2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
35 #ifdef CONFIG_RCU_BOOST
37 #include "../locking/rtmutex_common.h"
40 * Control variables for per-CPU and per-rcu_node kthreads. These
41 * handle all flavors of RCU.
43 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
48 #else /* #ifdef CONFIG_RCU_BOOST */
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
70 static void __init
rcu_bootup_announce_oddness(void)
72 if (IS_ENABLED(CONFIG_RCU_TRACE
))
73 pr_info("\tRCU debugfs-based tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
75 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU
))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS
>= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF
!= 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
91 if (nr_cpu_ids
!= NR_CPUS
)
92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
93 if (IS_ENABLED(CONFIG_RCU_BOOST
))
94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio
);
97 #ifdef CONFIG_PREEMPT_RCU
99 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
100 static struct rcu_state
*const rcu_state_p
= &rcu_preempt_state
;
101 static struct rcu_data __percpu
*const rcu_data_p
= &rcu_preempt_data
;
103 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
107 * Tell them what RCU they are running.
109 static void __init
rcu_bootup_announce(void)
111 pr_info("Preemptible hierarchical RCU implementation.\n");
112 rcu_bootup_announce_oddness();
115 /* Flags for rcu_preempt_ctxt_queue() decision table. */
116 #define RCU_GP_TASKS 0x8
117 #define RCU_EXP_TASKS 0x4
118 #define RCU_GP_BLKD 0x2
119 #define RCU_EXP_BLKD 0x1
122 * Queues a task preempted within an RCU-preempt read-side critical
123 * section into the appropriate location within the ->blkd_tasks list,
124 * depending on the states of any ongoing normal and expedited grace
125 * periods. The ->gp_tasks pointer indicates which element the normal
126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127 * indicates which element the expedited grace period is waiting on (again,
128 * NULL if none). If a grace period is waiting on a given element in the
129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
130 * adding a task to the tail of the list blocks any grace period that is
131 * already waiting on one of the elements. In contrast, adding a task
132 * to the head of the list won't block any grace period that is already
133 * waiting on one of the elements.
135 * This queuing is imprecise, and can sometimes make an ongoing grace
136 * period wait for a task that is not strictly speaking blocking it.
137 * Given the choice, we needlessly block a normal grace period rather than
138 * blocking an expedited grace period.
140 * Note that an endless sequence of expedited grace periods still cannot
141 * indefinitely postpone a normal grace period. Eventually, all of the
142 * fixed number of preempted tasks blocking the normal grace period that are
143 * not also blocking the expedited grace period will resume and complete
144 * their RCU read-side critical sections. At that point, the ->gp_tasks
145 * pointer will equal the ->exp_tasks pointer, at which point the end of
146 * the corresponding expedited grace period will also be the end of the
147 * normal grace period.
149 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
150 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
152 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
153 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
154 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
155 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
156 struct task_struct
*t
= current
;
159 * Decide where to queue the newly blocked task. In theory,
160 * this could be an if-statement. In practice, when I tried
161 * that, it was quite messy.
163 switch (blkd_state
) {
166 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
168 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
171 * Blocking neither GP, or first task blocking the normal
172 * GP but not blocking the already-waiting expedited GP.
173 * Queue at the head of the list to avoid unnecessarily
174 * blocking the already-waiting GPs.
176 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
181 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
182 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
183 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
184 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
187 * First task arriving that blocks either GP, or first task
188 * arriving that blocks the expedited GP (with the normal
189 * GP already waiting), or a task arriving that blocks
190 * both GPs with both GPs already waiting. Queue at the
191 * tail of the list to avoid any GP waiting on any of the
192 * already queued tasks that are not blocking it.
194 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
197 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
198 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
199 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
202 * Second or subsequent task blocking the expedited GP.
203 * The task either does not block the normal GP, or is the
204 * first task blocking the normal GP. Queue just after
205 * the first task blocking the expedited GP.
207 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
210 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
211 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
214 * Second or subsequent task blocking the normal GP.
215 * The task does not block the expedited GP. Queue just
216 * after the first task blocking the normal GP.
218 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
223 /* Yet another exercise in excessive paranoia. */
229 * We have now queued the task. If it was the first one to
230 * block either grace period, update the ->gp_tasks and/or
231 * ->exp_tasks pointers, respectively, to reference the newly
234 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
))
235 rnp
->gp_tasks
= &t
->rcu_node_entry
;
236 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
237 rnp
->exp_tasks
= &t
->rcu_node_entry
;
238 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
241 * Report the quiescent state for the expedited GP. This expedited
242 * GP should not be able to end until we report, so there should be
243 * no need to check for a subsequent expedited GP. (Though we are
244 * still in a quiescent state in any case.)
246 if (blkd_state
& RCU_EXP_BLKD
&&
247 t
->rcu_read_unlock_special
.b
.exp_need_qs
) {
248 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
249 rcu_report_exp_rdp(rdp
->rsp
, rdp
, true);
251 WARN_ON_ONCE(t
->rcu_read_unlock_special
.b
.exp_need_qs
);
256 * Record a preemptible-RCU quiescent state for the specified CPU. Note
257 * that this just means that the task currently running on the CPU is
258 * not in a quiescent state. There might be any number of tasks blocked
259 * while in an RCU read-side critical section.
261 * As with the other rcu_*_qs() functions, callers to this function
262 * must disable preemption.
264 static void rcu_preempt_qs(void)
266 if (__this_cpu_read(rcu_data_p
->cpu_no_qs
.s
)) {
267 trace_rcu_grace_period(TPS("rcu_preempt"),
268 __this_cpu_read(rcu_data_p
->gpnum
),
270 __this_cpu_write(rcu_data_p
->cpu_no_qs
.b
.norm
, false);
271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 current
->rcu_read_unlock_special
.b
.need_qs
= false;
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
287 * Caller must disable interrupts.
289 static void rcu_preempt_note_context_switch(void)
291 struct task_struct
*t
= current
;
292 struct rcu_data
*rdp
;
293 struct rcu_node
*rnp
;
295 if (t
->rcu_read_lock_nesting
> 0 &&
296 !t
->rcu_read_unlock_special
.b
.blocked
) {
298 /* Possibly blocking in an RCU read-side critical section. */
299 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
301 raw_spin_lock_rcu_node(rnp
);
302 t
->rcu_read_unlock_special
.b
.blocked
= true;
303 t
->rcu_blocked_node
= rnp
;
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
310 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
311 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
312 trace_rcu_preempt_task(rdp
->rsp
->name
,
314 (rnp
->qsmask
& rdp
->grpmask
)
317 rcu_preempt_ctxt_queue(rnp
, rdp
);
318 } else if (t
->rcu_read_lock_nesting
< 0 &&
319 t
->rcu_read_unlock_special
.s
) {
322 * Complete exit from RCU read-side critical section on
323 * behalf of preempted instance of __rcu_read_unlock().
325 rcu_read_unlock_special(t
);
329 * Either we were not in an RCU read-side critical section to
330 * begin with, or we have now recorded that critical section
331 * globally. Either way, we can now note a quiescent state
332 * for this CPU. Again, if we were in an RCU read-side critical
333 * section, and if that critical section was blocking the current
334 * grace period, then the fact that the task has been enqueued
335 * means that we continue to block the current grace period.
341 * Check for preempted RCU readers blocking the current grace period
342 * for the specified rcu_node structure. If the caller needs a reliable
343 * answer, it must hold the rcu_node's ->lock.
345 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
347 return rnp
->gp_tasks
!= NULL
;
351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
352 * returning NULL if at the end of the list.
354 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
355 struct rcu_node
*rnp
)
357 struct list_head
*np
;
359 np
= t
->rcu_node_entry
.next
;
360 if (np
== &rnp
->blkd_tasks
)
366 * Return true if the specified rcu_node structure has tasks that were
367 * preempted within an RCU read-side critical section.
369 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
371 return !list_empty(&rnp
->blkd_tasks
);
375 * Handle special cases during rcu_read_unlock(), such as needing to
376 * notify RCU core processing or task having blocked during the RCU
377 * read-side critical section.
379 void rcu_read_unlock_special(struct task_struct
*t
)
385 struct list_head
*np
;
386 bool drop_boost_mutex
= false;
387 struct rcu_data
*rdp
;
388 struct rcu_node
*rnp
;
389 union rcu_special special
;
391 /* NMI handlers cannot block and cannot safely manipulate state. */
395 local_irq_save(flags
);
398 * If RCU core is waiting for this CPU to exit its critical section,
399 * report the fact that it has exited. Because irqs are disabled,
400 * t->rcu_read_unlock_special cannot change.
402 special
= t
->rcu_read_unlock_special
;
403 if (special
.b
.need_qs
) {
405 t
->rcu_read_unlock_special
.b
.need_qs
= false;
406 if (!t
->rcu_read_unlock_special
.s
) {
407 local_irq_restore(flags
);
413 * Respond to a request for an expedited grace period, but only if
414 * we were not preempted, meaning that we were running on the same
415 * CPU throughout. If we were preempted, the exp_need_qs flag
416 * would have been cleared at the time of the first preemption,
417 * and the quiescent state would be reported when we were dequeued.
