2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
40 static const char msg_ld_oom
[] = "No free memory for link descriptor\n";
42 static void dma_init(struct fsldma_chan
*chan
)
44 /* Reset the channel */
45 DMA_OUT(chan
, &chan
->regs
->mr
, 0, 32);
47 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
49 /* Set the channel to below modes:
50 * EIE - Error interrupt enable
51 * EOSIE - End of segments interrupt enable (basic mode)
52 * EOLNIE - End of links interrupt enable
54 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EIE
55 | FSL_DMA_MR_EOLNIE
| FSL_DMA_MR_EOSIE
, 32);
58 /* Set the channel to below modes:
59 * EOTIE - End-of-transfer interrupt enable
60 * PRC_RM - PCI read multiple
62 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EOTIE
63 | FSL_DMA_MR_PRC_RM
, 32);
68 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
70 DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
73 static u32
get_sr(struct fsldma_chan
*chan
)
75 return DMA_IN(chan
, &chan
->regs
->sr
, 32);
78 static void set_desc_cnt(struct fsldma_chan
*chan
,
79 struct fsl_dma_ld_hw
*hw
, u32 count
)
81 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
84 static void set_desc_src(struct fsldma_chan
*chan
,
85 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
89 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
90 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
91 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
94 static void set_desc_dst(struct fsldma_chan
*chan
,
95 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
99 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
100 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
101 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
104 static void set_desc_next(struct fsldma_chan
*chan
,
105 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
109 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
111 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
114 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
116 DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
119 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
121 return DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
124 static dma_addr_t
get_ndar(struct fsldma_chan
*chan
)
126 return DMA_IN(chan
, &chan
->regs
->ndar
, 64);
129 static u32
get_bcr(struct fsldma_chan
*chan
)
131 return DMA_IN(chan
, &chan
->regs
->bcr
, 32);
134 static int dma_is_idle(struct fsldma_chan
*chan
)
136 u32 sr
= get_sr(chan
);
137 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
140 static void dma_start(struct fsldma_chan
*chan
)
144 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
146 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
147 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
148 DMA_OUT(chan
, &chan
->regs
->bcr
, 0, 32);
149 mode
|= FSL_DMA_MR_EMP_EN
;
151 mode
&= ~FSL_DMA_MR_EMP_EN
;
155 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
)
156 mode
|= FSL_DMA_MR_EMS_EN
;
158 mode
|= FSL_DMA_MR_CS
;
160 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
163 static void dma_halt(struct fsldma_chan
*chan
)
168 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
169 mode
|= FSL_DMA_MR_CA
;
170 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
172 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
| FSL_DMA_MR_CA
);
173 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
175 for (i
= 0; i
< 100; i
++) {
176 if (dma_is_idle(chan
))
182 if (!dma_is_idle(chan
))
183 dev_err(chan
->dev
, "DMA halt timeout!\n");
186 static void set_ld_eol(struct fsldma_chan
*chan
,
187 struct fsl_desc_sw
*desc
)
191 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
194 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
195 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
200 * fsl_chan_set_src_loop_size - Set source address hold transfer size
201 * @chan : Freescale DMA channel
202 * @size : Address loop size, 0 for disable loop
204 * The set source address hold transfer size. The source
205 * address hold or loop transfer size is when the DMA transfer
206 * data from source address (SA), if the loop size is 4, the DMA will
207 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
208 * SA + 1 ... and so on.
210 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
214 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
218 mode
&= ~FSL_DMA_MR_SAHE
;
224 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
228 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
232 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
233 * @chan : Freescale DMA channel
234 * @size : Address loop size, 0 for disable loop
236 * The set destination address hold transfer size. The destination
237 * address hold or loop transfer size is when the DMA transfer
238 * data to destination address (TA), if the loop size is 4, the DMA will
239 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
240 * TA + 1 ... and so on.
