2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
5 * Copyright (C) 2017 Facebook
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License v2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
34 /* Scheduling domains. */
38 KYBER_OTHER
, /* Async writes, discard, etc. */
43 KYBER_MIN_DEPTH
= 256,
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
50 KYBER_ASYNC_PERCENT
= 75,
54 * Initial device-wide depths for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate
57 * the device with only a fraction of the maximum possible queue depth.
58 * So, we cap these to a reasonable value.
60 static const unsigned int kyber_depth
[] = {
62 [KYBER_SYNC_WRITE
] = 128,
67 * Scheduling domain batch sizes. We favor reads.
69 static const unsigned int kyber_batch_size
[] = {
71 [KYBER_SYNC_WRITE
] = 8,
75 struct kyber_queue_data
{
76 struct request_queue
*q
;
78 struct blk_stat_callback
*cb
;
81 * The device is divided into multiple scheduling domains based on the
82 * request type. Each domain has a fixed number of in-flight requests of
83 * that type device-wide, limited by these tokens.
85 struct sbitmap_queue domain_tokens
[KYBER_NUM_DOMAINS
];
88 * Async request percentage, converted to per-word depth for
89 * sbitmap_get_shallow().
91 unsigned int async_depth
;
93 /* Target latencies in nanoseconds. */
94 u64 read_lat_nsec
, write_lat_nsec
;
97 struct kyber_hctx_data
{
99 struct list_head rqs
[KYBER_NUM_DOMAINS
];
100 unsigned int cur_domain
;
101 unsigned int batching
;
102 wait_queue_t domain_wait
[KYBER_NUM_DOMAINS
];
103 atomic_t wait_index
[KYBER_NUM_DOMAINS
];
106 static int rq_sched_domain(const struct request
*rq
)
108 unsigned int op
= rq
->cmd_flags
;
110 if ((op
& REQ_OP_MASK
) == REQ_OP_READ
)
112 else if ((op
& REQ_OP_MASK
) == REQ_OP_WRITE
&& op_is_sync(op
))
113 return KYBER_SYNC_WRITE
;
126 #define IS_GOOD(status) ((status) > 0)
127 #define IS_BAD(status) ((status) < 0)
129 static int kyber_lat_status(struct blk_stat_callback
*cb
,
130 unsigned int sched_domain
, u64 target
)
134 if (!cb
->stat
[sched_domain
].nr_samples
)
137 latency
= cb
->stat
[sched_domain
].mean
;
138 if (latency
>= 2 * target
)
140 else if (latency
> target
)
142 else if (latency
<= target
/ 2)
144 else /* (latency <= target) */
149 * Adjust the read or synchronous write depth given the status of reads and
150 * writes. The goal is that the latencies of the two domains are fair (i.e., if
151 * one is good, then the other is good).
153 static void kyber_adjust_rw_depth(struct kyber_queue_data
*kqd
,
154 unsigned int sched_domain
, int this_status
,
157 unsigned int orig_depth
, depth
;
160 * If this domain had no samples, or reads and writes are both good or
161 * both bad, don't adjust the depth.
163 if (this_status
== NONE
||
164 (IS_GOOD(this_status
) && IS_GOOD(other_status
)) ||
165 (IS_BAD(this_status
) && IS_BAD(other_status
)))
168 orig_depth
= depth
= kqd
->domain_tokens
[sched_domain
].sb
.depth
;
170 if (other_status
== NONE
) {
173 switch (this_status
) {
175 if (other_status
== AWFUL
)
176 depth
-= max(depth
/ 4, 1U);
178 depth
-= max(depth
/ 8, 1U);
181 if (other_status
== AWFUL
)
184 depth
-= max(depth
/ 4, 1U);
190 if (other_status
== GREAT
)
198 depth
= clamp(depth
, 1U, kyber_depth
[sched_domain
]);
199 if (depth
!= orig_depth
)
200 sbitmap_queue_resize(&kqd
->domain_tokens
[sched_domain
], depth
);
204 * Adjust the depth of other requests given the status of reads and synchronous
205 * writes. As long as either domain is doing fine, we don't throttle, but if
206 * both domains are doing badly, we throttle heavily.
