcp_select_window(sk
));
972 /* The urg_mode check is necessary during a below snd_una win probe */
973 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
974 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
975 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
977 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
978 th
->urg_ptr
= htons(0xFFFF);
983 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
984 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
985 tcp_ecn_send(sk
, skb
, tcp_header_size
);
987 #ifdef CONFIG_TCP_MD5SIG
988 /* Calculate the MD5 hash, as we have all we need now */
990 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
991 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
996 icsk
->icsk_af_ops
->send_check(sk
, skb
);
998 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
999 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1001 if (skb
->len
!= tcp_header_size
)
1002 tcp_event_data_sent(tp
, sk
);
1004 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1005 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1006 tcp_skb_pcount(skb
));
1008 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1009 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1011 /* Our usage of tstamp should remain private */
1012 skb
->tstamp
.tv64
= 0;
1014 /* Cleanup our debris for IP stacks */
1015 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1016 sizeof(struct inet6_skb_parm
)));
1018 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1020 if (likely(err
<= 0))
1025 return net_xmit_eval(err
);
1028 /* This routine just queues the buffer for sending.
1030 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1031 * otherwise socket can stall.
1033 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1035 struct tcp_sock
*tp
= tcp_sk(sk
);
1037 /* Advance write_seq and place onto the write_queue. */
1038 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1039 __skb_header_release(skb
);
1040 tcp_add_write_queue_tail(sk
, skb
);
1041 sk
->sk_wmem_queued
+= skb
->truesize
;
1042 sk_mem_charge(sk
, skb
->truesize
);
1045 /* Initialize TSO segments for a packet. */
1046 static void tcp_set_skb_tso_segs(const struct sock
*sk
, struct sk_buff
*skb
,
1047 unsigned int mss_now
)
1049 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1051 /* Make sure we own this skb before messing gso_size/gso_segs */
1052 WARN_ON_ONCE(skb_cloned(skb
));
1054 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1055 /* Avoid the costly divide in the normal
1058 tcp_skb_pcount_set(skb
, 1);
1059 shinfo
->gso_size
= 0;
1060 shinfo
->gso_type
= 0;
1062 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1063 shinfo
->gso_size
= mss_now
;
1064 shinfo
->gso_type
= sk
->sk_gso_type
;
1068 /* When a modification to fackets out becomes necessary, we need to check
1069 * skb is counted to fackets_out or not.
1071 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1074 struct tcp_sock
*tp
= tcp_sk(sk
);
1076 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1079 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1080 tp
->fackets_out
-= decr
;
1083 /* Pcount in the middle of the write queue got changed, we need to do various
1084 * tweaks to fix counters
1086 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1088 struct tcp_sock
*tp
= tcp_sk(sk
);
1090 tp
->packets_out
-= decr
;
1092 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1093 tp
->sacked_out
-= decr
;
1094 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1095 tp
->retrans_out
-= decr
;
1096 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1097 tp
->lost_out
-= decr
;
1099 /* Reno case is special. Sigh... */
1100 if (tcp_is_reno(tp
) && decr
> 0)
1101 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1103 tcp_adjust_fackets_out(sk
, skb
, decr
);
1105 if (tp
->lost_skb_hint
&&
1106 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1107 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1108 tp
->lost_cnt_hint
-= decr
;
1110 tcp_verify_left_out(tp
);
1113 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1115 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1117 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1118 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1119 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1120 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1122 shinfo
->tx_flags
&= ~tsflags
;
1123 shinfo2
->tx_flags
|= tsflags
;
1124 swap(shinfo
->tskey
, shinfo2
->tskey
);
1128 /* Function to create two new TCP segments. Shrinks the given segment
1129 * to the specified size and appends a new segment with the rest of the
1130 * packet to the list. This won't be called frequently, I hope.
1131 * Remember, these are still headerless SKBs at this point.
1133 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1134 unsigned int mss_now
, gfp_t gfp
)
1136 struct tcp_sock
*tp
= tcp_sk(sk
);
1137 struct sk_buff
*buff
;
1138 int nsize
, old_factor
;
1142 if (WARN_ON(len
> skb
->len
))
1145 nsize
= skb_headlen(skb
) - len
;
1149 if (skb_unclone(skb
, gfp
))
1152 /* Get a new skb... force flag on. */
1153 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
);
1155 return -ENOMEM
; /* We'll just try again later. */
1157 sk
->sk_wmem_queued
+= buff
->truesize
;
1158 sk_mem_charge(sk
, buff
->truesize
);
1159 nlen
= skb
->len
- len
- nsize
;
1160 buff
->truesize
+= nlen
;
1161 skb
->truesize
-= nlen
;
1163 /* Correct the sequence numbers. */
1164 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1165 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1166 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1168 /* PSH and FIN should only be set in the second packet. */
1169 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1170 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1171 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1172 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1174 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1175 /* Copy and checksum data tail into the new buffer. */
1176 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1177 skb_put(buff
, nsize
),
1182 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1184 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1185 skb_split(skb
, buff
, len
);
1188 buff
->ip_summed
= skb
->ip_summed
;
1190 buff
->tstamp
= skb
->tstamp
;
1191 tcp_fragment_tstamp(skb
, buff
);
1193 old_factor
= tcp_skb_pcount(skb
);
1195 /* Fix up tso_factor for both original and new SKB. */
1196 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1197 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1199 /* If this packet has been sent out already, we must
1200 * adjust the various packet counters.
1202 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1203 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1204 tcp_skb_pcount(buff
);
1207 tcp_adjust_pcount(sk
, skb
, diff
);
1210 /* Link BUFF into the send queue. */
1211 __skb_header_release(buff
);
1212 tcp_insert_write_queue_after(skb
, buff
, sk
);
1217 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1218 * eventually). The difference is that pulled data not copied, but
1219 * immediately discarded.
1221 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1223 struct skb_shared_info
*shinfo
;
1226 eat
= min_t(int, len
, skb_headlen(skb
));
1228 __skb_pull(skb
, eat
);
1235 shinfo
= skb_shinfo(skb
);
1236 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1237 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1240 skb_frag_unref(skb
, i
);
1243 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1245 shinfo
->frags
[k
].page_offset
+= eat
;
1246 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1252 shinfo
->nr_frags
= k
;
1254 skb_reset_tail_pointer(skb
);
1255 skb
->data_len
-= len
;
1256 skb
->len
= skb
->data_len
;
1259 /* Remove acked data from a packet in the transmit queue. */
1260 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1262 if (skb_unclone(skb
, GFP_ATOMIC
))
1265 __pskb_trim_head(skb
, len
);
1267 TCP_SKB_CB(skb
)->seq
+= len
;
1268 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1270 skb
->truesize
-= len
;
1271 sk
->sk_wmem_queued
-= len
;
1272 sk_mem_uncharge(sk
, len
);
1273 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1275 /* Any change of skb->len requires recalculation of tso factor. */
1276 if (tcp_skb_pcount(skb
) > 1)
1277 tcp_set_skb_tso_segs(sk
, skb
, tcp_skb_mss(skb
));
1282 /* Calculate MSS not accounting any TCP options. */
1283 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1285 const struct tcp_sock
*tp
= tcp_sk(sk
);
1286 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1289 /* Calculate base mss without TCP options:
1290 It is MMS_S - sizeof(tcphdr) of rfc1122
1292 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1294 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1295 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1296 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1298 if (dst
&& dst_allfrag(dst
))
1299 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1302 /* Clamp it (mss_clamp does not include tcp options) */
1303 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1304 mss_now
= tp
->rx_opt
.mss_clamp
;
1306 /* Now subtract optional transport overhead */
1307 mss_now
-= icsk
->icsk_ext_hdr_len
;
1309 /* Then reserve room for full set of TCP options and 8 bytes of data */
1315 /* Calculate MSS. Not accounting for SACKs here. */
1316 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1318 /* Subtract TCP options size, not including SACKs */
1319 return __tcp_mtu_to_mss(sk
, pmtu
) -
1320 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1323 /* Inverse of above */
1324 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1326 const struct tcp_sock
*tp
= tcp_sk(sk
);
1327 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1331 tp
->tcp_header_len
+
1332 icsk
->icsk_ext_hdr_len
+
1333 icsk
->icsk_af_ops
->net_header_len
;
1335 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1336 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1337 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1339 if (dst
&& dst_allfrag(dst
))
1340 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1345 /* MTU probing init per socket */
1346 void tcp_mtup_init(struct sock
*sk
)
1348 struct tcp_sock
*tp
= tcp_sk(sk
);
1349 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1350 struct net
*net
= sock_net(sk
);
1352 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1353 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1354 icsk
->icsk_af_ops
->net_header_len
;
1355 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1356 icsk
->icsk_mtup
.probe_size
= 0;
1358 EXPORT_SYMBOL(tcp_mtup_init
);
1360 /* This function synchronize snd mss to current pmtu/exthdr set.