419 if (special
.b
.exp_need_qs
) {
420 WARN_ON_ONCE(special
.b
.blocked
);
421 t
->rcu_read_unlock_special
.b
.exp_need_qs
= false;
422 rdp
= this_cpu_ptr(rcu_state_p
->rda
);
423 rcu_report_exp_rdp(rcu_state_p
, rdp
, true);
424 if (!t
->rcu_read_unlock_special
.s
) {
425 local_irq_restore(flags
);
430 /* Hardware IRQ handlers cannot block, complain if they get here. */
431 if (in_irq() || in_serving_softirq()) {
432 lockdep_rcu_suspicious(__FILE__
, __LINE__
,
433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
435 t
->rcu_read_unlock_special
.s
,
436 t
->rcu_read_unlock_special
.b
.blocked
,
437 t
->rcu_read_unlock_special
.b
.exp_need_qs
,
438 t
->rcu_read_unlock_special
.b
.need_qs
);
439 local_irq_restore(flags
);
443 /* Clean up if blocked during RCU read-side critical section. */
444 if (special
.b
.blocked
) {
445 t
->rcu_read_unlock_special
.b
.blocked
= false;
448 * Remove this task from the list it blocked on. The task
449 * now remains queued on the rcu_node corresponding to the
450 * CPU it first blocked on, so there is no longer any need
451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
453 rnp
= t
->rcu_blocked_node
;
454 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
455 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
456 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
457 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
459 np
= rcu_next_node_entry(t
, rnp
);
460 list_del_init(&t
->rcu_node_entry
);
461 t
->rcu_blocked_node
= NULL
;
462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
464 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
466 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
468 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
469 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
470 rnp
->boost_tasks
= np
;
471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
476 * If this was the last task on the current list, and if
477 * we aren't waiting on any CPUs, report the quiescent state.
478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 * so we must take a snapshot of the expedited state.
481 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
482 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
490 rcu_report_unblock_qs_rnp(rcu_state_p
, rnp
, flags
);
492 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
495 /* Unboost if we were boosted. */
496 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
497 rt_mutex_unlock(&rnp
->boost_mtx
);
500 * If this was the last task on the expedited lists,
501 * then we need to report up the rcu_node hierarchy.
503 if (!empty_exp
&& empty_exp_now
)
504 rcu_report_exp_rnp(rcu_state_p
, rnp
, true);
506 local_irq_restore(flags
);
511 * Dump detailed information for all tasks blocking the current RCU
512 * grace period on the specified rcu_node structure.
514 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
517 struct task_struct
*t
;
519 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
520 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
521 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
524 t
= list_entry(rnp
->gp_tasks
->prev
,
525 struct task_struct
, rcu_node_entry
);
526 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
528 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
532 * Dump detailed information for all tasks blocking the current RCU
535 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
537 struct rcu_node
*rnp
= rcu_get_root(rsp
);
539 rcu_print_detail_task_stall_rnp(rnp
);
540 rcu_for_each_leaf_node(rsp
, rnp
)
541 rcu_print_detail_task_stall_rnp(rnp
);
544 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
547 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
550 static void rcu_print_task_stall_end(void)
556 * Scan the current list of tasks blocked within RCU read-side critical
557 * sections, printing out the tid of each.
559 static int rcu_print_task_stall(struct rcu_node
*rnp
)
561 struct task_struct
*t
;
564 if (!rcu_preempt_blocked_readers_cgp(rnp
))
566 rcu_print_task_stall_begin(rnp
);
567 t
= list_entry(rnp
->gp_tasks
->prev
,
568 struct task_struct
, rcu_node_entry
);
569 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
570 pr_cont(" P%d", t
->pid
);
573 rcu_print_task_stall_end();
578 * Scan the current list of tasks blocked within RCU read-side critical
579 * sections, printing out the tid of each that is blocking the current
580 * expedited grace period.
582 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
584 struct task_struct
*t
;
589 t
= list_entry(rnp
->exp_tasks
->prev
,
590 struct task_struct
, rcu_node_entry
);
591 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
592 pr_cont(" P%d", t
->pid
);
599 * Check that the list of blocked tasks for the newly completed grace
600 * period is in fact empty. It is a serious bug to complete a grace
601 * period that still has RCU readers blocked! This function must be
602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603 * must be held by the caller.
605 * Also, if there are blocked tasks on the list, they automatically
606 * block the newly created grace period, so set up ->gp_tasks accordingly.
608 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
611 if (rcu_preempt_has_tasks(rnp
))
612 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
613 WARN_ON_ONCE(rnp
->qsmask
);
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the corresponding CPU's rcu_node structure,
619 * which is checked elsewhere.
621 * Caller must disable hard irqs.
623 static void rcu_preempt_check_callbacks(void)
625 struct task_struct
*t
= current
;
627 if (t
->rcu_read_lock_nesting
== 0) {
631 if (t
->rcu_read_lock_nesting
> 0 &&
632 __this_cpu_read(rcu_data_p
->core_needs_qs
) &&
633 __this_cpu_read(rcu_data_p
->cpu_no_qs
.b
.norm
))
634 t
->rcu_read_unlock_special
.b
.need_qs
= true;
637 #ifdef CONFIG_RCU_BOOST
639 static void rcu_preempt_do_callbacks(void)
641 rcu_do_batch(rcu_state_p
, this_cpu_ptr(rcu_data_p
));
644 #endif /* #ifdef CONFIG_RCU_BOOST */
647 * Queue a preemptible-RCU callback for invocation after a grace period.
649 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
651 __call_rcu(head
, func
, rcu_state_p
, -1, 0);
653 EXPORT_SYMBOL_GPL(call_rcu
);
656 * synchronize_rcu - wait until a grace period has elapsed.
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
669 void synchronize_rcu(void)
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
672 lock_is_held(&rcu_lock_map
) ||
673 lock_is_held(&rcu_sched_lock_map
),
674 "Illegal synchronize_rcu() in RCU read-side critical section");
675 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
677 if (rcu_gp_is_expedited())
678 synchronize_rcu_expedited();
680 wait_rcu_gp(call_rcu
);
682 EXPORT_SYMBOL_GPL(synchronize_rcu
);
685 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
687 * Note that this primitive does not necessarily wait for an RCU grace period
688 * to complete. For example, if there are no RCU callbacks queued anywhere
689 * in the system, then rcu_barrier() is within its rights to return
690 * immediately, without waiting for anything, much less an RCU grace period.
692 void rcu_barrier(void)
694 _rcu_barrier(rcu_state_p
);
696 EXPORT_SYMBOL_GPL(rcu_barrier
);
699 * Initialize preemptible RCU's state structures.
701 static void __init
__rcu_init_preempt(void)
703 rcu_init_one(rcu_state_p
);
707 * Check for a task exiting while in a preemptible-RCU read-side
708 * critical section, clean up if so. No need to issue warnings,
709 * as debug_check_no_locks_held() already does this if lockdep
714 struct task_struct
*t
= current
;
716 if (likely(list_empty(¤t
->rcu_node_entry
)))
718 t
->rcu_read_lock_nesting
= 1;
720 t
->rcu_read_unlock_special
.b
.blocked
= true;
724 #else /* #ifdef CONFIG_PREEMPT_RCU */
726 static struct rcu_state
*const rcu_state_p
= &rcu_sched_state
;
729 * Tell them what RCU they are running.
731 static void __init
rcu_bootup_announce(void)
733 pr_info("Hierarchical RCU implementation.\n");
734 rcu_bootup_announce_oddness();
738 * Because preemptible RCU does not exist, we never have to check for
739 * CPUs being in quiescent states.
741 static void rcu_preempt_note_context_switch(void)
746 * Because preemptible RCU does not exist, there are never any preempted
749 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
755 * Because there is no preemptible RCU, there can be no readers blocked.
757 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
763 * Because preemptible RCU does not exist, we never have to check for
764 * tasks blocked within RCU read-side critical sections.
766 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
771 * Because preemptible RCU does not exist, we never have to check for
772 * tasks blocked within RCU read-side critical sections.
774 static int rcu_print_task_stall(struct rcu_node
*rnp
)
780 * Because preemptible RCU does not exist, we never have to check for
781 * tasks blocked within RCU read-side critical sections that are
782 * blocking the current expedited grace period.
784 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
790 * Because there is no preemptible RCU, there can be no readers blocked,
791 * so there is no need to check for blocked tasks. So check only for
792 * bogus qsmask values.
794 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
796 WARN_ON_ONCE(rnp
->qsmask
);
800 * Because preemptible RCU does not exist, it never has any callbacks
803 static void rcu_preempt_check_callbacks(void)
808 * Because preemptible RCU does not exist, rcu_barrier() is just
809 * another name for rcu_barrier_sched().