208 static void kyber_adjust_other_depth(struct kyber_queue_data
*kqd
,
209 int read_status
, int write_status
,
212 unsigned int orig_depth
, depth
;
215 orig_depth
= depth
= kqd
->domain_tokens
[KYBER_OTHER
].sb
.depth
;
217 if (read_status
== NONE
&& write_status
== NONE
) {
219 } else if (have_samples
) {
220 if (read_status
== NONE
)
221 status
= write_status
;
222 else if (write_status
== NONE
)
223 status
= read_status
;
225 status
= max(read_status
, write_status
);
234 depth
-= max(depth
/ 4, 1U);
242 depth
= clamp(depth
, 1U, kyber_depth
[KYBER_OTHER
]);
243 if (depth
!= orig_depth
)
244 sbitmap_queue_resize(&kqd
->domain_tokens
[KYBER_OTHER
], depth
);
248 * Apply heuristics for limiting queue depths based on gathered latency
251 static void kyber_stat_timer_fn(struct blk_stat_callback
*cb
)
253 struct kyber_queue_data
*kqd
= cb
->data
;
254 int read_status
, write_status
;
256 read_status
= kyber_lat_status(cb
, KYBER_READ
, kqd
->read_lat_nsec
);
257 write_status
= kyber_lat_status(cb
, KYBER_SYNC_WRITE
, kqd
->write_lat_nsec
);
259 kyber_adjust_rw_depth(kqd
, KYBER_READ
, read_status
, write_status
);
260 kyber_adjust_rw_depth(kqd
, KYBER_SYNC_WRITE
, write_status
, read_status
);
261 kyber_adjust_other_depth(kqd
, read_status
, write_status
,
262 cb
->stat
[KYBER_OTHER
].nr_samples
!= 0);
265 * Continue monitoring latencies if we aren't hitting the targets or
266 * we're still throttling other requests.
268 if (!blk_stat_is_active(kqd
->cb
) &&
269 ((IS_BAD(read_status
) || IS_BAD(write_status
) ||
270 kqd
->domain_tokens
[KYBER_OTHER
].sb
.depth
< kyber_depth
[KYBER_OTHER
])))
271 blk_stat_activate_msecs(kqd
->cb
, 100);
274 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data
*kqd
)
277 * All of the hardware queues have the same depth, so we can just grab
278 * the shift of the first one.
280 return kqd
->q
->queue_hw_ctx
[0]->sched_tags
->bitmap_tags
.sb
.shift
;
283 static struct kyber_queue_data
*kyber_queue_data_alloc(struct request_queue
*q
)
285 struct kyber_queue_data
*kqd
;
286 unsigned int max_tokens
;
291 kqd
= kmalloc_node(sizeof(*kqd
), GFP_KERNEL
, q
->node
);
296 kqd
->cb
= blk_stat_alloc_callback(kyber_stat_timer_fn
, rq_sched_domain
,
297 KYBER_NUM_DOMAINS
, kqd
);
302 * The maximum number of tokens for any scheduling domain is at least
303 * the queue depth of a single hardware queue. If the hardware doesn't
304 * have many tags, still provide a reasonable number.