242 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
246 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
250 mode
&= ~FSL_DMA_MR_DAHE
;
256 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
260 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
264 * fsl_chan_set_request_count - Set DMA Request Count for external control
265 * @chan : Freescale DMA channel
266 * @size : Number of bytes to transfer in a single request
268 * The Freescale DMA channel can be controlled by the external signal DREQ#.
269 * The DMA request count is how many bytes are allowed to transfer before
270 * pausing the channel, after which a new assertion of DREQ# resumes channel
273 * A size of 0 disables external pause control. The maximum size is 1024.
275 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
281 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
282 mode
|= (__ilog2(size
) << 24) & 0x0f000000;
284 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
288 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
289 * @chan : Freescale DMA channel
290 * @enable : 0 is disabled, 1 is enabled.
292 * The Freescale DMA channel can be controlled by the external signal DREQ#.
293 * The DMA Request Count feature should be used in addition to this feature
294 * to set the number of bytes to transfer before pausing the channel.
296 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
299 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
301 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
305 * fsl_chan_toggle_ext_start - Toggle channel external start status
306 * @chan : Freescale DMA channel
307 * @enable : 0 is disabled, 1 is enabled.
309 * If enable the external start, the channel can be started by an
310 * external DMA start pin. So the dma_start() does not start the
311 * transfer immediately. The DMA channel will wait for the
312 * control pin asserted.
314 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
317 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
319 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
322 static void append_ld_queue(struct fsldma_chan
*chan
,
323 struct fsl_desc_sw
*desc
)
325 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
327 if (list_empty(&chan
->ld_pending
))
331 * Add the hardware descriptor to the chain of hardware descriptors
332 * that already exists in memory.
334 * This will un-set the EOL bit of the existing transaction, and the
335 * last link in this transaction will become the EOL descriptor.
337 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
340 * Add the software descriptor and all children to the list
341 * of pending transactions
344 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
347 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
349 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
350 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
351 struct fsl_desc_sw
*child
;
355 spin_lock_irqsave(&chan
->desc_lock
, flags
);
358 * assign cookies to all of the software descriptors
359 * that make up this transaction
361 cookie
= chan
->common
.cookie
;
362 list_for_each_entry(child
, &desc
->tx_list
, node
) {
367 child
->async_tx
.cookie
= cookie
;
370 chan
->common
.cookie
= cookie
;
372 /* put this transaction onto the tail of the pending queue */
373 append_ld_queue(chan
, desc
);
375 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
381 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
382 * @chan : Freescale DMA channel
384 * Return - The descriptor allocated. NULL for failed.
386 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(
387 struct fsldma_chan
*chan
)
389 struct fsl_desc_sw
*desc
;
392 desc
= dma_pool_alloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
394 dev_dbg(chan
->dev
, "out of memory for link desc\n");
398 memset(desc
, 0, sizeof(*desc
));
399 INIT_LIST_HEAD(&desc
->tx_list
);
400 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
401 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
402 desc
->async_tx
.phys
= pdesc
;
409 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
410 * @chan : Freescale DMA channel
412 * This function will create a dma pool for descriptor allocation.
414 * Return - The number of descriptors allocated.
416 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
418 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
420 /* Has this channel already been allocated? */
425 * We need the descriptor to be aligned to 32bytes
426 * for meeting FSL DMA specification requirement.
428 chan
->desc_pool
= dma_pool_create("fsl_dma_engine_desc_pool",
430 sizeof(struct fsl_desc_sw
),
431 __alignof__(struct fsl_desc_sw
), 0);
432 if (!chan
->desc_pool
) {
433 dev_err(chan
->dev
, "unable to allocate channel %d "
434 "descriptor pool\n", chan
->id
);
438 /* there is at least one descriptor free to be allocated */
443 * fsldma_free_desc_list - Free all descriptors in a queue
444 * @chan: Freescae DMA channel
445 * @list: the list to free
447 * LOCKING: must hold chan->desc_lock
449 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
450 struct list_head
*list
)
452 struct fsl_desc_sw
*desc
, *_desc
;
454 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
455 list_del(&desc
->node
);
456 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
460 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
461 struct list_head
*list
)
463 struct fsl_desc_sw
*desc
, *_desc
;
465 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
) {
466 list_del(&desc
->node
);
467 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
472 * fsl_dma_free_chan_resources - Free all resources of the channel.