811 void rcu_barrier(void)
815 EXPORT_SYMBOL_GPL(rcu_barrier
);
818 * Because preemptible RCU does not exist, it need not be initialized.
820 static void __init
__rcu_init_preempt(void)
825 * Because preemptible RCU does not exist, tasks cannot possibly exit
826 * while in preemptible RCU read-side critical sections.
832 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
834 #ifdef CONFIG_RCU_BOOST
836 #include "../locking/rtmutex_common.h"
838 #ifdef CONFIG_RCU_TRACE
840 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
842 if (!rcu_preempt_has_tasks(rnp
))
843 rnp
->n_balk_blkd_tasks
++;
844 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
845 rnp
->n_balk_exp_gp_tasks
++;
846 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
847 rnp
->n_balk_boost_tasks
++;
848 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
849 rnp
->n_balk_notblocked
++;
850 else if (rnp
->gp_tasks
!= NULL
&&
851 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
852 rnp
->n_balk_notyet
++;
857 #else /* #ifdef CONFIG_RCU_TRACE */
859 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
863 #endif /* #else #ifdef CONFIG_RCU_TRACE */
865 static void rcu_wake_cond(struct task_struct
*t
, int status
)
868 * If the thread is yielding, only wake it when this
869 * is invoked from idle
871 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
876 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
877 * or ->boost_tasks, advancing the pointer to the next task in the
880 * Note that irqs must be enabled: boosting the task can block.
881 * Returns 1 if there are more tasks needing to be boosted.
883 static int rcu_boost(struct rcu_node
*rnp
)
886 struct task_struct
*t
;
887 struct list_head
*tb
;
889 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
890 READ_ONCE(rnp
->boost_tasks
) == NULL
)
891 return 0; /* Nothing left to boost. */
893 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
896 * Recheck under the lock: all tasks in need of boosting
897 * might exit their RCU read-side critical sections on their own.
899 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
900 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
905 * Preferentially boost tasks blocking expedited grace periods.
906 * This cannot starve the normal grace periods because a second
907 * expedited grace period must boost all blocked tasks, including
908 * those blocking the pre-existing normal grace period.
910 if (rnp
->exp_tasks
!= NULL
) {
914 tb
= rnp
->boost_tasks
;
915 rnp
->n_normal_boosts
++;
917 rnp
->n_tasks_boosted
++;
920 * We boost task t by manufacturing an rt_mutex that appears to
921 * be held by task t. We leave a pointer to that rt_mutex where
922 * task t can find it, and task t will release the mutex when it
923 * exits its outermost RCU read-side critical section. Then
924 * simply acquiring this artificial rt_mutex will boost task
925 * t's priority. (Thanks to tglx for suggesting this approach!)
927 * Note that task t must acquire rnp->lock to remove itself from
928 * the ->blkd_tasks list, which it will do from exit() if from
929 * nowhere else. We therefore are guaranteed that task t will
930 * stay around at least until we drop rnp->lock. Note that
931 * rnp->lock also resolves races between our priority boosting
932 * and task t's exiting its outermost RCU read-side critical
935 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
936 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
937 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
938 /* Lock only for side effect: boosts task t's priority. */
939 rt_mutex_lock(&rnp
->boost_mtx
);
940 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
942 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
943 READ_ONCE(rnp
->boost_tasks
) != NULL
;
947 * Priority-boosting kthread, one per leaf rcu_node.
949 static int rcu_boost_kthread(void *arg
)
951 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
955 trace_rcu_utilization(TPS("Start boost kthread@init"));
957 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
958 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
959 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
960 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
961 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
962 more2boost
= rcu_boost(rnp
);
968 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
969 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
970 schedule_timeout_interruptible(2);
971 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
976 trace_rcu_utilization(TPS("End boost kthread@notreached"));
981 * Check to see if it is time to start boosting RCU readers that are
982 * blocking the current grace period, and, if so, tell the per-rcu_node
983 * kthread to start boosting them. If there is an expedited grace
984 * period in progress, it is always time to boost.
986 * The caller must hold rnp->lock, which this function releases.
987 * The ->boost_kthread_task is immortal, so we don't need to worry
988 * about it going away.
990 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
991 __releases(rnp
->lock
)
993 struct task_struct
*t
;
995 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
996 rnp
->n_balk_exp_gp_tasks
++;
997 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1000 if (rnp
->exp_tasks
!= NULL
||
1001 (rnp
->gp_tasks
!= NULL
&&
1002 rnp
->boost_tasks
== NULL
&&
1004 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1005 if (rnp
->exp_tasks
== NULL
)
1006 rnp
->boost_tasks
= rnp
->gp_tasks
;
1007 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1008 t
= rnp
->boost_kthread_task
;
1010 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1012 rcu_initiate_boost_trace(rnp
);
1013 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1018 * Wake up the per-CPU kthread to invoke RCU callbacks.
1020 static void invoke_rcu_callbacks_kthread(void)
1022 unsigned long flags
;
1024 local_irq_save(flags
);
1025 __this_cpu_write(rcu_cpu_has_work
, 1);
1026 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1027 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1028 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1029 __this_cpu_read(rcu_cpu_kthread_status
));
1031 local_irq_restore(flags
);
1035 * Is the current CPU running the RCU-callbacks kthread?
1036 * Caller must have preemption disabled.
1038 static bool rcu_is_callbacks_kthread(void)
1040 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1043 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1046 * Do priority-boost accounting for the start of a new grace period.
1048 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1050 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1054 * Create an RCU-boost kthread for the specified node if one does not
1055 * already exist. We only create this kthread for preemptible RCU.
1056 * Returns zero if all is well, a negated errno otherwise.
1058 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1059 struct rcu_node
*rnp
)
1061 int rnp_index
= rnp
- &rsp
->node
[0];
1062 unsigned long flags
;
1063 struct sched_param sp
;
1064 struct task_struct
*t
;
1066 if (rcu_state_p
!= rsp
)
1069 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1073 if (rnp
->boost_kthread_task
!= NULL
)
1075 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1076 "rcub/%d", rnp_index
);
1079 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1080 rnp
->boost_kthread_task
= t
;
1081 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1082 sp
.sched_priority
= kthread_prio
;
1083 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1084 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1088 static void rcu_kthread_do_work(void)
1090 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1091 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1092 rcu_preempt_do_callbacks();
1095 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1097 struct sched_param sp
;
1099 sp
.sched_priority
= kthread_prio
;
1100 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1103 static void rcu_cpu_kthread_park(unsigned int cpu
)
1105 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1108 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1110 return __this_cpu_read(rcu_cpu_has_work
);
1114 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1115 * RCU softirq used in flavors and configurations of RCU that do not
1116 * support RCU priority boosting.
1118 static void rcu_cpu_kthread(unsigned int cpu
)
1120 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1121 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1124 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1125 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1127 *statusp
= RCU_KTHREAD_RUNNING
;
1128 this_cpu_inc(rcu_cpu_kthread_loops
);
1129 local_irq_disable();
1134 rcu_kthread_do_work();
1137 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1138 *statusp
= RCU_KTHREAD_WAITING
;
1142 *statusp
= RCU_KTHREAD_YIELDING
;
1143 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1144 schedule_timeout_interruptible(2);
1145 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1146 *statusp
= RCU_KTHREAD_WAITING
;
1150 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1151 * served by the rcu_node in question. The CPU hotplug lock is still
1152 * held, so the value of rnp->qsmaskinit will be stable.
1154 * We don't include outgoingcpu in the affinity set, use -1 if there is
1155 * no outgoing CPU. If there are no CPUs left in the affinity set,
1156 * this function allows the kthread to execute on any CPU.
1158 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1160 struct task_struct
*t
= rnp
->boost_kthread_task
;
1161 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1167 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1169 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1170 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1172 cpumask_set_cpu(cpu
, cm
);
1173 if (cpumask_weight(cm
) == 0)
1175 set_cpus_allowed_ptr(t
, cm
);
1176 free_cpumask_var(cm
);
1179 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1180 .store
= &rcu_cpu_kthread_task
,
1181 .thread_should_run
= rcu_cpu_kthread_should_run
,
1182 .thread_fn
= rcu_cpu_kthread
,
1183 .thread_comm
= "rcuc/%u",
1184 .setup
= rcu_cpu_kthread_setup
,
1185 .park
= rcu_cpu_kthread_park
,
1189 * Spawn boost kthreads -- called as soon as the scheduler is running.
