2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/spi/spi.h>
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @clk: clock for the controller
74 * @mmio: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @tx: current byte in transfer to transmit
77 * @rx: current byte in transfer to receive
78 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
79 * frame decreases this level and sending one frame increases it.
80 * @dma_rx: RX DMA channel
81 * @dma_tx: TX DMA channel
82 * @dma_rx_data: RX parameters passed to the DMA engine
83 * @dma_tx_data: TX parameters passed to the DMA engine
84 * @rx_sgt: sg table for RX transfers
85 * @tx_sgt: sg table for TX transfers
86 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
92 unsigned long sspdr_phys
;
96 struct dma_chan
*dma_rx
;
97 struct dma_chan
*dma_tx
;
98 struct ep93xx_dma_data dma_rx_data
;
99 struct ep93xx_dma_data dma_tx_data
;
100 struct sg_table rx_sgt
;
101 struct sg_table tx_sgt
;
105 /* converts bits per word to CR0.DSS value */
106 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
109 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
110 * @master: SPI master
111 * @rate: desired SPI output clock rate
112 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
113 * @div_scr: pointer to return the scr divider
115 static int ep93xx_spi_calc_divisors(struct spi_master
*master
,
116 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
118 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
119 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
123 * Make sure that max value is between values supported by the
126 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
129 * Calculate divisors so that we can get speed according the
131 * rate = spi_clock_rate / (cpsr * (1 + scr))
133 * cpsr must be even number and starts from 2, scr can be any number
136 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
137 for (scr
= 0; scr
<= 255; scr
++) {
138 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
140 *div_cpsr
= (u8
)cpsr
;
149 static int ep93xx_spi_chip_setup(struct spi_master
*master
,
150 struct spi_device
*spi
,
151 struct spi_transfer
*xfer
)
153 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
154 u8 dss
= bits_per_word_to_dss(xfer
->bits_per_word
);
160 err
= ep93xx_spi_calc_divisors(master
, xfer
->speed_hz
,
161 &div_cpsr
, &div_scr
);
165 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
166 cr0
|= (spi
->mode
& (SPI_CPHA
| SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
169 dev_dbg(&master
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
170 spi
->mode
, div_cpsr
, div_scr
, dss
);
171 dev_dbg(&master
->dev
, "setup: cr0 %#x\n", cr0
);
173 writel(div_cpsr
, espi
->mmio
+ SSPCPSR
);
174 writel(cr0
, espi
->mmio
+ SSPCR0
);
179 static void ep93xx_do_write(struct spi_master
*master
)
181 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
182 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
185 if (xfer
->bits_per_word
> 8) {
187 val
= ((u16
*)xfer
->tx_buf
)[espi
->tx
];
191 val
= ((u8
*)xfer
->tx_buf
)[espi
->tx
];
194 writel(val
, espi
->mmio
+ SSPDR
);
197 static void ep93xx_do_read(struct spi_master
*master
)
199 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
200 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
203 val
= readl(espi
->mmio
+ SSPDR
);
204 if (xfer
->bits_per_word
> 8) {
206 ((u16
*)xfer
->rx_buf
)[espi
->rx
] = val
;
210 ((u8
*)xfer
->rx_buf
)[espi
->rx
] = val
;
216 * ep93xx_spi_read_write() - perform next RX/TX transfer
217 * @espi: ep93xx SPI controller struct
219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
220 * called several times, the whole transfer will be completed. Returns
221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
226 static int ep93xx_spi_read_write(struct spi_master
*master
)
228 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
229 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
231 /* read as long as RX FIFO has frames in it */
232 while ((readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
)) {
233 ep93xx_do_read(master
);
237 /* write as long as TX FIFO has room */
238 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< xfer
->len
) {
239 ep93xx_do_write(master
);
243 if (espi
->rx
== xfer
->len
)
250 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
251 * @master: SPI master
252 * @dir: DMA transfer direction
254 * Function configures the DMA, maps the buffer and prepares the DMA
255 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
256 * in case of failure.