473 * @chan : Freescale DMA channel
475 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
477 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
480 dev_dbg(chan
->dev
, "Free all channel resources.\n");
481 spin_lock_irqsave(&chan
->desc_lock
, flags
);
482 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
483 fsldma_free_desc_list(chan
, &chan
->ld_running
);
484 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
486 dma_pool_destroy(chan
->desc_pool
);
487 chan
->desc_pool
= NULL
;
490 static struct dma_async_tx_descriptor
*
491 fsl_dma_prep_interrupt(struct dma_chan
*dchan
, unsigned long flags
)
493 struct fsldma_chan
*chan
;
494 struct fsl_desc_sw
*new;
499 chan
= to_fsl_chan(dchan
);
501 new = fsl_dma_alloc_descriptor(chan
);
503 dev_err(chan
->dev
, msg_ld_oom
);
507 new->async_tx
.cookie
= -EBUSY
;
508 new->async_tx
.flags
= flags
;
510 /* Insert the link descriptor to the LD ring */
511 list_add_tail(&new->node
, &new->tx_list
);
513 /* Set End-of-link to the last link descriptor of new list*/
514 set_ld_eol(chan
, new);
516 return &new->async_tx
;
519 static struct dma_async_tx_descriptor
*fsl_dma_prep_memcpy(
520 struct dma_chan
*dchan
, dma_addr_t dma_dst
, dma_addr_t dma_src
,
521 size_t len
, unsigned long flags
)
523 struct fsldma_chan
*chan
;
524 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
533 chan
= to_fsl_chan(dchan
);
537 /* Allocate the link descriptor from DMA pool */
538 new = fsl_dma_alloc_descriptor(chan
);
540 dev_err(chan
->dev
, msg_ld_oom
);
543 #ifdef FSL_DMA_LD_DEBUG
544 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
547 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
549 set_desc_cnt(chan
, &new->hw
, copy
);
550 set_desc_src(chan
, &new->hw
, dma_src
);
551 set_desc_dst(chan
, &new->hw
, dma_dst
);
556 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
558 new->async_tx
.cookie
= 0;
559 async_tx_ack(&new->async_tx
);
566 /* Insert the link descriptor to the LD ring */
567 list_add_tail(&new->node
, &first
->tx_list
);
570 new->async_tx
.flags
= flags
; /* client is in control of this ack */
571 new->async_tx
.cookie
= -EBUSY
;
573 /* Set End-of-link to the last link descriptor of new list*/
574 set_ld_eol(chan
, new);
576 return &first
->async_tx
;
582 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
586 static struct dma_async_tx_descriptor
*fsl_dma_prep_sg(struct dma_chan
*dchan
,
587 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
588 struct scatterlist
*src_sg
, unsigned int src_nents
,
591 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
592 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
593 size_t dst_avail
, src_avail
;
597 /* basic sanity checks */
598 if (dst_nents
== 0 || src_nents
== 0)
601 if (dst_sg
== NULL
|| src_sg
== NULL
)
605 * TODO: should we check that both scatterlists have the same
606 * TODO: number of bytes in total? Is that really an error?