1362 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1363 for TCP options, but includes only bare TCP header.
1365 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1366 It is minimum of user_mss and mss received with SYN.
1367 It also does not include TCP options.
1369 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1371 tp->mss_cache is current effective sending mss, including
1372 all tcp options except for SACKs. It is evaluated,
1373 taking into account current pmtu, but never exceeds
1374 tp->rx_opt.mss_clamp.
1376 NOTE1. rfc1122 clearly states that advertised MSS
1377 DOES NOT include either tcp or ip options.
1379 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1380 are READ ONLY outside this function. --ANK (980731)
1382 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1384 struct tcp_sock
*tp
= tcp_sk(sk
);
1385 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1388 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1389 icsk
->icsk_mtup
.search_high
= pmtu
;
1391 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1392 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1394 /* And store cached results */
1395 icsk
->icsk_pmtu_cookie
= pmtu
;
1396 if (icsk
->icsk_mtup
.enabled
)
1397 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1398 tp
->mss_cache
= mss_now
;
1402 EXPORT_SYMBOL(tcp_sync_mss
);
1404 /* Compute the current effective MSS, taking SACKs and IP options,
1405 * and even PMTU discovery events into account.
1407 unsigned int tcp_current_mss(struct sock
*sk
)
1409 const struct tcp_sock
*tp
= tcp_sk(sk
);
1410 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1412 unsigned int header_len
;
1413 struct tcp_out_options opts
;
1414 struct tcp_md5sig_key
*md5
;
1416 mss_now
= tp
->mss_cache
;
1419 u32 mtu
= dst_mtu(dst
);
1420 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1421 mss_now
= tcp_sync_mss(sk
, mtu
);
1424 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1425 sizeof(struct tcphdr
);
1426 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1427 * some common options. If this is an odd packet (because we have SACK
1428 * blocks etc) then our calculated header_len will be different, and
1429 * we have to adjust mss_now correspondingly */
1430 if (header_len
!= tp
->tcp_header_len
) {
1431 int delta
= (int) header_len
- tp
->tcp_header_len
;
1438 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1439 * As additional protections, we do not touch cwnd in retransmission phases,
1440 * and if application hit its sndbuf limit recently.
1442 static void tcp_cwnd_application_limited(struct sock
*sk
)
1444 struct tcp_sock
*tp
= tcp_sk(sk
);
1446 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1447 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1448 /* Limited by application or receiver window. */
1449 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1450 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1451 if (win_used
< tp
->snd_cwnd
) {
1452 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1453 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1455 tp
->snd_cwnd_used
= 0;
1457 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1460 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1462 struct tcp_sock
*tp
= tcp_sk(sk
);
1464 /* Track the maximum number of outstanding packets in each
1465 * window, and remember whether we were cwnd-limited then.
1467 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1468 tp
->packets_out
> tp
->max_packets_out
) {
1469 tp
->max_packets_out
= tp
->packets_out
;
1470 tp
->max_packets_seq
= tp
->snd_nxt
;
1471 tp
->is_cwnd_limited
= is_cwnd_limited
;
1474 if (tcp_is_cwnd_limited(sk
)) {
1475 /* Network is feed fully. */
1476 tp
->snd_cwnd_used
= 0;
1477 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1479 /* Network starves. */
1480 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1481 tp
->snd_cwnd_used
= tp
->packets_out
;
1483 if (sysctl_tcp_slow_start_after_idle
&&
1484 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1485 tcp_cwnd_application_limited(sk
);
1489 /* Minshall's variant of the Nagle send check. */
1490 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1492 return after(tp
->snd_sml
, tp
->snd_una
) &&
1493 !after(tp
->snd_sml
, tp
->snd_nxt
);
1496 /* Update snd_sml if this skb is under mss
1497 * Note that a TSO packet might end with a sub-mss segment
1498 * The test is really :
1499 * if ((skb->len % mss) != 0)
1500 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1501 * But we can avoid doing the divide again given we already have
1502 * skb_pcount = skb->len / mss_now
1504 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1505 const struct sk_buff
*skb
)
1507 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1508 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1511 /* Return false, if packet can be sent now without violation Nagle's rules:
1512 * 1. It is full sized. (provided by caller in %partial bool)
1513 * 2. Or it contains FIN. (already checked by caller)
1514 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1515 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1516 * With Minshall's modification: all sent small packets are ACKed.
1518 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1522 ((nonagle
& TCP_NAGLE_CORK
) ||
1523 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1526 /* Return how many segs we'd like on a TSO packet,
1527 * to send one TSO packet per ms
1529 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1533 bytes
= min(sk
->sk_pacing_rate
>> 10,
1534 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1536 /* Goal is to send at least one packet per ms,
1537 * not one big TSO packet every 100 ms.
1538 * This preserves ACK clocking and is consistent
1539 * with tcp_tso_should_defer() heuristic.
1541 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1543 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1546 /* Returns the portion of skb which can be sent right away */
1547 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1548 const struct sk_buff
*skb
,
1549 unsigned int mss_now
,
1550 unsigned int max_segs
,
1553 const struct tcp_sock
*tp
= tcp_sk(sk
);
1554 u32 partial
, needed
, window
, max_len
;
1556 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1557 max_len
= mss_now
* max_segs
;
1559 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1562 needed
= min(skb
->len
, window
);
1564 if (max_len
<= needed
)
1567 partial
= needed
% mss_now
;
1568 /* If last segment is not a full MSS, check if Nagle rules allow us
1569 * to include this last segment in this skb.
1570 * Otherwise, we'll split the skb at last MSS boundary
1572 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1573 return needed
- partial
;
1578 /* Can at least one segment of SKB be sent right now, according to the
1579 * congestion window rules? If so, return how many segments are allowed.