258 static struct dma_async_tx_descriptor
*
259 ep93xx_spi_dma_prepare(struct spi_master
*master
,
260 enum dma_transfer_direction dir
)
262 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
263 struct spi_transfer
*xfer
= master
->cur_msg
->state
;
264 struct dma_async_tx_descriptor
*txd
;
265 enum dma_slave_buswidth buswidth
;
266 struct dma_slave_config conf
;
267 struct scatterlist
*sg
;
268 struct sg_table
*sgt
;
269 struct dma_chan
*chan
;
270 const void *buf
, *pbuf
;
271 size_t len
= xfer
->len
;
274 if (xfer
->bits_per_word
> 8)
275 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
277 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
279 memset(&conf
, 0, sizeof(conf
));
280 conf
.direction
= dir
;
282 if (dir
== DMA_DEV_TO_MEM
) {
287 conf
.src_addr
= espi
->sspdr_phys
;
288 conf
.src_addr_width
= buswidth
;
294 conf
.dst_addr
= espi
->sspdr_phys
;
295 conf
.dst_addr_width
= buswidth
;
298 ret
= dmaengine_slave_config(chan
, &conf
);
303 * We need to split the transfer into PAGE_SIZE'd chunks. This is
304 * because we are using @espi->zeropage to provide a zero RX buffer
305 * for the TX transfers and we have only allocated one page for that.
307 * For performance reasons we allocate a new sg_table only when
308 * needed. Otherwise we will re-use the current one. Eventually the
309 * last sg_table is released in ep93xx_spi_release_dma().
312 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
313 if (nents
!= sgt
->nents
) {
316 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
322 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
323 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
326 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
327 offset_in_page(pbuf
));
329 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
338 dev_warn(&master
->dev
, "len = %zu expected 0!\n", len
);
339 return ERR_PTR(-EINVAL
);
342 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
344 return ERR_PTR(-ENOMEM
);
346 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
348 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
349 return ERR_PTR(-ENOMEM
);
355 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
356 * @master: SPI master
357 * @dir: DMA transfer direction
359 * Function finishes with the DMA transfer. After this, the DMA buffer is
362 static void ep93xx_spi_dma_finish(struct spi_master
*master
,
363 enum dma_transfer_direction dir
)
365 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
366 struct dma_chan
*chan
;
367 struct sg_table
*sgt
;
369 if (dir
== DMA_DEV_TO_MEM
) {
377 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
380 static void ep93xx_spi_dma_callback(void *callback_param
)
382 struct spi_master
*master
= callback_param
;
384 ep93xx_spi_dma_finish(master
, DMA_MEM_TO_DEV
);
385 ep93xx_spi_dma_finish(master
, DMA_DEV_TO_MEM
);
387 spi_finalize_current_transfer(master
);
390 static int ep93xx_spi_dma_transfer(struct spi_master
*master
)
392 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
393 struct dma_async_tx_descriptor
*rxd
, *txd
;
395 rxd
= ep93xx_spi_dma_prepare(master
, DMA_DEV_TO_MEM
);
397 dev_err(&master
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
401 txd
= ep93xx_spi_dma_prepare(master
, DMA_MEM_TO_DEV
);
403 ep93xx_spi_dma_finish(master
, DMA_DEV_TO_MEM
);
404 dev_err(&master
->dev
, "DMA TX failed: %ld\n", PTR_ERR(txd
));
408 /* We are ready when RX is done */
409 rxd
->callback
= ep93xx_spi_dma_callback
;
410 rxd
->callback_param
= master
;
412 /* Now submit both descriptors and start DMA */
413 dmaengine_submit(rxd
);
414 dmaengine_submit(txd
);
416 dma_async_issue_pending(espi
->dma_rx
);
417 dma_async_issue_pending(espi
->dma_tx
);
419 /* signal that we need to wait for completion */
423 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
425 struct spi_master
*master
= dev_id
;
426 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
430 * If we got ROR (receive overrun) interrupt we know that something is
431 * wrong. Just abort the message.