609 /* get prepared for the loop */
610 dst_avail
= sg_dma_len(dst_sg
);
611 src_avail
= sg_dma_len(src_sg
);
613 /* run until we are out of scatterlist entries */
616 /* create the largest transaction possible */
617 len
= min_t(size_t, src_avail
, dst_avail
);
618 len
= min_t(size_t, len
, FSL_DMA_BCR_MAX_CNT
);
622 dst
= sg_dma_address(dst_sg
) + sg_dma_len(dst_sg
) - dst_avail
;
623 src
= sg_dma_address(src_sg
) + sg_dma_len(src_sg
) - src_avail
;
625 /* allocate and populate the descriptor */
626 new = fsl_dma_alloc_descriptor(chan
);
628 dev_err(chan
->dev
, msg_ld_oom
);
631 #ifdef FSL_DMA_LD_DEBUG
632 dev_dbg(chan
->dev
, "new link desc alloc %p\n", new);
635 set_desc_cnt(chan
, &new->hw
, len
);
636 set_desc_src(chan
, &new->hw
, src
);
637 set_desc_dst(chan
, &new->hw
, dst
);
642 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
644 new->async_tx
.cookie
= 0;
645 async_tx_ack(&new->async_tx
);
648 /* Insert the link descriptor to the LD ring */
649 list_add_tail(&new->node
, &first
->tx_list
);
651 /* update metadata */
656 /* fetch the next dst scatterlist entry */
657 if (dst_avail
== 0) {
659 /* no more entries: we're done */
663 /* fetch the next entry: if there are no more: done */
664 dst_sg
= sg_next(dst_sg
);
669 dst_avail
= sg_dma_len(dst_sg
);
672 /* fetch the next src scatterlist entry */
673 if (src_avail
== 0) {
675 /* no more entries: we're done */
679 /* fetch the next entry: if there are no more: done */
680 src_sg
= sg_next(src_sg
);
685 src_avail
= sg_dma_len(src_sg
);
689 new->async_tx
.flags
= flags
; /* client is in control of this ack */
690 new->async_tx
.cookie
= -EBUSY
;
692 /* Set End-of-link to the last link descriptor of new list */
693 set_ld_eol(chan
, new);
695 return &first
->async_tx
;
701 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
706 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
708 * @sgl: scatterlist to transfer to/from
709 * @sg_len: number of entries in @scatterlist
710 * @direction: DMA direction
711 * @flags: DMAEngine flags
713 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
714 * DMA_SLAVE API, this gets the device-specific information from the
715 * chan->private variable.
717 static struct dma_async_tx_descriptor
*fsl_dma_prep_slave_sg(
718 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
719 enum dma_data_direction direction
, unsigned long flags
)
722 * This operation is not supported on the Freescale DMA controller
724 * However, we need to provide the function pointer to allow the
725 * device_control() method to work.
730 static int fsl_dma_device_control(struct dma_chan
*dchan
,
731 enum dma_ctrl_cmd cmd
, unsigned long arg
)
733 struct dma_slave_config
*config
;
734 struct fsldma_chan
*chan
;
741 chan
= to_fsl_chan(dchan
);
744 case DMA_TERMINATE_ALL
:
745 /* Halt the DMA engine */
748 spin_lock_irqsave(&chan
->desc_lock
, flags
);
750 /* Remove and free all of the descriptors in the LD queue */
751 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
752 fsldma_free_desc_list(chan
, &chan
->ld_running
);
754 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
757 case DMA_SLAVE_CONFIG
:
758 config
= (struct dma_slave_config
*)arg
;
760 /* make sure the channel supports setting burst size */
761 if (!chan
->set_request_count
)
764 /* we set the controller burst size depending on direction */
765 if (config
->direction
== DMA_TO_DEVICE
)
766 size
= config
->dst_addr_width
* config
->dst_maxburst
;
768 size
= config
->src_addr_width
* config
->src_maxburst
;
770 chan
->set_request_count(chan
, size
);
773 case FSLDMA_EXTERNAL_START
:
775 /* make sure the channel supports external start */
776 if (!chan
->toggle_ext_start
)
779 chan
->toggle_ext_start(chan
, arg
);
790 * fsl_dma_update_completed_cookie - Update the completed cookie.