1581 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1582 const struct sk_buff
*skb
)
1584 u32 in_flight
, cwnd
, halfcwnd
;
1586 /* Don't be strict about the congestion window for the final FIN. */
1587 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1588 tcp_skb_pcount(skb
) == 1)
1591 in_flight
= tcp_packets_in_flight(tp
);
1592 cwnd
= tp
->snd_cwnd
;
1593 if (in_flight
>= cwnd
)
1596 /* For better scheduling, ensure we have at least
1597 * 2 GSO packets in flight.
1599 halfcwnd
= max(cwnd
>> 1, 1U);
1600 return min(halfcwnd
, cwnd
- in_flight
);
1603 /* Initialize TSO state of a skb.
1604 * This must be invoked the first time we consider transmitting
1605 * SKB onto the wire.
1607 static int tcp_init_tso_segs(const struct sock
*sk
, struct sk_buff
*skb
,
1608 unsigned int mss_now
)
1610 int tso_segs
= tcp_skb_pcount(skb
);
1612 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1613 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1614 tso_segs
= tcp_skb_pcount(skb
);
1620 /* Return true if the Nagle test allows this packet to be
1623 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1624 unsigned int cur_mss
, int nonagle
)
1626 /* Nagle rule does not apply to frames, which sit in the middle of the
1627 * write_queue (they have no chances to get new data).
1629 * This is implemented in the callers, where they modify the 'nonagle'
1630 * argument based upon the location of SKB in the send queue.
1632 if (nonagle
& TCP_NAGLE_PUSH
)
1635 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1636 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1639 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1645 /* Does at least the first segment of SKB fit into the send window? */
1646 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1647 const struct sk_buff
*skb
,
1648 unsigned int cur_mss
)
1650 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1652 if (skb
->len
> cur_mss
)
1653 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1655 return !after(end_seq
, tcp_wnd_end(tp
));
1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1659 * should be put on the wire right now. If so, it returns the number of
1660 * packets allowed by the congestion window.
1662 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1663 unsigned int cur_mss
, int nonagle
)
1665 const struct tcp_sock
*tp
= tcp_sk(sk
);
1666 unsigned int cwnd_quota
;
1668 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1670 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1673 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1674 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1680 /* Test if sending is allowed right now. */
1681 bool tcp_may_send_now(struct sock
*sk
)
1683 const struct tcp_sock
*tp
= tcp_sk(sk
);
1684 struct sk_buff
*skb
= tcp_send_head(sk
);
1687 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1688 (tcp_skb_is_last(sk
, skb
) ?
1689 tp
->nonagle
: TCP_NAGLE_PUSH
));
1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1693 * which is put after SKB on the list. It is very much like
1694 * tcp_fragment() except that it may make several kinds of assumptions
1695 * in order to speed up the splitting operation. In particular, we
1696 * know that all the data is in scatter-gather pages, and that the
1697 * packet has never been sent out before (and thus is not cloned).
1699 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1700 unsigned int mss_now
, gfp_t gfp
)
1702 struct sk_buff
*buff
;
1703 int nlen
= skb
->len
- len
;
1706 /* All of a TSO frame must be composed of paged data. */
1707 if (skb
->len
!= skb
->data_len
)
1708 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1710 buff
= sk_stream_alloc_skb(sk
, 0, gfp
);
1711 if (unlikely(buff
== NULL
))
1714 sk
->sk_wmem_queued
+= buff
->truesize
;
1715 sk_mem_charge(sk
, buff
->truesize
);
1716 buff
->truesize
+= nlen
;
1717 skb
->truesize
-= nlen
;
1719 /* Correct the sequence numbers. */
1720 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1721 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1722 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1724 /* PSH and FIN should only be set in the second packet. */
1725 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1726 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1727 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1729 /* This packet was never sent out yet, so no SACK bits. */
1730 TCP_SKB_CB(buff
)->sacked
= 0;
1732 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1733 skb_split(skb
, buff
, len
);
1734 tcp_fragment_tstamp(skb
, buff
);
1736 /* Fix up tso_factor for both original and new SKB. */
1737 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1738 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1740 /* Link BUFF into the send queue. */
1741 __skb_header_release(buff
);
1742 tcp_insert_write_queue_after(skb
, buff
, sk
);
1747 /* Try to defer sending, if possible, in order to minimize the amount
1748 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1750 * This algorithm is from John Heffner.
1752 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1753 bool *is_cwnd_limited
, u32 max_segs
)
1755 struct tcp_sock
*tp
= tcp_sk(sk
);
1756 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1757 u32 send_win
, cong_win
, limit
, in_flight
;
1760 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1763 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1766 /* Defer for less than two clock ticks. */
1767 if (tp
->tso_deferred
&&
1768 (((u32
)jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1771 in_flight
= tcp_packets_in_flight(tp
);
1773 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1775 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1777 /* From in_flight test above, we know that cwnd > in_flight. */
1778 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1780 limit
= min(send_win
, cong_win
);
1782 /* If a full-sized TSO skb can be sent, do it. */
1783 if (limit
>= max_segs
* tp
->mss_cache
)
1786 /* Middle in queue won't get any more data, full sendable already? */
1787 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1790 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1792 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1794 /* If at least some fraction of a window is available,
1797 chunk
/= win_divisor
;
1801 /* Different approach, try not to defer past a single
1802 * ACK. Receiver should ACK every other full sized
1803 * frame, so if we have space for more than 3 frames
1806 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1810 /* Ok, it looks like it is advisable to defer.
1811 * Do not rearm the timer if already set to not break TCP ACK clocking.
1813 if (!tp
->tso_deferred
)
1814 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1816 if (cong_win
< send_win
&& cong_win
< skb
->len
)
1817 *is_cwnd_limited
= true;
1822 tp
->tso_deferred
= 0;
1826 /* Create a new MTU probe if we are ready.
1827 * MTU probe is regularly attempting to increase the path MTU by
1828 * deliberately sending larger packets. This discovers routing
1829 * changes resulting in larger path MTUs.
1831 * Returns 0 if we should wait to probe (no cwnd available),
1832 * 1 if a probe was sent,
1835 static int tcp_mtu_probe(struct sock
*sk
)
1837 struct tcp_sock
*tp
= tcp_sk(sk
);
1838 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1839 struct sk_buff
*skb
, *nskb
, *next
;
1846 /* Not currently probing/verifying,
1848 * have enough cwnd, and
1849 * not SACKing (the variable headers throw things off) */
1850 if (!icsk
->icsk_mtup
.enabled
||
1851 icsk
->icsk_mtup
.probe_size
||
1852 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1853 tp
->snd_cwnd
< 11 ||
1854 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1857 /* Very simple search strategy: just double the MSS. */
1858 mss_now
= tcp_current_mss(sk
);
1859 probe_size
= 2 * tp
->mss_cache
;
1860 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1861 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1862 /* TODO: set timer for probe_converge_event */
1866 /* Have enough data in the send queue to probe? */
1867 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1870 if (tp
->snd_wnd
< size_needed
)
1872 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1875 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1876 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1877 if (!tcp_packets_in_flight(tp
))
1883 /* We're allowed to probe. Build it now. */
1884 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1886 sk
->sk_wmem_queued
+= nskb
->truesize
;
1887 sk_mem_charge(sk
, nskb
->truesize
);
1889 skb
= tcp_send_head(sk
);
1891 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1892 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1893 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1894 TCP_SKB_CB(nskb
)->sacked
= 0;
1896 nskb
->ip_summed
= skb
->ip_summed
;
1898 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1901 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1902 copy
= min_t(int, skb
->len
, probe_size
- len
);
1903 if (nskb
->ip_summed
)
1904 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1906 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1907 skb_put(nskb
, copy
),
1910 if (skb
->len
<= copy
) {
1911 /* We've eaten all the data from this skb.