433 if (readl(espi
->mmio
+ SSPIIR
) & SSPIIR_RORIS
) {
434 /* clear the overrun interrupt */
435 writel(0, espi
->mmio
+ SSPICR
);
436 dev_warn(&master
->dev
,
437 "receive overrun, aborting the message\n");
438 master
->cur_msg
->status
= -EIO
;
441 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
442 * simply execute next data transfer.
444 if (ep93xx_spi_read_write(master
)) {
446 * In normal case, there still is some processing left
447 * for current transfer. Let's wait for the next
455 * Current transfer is finished, either with error or with success. In
456 * any case we disable interrupts and notify the worker to handle
457 * any post-processing of the message.
459 val
= readl(espi
->mmio
+ SSPCR1
);
460 val
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
461 writel(val
, espi
->mmio
+ SSPCR1
);
463 spi_finalize_current_transfer(master
);
468 static int ep93xx_spi_transfer_one(struct spi_master
*master
,
469 struct spi_device
*spi
,
470 struct spi_transfer
*xfer
)
472 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
476 ret
= ep93xx_spi_chip_setup(master
, spi
, xfer
);
478 dev_err(&master
->dev
, "failed to setup chip for transfer\n");
482 master
->cur_msg
->state
= xfer
;
487 * There is no point of setting up DMA for the transfers which will
488 * fit into the FIFO and can be transferred with a single interrupt.
489 * So in these cases we will be using PIO and don't bother for DMA.
491 if (espi
->dma_rx
&& xfer
->len
> SPI_FIFO_SIZE
)
492 return ep93xx_spi_dma_transfer(master
);
494 /* Using PIO so prime the TX FIFO and enable interrupts */
495 ep93xx_spi_read_write(master
);
497 val
= readl(espi
->mmio
+ SSPCR1
);
498 val
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
499 writel(val
, espi
->mmio
+ SSPCR1
);
501 /* signal that we need to wait for completion */
505 static int ep93xx_spi_prepare_message(struct spi_master
*master
,
506 struct spi_message
*msg
)
508 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
509 unsigned long timeout
;
512 * Just to be sure: flush any data from RX FIFO.
514 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
515 while (readl(espi
->mmio
+ SSPSR
) & SSPSR_RNE
) {
516 if (time_after(jiffies
, timeout
)) {
517 dev_warn(&master
->dev
,
518 "timeout while flushing RX FIFO\n");
521 readl(espi
->mmio
+ SSPDR
);
525 * We explicitly handle FIFO level. This way we don't have to check TX
526 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
528 espi
->fifo_level
= 0;
533 static int ep93xx_spi_prepare_hardware(struct spi_master
*master
)
535 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
539 ret
= clk_enable(espi
->clk
);
543 val
= readl(espi
->mmio
+ SSPCR1
);
545 writel(val
, espi
->mmio
+ SSPCR1
);
550 static int ep93xx_spi_unprepare_hardware(struct spi_master
*master
)
552 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
555 val
= readl(espi
->mmio
+ SSPCR1
);
557 writel(val
, espi
->mmio
+ SSPCR1
);
559 clk_disable(espi
->clk
);
564 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
566 if (ep93xx_dma_chan_is_m2p(chan
))
569 chan
->private = filter_param
;
573 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
578 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
583 dma_cap_set(DMA_SLAVE
, mask
);
585 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
586 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
587 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
589 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
596 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
597 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
598 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
600 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
604 goto fail_release_rx
;
610 dma_release_channel(espi
->dma_rx
);