791 * @chan : Freescale DMA channel
795 static void fsl_dma_update_completed_cookie(struct fsldma_chan
*chan
)
797 struct fsl_desc_sw
*desc
;
801 spin_lock_irqsave(&chan
->desc_lock
, flags
);
803 if (list_empty(&chan
->ld_running
)) {
804 dev_dbg(chan
->dev
, "no running descriptors\n");
808 /* Get the last descriptor, update the cookie to that */
809 desc
= to_fsl_desc(chan
->ld_running
.prev
);
810 if (dma_is_idle(chan
))
811 cookie
= desc
->async_tx
.cookie
;
813 cookie
= desc
->async_tx
.cookie
- 1;
814 if (unlikely(cookie
< DMA_MIN_COOKIE
))
815 cookie
= DMA_MAX_COOKIE
;
818 chan
->completed_cookie
= cookie
;
821 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
825 * fsldma_desc_status - Check the status of a descriptor
826 * @chan: Freescale DMA channel
827 * @desc: DMA SW descriptor
829 * This function will return the status of the given descriptor
831 static enum dma_status
fsldma_desc_status(struct fsldma_chan
*chan
,
832 struct fsl_desc_sw
*desc
)
834 return dma_async_is_complete(desc
->async_tx
.cookie
,
835 chan
->completed_cookie
,
836 chan
->common
.cookie
);
840 * fsl_chan_ld_cleanup - Clean up link descriptors
841 * @chan : Freescale DMA channel
843 * This function clean up the ld_queue of DMA channel.
845 static void fsl_chan_ld_cleanup(struct fsldma_chan
*chan
)
847 struct fsl_desc_sw
*desc
, *_desc
;
850 spin_lock_irqsave(&chan
->desc_lock
, flags
);
852 dev_dbg(chan
->dev
, "chan completed_cookie = %d\n", chan
->completed_cookie
);
853 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
854 dma_async_tx_callback callback
;
855 void *callback_param
;
857 if (fsldma_desc_status(chan
, desc
) == DMA_IN_PROGRESS
)
860 /* Remove from the list of running transactions */
861 list_del(&desc
->node
);
863 /* Run the link descriptor callback function */
864 callback
= desc
->async_tx
.callback
;
865 callback_param
= desc
->async_tx
.callback_param
;
867 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
868 dev_dbg(chan
->dev
, "LD %p callback\n", desc
);
869 callback(callback_param
);
870 spin_lock_irqsave(&chan
->desc_lock
, flags
);
873 /* Run any dependencies, then free the descriptor */
874 dma_run_dependencies(&desc
->async_tx
);
875 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
878 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
882 * fsl_chan_xfer_ld_queue - transfer any pending transactions
883 * @chan : Freescale DMA channel
885 * This will make sure that any pending transactions will be run.
886 * If the DMA controller is idle, it will be started. Otherwise,
887 * the DMA controller's interrupt handler will start any pending
888 * transactions when it becomes idle.