1913 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1914 tcp_unlink_write_queue(skb
, sk
);
1915 sk_wmem_free_skb(sk
, skb
);
1917 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1918 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1919 if (!skb_shinfo(skb
)->nr_frags
) {
1920 skb_pull(skb
, copy
);
1921 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1922 skb
->csum
= csum_partial(skb
->data
,
1925 __pskb_trim_head(skb
, copy
);
1926 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1928 TCP_SKB_CB(skb
)->seq
+= copy
;
1933 if (len
>= probe_size
)
1936 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1938 /* We're ready to send. If this fails, the probe will
1939 * be resegmented into mss-sized pieces by tcp_write_xmit().
1941 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1942 /* Decrement cwnd here because we are sending
1943 * effectively two packets. */
1945 tcp_event_new_data_sent(sk
, nskb
);
1947 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1948 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1949 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1957 /* This routine writes packets to the network. It advances the
1958 * send_head. This happens as incoming acks open up the remote
1961 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1962 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1963 * account rare use of URG, this is not a big flaw.
1965 * Send at most one packet when push_one > 0. Temporarily ignore
1966 * cwnd limit to force at most one packet out when push_one == 2.
1968 * Returns true, if no segments are in flight and we have queued segments,
1969 * but cannot send anything now because of SWS or another problem.
1971 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
1972 int push_one
, gfp_t gfp
)
1974 struct tcp_sock
*tp
= tcp_sk(sk
);
1975 struct sk_buff
*skb
;
1976 unsigned int tso_segs
, sent_pkts
;
1979 bool is_cwnd_limited
= false;
1985 /* Do MTU probing. */
1986 result
= tcp_mtu_probe(sk
);
1989 } else if (result
> 0) {
1994 max_segs
= tcp_tso_autosize(sk
, mss_now
);
1995 while ((skb
= tcp_send_head(sk
))) {
1998 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
2001 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2002 /* "skb_mstamp" is used as a start point for the retransmit timer */
2003 skb_mstamp_get(&skb
->skb_mstamp
);
2004 goto repair
; /* Skip network transmission */
2007 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2009 is_cwnd_limited
= true;
2011 /* Force out a loss probe pkt. */
2017 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2020 if (tso_segs
== 1 || !max_segs
) {
2021 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2022 (tcp_skb_is_last(sk
, skb
) ?
2023 nonagle
: TCP_NAGLE_PUSH
))))
2027 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2033 if (tso_segs
> 1 && max_segs
&& !tcp_urg_mode(tp
))
2034 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2040 if (skb
->len
> limit
&&
2041 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2044 /* TCP Small Queues :
2045 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2047 * - better RTT estimation and ACK scheduling
2050 * Alas, some drivers / subsystems require a fair amount
2051 * of queued bytes to ensure line rate.
2052 * One example is wifi aggregation (802.11 AMPDU)
2054 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2055 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2057 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2058 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2059 /* It is possible TX completion already happened
2060 * before we set TSQ_THROTTLED, so we must
2061 * test again the condition.
2063 smp_mb__after_atomic();
2064 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2068 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2072 /* Advance the send_head. This one is sent out.
2073 * This call will increment packets_out.
2075 tcp_event_new_data_sent(sk
, skb
);
2077 tcp_minshall_update(tp
, mss_now
, skb
);
2078 sent_pkts
+= tcp_skb_pcount(skb
);
2084 if (likely(sent_pkts
)) {
2085 if (tcp_in_cwnd_reduction(sk
))
2086 tp
->prr_out
+= sent_pkts
;
2088 /* Send one loss probe per tail loss episode. */
2090 tcp_schedule_loss_probe(sk
);
2091 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2094 return (push_one
== 2) || (!tp
->packets_out
&& tcp_send_head(sk
));
2097 bool tcp_schedule_loss_probe(struct sock
*sk
)
2099 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2100 struct tcp_sock
*tp
= tcp_sk(sk
);
2101 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2102 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2104 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2106 /* No consecutive loss probes. */
2107 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2111 /* Don't do any loss probe on a Fast Open connection before 3WHS
2114 if (sk
->sk_state
== TCP_SYN_RECV
)
2117 /* TLP is only scheduled when next timer event is RTO. */
2118 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2121 /* Schedule a loss probe in 2*RTT for SACK capable connections
2122 * in Open state, that are either limited by cwnd or application.
2124 if (sysctl_tcp_early_retrans
< 3 || !tp
->srtt_us
|| !tp
->packets_out
||
2125 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2128 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2132 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2133 * for delayed ack when there's one outstanding packet.
2136 if (tp
->packets_out
== 1)
2137 timeout
= max_t(u32
, timeout
,
2138 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2139 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2141 /* If RTO is shorter, just schedule TLP in its place. */
2142 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2143 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2144 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2145 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2150 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2155 /* Thanks to skb fast clones, we can detect if a prior transmit of
2156 * a packet is still in a qdisc or driver queue.
2157 * In this case, there is very little point doing a retransmit !
2158 * Note: This is called from BH context only.
2160 static bool skb_still_in_host_queue(const struct sock
*sk
,
2161 const struct sk_buff
*skb
)
2163 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2164 NET_INC_STATS_BH(sock_net(sk
),
2165 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2171 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2172 * retransmit the last segment.
2174 void tcp_send_loss_probe(struct sock
*sk
)
2176 struct tcp_sock
*tp
= tcp_sk(sk
);
2177 struct sk_buff
*skb
;
2179 int mss
= tcp_current_mss(sk
);
2182 if (tcp_send_head(sk
) != NULL
) {
2183 err
= tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2187 /* At most one outstanding TLP retransmission. */
2188 if (tp
->tlp_high_seq
)
2191 /* Retransmit last segment. */
2192 skb
= tcp_write_queue_tail(sk
);
2196 if (skb_still_in_host_queue(sk
, skb
))
2199 pcount
= tcp_skb_pcount(skb
);
2200 if (WARN_ON(!pcount
))
2203 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2204 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2207 skb
= tcp_write_queue_tail(sk
);
2210 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2213 err
= __tcp_retransmit_skb(sk
, skb
);
2215 /* Record snd_nxt for loss detection. */
2217 tp
->tlp_high_seq
= tp
->snd_nxt
;
2220 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2221 inet_csk(sk
)->icsk_rto
,
2225 NET_INC_STATS_BH(sock_net(sk
),
2226 LINUX_MIB_TCPLOSSPROBES
);
2229 /* Push out any pending frames which were held back due to
2230 * TCP_CORK or attempt at coalescing tiny packets.
2231 * The socket must be locked by the caller.
2233 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2236 /* If we are closed, the bytes will have to remain here.
2237 * In time closedown will finish, we empty the write queue and
2238 * all will be happy.
2240 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2243 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2244 sk_gfp_atomic(sk
, GFP_ATOMIC
)))
2245 tcp_check_probe_timer(sk
);
2248 /* Send _single_ skb sitting at the send head. This function requires
2249 * true push pending frames to setup probe timer etc.