306 max_tokens
= max_t(unsigned int, q
->tag_set
->queue_depth
,
308 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
309 WARN_ON(!kyber_depth
[i
]);
310 WARN_ON(!kyber_batch_size
[i
]);
311 ret
= sbitmap_queue_init_node(&kqd
->domain_tokens
[i
],
312 max_tokens
, -1, false, GFP_KERNEL
,
316 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
319 sbitmap_queue_resize(&kqd
->domain_tokens
[i
], kyber_depth
[i
]);
322 shift
= kyber_sched_tags_shift(kqd
);
323 kqd
->async_depth
= (1U << shift
) * KYBER_ASYNC_PERCENT
/ 100U;
325 kqd
->read_lat_nsec
= 2000000ULL;
326 kqd
->write_lat_nsec
= 10000000ULL;
331 blk_stat_free_callback(kqd
->cb
);
338 static int kyber_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
340 struct kyber_queue_data
*kqd
;
341 struct elevator_queue
*eq
;
343 eq
= elevator_alloc(q
, e
);
347 kqd
= kyber_queue_data_alloc(q
);
349 kobject_put(&eq
->kobj
);
353 eq
->elevator_data
= kqd
;
356 blk_stat_add_callback(q
, kqd
->cb
);
361 static void kyber_exit_sched(struct elevator_queue
*e
)
363 struct kyber_queue_data
*kqd
= e
->elevator_data
;
364 struct request_queue
*q
= kqd
->q
;
367 blk_stat_remove_callback(q
, kqd
->cb
);
369 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
370 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
371 blk_stat_free_callback(kqd
->cb
);
375 static int kyber_init_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
377 struct kyber_hctx_data
*khd
;
380 khd
= kmalloc_node(sizeof(*khd
), GFP_KERNEL
, hctx
->numa_node
);
384 spin_lock_init(&khd
->lock
);
386 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
387 INIT_LIST_HEAD(&khd
->rqs
[i
]);
388 INIT_LIST_HEAD(&khd
->domain_wait
[i
].task_list
);
389 atomic_set(&khd
->wait_index
[i
], 0);
395 hctx
->sched_data
= khd
;
400 static void kyber_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
402 kfree(hctx
->sched_data
);
405 static int rq_get_domain_token(struct request
*rq
)
407 return (long)rq
->elv
.priv
[0];
410 static void rq_set_domain_token(struct request
*rq
, int token
)
412 rq
->elv
.priv
[0] = (void *)(long)token
;
415 static void rq_clear_domain_token(struct kyber_queue_data
*kqd
,
418 unsigned int sched_domain
;
421 nr
= rq_get_domain_token(rq
);
423 sched_domain
= rq_sched_domain(rq
);
424 sbitmap_queue_clear(&kqd
->domain_tokens
[sched_domain
], nr
,
429 static struct request
*kyber_get_request(struct request_queue
*q
,
431 struct blk_mq_alloc_data
*data
)
433 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
437 * We use the scheduler tags as per-hardware queue queueing tokens.
438 * Async requests can be limited at this stage.
441 data
->shallow_depth
= kqd
->async_depth
;
443 rq
= __blk_mq_alloc_request(data
, op
);
445 rq_set_domain_token(rq
, -1);
449 static void kyber_put_request(struct request
*rq
)
451 struct request_queue
*q
= rq
->q
;
452 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
454 rq_clear_domain_token(kqd
, rq
);
455 blk_mq_finish_request(rq
);
458 static void kyber_completed_request(struct request
*rq
)
460 struct request_queue
*q
= rq
->q
;
461 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
462 unsigned int sched_domain
;
463 u64 now
, latency
, target
;
466 * Check if this request met our latency goal. If not, quickly gather
467 * some statistics and start throttling.
469 sched_domain
= rq_sched_domain(rq
);
470 switch (sched_domain
) {
472 target
= kqd
->read_lat_nsec
;
474 case KYBER_SYNC_WRITE
:
475 target
= kqd
->write_lat_nsec
;
481 /* If we are already monitoring latencies, don't check again. */
482 if (blk_stat_is_active(kqd
->cb
))
485 now
= __blk_stat_time(ktime_to_ns(ktime_get()));
486 if (now
< blk_stat_time(&rq
->issue_stat
))
489 latency
= now
- blk_stat_time(&rq
->issue_stat
);
491 if (latency
> target
)
492 blk_stat_activate_msecs(kqd
->cb
, 10);
495 static void kyber_flush_busy_ctxs(struct kyber_hctx_data
*khd
,
496 struct blk_mq_hw_ctx
*hctx
)
499 struct request
*rq
, *next
;
501 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
502 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
503 unsigned int sched_domain
;
505 sched_domain
= rq_sched_domain(rq
);
506 list_move_tail(&rq
->queuelist
, &khd
->rqs
[sched_domain
]);
510 static int kyber_domain_wake(wait_queue_t
*wait
, unsigned mode
, int flags
,
513 struct blk_mq_hw_ctx
*hctx
= READ_ONCE(wait
->private);
515 list_del_init(&wait
->task_list
);
516 blk_mq_run_hw_queue(hctx
, true);
520 static int kyber_get_domain_token(struct kyber_queue_data
*kqd
,
521 struct kyber_hctx_data
*khd
,
522 struct blk_mq_hw_ctx
*hctx
)
524 unsigned int sched_domain
= khd
->cur_domain
;
525 struct sbitmap_queue
*domain_tokens
= &kqd
->domain_tokens
[sched_domain
];
526 wait_queue_t
*wait
= &khd
->domain_wait
[sched_domain
];
527 struct sbq_wait_state
*ws
;
530 nr
= __sbitmap_queue_get(domain_tokens
);
535 * If we failed to get a domain token, make sure the hardware queue is
536 * run when one becomes available. Note that this is serialized on
537 * khd->lock, but we still need to be careful about the waker.