890 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
892 struct fsl_desc_sw
*desc
;
895 spin_lock_irqsave(&chan
->desc_lock
, flags
);
898 * If the list of pending descriptors is empty, then we
899 * don't need to do any work at all
901 if (list_empty(&chan
->ld_pending
)) {
902 dev_dbg(chan
->dev
, "no pending LDs\n");
907 * The DMA controller is not idle, which means the interrupt
908 * handler will start any queued transactions when it runs
909 * at the end of the current transaction
911 if (!dma_is_idle(chan
)) {
912 dev_dbg(chan
->dev
, "DMA controller still busy\n");
918 * make sure the dma_halt() function really un-wedges the
919 * controller as much as possible
924 * If there are some link descriptors which have not been
925 * transferred, we need to start the controller
929 * Move all elements from the queue of pending transactions
930 * onto the list of running transactions
932 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
933 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
936 * Program the descriptor's address into the DMA controller,
937 * then start the DMA transaction
939 set_cdar(chan
, desc
->async_tx
.phys
);
943 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
947 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
948 * @chan : Freescale DMA channel
950 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
952 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
953 fsl_chan_xfer_ld_queue(chan
);
957 * fsl_tx_status - Determine the DMA status
958 * @chan : Freescale DMA channel
960 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
962 struct dma_tx_state
*txstate
)
964 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
965 dma_cookie_t last_used
;
966 dma_cookie_t last_complete
;
968 fsl_chan_ld_cleanup(chan
);
970 last_used
= dchan
->cookie
;
971 last_complete
= chan
->completed_cookie
;
973 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
975 return dma_async_is_complete(cookie
, last_complete
, last_used
);
978 /*----------------------------------------------------------------------------*/
979 /* Interrupt Handling */
980 /*----------------------------------------------------------------------------*/
982 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
984 struct fsldma_chan
*chan
= data
;
985 int update_cookie
= 0;
989 /* save and clear the status register */
992 dev_dbg(chan
->dev
, "irq: channel %d, stat = 0x%x\n", chan
->id
, stat
);
994 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
998 if (stat
& FSL_DMA_SR_TE
)
999 dev_err(chan
->dev
, "Transfer Error!\n");
1003 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1004 * triger a PE interrupt.
1006 if (stat
& FSL_DMA_SR_PE
) {
1007 dev_dbg(chan
->dev
, "irq: Programming Error INT\n");
1008 if (get_bcr(chan
) == 0) {
1009 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1010 * Now, update the completed cookie, and continue the
1011 * next uncompleted transfer.
1016 stat
&= ~FSL_DMA_SR_PE
;
1020 * If the link descriptor segment transfer finishes,
1021 * we will recycle the used descriptor.
1023 if (stat
& FSL_DMA_SR_EOSI
) {
1024 dev_dbg(chan
->dev
, "irq: End-of-segments INT\n");
1025 dev_dbg(chan
->dev
, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1026 (unsigned long long)get_cdar(chan
),
1027 (unsigned long long)get_ndar(chan
));
1028 stat
&= ~FSL_DMA_SR_EOSI
;
1033 * For MPC8349, EOCDI event need to update cookie
1034 * and start the next transfer if it exist.
1036 if (stat
& FSL_DMA_SR_EOCDI
) {
1037 dev_dbg(chan
->dev
, "irq: End-of-Chain link INT\n");
1038 stat
&= ~FSL_DMA_SR_EOCDI
;
1044 * If it current transfer is the end-of-transfer,
1045 * we should clear the Channel Start bit for
1046 * prepare next transfer.
1048 if (stat
& FSL_DMA_SR_EOLNI
) {
1049 dev_dbg(chan
->dev
, "irq: End-of-link INT\n");
1050 stat
&= ~FSL_DMA_SR_EOLNI
;
1055 fsl_dma_update_completed_cookie(chan
);
1057 fsl_chan_xfer_ld_queue(chan
);
1059 dev_dbg(chan
->dev
, "irq: unhandled sr 0x%02x\n", stat
);
1061 dev_dbg(chan
->dev
, "irq: Exit\n");
1062 tasklet_schedule(&chan
->tasklet
);
1066 static void dma_do_tasklet(unsigned long data
)
1068 struct fsldma_chan
*chan
= (struct fsldma_chan
*)data
;
1069 fsl_chan_ld_cleanup(chan