1191 static void __init
rcu_spawn_boost_kthreads(void)
1193 struct rcu_node
*rnp
;
1196 for_each_possible_cpu(cpu
)
1197 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1198 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1199 rcu_for_each_leaf_node(rcu_state_p
, rnp
)
1200 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1203 static void rcu_prepare_kthreads(int cpu
)
1205 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
1206 struct rcu_node
*rnp
= rdp
->mynode
;
1208 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209 if (rcu_scheduler_fully_active
)
1210 (void)rcu_spawn_one_boost_kthread(rcu_state_p
, rnp
);
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1215 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1216 __releases(rnp
->lock
)
1218 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1221 static void invoke_rcu_callbacks_kthread(void)
1226 static bool rcu_is_callbacks_kthread(void)
1231 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1235 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1239 static void __init
rcu_spawn_boost_kthreads(void)
1243 static void rcu_prepare_kthreads(int cpu
)
1247 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1249 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1252 * Check to see if any future RCU-related work will need to be done
1253 * by the current CPU, even if none need be done immediately, returning
1254 * 1 if so. This function is part of the RCU implementation; it is -not-
1255 * an exported member of the RCU API.
1257 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1258 * any flavor of RCU.
1260 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1262 *nextevt
= KTIME_MAX
;
1263 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
)
1264 ? 0 : rcu_cpu_has_callbacks(NULL
);
1268 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1271 static void rcu_cleanup_after_idle(void)
1276 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1279 static void rcu_prepare_for_idle(void)
1284 * Don't bother keeping a running count of the number of RCU callbacks
1285 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1287 static void rcu_idle_count_callbacks_posted(void)
1291 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1294 * This code is invoked when a CPU goes idle, at which point we want
1295 * to have the CPU do everything required for RCU so that it can enter
1296 * the energy-efficient dyntick-idle mode. This is handled by a
1297 * state machine implemented by rcu_prepare_for_idle() below.
1299 * The following three proprocessor symbols control this state machine:
1301 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1302 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1303 * is sized to be roughly one RCU grace period. Those energy-efficiency
1304 * benchmarkers who might otherwise be tempted to set this to a large
1305 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1306 * system. And if you are -that- concerned about energy efficiency,
1307 * just power the system down and be done with it!
1308 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1309 * permitted to sleep in dyntick-idle mode with only lazy RCU
1310 * callbacks pending. Setting this too high can OOM your system.
1312 * The values below work well in practice. If future workloads require
1313 * adjustment, they can be converted into kernel config parameters, though
1314 * making the state machine smarter might be a better option.
1316 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1317 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1319 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1320 module_param(rcu_idle_gp_delay
, int, 0644);
1321 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1322 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1325 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1326 * only if it has been awhile since the last time we did so. Afterwards,
1327 * if there are any callbacks ready for immediate invocation, return true.
1329 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1331 bool cbs_ready
= false;
1332 struct rcu_data
*rdp
;
1333 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1334 struct rcu_node
*rnp
;
1335 struct rcu_state
*rsp
;
1337 /* Exit early if we advanced recently. */
1338 if (jiffies
== rdtp
->last_advance_all
)
1340 rdtp
->last_advance_all
= jiffies
;
1342 for_each_rcu_flavor(rsp
) {
1343 rdp
= this_cpu_ptr(rsp
->rda
);
1347 * Don't bother checking unless a grace period has
1348 * completed since we last checked and there are
1349 * callbacks not yet ready to invoke.
1351 if ((rdp
->completed
!= rnp
->completed
||
1352 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1353 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1354 note_gp_changes(rsp
, rdp
);
1356 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1363 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1364 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1365 * caller to set the timeout based on whether or not there are non-lazy
1368 * The caller must have disabled interrupts.
1370 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1372 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1375 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
)) {
1376 *nextevt
= KTIME_MAX
;
1380 /* Snapshot to detect later posting of non-lazy callback. */
1381 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1383 /* If no callbacks, RCU doesn't need the CPU. */
1384 if (!rcu_cpu_has_callbacks(&rdtp
->all_lazy
)) {
1385 *nextevt
= KTIME_MAX
;
1389 /* Attempt to advance callbacks. */
1390 if (rcu_try_advance_all_cbs()) {
1391 /* Some ready to invoke, so initiate later invocation. */
1395 rdtp
->last_accelerate
= jiffies
;
1397 /* Request timer delay depending on laziness, and round. */
1398 if (!rdtp
->all_lazy
) {
1399 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1400 rcu_idle_gp_delay
) - jiffies
;
1402 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1404 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1409 * Prepare a CPU for idle from an RCU perspective. The first major task
1410 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1411 * The second major task is to check to see if a non-lazy callback has
1412 * arrived at a CPU that previously had only lazy callbacks. The third
1413 * major task is to accelerate (that is, assign grace-period numbers to)
1414 * any recently arrived callbacks.
1416 * The caller must have disabled interrupts.
1418 static void rcu_prepare_for_idle(void)
1421 struct rcu_data
*rdp
;
1422 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1423 struct rcu_node
*rnp
;
1424 struct rcu_state
*rsp
;
1427 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
) ||
1428 rcu_is_nocb_cpu(smp_processor_id()))
1431 /* Handle nohz enablement switches conservatively. */
1432 tne
= READ_ONCE(tick_nohz_active
);
1433 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1434 if (rcu_cpu_has_callbacks(NULL
))
1435 invoke_rcu_core(); /* force nohz to see update. */
1436 rdtp
->tick_nohz_enabled_snap
= tne
;
1443 * If a non-lazy callback arrived at a CPU having only lazy
1444 * callbacks, invoke RCU core for the side-effect of recalculating
1445 * idle duration on re-entry to idle.
1447 if (rdtp
->all_lazy
&&
1448 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1449 rdtp
->all_lazy
= false;
1450 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1456 * If we have not yet accelerated this jiffy, accelerate all
1457 * callbacks on this CPU.
1459 if (rdtp
->last_accelerate
== jiffies
)
1461 rdtp
->last_accelerate
= jiffies
;
1462 for_each_rcu_flavor(rsp
) {
1463 rdp
= this_cpu_ptr(rsp
->rda
);
1464 if (rcu_segcblist_pend_cbs(&rdp
->cblist
))
1467 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1468 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1469 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1471 rcu_gp_kthread_wake(rsp
);
1476 * Clean up for exit from idle. Attempt to advance callbacks based on
1477 * any grace periods that elapsed while the CPU was idle, and if any
1478 * callbacks are now ready to invoke, initiate invocation.
1480 static void rcu_cleanup_after_idle(void)
1482 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL
) ||
1483 rcu_is_nocb_cpu(smp_processor_id()))
1485 if (rcu_try_advance_all_cbs())
1490 * Keep a running count of the number of non-lazy callbacks posted
1491 * on this CPU. This running counter (which is never decremented) allows
1492 * rcu_prepare_for_idle() to detect when something out of the idle loop
1493 * posts a callback, even if an equal number of callbacks are invoked.
1494 * Of course, callbacks should only be posted from within a trace event
1495 * designed to be called from idle or from within RCU_NONIDLE().
1497 static void rcu_idle_count_callbacks_posted(void)
1499 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1503 * Data for flushing lazy RCU callbacks at OOM time.
1505 static atomic_t oom_callback_count
;
1506 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1509 * RCU OOM callback -- decrement the outstanding count and deliver the
1510 * wake-up if we are the last one.
1512 static void rcu_oom_callback(struct rcu_head
*rhp
)
1514 if (atomic_dec_and_test(&oom_callback_count
))
1515 wake_up(&oom_callback_wq
);
1519 * Post an rcu_oom_notify callback on the current CPU if it has at
1520 * least one lazy callback. This will unnecessarily post callbacks
1521 * to CPUs that already have a non-lazy callback at the end of their
1522 * callback list, but this is an infrequent operation, so accept some
1523 * extra overhead to keep things simple.
1525 static void rcu_oom_notify_cpu(void *unused
)
1527 struct rcu_state
*rsp
;
1528 struct rcu_data
*rdp
;
1530 for_each_rcu_flavor(rsp
) {
1531 rdp
= raw_cpu_ptr(rsp
->rda
);
1532 if (rcu_segcblist_n_lazy_cbs(&rdp
->cblist
)) {
1533 atomic_inc(&oom_callback_count
);
1534 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1540 * If low on memory, ensure that each CPU has a non-lazy callback.
1541 * This will wake up CPUs that have only lazy callbacks, in turn
1542 * ensuring that they free up the corresponding memory in a timely manner.
1543 * Because an uncertain amount of memory will be freed in some uncertain
1544 * timeframe, we do not claim to have freed anything.
1546 static int rcu_oom_notify(struct notifier_block
*self
,
1547 unsigned long notused
, void *nfreed
)
1551 /* Wait for callbacks from earlier instance to complete. */
1552 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1553 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1556 * Prevent premature wakeup: ensure that all increments happen
1557 * before there is a chance of the counter reaching zero.
1559 atomic_set(&oom_callback_count
, 1);
1561 for_each_online_cpu(cpu
) {
1562 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1563 cond_resched_rcu_qs();
1566 /* Unconditionally decrement: no need to wake ourselves up. */
1567 atomic_dec(&oom_callback_count
);
1572 static struct notifier_block rcu_oom_nb
= {
1573 .notifier_call
= rcu_oom_notify
1576 static int __init
rcu_register_oom_notifier(void)
1578 register_oom_notifier(&rcu_oom_nb
);
1581 early_initcall(rcu_register_oom_notifier
);
1583 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1585 #ifdef CONFIG_RCU_FAST_NO_HZ
1587 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1589 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1590 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1592 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1593 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1595 rdtp
->all_lazy
? 'L' : '.',
1596 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1599 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1601 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1606 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1608 /* Initiate the stall-info list. */
1609 static void print_cpu_stall_info_begin(void)
1615 * Print out diagnostic information for the specified stalled CPU.