539 if (list_empty_careful(&wait
->task_list
)) {
540 init_waitqueue_func_entry(wait
, kyber_domain_wake
);
541 wait
->private = hctx
;
542 ws
= sbq_wait_ptr(domain_tokens
,
543 &khd
->wait_index
[sched_domain
]);
544 add_wait_queue(&ws
->wait
, wait
);
547 * Try again in case a token was freed before we got on the wait
550 nr
= __sbitmap_queue_get(domain_tokens
);
555 static struct request
*
556 kyber_dispatch_cur_domain(struct kyber_queue_data
*kqd
,
557 struct kyber_hctx_data
*khd
,
558 struct blk_mq_hw_ctx
*hctx
,
561 struct list_head
*rqs
;
565 rqs
= &khd
->rqs
[khd
->cur_domain
];
566 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
569 * If there wasn't already a pending request and we haven't flushed the
570 * software queues yet, flush the software queues and check again.
572 if (!rq
&& !*flushed
) {
573 kyber_flush_busy_ctxs(khd
, hctx
);
575 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
579 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
582 rq_set_domain_token(rq
, nr
);
583 list_del_init(&rq
->queuelist
);
588 /* There were either no pending requests or no tokens. */
592 static struct request
*kyber_dispatch_request(struct blk_mq_hw_ctx
*hctx
)
594 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
595 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
596 bool flushed
= false;
600 spin_lock(&khd
->lock
);
603 * First, if we are still entitled to batch, try to dispatch a request
606 if (khd
->batching
< kyber_batch_size
[khd
->cur_domain
]) {
607 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
, &flushed
);
614 * 1. We were no longer entitled to a batch.
615 * 2. The domain we were batching didn't have any requests.
616 * 3. The domain we were batching was out of tokens.
618 * Start another batch. Note that this wraps back around to the original
619 * domain if no other domains have requests or tokens.
622 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
623 if (khd
->cur_domain
== KYBER_NUM_DOMAINS
- 1)
628 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
, &flushed
);
635 spin_unlock(&khd
->lock
);
639 static bool kyber_has_work(struct blk_mq_hw_ctx
*hctx
)
641 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
644 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
645 if (!list_empty_careful(&khd
->rqs
[i
]))
651 #define KYBER_LAT_SHOW_STORE(op) \
652 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \
655 struct kyber_queue_data *kqd = e->elevator_data; \
657 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \
660 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \
661 const char *page, size_t count) \
663 struct kyber_queue_data *kqd = e->elevator_data; \
664 unsigned long long nsec; \
667 ret = kstrtoull(page, 10, &nsec); \
671 kqd->op##_lat_nsec = nsec; \
675 KYBER_LAT_SHOW_STORE(read
);
676 KYBER_LAT_SHOW_STORE(write
);
677 #undef KYBER_LAT_SHOW_STORE
679 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
680 static struct elv_fs_entry kyber_sched_attrs
[] = {
681 KYBER_LAT_ATTR(read
),
682 KYBER_LAT_ATTR(write
),
685 #undef KYBER_LAT_ATTR
687 #ifdef CONFIG_BLK_DEBUG_FS
688 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
689 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
691 struct request_queue *q = data; \
692 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
694 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
698 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
699 __acquires(&khd->lock) \
701 struct blk_mq_hw_ctx *hctx = m->private; \
702 struct kyber_hctx_data *khd = hctx->sched_data; \
704 spin_lock(&khd->lock); \
705 return seq_list_start(&khd->rqs[domain], *pos); \
708 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
711 struct blk_mq_hw_ctx *hctx = m->private; \