2251 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2253 struct sk_buff
*skb
= tcp_send_head(sk
);
2255 BUG_ON(!skb
|| skb
->len
< mss_now
);
2257 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2260 /* This function returns the amount that we can raise the
2261 * usable window based on the following constraints
2263 * 1. The window can never be shrunk once it is offered (RFC 793)
2264 * 2. We limit memory per socket
2267 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2268 * RECV.NEXT + RCV.WIN fixed until:
2269 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2271 * i.e. don't raise the right edge of the window until you can raise
2272 * it at least MSS bytes.
2274 * Unfortunately, the recommended algorithm breaks header prediction,
2275 * since header prediction assumes th->window stays fixed.
2277 * Strictly speaking, keeping th->window fixed violates the receiver
2278 * side SWS prevention criteria. The problem is that under this rule
2279 * a stream of single byte packets will cause the right side of the
2280 * window to always advance by a single byte.
2282 * Of course, if the sender implements sender side SWS prevention
2283 * then this will not be a problem.
2285 * BSD seems to make the following compromise:
2287 * If the free space is less than the 1/4 of the maximum
2288 * space available and the free space is less than 1/2 mss,
2289 * then set the window to 0.
2290 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2291 * Otherwise, just prevent the window from shrinking
2292 * and from being larger than the largest representable value.
2294 * This prevents incremental opening of the window in the regime
2295 * where TCP is limited by the speed of the reader side taking
2296 * data out of the TCP receive queue. It does nothing about
2297 * those cases where the window is constrained on the sender side
2298 * because the pipeline is full.
2300 * BSD also seems to "accidentally" limit itself to windows that are a
2301 * multiple of MSS, at least until the free space gets quite small.
2302 * This would appear to be a side effect of the mbuf implementation.
2303 * Combining these two algorithms results in the observed behavior
2304 * of having a fixed window size at almost all times.
2306 * Below we obtain similar behavior by forcing the offered window to
2307 * a multiple of the mss when it is feasible to do so.
2309 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2310 * Regular options like TIMESTAMP are taken into account.
2312 u32
__tcp_select_window(struct sock
*sk
)
2314 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2315 struct tcp_sock
*tp
= tcp_sk(sk
);
2316 /* MSS for the peer's data. Previous versions used mss_clamp
2317 * here. I don't know if the value based on our guesses
2318 * of peer's MSS is better for the performance. It's more correct
2319 * but may be worse for the performance because of rcv_mss
2320 * fluctuations. --SAW 1998/11/1
2322 int mss
= icsk
->icsk_ack
.rcv_mss
;
2323 int free_space
= tcp_space(sk
);
2324 int allowed_space
= tcp_full_space(sk
);
2325 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2328 if (mss
> full_space
)
2331 if (free_space
< (full_space
>> 1)) {
2332 icsk
->icsk_ack
.quick
= 0;
2334 if (sk_under_memory_pressure(sk
))
2335 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2338 /* free_space might become our new window, make sure we don't
2339 * increase it due to wscale.
2341 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2343 /* if free space is less than mss estimate, or is below 1/16th
2344 * of the maximum allowed, try to move to zero-window, else
2345 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2346 * new incoming data is dropped due to memory limits.
2347 * With large window, mss test triggers way too late in order
2348 * to announce zero window in time before rmem limit kicks in.
2350 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2354 if (free_space
> tp
->rcv_ssthresh
)
2355 free_space
= tp
->rcv_ssthresh
;
2357 /* Don't do rounding if we are using window scaling, since the
2358 * scaled window will not line up with the MSS boundary anyway.
2360 window
= tp
->rcv_wnd
;
2361 if (tp
->rx_opt
.rcv_wscale
) {
2362 window
= free_space
;
2364 /* Advertise enough space so that it won't get scaled away.
2365 * Import case: prevent zero window announcement if
2366 * 1<<rcv_wscale > mss.
2368 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2369 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2370 << tp
->rx_opt
.rcv_wscale
);
2372 /* Get the largest window that is a nice multiple of mss.
2373 * Window clamp already applied above.
2374 * If our current window offering is within 1 mss of the
2375 * free space we just keep it. This prevents the divide
2376 * and multiply from happening most of the time.
2377 * We also don't do any window rounding when the free space
2380 if (window
<= free_space
- mss
|| window
> free_space
)
2381 window
= (free_space
/ mss
) * mss
;
2382 else if (mss
== full_space
&&
2383 free_space
> window
+ (full_space
>> 1))
2384 window
= free_space
;
2390 /* Collapses two adjacent SKB's during retransmission. */
2391 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2393 struct tcp_sock
*tp
= tcp_sk(sk
);
2394 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2395 int skb_size
, next_skb_size
;
2397 skb_size
= skb
->len
;
2398 next_skb_size
= next_skb
->len
;
2400 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2402 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2404 tcp_unlink_write_queue(next_skb
, sk
);
2406 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2409 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2410 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2412 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2413 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2415 /* Update sequence range on original skb. */
2416 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2418 /* Merge over control information. This moves PSH/FIN etc. over */
2419 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2421 /* All done, get rid of second SKB and account for it so
2422 * packet counting does not break.
2424 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2426 /* changed transmit queue under us so clear hints */
2427 tcp_clear_retrans_hints_partial(tp
);
2428 if (next_skb
== tp
->retransmit_skb_hint
)
2429 tp
->retransmit_skb_hint
= skb
;
2431 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2433 sk_wmem_free_skb(sk
, next_skb
);
2436 /* Check if coalescing SKBs is legal. */
2437 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2439 if (tcp_skb_pcount(skb
) > 1)
2441 /* TODO: SACK collapsing could be used to remove this condition */
2442 if (skb_shinfo(skb
)->nr_frags
!= 0)
2444 if (skb_cloned(skb
))
2446 if (skb
== tcp_send_head(sk
))
2448 /* Some heurestics for collapsing over SACK'd could be invented */
2449 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2455 /* Collapse packets in the retransmit queue to make to create
2456 * less packets on the wire. This is only done on retransmission.
2458 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2461 struct tcp_sock
*tp
= tcp_sk(sk
);
2462 struct sk_buff
*skb
= to
, *tmp
;
2465 if (!sysctl_tcp_retrans_collapse
)
2467 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2470 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2471 if (!tcp_can_collapse(sk
, skb
))
2483 /* Punt if not enough space exists in the first SKB for
2484 * the data in the second
2486 if (skb
->len
> skb_availroom(to
))
2489 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2492 tcp_collapse_retrans(sk
, to
);
2496 /* This retransmits one SKB. Policy decisions and retransmit queue
2497 * state updates are done by the caller. Returns non-zero if an
2498 * error occurred which prevented the send.
2500 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2502 struct tcp_sock
*tp
= tcp_sk(sk
);
2503 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2504 unsigned int cur_mss
;
2507 /* Inconslusive MTU probe */
2508 if (icsk
->icsk_mtup
.probe_size
) {
2509 icsk
->icsk_mtup
.probe_size
= 0;
2512 /* Do not sent more than we queued. 1/4 is reserved for possible
2513 * copying overhead: fragmentation, tunneling, mangling etc.
2515 if (atomic_read(&sk
->sk_wmem_alloc
) >
2516 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
2519 if (skb_still_in_host_queue(sk
, skb
))
2522 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2523 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2525 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2529 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2530 return -EHOSTUNREACH
; /* Routing failure or similar. */
2532 cur_mss
= tcp_current_mss(sk
);
2534 /* If receiver has shrunk his window, and skb is out of
2535 * new window, do not retransmit it. The exception is the
2536 * case, when window is shrunk to zero. In this case
2537 * our retransmit serves as a zero window probe.