1617 * If the specified CPU is aware of the current RCU grace period
1618 * (flavor specified by rsp), then print the number of scheduling
1619 * clock interrupts the CPU has taken during the time that it has
1620 * been aware. Otherwise, print the number of RCU grace periods
1621 * that this CPU is ignorant of, for example, "1" if the CPU was
1622 * aware of the previous grace period.
1624 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1626 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1628 char fast_no_hz
[72];
1629 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1630 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1632 unsigned long ticks_value
;
1634 if (rsp
->gpnum
== rdp
->gpnum
) {
1635 ticks_title
= "ticks this GP";
1636 ticks_value
= rdp
->ticks_this_gp
;
1638 ticks_title
= "GPs behind";
1639 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1641 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1642 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1644 "O."[!!cpu_online(cpu
)],
1645 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1646 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1647 ticks_value
, ticks_title
,
1648 rcu_dynticks_snap(rdtp
) & 0xfff,
1649 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1650 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1651 READ_ONCE(rsp
->n_force_qs
) - rsp
->n_force_qs_gpstart
,
1655 /* Terminate the stall-info list. */
1656 static void print_cpu_stall_info_end(void)
1661 /* Zero ->ticks_this_gp for all flavors of RCU. */
1662 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1664 rdp
->ticks_this_gp
= 0;
1665 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1668 /* Increment ->ticks_this_gp for all flavors of RCU. */
1669 static void increment_cpu_stall_ticks(void)
1671 struct rcu_state
*rsp
;
1673 for_each_rcu_flavor(rsp
)
1674 raw_cpu_inc(rsp
->rda
->ticks_this_gp
);
1677 #ifdef CONFIG_RCU_NOCB_CPU
1680 * Offload callback processing from the boot-time-specified set of CPUs
1681 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1682 * kthread created that pulls the callbacks from the corresponding CPU,
1683 * waits for a grace period to elapse, and invokes the callbacks.
1684 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1685 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1686 * has been specified, in which case each kthread actively polls its
1687 * CPU. (Which isn't so great for energy efficiency, but which does
1688 * reduce RCU's overhead on that CPU.)
1690 * This is intended to be used in conjunction with Frederic Weisbecker's
1691 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1692 * running CPU-bound user-mode computations.
1694 * Offloading of callback processing could also in theory be used as
1695 * an energy-efficiency measure because CPUs with no RCU callbacks
1696 * queued are more aggressive about entering dyntick-idle mode.
1700 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1701 static int __init
rcu_nocb_setup(char *str
)
1703 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1704 have_rcu_nocb_mask
= true;
1705 cpulist_parse(str
, rcu_nocb_mask
);
1708 __setup("rcu_nocbs=", rcu_nocb_setup
);
1710 static int __init
parse_rcu_nocb_poll(char *arg
)
1715 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1718 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1721 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1727 * Set the root rcu_node structure's ->need_future_gp field
1728 * based on the sum of those of all rcu_node structures. This does
1729 * double-count the root rcu_node structure's requests, but this
1730 * is necessary to handle the possibility of a rcu_nocb_kthread()
1731 * having awakened during the time that the rcu_node structures
1732 * were being updated for the end of the previous grace period.
1734 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
1736 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
1739 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1741 return &rnp
->nocb_gp_wq
[rnp
->completed
& 0x1];
1744 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1746 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1747 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1750 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1751 /* Is the specified CPU a no-CBs CPU? */
1752 bool rcu_is_nocb_cpu(int cpu
)
1754 if (have_rcu_nocb_mask
)
1755 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1758 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1761 * Kick the leader kthread for this NOCB group.
1763 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1765 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1767 if (!READ_ONCE(rdp_leader
->nocb_kthread
))
1769 if (READ_ONCE(rdp_leader
->nocb_leader_sleep
) || force
) {
1770 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1771 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1772 swake_up(&rdp_leader
->nocb_wq
);
1777 * Does the specified CPU need an RCU callback for the specified flavor
1780 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
1782 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1784 #ifdef CONFIG_PROVE_RCU
1785 struct rcu_head
*rhp
;
1786 #endif /* #ifdef CONFIG_PROVE_RCU */
1789 * Check count of all no-CBs callbacks awaiting invocation.
1790 * There needs to be a barrier before this function is called,
1791 * but associated with a prior determination that no more
1792 * callbacks would be posted. In the worst case, the first
1793 * barrier in _rcu_barrier() suffices (but the caller cannot
1794 * necessarily rely on this, not a substitute for the caller
1795 * getting the concurrency design right!). There must also be
1796 * a barrier between the following load an posting of a callback
1797 * (if a callback is in fact needed). This is associated with an
1798 * atomic_inc() in the caller.
1800 ret
= atomic_long_read(&rdp
->nocb_q_count
);
1802 #ifdef CONFIG_PROVE_RCU
1803 rhp
= READ_ONCE(rdp
->nocb_head
);
1805 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
1807 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
1809 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1810 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
1811 rcu_scheduler_fully_active
) {
1812 /* RCU callback enqueued before CPU first came online??? */
1813 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1817 #endif /* #ifdef CONFIG_PROVE_RCU */
1823 * Enqueue the specified string of rcu_head structures onto the specified
1824 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1825 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1826 * counts are supplied by rhcount and rhcount_lazy.
1828 * If warranted, also wake up the kthread servicing this CPUs queues.
1830 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
1831 struct rcu_head
*rhp
,
1832 struct rcu_head
**rhtp
,
1833 int rhcount
, int rhcount_lazy
,
1834 unsigned long flags
)
1837 struct rcu_head
**old_rhpp
;
1838 struct task_struct
*t
;
1840 /* Enqueue the callback on the nocb list and update counts. */
1841 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
1842 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1843 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
1844 WRITE_ONCE(*old_rhpp
, rhp
);
1845 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
1846 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1848 /* If we are not being polled and there is a kthread, awaken it ... */
1849 t
= READ_ONCE(rdp
->nocb_kthread
);
1850 if (rcu_nocb_poll
|| !t
) {
1851 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1852 TPS("WakeNotPoll"));
1855 len
= atomic_long_read(&rdp
->nocb_q_count
);
1856 if (old_rhpp
== &rdp
->nocb_head
) {
1857 if (!irqs_disabled_flags(flags
)) {
1858 /* ... if queue was empty ... */
1859 wake_nocb_leader(rdp
, false);
1860 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1863 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOGP_WAKE
);
1864 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1865 smp_store_release(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
), true);
1866 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1867 TPS("WakeEmptyIsDeferred"));
1869 rdp
->qlen_last_fqs_check
= 0;
1870 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1871 /* ... or if many callbacks queued. */
1872 if (!irqs_disabled_flags(flags
)) {
1873 wake_nocb_leader(rdp
, true);
1874 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1877 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOGP_WAKE_FORCE
);
1878 /* Store ->nocb_defer_wakeup before ->rcu_urgent_qs. */
1879 smp_store_release(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
), true);
1880 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
1881 TPS("WakeOvfIsDeferred"));
1883 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
1885 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
1891 * This is a helper for __call_rcu(), which invokes this when the normal
1892 * callback queue is inoperable. If this is not a no-CBs CPU, this
1893 * function returns failure back to __call_rcu(), which can complain
1896 * Otherwise, this function queues the callback where the corresponding
1897 * "rcuo" kthread can find it.
1899 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1900 bool lazy
, unsigned long flags
)
1903 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1905 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
1906 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
1907 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
1908 (unsigned long)rhp
->func
,
1909 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1910 -atomic_long_read(&rdp
->nocb_q_count
));
1912 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
1913 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
1914 -atomic_long_read(&rdp
->nocb_q_count
));
1917 * If called from an extended quiescent state with interrupts
1918 * disabled, invoke the RCU core in order to allow the idle-entry
1919 * deferred-wakeup check to function.
1921 if (irqs_disabled_flags(flags
) &&
1922 !rcu_is_watching() &&
1923 cpu_online(smp_processor_id()))
1930 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1933 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
1934 struct rcu_data
*rdp
,
1935 unsigned long flags
)
1937 long ql
= rcu_cblist_n_cbs(&rsp
->orphan_done
);
1938 long qll
= rcu_cblist_n_lazy_cbs(&rsp
->orphan_done
);
1940 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1941 if (!rcu_is_nocb_cpu(smp_processor_id()))
1944 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1945 if (!rcu_cblist_empty(&rsp
->orphan_done
)) {
1946 __call_rcu_nocb_enqueue(rdp
, rcu_cblist_head(&rsp
->orphan_done
),
1947 rcu_cblist_tail(&rsp
->orphan_done
),
1950 if (!rcu_cblist_empty(&rsp
->orphan_pend
)) {
1951 __call_rcu_nocb_enqueue(rdp
, rcu_cblist_head(&rsp
->orphan_pend
),
1952 rcu_cblist_tail(&rsp
->orphan_pend
),
1955 rcu_cblist_init(&rsp
->orphan_done
);
1956 rcu_cblist_init(&rsp
->orphan_pend
);
1961 * If necessary, kick off a new grace period, and either way wait
1962 * for a subsequent grace period to complete.