);
1072 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1074 struct fsldma_device
*fdev
= data
;
1075 struct fsldma_chan
*chan
;
1076 unsigned int handled
= 0;
1080 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1081 : in_le32(fdev
->regs
);
1083 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1085 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1086 chan
= fdev
->chan
[i
];
1091 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1092 fsldma_chan_irq(irq
, chan
);
1100 return IRQ_RETVAL(handled
);
1103 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1105 struct fsldma_chan
*chan
;
1108 if (fdev
->irq
!= NO_IRQ
) {
1109 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1110 free_irq(fdev
->irq
, fdev
);
1114 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1115 chan
= fdev
->chan
[i
];
1116 if (chan
&& chan
->irq
!= NO_IRQ
) {
1117 dev_dbg(fdev
->dev
, "free channel %d IRQ\n", chan
->id
);
1118 free_irq(chan
->irq
, chan
);
1123 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1125 struct fsldma_chan
*chan
;
1129 /* if we have a per-controller IRQ, use that */
1130 if (fdev
->irq
!= NO_IRQ
) {
1131 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1132 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1133 "fsldma-controller", fdev
);
1137 /* no per-controller IRQ, use the per-channel IRQs */
1138 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1139 chan
= fdev
->chan
[i
];
1143 if (chan
->irq
== NO_IRQ
) {
1144 dev_err(fdev
->dev
, "no interrupts property defined for "
1145 "DMA channel %d. Please fix your "
1146 "device tree\n", chan
->id
);
1151 dev_dbg(fdev
->dev
, "request channel %d IRQ\n", chan
->id
);
1152 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1153 "fsldma-chan", chan
);
1155 dev_err(fdev
->dev
, "unable to request IRQ for DMA "
1156 "channel %d\n", chan
->id
);
1164 for (/* none */; i
>= 0; i
--) {
1165 chan
= fdev
->chan
[i
];
1169 if (chan
->irq
== NO_IRQ
)
1172 free_irq(chan
->irq
, chan
);
1178 /*----------------------------------------------------------------------------*/
1179 /* OpenFirmware Subsystem */
1180 /*----------------------------------------------------------------------------*/
1182 static int __devinit
fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1183 struct device_node
*node
, u32 feature
, const char *compatible
)
1185 struct fsldma_chan
*chan
;
1186 struct resource res
;
1190 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1192 dev_err(fdev
->dev
, "no free memory for DMA channels!\n");
1197 /* ioremap registers for use */
1198 chan
->regs
= of_iomap(node
, 0);
1200 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1205 err
= of_address_to_resource(node
, 0, &res
);
1207 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1208 goto out_iounmap_regs
;
1211 chan
->feature
= feature
;
1213 fdev
->feature
= chan
->feature
;
1216 * If the DMA device's feature is different than the feature
1217 * of its channels, report the bug
1219 WARN_ON(fdev
->feature
!= chan
->feature
);
1221 chan
->dev
= fdev
->dev
;
1222 chan
->id
= ((res
.start
- 0x100) & 0xfff) >> 7;
1223 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1224 dev_err(fdev
->dev
, "too many channels for device\n");
1226 goto out_iounmap_regs
;
1229 fdev
->chan
[chan
->id
] = chan
;
1230 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
1232 /* Initialize the channel */
1235 /* Clear cdar registers */
1238 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1239 case FSL_DMA_IP_85XX
:
1240 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1241 case FSL_DMA_IP_83XX
:
1242 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1243 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1244 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1245 chan
->set_request_count
= fsl_chan_set_request_count
;
1248 spin_lock_init(&chan
->desc_lock
);
1249 INIT_LIST_HEAD(&chan
->ld_pending
);
1250 INIT_LIST_HEAD(&chan
->ld_running
);
1252 chan
->common
.device
= &fdev
->common
;
1254 /* find the IRQ line, if it exists in the device tree */
1255 chan
->irq
= irq_of_parse_and_map(node
, 0);
1257 /* Add the channel to DMA device channel list */
1258 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1259 fdev