2539 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2540 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2543 if (skb
->len
> cur_mss
) {
2544 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2545 return -ENOMEM
; /* We'll try again later. */
2547 int oldpcount
= tcp_skb_pcount(skb
);
2549 if (unlikely(oldpcount
> 1)) {
2550 if (skb_unclone(skb
, GFP_ATOMIC
))
2552 tcp_init_tso_segs(sk
, skb
, cur_mss
);
2553 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2557 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2559 /* Make a copy, if the first transmission SKB clone we made
2560 * is still in somebody's hands, else make a clone.
2563 /* make sure skb->data is aligned on arches that require it
2564 * and check if ack-trimming & collapsing extended the headroom
2565 * beyond what csum_start can cover.
2567 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2568 skb_headroom(skb
) >= 0xFFFF)) {
2569 struct sk_buff
*nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
,
2571 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2574 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2578 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2579 /* Update global TCP statistics. */
2580 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2581 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2582 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2583 tp
->total_retrans
++;
2588 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2590 struct tcp_sock
*tp
= tcp_sk(sk
);
2591 int err
= __tcp_retransmit_skb(sk
, skb
);
2594 #if FASTRETRANS_DEBUG > 0
2595 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2596 net_dbg_ratelimited("retrans_out leaked\n");
2599 if (!tp
->retrans_out
)
2600 tp
->lost_retrans_low
= tp
->snd_nxt
;
2601 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2602 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2604 /* Save stamp of the first retransmit. */
2605 if (!tp
->retrans_stamp
)
2606 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2608 /* snd_nxt is stored to detect loss of retransmitted segment,
2609 * see tcp_input.c tcp_sacktag_write_queue().
2611 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
2612 } else if (err
!= -EBUSY
) {
2613 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2616 if (tp
->undo_retrans
< 0)
2617 tp
->undo_retrans
= 0;
2618 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2622 /* Check if we forward retransmits are possible in the current
2623 * window/congestion state.
2625 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2627 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2628 const struct tcp_sock
*tp
= tcp_sk(sk
);
2630 /* Forward retransmissions are possible only during Recovery. */
2631 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2634 /* No forward retransmissions in Reno are possible. */
2635 if (tcp_is_reno(tp
))
2638 /* Yeah, we have to make difficult choice between forward transmission
2639 * and retransmission... Both ways have their merits...
2641 * For now we do not retransmit anything, while we have some new
2642 * segments to send. In the other cases, follow rule 3 for
2643 * NextSeg() specified in RFC3517.
2646 if (tcp_may_send_now(sk
))
2652 /* This gets called after a retransmit timeout, and the initially
2653 * retransmitted data is acknowledged. It tries to continue
2654 * resending the rest of the retransmit queue, until either
2655 * we've sent it all or the congestion window limit is reached.
2656 * If doing SACK, the first ACK which comes back for a timeout
2657 * based retransmit packet might feed us FACK information again.
2658 * If so, we use it to avoid unnecessarily retransmissions.
2660 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2662 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2663 struct tcp_sock
*tp
= tcp_sk(sk
);
2664 struct sk_buff
*skb
;
2665 struct sk_buff
*hole
= NULL
;
2668 int fwd_rexmitting
= 0;
2670 if (!tp
->packets_out
)
2674 tp
->retransmit_high
= tp
->snd_una
;
2676 if (tp
->retransmit_skb_hint
) {
2677 skb
= tp
->retransmit_skb_hint
;
2678 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2679 if (after(last_lost
, tp
->retransmit_high
))
2680 last_lost
= tp
->retransmit_high
;
2682 skb
= tcp_write_queue_head(sk
);
2683 last_lost
= tp
->snd_una
;
2686 tcp_for_write_queue_from(skb
, sk
) {
2687 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2689 if (skb
== tcp_send_head(sk
))
2691 /* we could do better than to assign each time */
2693 tp
->retransmit_skb_hint
= skb
;
2695 /* Assume this retransmit will generate
2696 * only one packet for congestion window
2697 * calculation purposes. This works because
2698 * tcp_retransmit_skb() will chop up the
2699 * packet to be MSS sized and all the
2700 * packet counting works out.
2702 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2705 if (fwd_rexmitting
) {
2707 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2709 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2711 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2712 tp
->retransmit_high
= last_lost
;
2713 if (!tcp_can_forward_retransmit(sk
))
2715 /* Backtrack if necessary to non-L'ed skb */
2723 } else if (!(sacked
& TCPCB_LOST
)) {
2724 if (hole
== NULL
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2729 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2730 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2731 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2733 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2736 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2739 if (tcp_retransmit_skb(sk
, skb
))
2742 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2744 if (tcp_in_cwnd_reduction(sk
))
2745 tp
->prr_out
+= tcp_skb_pcount(skb
);
2747 if (skb
== tcp_write_queue_head(sk
))
2748 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2749 inet_csk(sk
)->icsk_rto
,
2754 /* Send a fin. The caller locks the socket for us. This cannot be
2755 * allowed to fail queueing a FIN frame under any circumstances.
2757 void tcp_send_fin(struct sock
*sk
)
2759 struct tcp_sock
*tp
= tcp_sk(sk
);
2760 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2763 /* Optimization, tack on the FIN if we have a queue of
2764 * unsent frames. But be careful about outgoing SACKS
2767 mss_now
= tcp_current_mss(sk
);
2769 if (tcp_send_head(sk
) != NULL
) {
2770 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_FIN
;
2771 TCP_SKB_CB(skb
)->end_seq
++;
2774 /* Socket is locked, keep trying until memory is available. */
2776 skb
= alloc_skb_fclone(MAX_TCP_HEADER
,
2783 /* Reserve space for headers and prepare control bits. */
2784 skb_reserve(skb
, MAX_TCP_HEADER
);
2785 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2786 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2787 TCPHDR_ACK
| TCPHDR_FIN
);
2788 tcp_queue_skb(sk
, skb
);
2790 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2793 /* We get here when a process closes a file descriptor (either due to
2794 * an explicit close() or as a byproduct of exit()'ing) and there
2795 * was unread data in the receive queue. This behavior is recommended
2796 * by RFC 2525, section 2.17. -DaveM
2798 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2800 struct sk_buff
*skb
;
2802 /* NOTE: No TCP options attached and we never retransmit this. */
2803 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2805 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2809 /* Reserve space for headers and prepare control bits. */
2810 skb_reserve(skb
, MAX_TCP_HEADER
);
2811 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2812 TCPHDR_ACK
| TCPHDR_RST
);
2814 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2815 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2817 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2820 /* Send a crossed SYN-ACK during socket establishment.
2821 * WARNING: This routine must only be called when we have already sent
2822 * a SYN packet that crossed the incoming SYN that caused this routine
2823 * to get called. If this assumption fails then the initial rcv_wnd
2824 * and rcv_wscale values will not be correct.
2826 int tcp_send_synack(struct sock
*sk
)
2828 struct sk_buff
*skb
;
2830 skb
= tcp_write_queue_head(sk
);
2831 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2832 pr_debug("%s: wrong queue state\n", __func__
);
2835 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2836 if (skb_cloned(skb
)) {
2837 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2840 tcp_unlink_write_queue(skb
, sk
);
2841 __skb_header_release(nskb
);
2842 __tcp_add_write_queue_head(sk
, nskb
);
2843 sk_wmem_free_skb(sk
, skb
);
2844 sk
->sk_wmem_queued
+= nskb
->truesize
;
2845 sk_mem_charge(sk
, nskb
->truesize
);
2849 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2850 tcp_ecn_send_synack(sk
, skb
);
2852 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2856 * tcp_make_synack - Prepare a SYN-ACK.