1964 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
1968 unsigned long flags
;
1970 struct rcu_node
*rnp
= rdp
->mynode
;
1972 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1973 needwake
= rcu_start_future_gp(rnp
, rdp
, &c
);
1974 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1976 rcu_gp_kthread_wake(rdp
->rsp
);
1979 * Wait for the grace period. Do so interruptibly to avoid messing
1980 * up the load average.
1982 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
1984 swait_event_interruptible(
1985 rnp
->nocb_gp_wq
[c
& 0x1],
1986 (d
= ULONG_CMP_GE(READ_ONCE(rnp
->completed
), c
)));
1989 WARN_ON(signal_pending(current
));
1990 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
1992 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
1993 smp_mb(); /* Ensure that CB invocation happens after GP end. */
1997 * Leaders come here to wait for additional callbacks to show up.
1998 * This function does not return until callbacks appear.
2000 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2002 bool firsttime
= true;
2004 struct rcu_data
*rdp
;
2005 struct rcu_head
**tail
;
2009 /* Wait for callbacks to appear. */
2010 if (!rcu_nocb_poll
) {
2011 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Sleep");
2012 swait_event_interruptible(my_rdp
->nocb_wq
,
2013 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2014 /* Memory barrier handled by smp_mb() calls below and repoll. */
2015 } else if (firsttime
) {
2016 firsttime
= false; /* Don't drown trace log with "Poll"! */
2017 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
, "Poll");
2021 * Each pass through the following loop checks a follower for CBs.
2022 * We are our own first follower. Any CBs found are moved to
2023 * nocb_gp_head, where they await a grace period.
2026 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2027 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2028 if (!rdp
->nocb_gp_head
)
2029 continue; /* No CBs here, try next follower. */
2031 /* Move callbacks to wait-for-GP list, which is empty. */
2032 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2033 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2038 * If there were no callbacks, sleep a bit, rescan after a
2039 * memory barrier, and go retry.
2041 if (unlikely(!gotcbs
)) {
2043 trace_rcu_nocb_wake(my_rdp
->rsp
->name
, my_rdp
->cpu
,
2045 WARN_ON(signal_pending(current
));
2046 schedule_timeout_interruptible(1);
2048 /* Rescan in case we were a victim of memory ordering. */
2049 my_rdp
->nocb_leader_sleep
= true;
2050 smp_mb(); /* Ensure _sleep true before scan. */
2051 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
)
2052 if (READ_ONCE(rdp
->nocb_head
)) {
2053 /* Found CB, so short-circuit next wait. */
2054 my_rdp
->nocb_leader_sleep
= false;
2060 /* Wait for one grace period. */
2061 rcu_nocb_wait_gp(my_rdp
);
2064 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2065 * We set it now, but recheck for new callbacks while
2066 * traversing our follower list.
2068 my_rdp
->nocb_leader_sleep
= true;
2069 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2071 /* Each pass through the following loop wakes a follower, if needed. */
2072 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2073 if (READ_ONCE(rdp
->nocb_head
))
2074 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2075 if (!rdp
->nocb_gp_head
)
2076 continue; /* No CBs, so no need to wake follower. */
2078 /* Append callbacks to follower's "done" list. */
2079 tail
= xchg(&rdp
->nocb_follower_tail
, rdp
->nocb_gp_tail
);
2080 *tail
= rdp
->nocb_gp_head
;
2081 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2082 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2084 * List was empty, wake up the follower.
2085 * Memory barriers supplied by atomic_long_add().
2087 swake_up(&rdp
->nocb_wq
);
2091 /* If we (the leader) don't have CBs, go wait some more. */
2092 if (!my_rdp
->nocb_follower_head
)
2097 * Followers come here to wait for additional callbacks to show up.
2098 * This function does not return until callbacks appear.
2100 static void nocb_follower_wait(struct rcu_data
*rdp
)
2102 bool firsttime
= true;
2105 if (!rcu_nocb_poll
) {
2106 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2108 swait_event_interruptible(rdp
->nocb_wq
,
2109 READ_ONCE(rdp
->nocb_follower_head
));
2110 } else if (firsttime
) {
2111 /* Don't drown trace log with "Poll"! */
2113 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "Poll");
2115 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2116 /* ^^^ Ensure CB invocation follows _head test. */
2120 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2122 WARN_ON(signal_pending(current
));
2123 schedule_timeout_interruptible(1);
2128 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2129 * callbacks queued by the corresponding no-CBs CPU, however, there is
2130 * an optional leader-follower relationship so that the grace-period
2131 * kthreads don't have to do quite so many wakeups.
2133 static int rcu_nocb_kthread(void *arg
)
2136 struct rcu_head
*list
;
2137 struct rcu_head
*next
;
2138 struct rcu_head
**tail
;
2139 struct rcu_data
*rdp
= arg
;
2141 /* Each pass through this loop invokes one batch of callbacks */
2143 /* Wait for callbacks. */
2144 if (rdp
->nocb_leader
== rdp
)
2145 nocb_leader_wait(rdp
);
2147 nocb_follower_wait(rdp
);
2149 /* Pull the ready-to-invoke callbacks onto local list. */
2150 list
= READ_ONCE(rdp
->nocb_follower_head
);
2152 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, "WokeNonEmpty");
2153 WRITE_ONCE(rdp
->nocb_follower_head
, NULL
);
2154 tail
= xchg(&rdp
->nocb_follower_tail
, &rdp
->nocb_follower_head
);
2156 /* Each pass through the following loop invokes a callback. */
2157 trace_rcu_batch_start(rdp
->rsp
->name
,
2158 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2159 atomic_long_read(&rdp
->nocb_q_count
), -1);
2163 /* Wait for enqueuing to complete, if needed. */
2164 while (next
== NULL
&& &list
->next
!= tail
) {
2165 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2167 schedule_timeout_interruptible(1);
2168 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2172 debug_rcu_head_unqueue(list
);
2174 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2178 cond_resched_rcu_qs();
2181 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2182 smp_mb__before_atomic(); /* _add after CB invocation. */
2183 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2184 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2185 rdp
->n_nocbs_invoked
+= c
;
2190 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2191 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2193 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2196 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2197 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2201 if (!rcu_nocb_need_deferred_wakeup(rdp
))
2203 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2204 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOGP_WAKE_NOT
);
2205 wake_nocb_leader(rdp
, ndw
== RCU_NOGP_WAKE_FORCE
);
2206 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWake"));
2209 void __init
rcu_init_nohz(void)
2212 bool need_rcu_nocb_mask
= true;
2213 struct rcu_state
*rsp
;
2215 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2216 need_rcu_nocb_mask
= false;
2217 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2219 #if defined(CONFIG_NO_HZ_FULL)
2220 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2221 need_rcu_nocb_mask
= true;
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2224 if (!have_rcu_nocb_mask
&& need_rcu_nocb_mask
) {
2225 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2226 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2229 have_rcu_nocb_mask
= true;
2231 if (!have_rcu_nocb_mask
)
2234 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2235 pr_info("\tOffload RCU callbacks from CPU 0\n");
2236 cpumask_set_cpu(0, rcu_nocb_mask
);
2237 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2238 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2239 pr_info("\tOffload RCU callbacks from all CPUs\n");
2240 cpumask_copy(rcu_nocb_mask
, cpu_possible_mask
);
2241 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2242 #if defined(CONFIG_NO_HZ_FULL)
2243 if (tick_nohz_full_running
)
2244 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2245 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2247 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2248 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2249 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2252 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2253 cpumask_pr_args(rcu_nocb_mask
));
2255 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2257 for_each_rcu_flavor(rsp
) {
2258 for_each_cpu(cpu
, rcu_nocb_mask
)
2259 init_nocb_callback_list(per_cpu_ptr(rsp
->rda
, cpu
));
2260 rcu_organize_nocb_kthreads(rsp
);
2264 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2265 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2267 rdp
->nocb_tail
= &rdp
->nocb_head
;
2268 init_swait_queue_head(&rdp
->nocb_wq
);
2269 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2273 * If the specified CPU is a no-CBs CPU that does not already have its
2274 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2275 * brought online out of order, this can require re-organizing the
2276 * leader-follower relationships.