712 struct kyber_hctx_data *khd = hctx->sched_data; \
714 return seq_list_next(v, &khd->rqs[domain], pos); \
717 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
718 __releases(&khd->lock) \
720 struct blk_mq_hw_ctx *hctx = m->private; \
721 struct kyber_hctx_data *khd = hctx->sched_data; \
723 spin_unlock(&khd->lock); \
726 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
727 .start = kyber_##name##_rqs_start, \
728 .next = kyber_##name##_rqs_next, \
729 .stop = kyber_##name##_rqs_stop, \
730 .show = blk_mq_debugfs_rq_show, \
733 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
735 struct blk_mq_hw_ctx *hctx = data; \
736 struct kyber_hctx_data *khd = hctx->sched_data; \
737 wait_queue_t *wait = &khd->domain_wait[domain]; \
739 seq_printf(m, "%d\n", !list_empty_careful(&wait->task_list)); \
742 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ
, read
)
743 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE
, sync_write
)
744 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER
, other
)
745 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
747 static int kyber_async_depth_show(void *data
, struct seq_file
*m
)
749 struct request_queue
*q
= data
;
750 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
752 seq_printf(m
, "%u\n", kqd
->async_depth
);
756 static int kyber_cur_domain_show(void *data
, struct seq_file
*m
)
758 struct blk_mq_hw_ctx
*hctx
= data
;
759 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
761 switch (khd
->cur_domain
) {
763 seq_puts(m
, "READ\n");
765 case KYBER_SYNC_WRITE
:
766 seq_puts(m
, "SYNC_WRITE\n");
769 seq_puts(m
, "OTHER\n");
772 seq_printf(m
, "%u\n", khd
->cur_domain
);
778 static int kyber_batching_show(void *data
, struct seq_file
*m
)
780 struct blk_mq_hw_ctx
*hctx
= data
;
781 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
783 seq_printf(m
, "%u\n", khd
->batching
);
787 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
788 {#name "_tokens", 0400, kyber_##name##_tokens_show}
789 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs
[] = {
790 KYBER_QUEUE_DOMAIN_ATTRS(read
),
791 KYBER_QUEUE_DOMAIN_ATTRS(sync_write
),
792 KYBER_QUEUE_DOMAIN_ATTRS(other
),
793 {"async_depth", 0400, kyber_async_depth_show
},
796 #undef KYBER_QUEUE_DOMAIN_ATTRS
798 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
799 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
800 {#name "_waiting", 0400, kyber_##name##_waiting_show}
801 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs
[] = {
802 KYBER_HCTX_DOMAIN_ATTRS(read
),
803 KYBER_HCTX_DOMAIN_ATTRS(sync_write
),
804 KYBER_HCTX_DOMAIN_ATTRS(other
),
805 {"cur_domain", 0400, kyber_cur_domain_show
},
806 {"batching", 0400, kyber_batching_show
},
809 #undef KYBER_HCTX_DOMAIN_ATTRS
812 static struct elevator_type kyber_sched
= {
814 .init_sched
= kyber_init_sched
,
815 .exit_sched
= kyber_exit_sched
,
816 .init_hctx
= kyber_init_hctx
,
817 .exit_hctx
= kyber_exit_hctx
,
818 .get_request
= kyber_get_request
,
819 .put_request
= kyber_put_request
,
820 .completed_request
= kyber_completed_request
,
821 .dispatch_request
= kyber_dispatch_request
,
822 .has_work
= kyber_has_work
,
825 #ifdef CONFIG_BLK_DEBUG_FS
826 .queue_debugfs_attrs
= kyber_queue_debugfs_attrs
,
827 .hctx_debugfs_attrs
= kyber_hctx_debugfs_attrs
,
829 .elevator_attrs
= kyber_sched_attrs
,
830 .elevator_name
= "kyber",
831 .elevator_owner
= THIS_MODULE
,
834 static int __init
kyber_init(void)
836 return elv_register(&kyber_sched
);
839 static void __exit
kyber_exit(void)
841 elv_unregister(&kyber_sched
);
844 module_init(kyber_init
);
845 module_exit(kyber_exit
);
847 MODULE_AUTHOR("Omar Sandoval");
848 MODULE_LICENSE("GPL");
849 MODULE_DESCRIPTION("Kyber I/O scheduler");