2857 * sk: listener socket
2858 * dst: dst entry attached to the SYNACK
2859 * req: request_sock pointer
2861 * Allocate one skb and build a SYNACK packet.
2862 * @dst is consumed : Caller should not use it again.
2864 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2865 struct request_sock
*req
,
2866 struct tcp_fastopen_cookie
*foc
)
2868 struct tcp_out_options opts
;
2869 struct inet_request_sock
*ireq
= inet_rsk(req
);
2870 struct tcp_sock
*tp
= tcp_sk(sk
);
2872 struct sk_buff
*skb
;
2873 struct tcp_md5sig_key
*md5
;
2874 int tcp_header_size
;
2877 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
, 1, GFP_ATOMIC
);
2878 if (unlikely(!skb
)) {
2882 /* Reserve space for headers. */
2883 skb_reserve(skb
, MAX_TCP_HEADER
);
2885 skb_dst_set(skb
, dst
);
2886 security_skb_owned_by(skb
, sk
);
2888 mss
= dst_metric_advmss(dst
);
2889 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2890 mss
= tp
->rx_opt
.user_mss
;
2892 memset(&opts
, 0, sizeof(opts
));
2893 #ifdef CONFIG_SYN_COOKIES
2894 if (unlikely(req
->cookie_ts
))
2895 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
2898 skb_mstamp_get(&skb
->skb_mstamp
);
2899 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, &md5
,
2902 skb_push(skb
, tcp_header_size
);
2903 skb_reset_transport_header(skb
);
2906 memset(th
, 0, sizeof(struct tcphdr
));
2909 tcp_ecn_make_synack(req
, th
, sk
);
2910 th
->source
= htons(ireq
->ir_num
);
2911 th
->dest
= ireq
->ir_rmt_port
;
2912 /* Setting of flags are superfluous here for callers (and ECE is
2913 * not even correctly set)
2915 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2916 TCPHDR_SYN
| TCPHDR_ACK
);
2918 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2919 /* XXX data is queued and acked as is. No buffer/window check */
2920 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
2922 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2923 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2924 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
2925 th
->doff
= (tcp_header_size
>> 2);
2926 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
2928 #ifdef CONFIG_TCP_MD5SIG
2929 /* Okay, we have all we need - do the md5 hash if needed */
2931 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
2932 md5
, NULL
, req
, skb
);
2938 EXPORT_SYMBOL(tcp_make_synack
);
2940 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
2942 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2943 const struct tcp_congestion_ops
*ca
;
2944 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
2946 if (ca_key
== TCP_CA_UNSPEC
)
2950 ca
= tcp_ca_find_key(ca_key
);
2951 if (likely(ca
&& try_module_get(ca
->owner
))) {
2952 module_put(icsk
->icsk_ca_ops
->owner
);
2953 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
2954 icsk
->icsk_ca_ops
= ca
;
2959 /* Do all connect socket setups that can be done AF independent. */
2960 static void tcp_connect_init(struct sock
*sk
)
2962 const struct dst_entry
*dst
= __sk_dst_get(sk
);
2963 struct tcp_sock
*tp
= tcp_sk(sk
);
2966 /* We'll fix this up when we get a response from the other end.
2967 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2969 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2970 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2972 #ifdef CONFIG_TCP_MD5SIG
2973 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2974 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2977 /* If user gave his TCP_MAXSEG, record it to clamp */
2978 if (tp
->rx_opt
.user_mss
)
2979 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2982 tcp_sync_mss(sk
, dst_mtu(dst
));
2984 tcp_ca_dst_init(sk
, dst
);
2986 if (!tp
->window_clamp
)
2987 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2988 tp
->advmss
= dst_metric_advmss(dst
);
2989 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
2990 tp
->advmss
= tp
->rx_opt
.user_mss
;
2992 tcp_initialize_rcv_mss(sk
);
2994 /* limit the window selection if the user enforce a smaller rx buffer */
2995 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
2996 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
2997 tp
->window_clamp
= tcp_full_space(sk
);
2999 tcp_select_initial_window(tcp_full_space(sk
),
3000 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3003 sysctl_tcp_window_scaling
,
3005 dst_metric(dst
, RTAX_INITRWND
));
3007 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3008 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3011 sock_reset_flag(sk
, SOCK_DONE
);
3014 tp
->snd_una
= tp
->write_seq
;
3015 tp
->snd_sml
= tp
->write_seq
;
3016 tp
->snd_up
= tp
->write_seq
;
3017 tp
->snd_nxt
= tp
->write_seq
;
3019 if (likely(!tp
->repair
))
3022 tp
->rcv_tstamp
= tcp_time_stamp
;
3023 tp
->rcv_wup
= tp
->rcv_nxt
;
3024 tp
->copied_seq
= tp
->rcv_nxt
;
3026 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3027 inet_csk(sk
)->icsk_retransmits
= 0;
3028 tcp_clear_retrans(tp
);
3031 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3033 struct tcp_sock
*tp
= tcp_sk(sk
);
3034 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3036 tcb
->end_seq
+= skb
->len
;
3037 __skb_header_release(skb
);
3038 __tcp_add_write_queue_tail(sk
, skb
);
3039 sk
->sk_wmem_queued
+= skb
->truesize
;
3040 sk_mem_charge(sk
, skb
->truesize
);
3041 tp
->write_seq
= tcb
->end_seq
;
3042 tp
->packets_out
+= tcp_skb_pcount(skb
);
3045 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3046 * queue a data-only packet after the regular SYN, such that regular SYNs
3047 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3048 * only the SYN sequence, the data are retransmitted in the first ACK.
3049 * If cookie is not cached or other error occurs, falls back to send a
3050 * regular SYN with Fast Open cookie request option.
3052 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3054 struct tcp_sock
*tp
= tcp_sk(sk
);
3055 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3056 int syn_loss
= 0, space
, err
= 0, copied
;
3057 unsigned long last_syn_loss
= 0;
3058 struct sk_buff
*syn_data
;
3060 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3061 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3062 &syn_loss
, &last_syn_loss
);
3063 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3065 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3066 fo
->cookie
.len
= -1;
3070 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3071 fo
->cookie
.len
= -1;
3072 else if (fo
->cookie
.len
<= 0)
3075 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3076 * user-MSS. Reserve maximum option space for middleboxes that add
3077 * private TCP options. The cost is reduced data space in SYN :(
3079 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3080 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3081 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3082 MAX_TCP_OPTION_SPACE
;
3084 space
= min_t(size_t, space
, fo
->size
);
3086 /* limit to order-0 allocations */
3087 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3089 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
);
3092 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3093 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3094 copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3095 &fo
->data
->msg_iter
);
3096 if (unlikely(!copied
)) {
3097 kfree_skb(syn_data
);
3100 if (copied
!= space
) {
3101 skb_trim(syn_data
, copied
);
3105 /* No more data pending in inet_wait_for_connect() */
3106 if (space
== fo
->size
)
3110 tcp_connect_queue_skb(sk
, syn_data
);
3112 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3114 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3116 /* Now full SYN+DATA was cloned and sent (or not),
3117 * remove the SYN from the original skb (syn_data)
3118 * we keep in write queue in case of a retransmit, as we
3119 * also have the SYN packet (with no data) in the same queue.
3121 TCP_SKB_CB(syn_data
)->seq
++;
3122 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3124 tp
->syn_data
= (fo
->copied
> 0);
3125 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3130 /* Send a regular SYN with Fast Open cookie request option */
3131 if (fo
->cookie
.len
> 0)
3133 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3135 tp
->syn_fastopen
= 0;
3137 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3141 /* Build a SYN and send it off. */
3142 int tcp_connect(struct sock
*sk
)
3144 struct tcp_sock
*tp
= tcp_sk(sk
);
3145 struct sk_buff
*buff
;
3148 tcp_connect_init(sk
);
3150 if (unlikely(tp
->repair
)) {
3151 tcp_finish_connect(sk
, NULL
);
3155 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
3156 if (unlikely(!buff
))
3159 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3160 tp
->retrans_stamp
= tcp_time_stamp
;
3161 tcp_connect_queue_skb(sk
, buff
);
3162 tcp_ecn_send_syn(sk
, buff
);
3164 /* Send off SYN; include data in Fast Open. */
3165 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3166 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3167 if (err
== -ECONNREFUSED
)
3170 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3171 * in order to make this packet get counted in tcpOutSegs.
3173 tp
->snd_nxt
= tp
->write_seq
;
3174 tp
->pushed_seq
= tp
->write_seq
;
3175 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3177 /* Timer for repeating the SYN until an answer. */
3178 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3179 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3182 EXPORT_SYMBOL(tcp_connect
);
3184 /* Send out a delayed ack, the caller does the policy checking
3185 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3188 void tcp_send_delayed_ack(struct sock
*sk
)
3190 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3191 int ato
= icsk
->icsk_ack
.ato
;
3192 unsigned long timeout
;
3194 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3196 if (ato
> TCP_DELACK_MIN
) {
3197 const struct tcp_sock
*tp
= tcp_sk(sk
);
3198 int max_ato
= HZ
/ 2;
3200 if (icsk
->icsk_ack
.pingpong
||
3201 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3202 max_ato
= TCP_DELACK_MAX
;
3204 /* Slow path, intersegment interval is "high". */
3206 /* If some rtt estimate is known, use it to bound delayed ack.
3207 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3211 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3218 ato
= min(ato
, max_ato
);
3221 /* Stay within the limit we were given */
3222 timeout
= jiffies
+ ato
;
3224 /* Use new timeout only if there wasn't a older one earlier. */
3225 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3226 /* If delack timer was blocked or is about to expire,
3229 if (icsk
->icsk_ack
.blocked
||
3230 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3235 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3236 timeout
= icsk
->icsk_ack
.timeout
;
3238 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3239 icsk
->icsk_ack
.timeout
= timeout
;
3240 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3243 /* This routine sends an ack and also updates the window. */
3244 void tcp_send_ack(struct sock
*sk
)
3246 struct sk_buff
*buff
;
3248 /* If we have been reset, we may not send again. */
3249 if (sk
->sk_state
== TCP_CLOSE
)
3252 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3254 /* We are not putting this on the write queue, so
3255 * tcp_transmit_skb() will set the ownership to this
3258 buff
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3260 inet_csk_schedule_ack(sk
);
3261 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3262 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3263 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3267 /* Reserve space for headers and prepare control bits. */
3268 skb_reserve(buff
, MAX_TCP_HEADER
);
3269 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3271 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3273 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3274 * We also avoid tcp_wfree() overhead (cache line miss accessing
3275 * tp->tsq_flags) by using regular sock_wfree()
3277 skb_set_tcp_pure_ack(buff
);
3279 /* Send it off, this clears delayed acks for us. */
3280 skb_mstamp_get(&buff
->skb_mstamp
);
3281 tcp_transmit_skb(sk
, buff
, 0, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3283 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3285 /* This routine sends a packet with an out of date sequence
3286 * number. It assumes the other end will try to ack it.
3288 * Question: what should we make while urgent mode?
3289 * 4.4BSD forces sending single byte of data. We cannot send
3290 * out of window data, because we have SND.NXT==SND.MAX...
3292 * Current solution: to send TWO zero-length segments in urgent mode:
3293 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3294 * out-of-date with SND.UNA-1 to probe window.
3296 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
3298 struct tcp_sock
*tp
= tcp_sk(sk
);
3299 struct sk_buff
*skb
;
3301 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3302 skb
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3306 /* Reserve space for headers and set control bits. */
3307 skb_reserve(skb
, MAX_TCP_HEADER
);
3308 /* Use a previous sequence. This should cause the other
3309 * end to send an ack. Don't queue or clone SKB, just
3312 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3313 skb_mstamp_get(&skb
->skb_mstamp
);
3314 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
3317 void tcp_send_window_probe(struct sock
*sk
)
3319 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3320 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3321 tcp_xmit_probe_skb(sk
, 0);
3325 /* Initiate keepalive or window probe from timer. */
3326 int tcp_write_wakeup(struct sock
*sk
)
3328 struct tcp_sock
*tp
= tcp_sk(sk
);
3329 struct sk_buff
*skb
;
3331 if (sk
->sk_state
== TCP_CLOSE
)
3334 if ((skb
= tcp_send_head(sk
)) != NULL
&&
3335 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3337 unsigned int mss
= tcp_current_mss(sk
);
3338 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3340 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3341 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3343 /* We are probing the opening of a window
3344 * but the window size is != 0
3345 * must have been a result SWS avoidance ( sender )
3347 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3349 seg_size
= min(seg_size
, mss
);
3350 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3351 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3353 } else if (!tcp_skb_pcount(skb
))
3354 tcp_set_skb_tso_segs(sk
, skb
, mss
);
3356 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3357 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3359 tcp_event_new_data_sent(sk
, skb
);
3362 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3363 tcp_xmit_probe_skb(sk
, 1);
3364 return tcp_xmit_probe_skb(sk
, 0);
3368 /* A window probe timeout has occurred. If window is not closed send
3369 * a partial packet else a zero probe.
3371 void tcp_send_probe0(struct sock
*sk
)
3373 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3374 struct tcp_sock
*tp
= tcp_sk(sk
);
3375 unsigned long probe_max
;
3378 err
= tcp_write_wakeup(sk
);
3380 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3381 /* Cancel probe timer, if it is not required. */
3382 icsk
->icsk_probes_out
= 0;
3383 icsk
->icsk_backoff
= 0;
3388 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
3389 icsk
->icsk_backoff
++;
3390 icsk
->icsk_probes_out
++;
3391 probe_max
= TCP_RTO_MAX
;
3393 /* If packet was not sent due to local congestion,
3394 * do not backoff and do not remember icsk_probes_out.
3395 * Let local senders to fight for local resources.
3397 * Use accumulated backoff yet.
3399 if (!icsk
->icsk_probes_out
)
3400 icsk
->icsk_probes_out
= 1;
3401 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3403 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3404 inet_csk_rto_backoff(icsk
, probe_max
),
3408 int tcp_rtx_synack(struct sock
*sk
, struct request_sock
*req
)
3410 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3414 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, 0, NULL
);
3416 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3417 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3421 EXPORT_SYMBOL(tcp_rtx_synack
);