2278 static void rcu_spawn_one_nocb_kthread(struct rcu_state
*rsp
, int cpu
)
2280 struct rcu_data
*rdp
;
2281 struct rcu_data
*rdp_last
;
2282 struct rcu_data
*rdp_old_leader
;
2283 struct rcu_data
*rdp_spawn
= per_cpu_ptr(rsp
->rda
, cpu
);
2284 struct task_struct
*t
;
2287 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2288 * then nothing to do.
2290 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2293 /* If we didn't spawn the leader first, reorganize! */
2294 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2295 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2297 rdp
= rdp_old_leader
;
2299 rdp
->nocb_leader
= rdp_spawn
;
2300 if (rdp_last
&& rdp
!= rdp_spawn
)
2301 rdp_last
->nocb_next_follower
= rdp
;
2302 if (rdp
== rdp_spawn
) {
2303 rdp
= rdp
->nocb_next_follower
;
2306 rdp
= rdp
->nocb_next_follower
;
2307 rdp_last
->nocb_next_follower
= NULL
;
2310 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2313 /* Spawn the kthread for this CPU and RCU flavor. */
2314 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2315 "rcuo%c/%d", rsp
->abbr
, cpu
);
2317 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2321 * If the specified CPU is a no-CBs CPU that does not already have its
2322 * rcuo kthreads, spawn them.
2324 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2326 struct rcu_state
*rsp
;
2328 if (rcu_scheduler_fully_active
)
2329 for_each_rcu_flavor(rsp
)
2330 rcu_spawn_one_nocb_kthread(rsp
, cpu
);
2334 * Once the scheduler is running, spawn rcuo kthreads for all online
2335 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2336 * non-boot CPUs come online -- if this changes, we will need to add
2337 * some mutual exclusion.
2339 static void __init
rcu_spawn_nocb_kthreads(void)
2343 for_each_online_cpu(cpu
)
2344 rcu_spawn_all_nocb_kthreads(cpu
);
2347 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2348 static int rcu_nocb_leader_stride
= -1;
2349 module_param(rcu_nocb_leader_stride
, int, 0444);
2352 * Initialize leader-follower relationships for all no-CBs CPU.
2354 static void __init
rcu_organize_nocb_kthreads(struct rcu_state
*rsp
)
2357 int ls
= rcu_nocb_leader_stride
;
2358 int nl
= 0; /* Next leader. */
2359 struct rcu_data
*rdp
;
2360 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2361 struct rcu_data
*rdp_prev
= NULL
;
2363 if (!have_rcu_nocb_mask
)
2366 ls
= int_sqrt(nr_cpu_ids
);
2367 rcu_nocb_leader_stride
= ls
;
2371 * Each pass through this loop sets up one rcu_data structure.
2372 * Should the corresponding CPU come online in the future, then
2373 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2375 for_each_cpu(cpu
, rcu_nocb_mask
) {
2376 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2377 if (rdp
->cpu
>= nl
) {
2378 /* New leader, set up for followers & next leader. */
2379 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2380 rdp
->nocb_leader
= rdp
;
2383 /* Another follower, link to previous leader. */
2384 rdp
->nocb_leader
= rdp_leader
;
2385 rdp_prev
->nocb_next_follower
= rdp
;
2391 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2392 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2394 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2397 /* If there are early-boot callbacks, move them to nocb lists. */
2398 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
2399 rdp
->nocb_head
= rcu_segcblist_head(&rdp
->cblist
);
2400 rdp
->nocb_tail
= rcu_segcblist_tail(&rdp
->cblist
);
2401 atomic_long_set(&rdp
->nocb_q_count
,
2402 rcu_segcblist_n_cbs(&rdp
->cblist
));
2403 atomic_long_set(&rdp
->nocb_q_count_lazy
,
2404 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
));
2405 rcu_segcblist_init(&rdp
->cblist
);
2407 rcu_segcblist_disable(&rdp
->cblist
);
2411 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2413 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state
*rsp
, int cpu
)
2415 WARN_ON_ONCE(1); /* Should be dead code. */
2419 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2423 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2427 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2432 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2436 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2437 bool lazy
, unsigned long flags
)
2442 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2443 struct rcu_data
*rdp
,
2444 unsigned long flags
)
2449 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2458 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2462 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2466 static void __init
rcu_spawn_nocb_kthreads(void)
2470 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2475 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2478 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2479 * arbitrarily long period of time with the scheduling-clock tick turned
2480 * off. RCU will be paying attention to this CPU because it is in the
2481 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2482 * machine because the scheduling-clock tick has been disabled. Therefore,
2483 * if an adaptive-ticks CPU is failing to respond to the current grace
2484 * period and has not be idle from an RCU perspective, kick it.
2486 static void __maybe_unused
rcu_kick_nohz_cpu(int cpu
)
2488 #ifdef CONFIG_NO_HZ_FULL
2489 if (tick_nohz_full_cpu(cpu
))
2490 smp_send_reschedule(cpu
);
2491 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2495 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2497 static int full_sysidle_state
; /* Current system-idle state. */
2498 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2499 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2500 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2501 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2502 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2505 * Invoked to note exit from irq or task transition to idle. Note that
2506 * usermode execution does -not- count as idle here! After all, we want
2507 * to detect full-system idle states, not RCU quiescent states and grace
2508 * periods. The caller must have disabled interrupts.
2510 static void rcu_sysidle_enter(int irq
)
2513 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
2515 /* If there are no nohz_full= CPUs, no need to track this. */
2516 if (!tick_nohz_full_enabled())
2519 /* Adjust nesting, check for fully idle. */
2521 rdtp
->dynticks_idle_nesting
--;
2522 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2523 if (rdtp
->dynticks_idle_nesting
!= 0)
2524 return; /* Still not fully idle. */
2526 if ((rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) ==
2527 DYNTICK_TASK_NEST_VALUE
) {
2528 rdtp
->dynticks_idle_nesting
= 0;
2530 rdtp
->dynticks_idle_nesting
-= DYNTICK_TASK_NEST_VALUE
;
2531 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2532 return; /* Still not fully idle. */
2536 /* Record start of fully idle period. */
2538 WRITE_ONCE(rdtp
->dynticks_idle_jiffies
, j
);
2539 smp_mb__before_atomic();
2540 atomic_inc(&rdtp
->dynticks_idle
);
2541 smp_mb__after_atomic();
2542 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks_idle
) & 0x1);
2546 * Unconditionally force exit from full system-idle state. This is
2547 * invoked when a normal CPU exits idle, but must be called separately
2548 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2549 * is that the timekeeping CPU is permitted to take scheduling-clock
2550 * interrupts while the system is in system-idle state, and of course
2551 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2552 * interrupt from any other type of interrupt.
2554 void rcu_sysidle_force_exit(void)
2556 int oldstate
= READ_ONCE(full_sysidle_state
);
2560 * Each pass through the following loop attempts to exit full
2561 * system-idle state. If contention proves to be a problem,
2562 * a trylock-based contention tree could be used here.
2564 while (oldstate
> RCU_SYSIDLE_SHORT
) {
2565 newoldstate
= cmpxchg(&full_sysidle_state
,
2566 oldstate
, RCU_SYSIDLE_NOT
);
2567 if (oldstate
== newoldstate
&&
2568 oldstate
== RCU_SYSIDLE_FULL_NOTED
) {
2569 rcu_kick_nohz_cpu(tick_do_timer_cpu
);
2570 return; /* We cleared it, done! */
2572 oldstate
= newoldstate
;
2574 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2578 * Invoked to note entry to irq or task transition from idle. Note that
2579 * usermode execution does -not- count as idle here! The caller must
2580 * have disabled interrupts.
2582 static void rcu_sysidle_exit(int irq
)
2584 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
2586 /* If there are no nohz_full= CPUs, no need to track this. */
2587 if (!tick_nohz_full_enabled())
2590 /* Adjust nesting, check for already non-idle. */
2592 rdtp
->dynticks_idle_nesting
++;
2593 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2594 if (rdtp
->dynticks_idle_nesting
!= 1)
2595 return; /* Already non-idle. */
2598 * Allow for irq misnesting. Yes, it really is possible
2599 * to enter an irq handler then never leave it, and maybe
2600 * also vice versa. Handle both possibilities.
2602 if (rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) {
2603 rdtp
->dynticks_idle_nesting
+= DYNTICK_TASK_NEST_VALUE
;
2604 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2605 return; /* Already non-idle. */
2607 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2611 /* Record end of idle period. */
2612 smp_mb__before_atomic();
2613 atomic_inc(&rdtp
->dynticks_idle
);
2614 smp_mb__after_atomic();
2615 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks_idle
) & 0x1));
2618 * If we are the timekeeping CPU, we are permitted to be non-idle
2619 * during a system-idle state. This must be the case, because
2620 * the timekeeping CPU has to take scheduling-clock interrupts
2621 * during the time that the system is transitioning to full
2622 * system-idle state. This means that the timekeeping CPU must
2623 * invoke rcu_sysidle_force_exit() directly if it does anything
2624 * more than take a scheduling-clock interrupt.