613 free_page((unsigned long)espi
->zeropage
);
618 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
621 dma_release_channel(espi
->dma_rx
);
622 sg_free_table(&espi
->rx_sgt
);
625 dma_release_channel(espi
->dma_tx
);
626 sg_free_table(&espi
->tx_sgt
);
630 free_page((unsigned long)espi
->zeropage
);
633 static int ep93xx_spi_probe(struct platform_device
*pdev
)
635 struct spi_master
*master
;
636 struct ep93xx_spi_info
*info
;
637 struct ep93xx_spi
*espi
;
638 struct resource
*res
;
643 info
= dev_get_platdata(&pdev
->dev
);
645 dev_err(&pdev
->dev
, "missing platform data\n");
649 irq
= platform_get_irq(pdev
, 0);
651 dev_err(&pdev
->dev
, "failed to get irq resources\n");
655 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
657 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
661 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
665 master
->prepare_transfer_hardware
= ep93xx_spi_prepare_hardware
;
666 master
->unprepare_transfer_hardware
= ep93xx_spi_unprepare_hardware
;
667 master
->prepare_message
= ep93xx_spi_prepare_message
;
668 master
->transfer_one
= ep93xx_spi_transfer_one
;
669 master
->bus_num
= pdev
->id
;
670 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
671 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
673 master
->num_chipselect
= info
->num_chipselect
;
674 master
->cs_gpios
= devm_kcalloc(&master
->dev
,
675 master
->num_chipselect
, sizeof(int),
677 if (!master
->cs_gpios
) {
679 goto fail_release_master
;
682 for (i
= 0; i
< master
->num_chipselect
; i
++) {
683 master
->cs_gpios
[i
] = info
->chipselect
[i
];
685 if (!gpio_is_valid(master
->cs_gpios
[i
]))
688 error
= devm_gpio_request_one(&pdev
->dev
, master
->cs_gpios
[i
],
692 dev_err(&pdev
->dev
, "could not request cs gpio %d\n",
693 master
->cs_gpios
[i
]);
694 goto fail_release_master
;
698 platform_set_drvdata(pdev
, master
);
700 espi
= spi_master_get_devdata(master
);
702 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
703 if (IS_ERR(espi
->clk
)) {
704 dev_err(&pdev
->dev
, "unable to get spi clock\n");
705 error
= PTR_ERR(espi
->clk
);
706 goto fail_release_master
;
710 * Calculate maximum and minimum supported clock rates
711 * for the controller.
713 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
714 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
716 espi
->sspdr_phys
= res
->start
+ SSPDR
;
718 espi
->mmio
= devm_ioremap_resource(&pdev
->dev
, res
);
719 if (IS_ERR(espi
->mmio
)) {
720 error
= PTR_ERR(espi
->mmio
);
721 goto fail_release_master
;
724 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
725 0, "ep93xx-spi", master
);
727 dev_err(&pdev
->dev
, "failed to request irq\n");
728 goto fail_release_master
;
731 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
732 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
734 /* make sure that the hardware is disabled */
735 writel(0, espi
->mmio
+ SSPCR1
);
737 error
= devm_spi_register_master(&pdev
->dev
, master
);
739 dev_err(&pdev
->dev
, "failed to register SPI master\n");
743 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
744 (unsigned long)res
->start
, irq
);
749 ep93xx_spi_release_dma(espi
);
751 spi_master_put(master
);
756 static int ep93xx_spi_remove(struct platform_device
*pdev
)
758 struct spi_master
*master
= platform_get_drvdata(pdev
);
759 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
761 ep93xx_spi_release_dma(espi
);
766 static struct platform_driver ep93xx_spi_driver
= {
768 .name
= "ep93xx-spi",
770 .probe
= ep93xx_spi_probe
,
771 .remove
= ep93xx_spi_remove
,
773 module_platform_driver(ep93xx_spi_driver
);
775 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
776 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
777 MODULE_LICENSE("GPL");
778 MODULE_ALIAS("platform:ep93xx-spi");