->common
.chancnt
++;
1261 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1262 chan
->irq
!= NO_IRQ
? chan
->irq
: fdev
->irq
);
1267 iounmap(chan
->regs
);
1274 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1276 irq_dispose_mapping(chan
->irq
);
1277 list_del(&chan
->common
.device_node
);
1278 iounmap(chan
->regs
);
1282 static int __devinit
fsldma_of_probe(struct platform_device
*op
,
1283 const struct of_device_id
*match
)
1285 struct fsldma_device
*fdev
;
1286 struct device_node
*child
;
1289 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1291 dev_err(&op
->dev
, "No enough memory for 'priv'\n");
1296 fdev
->dev
= &op
->dev
;
1297 INIT_LIST_HEAD(&fdev
->common
.channels
);
1299 /* ioremap the registers for use */
1300 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1302 dev_err(&op
->dev
, "unable to ioremap registers\n");
1307 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1308 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1310 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1311 dma_cap_set(DMA_INTERRUPT
, fdev
->common
.cap_mask
);
1312 dma_cap_set(DMA_SG
, fdev
->common
.cap_mask
);
1313 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1314 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1315 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1316 fdev
->common
.device_prep_dma_interrupt
= fsl_dma_prep_interrupt
;
1317 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1318 fdev
->common
.device_prep_dma_sg
= fsl_dma_prep_sg
;
1319 fdev
->common
.device_tx_status
= fsl_tx_status
;
1320 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1321 fdev
->common
.device_prep_slave_sg
= fsl_dma_prep_slave_sg
;
1322 fdev
->common
.device_control
= fsl_dma_device_control
;
1323 fdev
->common
.dev
= &op
->dev
;
1325 dev_set_drvdata(&op
->dev
, fdev
);
1328 * We cannot use of_platform_bus_probe() because there is no
1329 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1332 for_each_child_of_node(op
->dev
.of_node
, child
) {
1333 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1334 fsl_dma_chan_probe(fdev
, child
,
1335 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1336 "fsl,eloplus-dma-channel");
1339 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1340 fsl_dma_chan_probe(fdev
, child
,
1341 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1342 "fsl,elo-dma-channel");
1347 * Hookup the IRQ handler(s)
1349 * If we have a per-controller interrupt, we prefer that to the
1350 * per-channel interrupts to reduce the number of shared interrupt
1351 * handlers on the same IRQ line
1353 err
= fsldma_request_irqs(fdev
);
1355 dev_err(fdev
->dev
, "unable to request IRQs\n");
1359 dma_async_device_register(&fdev
->common
);
1363 irq_dispose_mapping(fdev
->irq
);
1369 static int fsldma_of_remove(struct platform_device
*op
)
1371 struct fsldma_device
*fdev
;
1374 fdev
= dev_get_drvdata(&op
->dev
);
1375 dma_async_device_unregister(&fdev
->common
);
1377 fsldma_free_irqs(fdev
);
1379 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1381 fsl_dma_chan_remove(fdev
->chan
[i
]);
1384 iounmap(fdev
->regs
);
1385 dev_set_drvdata(&op
->dev
, NULL
);
1391 static const struct of_device_id fsldma_of_ids
[] = {
1392 { .compatible
= "fsl,eloplus-dma", },
1393 { .compatible
= "fsl,elo-dma", },
1397 static struct of_platform_driver fsldma_of_driver
= {
1399 .name
= "fsl-elo-dma",
1400 .owner
= THIS_MODULE
,
1401 .of_match_table
= fsldma_of_ids
,
1403 .probe
= fsldma_of_probe
,
1404 .remove
= fsldma_of_remove
,
1407 /*----------------------------------------------------------------------------*/
1408 /* Module Init / Exit */
1409 /*----------------------------------------------------------------------------*/
1411 static __init
int fsldma_init(void)
1415 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1417 ret
= of_register_platform_driver(&fsldma_of_driver
);
1419 pr_err("fsldma: failed to register platform driver\n");
1424 static void __exit
fsldma_exit(void)
1426 of_unregister_platform_driver(&fsldma_of_driver
);
1429 subsys_initcall(fsldma_init
);
1430 module_exit(fsldma_exit
);
1432 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1433 MODULE_LICENSE("GPL");