2626 if (smp_processor_id() == tick_do_timer_cpu
)
2629 /* Update system-idle state: We are clearly no longer fully idle! */
2630 rcu_sysidle_force_exit();
2634 * Check to see if the current CPU is idle. Note that usermode execution
2635 * does not count as idle. The caller must have disabled interrupts,
2636 * and must be running on tick_do_timer_cpu.
2638 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2639 unsigned long *maxj
)
2643 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2645 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2646 if (!tick_nohz_full_enabled())
2650 * If some other CPU has already reported non-idle, if this is
2651 * not the flavor of RCU that tracks sysidle state, or if this
2652 * is an offline or the timekeeping CPU, nothing to do.
2654 if (!*isidle
|| rdp
->rsp
!= rcu_state_p
||
2655 cpu_is_offline(rdp
->cpu
) || rdp
->cpu
== tick_do_timer_cpu
)
2657 /* Verify affinity of current kthread. */
2658 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
);
2660 /* Pick up current idle and NMI-nesting counter and check. */
2661 cur
= atomic_read(&rdtp
->dynticks_idle
);
2663 *isidle
= false; /* We are not idle! */
2666 smp_mb(); /* Read counters before timestamps. */
2668 /* Pick up timestamps. */
2669 j
= READ_ONCE(rdtp
->dynticks_idle_jiffies
);
2670 /* If this CPU entered idle more recently, update maxj timestamp. */
2671 if (ULONG_CMP_LT(*maxj
, j
))
2676 * Is this the flavor of RCU that is handling full-system idle?
2678 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2680 return rsp
== rcu_state_p
;
2684 * Return a delay in jiffies based on the number of CPUs, rcu_node
2685 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2686 * systems more time to transition to full-idle state in order to
2687 * avoid the cache thrashing that otherwise occur on the state variable.
2688 * Really small systems (less than a couple of tens of CPUs) should
2689 * instead use a single global atomically incremented counter, and later
2690 * versions of this will automatically reconfigure themselves accordingly.
2692 static unsigned long rcu_sysidle_delay(void)
2694 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2696 return DIV_ROUND_UP(nr_cpu_ids
* HZ
, rcu_fanout_leaf
* 1000);
2700 * Advance the full-system-idle state. This is invoked when all of
2701 * the non-timekeeping CPUs are idle.
2703 static void rcu_sysidle(unsigned long j
)
2705 /* Check the current state. */
2706 switch (READ_ONCE(full_sysidle_state
)) {
2707 case RCU_SYSIDLE_NOT
:
2709 /* First time all are idle, so note a short idle period. */
2710 WRITE_ONCE(full_sysidle_state
, RCU_SYSIDLE_SHORT
);
2713 case RCU_SYSIDLE_SHORT
:
2716 * Idle for a bit, time to advance to next state?
2717 * cmpxchg failure means race with non-idle, let them win.
2719 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2720 (void)cmpxchg(&full_sysidle_state
,
2721 RCU_SYSIDLE_SHORT
, RCU_SYSIDLE_LONG
);
2724 case RCU_SYSIDLE_LONG
:
2727 * Do an additional check pass before advancing to full.
2728 * cmpxchg failure means race with non-idle, let them win.
2730 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2731 (void)cmpxchg(&full_sysidle_state
,
2732 RCU_SYSIDLE_LONG
, RCU_SYSIDLE_FULL
);
2741 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2742 * back to the beginning.
2744 static void rcu_sysidle_cancel(void)
2747 if (full_sysidle_state
> RCU_SYSIDLE_SHORT
)
2748 WRITE_ONCE(full_sysidle_state
, RCU_SYSIDLE_NOT
);
2752 * Update the sysidle state based on the results of a force-quiescent-state
2753 * scan of the CPUs' dyntick-idle state.
2755 static void rcu_sysidle_report(struct rcu_state
*rsp
, int isidle
,
2756 unsigned long maxj
, bool gpkt
)
2758 if (rsp
!= rcu_state_p
)
2759 return; /* Wrong flavor, ignore. */
2760 if (gpkt
&& nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2761 return; /* Running state machine from timekeeping CPU. */
2763 rcu_sysidle(maxj
); /* More idle! */
2765 rcu_sysidle_cancel(); /* Idle is over. */
2769 * Wrapper for rcu_sysidle_report() when called from the grace-period
2770 * kthread's context.
2772 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2775 /* If there are no nohz_full= CPUs, no need to track this. */
2776 if (!tick_nohz_full_enabled())
2779 rcu_sysidle_report(rsp
, isidle
, maxj
, true);
2782 /* Callback and function for forcing an RCU grace period. */
2783 struct rcu_sysidle_head
{
2788 static void rcu_sysidle_cb(struct rcu_head
*rhp
)
2790 struct rcu_sysidle_head
*rshp
;
2793 * The following memory barrier is needed to replace the
2794 * memory barriers that would normally be in the memory
2797 smp_mb(); /* grace period precedes setting inuse. */
2799 rshp
= container_of(rhp
, struct rcu_sysidle_head
, rh
);
2800 WRITE_ONCE(rshp
->inuse
, 0);
2804 * Check to see if the system is fully idle, other than the timekeeping CPU.
2805 * The caller must have disabled interrupts. This is not intended to be
2806 * called unless tick_nohz_full_enabled().
2808 bool rcu_sys_is_idle(void)
2810 static struct rcu_sysidle_head rsh
;
2811 int rss
= READ_ONCE(full_sysidle_state
);
2813 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
))
2816 /* Handle small-system case by doing a full scan of CPUs. */
2817 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
) {
2818 int oldrss
= rss
- 1;
2821 * One pass to advance to each state up to _FULL.
2822 * Give up if any pass fails to advance the state.
2824 while (rss
< RCU_SYSIDLE_FULL
&& oldrss
< rss
) {
2827 unsigned long maxj
= jiffies
- ULONG_MAX
/ 4;
2828 struct rcu_data
*rdp
;
2830 /* Scan all the CPUs looking for nonidle CPUs. */
2831 for_each_possible_cpu(cpu
) {
2832 rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
2833 rcu_sysidle_check_cpu(rdp
, &isidle
, &maxj
);
2837 rcu_sysidle_report(rcu_state_p
, isidle
, maxj
, false);
2839 rss
= READ_ONCE(full_sysidle_state
);
2843 /* If this is the first observation of an idle period, record it. */
2844 if (rss
== RCU_SYSIDLE_FULL
) {
2845 rss
= cmpxchg(&full_sysidle_state
,
2846 RCU_SYSIDLE_FULL
, RCU_SYSIDLE_FULL_NOTED
);
2847 return rss
== RCU_SYSIDLE_FULL
;
2850 smp_mb(); /* ensure rss load happens before later caller actions. */
2852 /* If already fully idle, tell the caller (in case of races). */
2853 if (rss
== RCU_SYSIDLE_FULL_NOTED
)
2857 * If we aren't there yet, and a grace period is not in flight,
2858 * initiate a grace period. Either way, tell the caller that
2859 * we are not there yet. We use an xchg() rather than an assignment
2860 * to make up for the memory barriers that would otherwise be
2861 * provided by the memory allocator.
2863 if (nr_cpu_ids
> CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
&&
2864 !rcu_gp_in_progress(rcu_state_p
) &&
2865 !rsh
.inuse
&& xchg(&rsh
.inuse
, 1) == 0)
2866 call_rcu(&rsh
.rh
, rcu_sysidle_cb
);
2871 * Initialize dynticks sysidle state for CPUs coming online.
2873 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2875 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
;
2878 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2880 static void rcu_sysidle_enter(int irq
)
2884 static void rcu_sysidle_exit(int irq
)
2888 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2889 unsigned long *maxj
)
2893 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2898 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2903 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2907 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2910 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2911 * grace-period kthread will do force_quiescent_state() processing?
2912 * The idea is to avoid waking up RCU core processing on such a
2913 * CPU unless the grace period has extended for too long.
2915 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2916 * CONFIG_RCU_NOCB_CPU CPUs.
2918 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2920 #ifdef CONFIG_NO_HZ_FULL
2921 if (tick_nohz_full_cpu(smp_processor_id()) &&
2922 (!rcu_gp_in_progress(rsp
) ||
2923 ULONG_CMP_LT(jiffies
, READ_ONCE(rsp
->gp_start
) + HZ
)))
2925 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2930 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2933 static void rcu_bind_gp_kthread(void)
2935 int __maybe_unused cpu
;
2937 if (!tick_nohz_full_enabled())
2939 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2940 cpu
= tick_do_timer_cpu
;
2941 if (cpu
>= 0 && cpu
< nr_cpu_ids
)
2942 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
2943 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2944 housekeeping_affine(current
);
2945 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2948 /* Record the current task on dyntick-idle entry. */
2949 static void rcu_dynticks_task_enter(void)
2951 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2952 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2953 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2956 /* Record no current task on dyntick-idle exit. */
2957 static void rcu_dynticks_task_exit(void)
2959 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2960 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2961 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */