1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
44 #include <asm/system.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_tcq.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_host.h>
55 * 1. Although all of the necessary command mapping places have the
56 * appropriate dma_map.. APIs, the driver still processes its internal
57 * queue using bus_to_virt() and virt_to_bus() which are illegal under
58 * the API. The entire queue processing structure will need to be
59 * altered to fix this.
60 * 2. Need to add memory mapping workaround. Test the memory mapping.
61 * If it doesn't work revert to I/O port access. Can a test be done
63 * 3. Handle an interrupt not working. Keep an interrupt counter in
64 * the interrupt handler. In the timeout function if the interrupt
65 * has not occurred then print a message and run in polled mode.
66 * 4. Need to add support for target mode commands, cf. CAM XPT.
67 * 5. check DMA mapping functions for failure
68 * 6. Use scsi_transport_spi
69 * 7. advansys_info is not safe against multiple simultaneous callers
70 * 8. Add module_param to override ISA/VLB ioport array
72 #warning this driver is still not properly converted to the DMA API
74 /* Enable driver /proc statistics. */
75 #define ADVANSYS_STATS
77 /* Enable driver tracing. */
83 * Any instance where a 32-bit long or pointer type is assumed
84 * for precision or HW defined structures, the following define
85 * types must be used. In Linux the char, short, and int types
86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
87 * and long types are 64 bits on Alpha and UltraSPARC.
89 #define ASC_PADDR __u32 /* Physical/Bus address data type. */
90 #define ASC_VADDR __u32 /* Virtual address data type. */
91 #define ASC_DCNT __u32 /* Unsigned Data count type. */
92 #define ASC_SDCNT __s32 /* Signed Data count type. */
94 typedef unsigned char uchar
;
104 #define UW_ERR (uint)(0xFFFF)
105 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
107 #define PCI_VENDOR_ID_ASP 0x10cd
108 #define PCI_DEVICE_ID_ASP_1200A 0x1100
109 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
110 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
111 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
112 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
113 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
121 #define CC_VERY_LONG_SG_LIST 0
122 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr)
124 #define PortAddr unsigned int /* port address size */
125 #define inp(port) inb(port)
126 #define outp(port, byte) outb((byte), (port))
128 #define inpw(port) inw(port)
129 #define outpw(port, word) outw((word), (port))
131 #define ASC_MAX_SG_QUEUE 7
132 #define ASC_MAX_SG_LIST 255
134 #define ASC_CS_TYPE unsigned short
136 #define ASC_IS_ISA (0x0001)
137 #define ASC_IS_ISAPNP (0x0081)
138 #define ASC_IS_EISA (0x0002)
139 #define ASC_IS_PCI (0x0004)
140 #define ASC_IS_PCI_ULTRA (0x0104)
141 #define ASC_IS_PCMCIA (0x0008)
142 #define ASC_IS_MCA (0x0020)
143 #define ASC_IS_VL (0x0040)
144 #define ASC_IS_WIDESCSI_16 (0x0100)
145 #define ASC_IS_WIDESCSI_32 (0x0200)
146 #define ASC_IS_BIG_ENDIAN (0x8000)
148 #define ASC_CHIP_MIN_VER_VL (0x01)
149 #define ASC_CHIP_MAX_VER_VL (0x07)
150 #define ASC_CHIP_MIN_VER_PCI (0x09)
151 #define ASC_CHIP_MAX_VER_PCI (0x0F)
152 #define ASC_CHIP_VER_PCI_BIT (0x08)
153 #define ASC_CHIP_MIN_VER_ISA (0x11)
154 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
155 #define ASC_CHIP_MAX_VER_ISA (0x27)
156 #define ASC_CHIP_VER_ISA_BIT (0x30)
157 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
158 #define ASC_CHIP_VER_ASYN_BUG (0x21)
159 #define ASC_CHIP_VER_PCI 0x08
160 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
161 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
162 #define ASC_CHIP_MIN_VER_EISA (0x41)
163 #define ASC_CHIP_MAX_VER_EISA (0x47)
164 #define ASC_CHIP_VER_EISA_BIT (0x40)
165 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
166 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
167 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
168 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
170 #define ASC_SCSI_ID_BITS 3
171 #define ASC_SCSI_TIX_TYPE uchar
172 #define ASC_ALL_DEVICE_BIT_SET 0xFF
173 #define ASC_SCSI_BIT_ID_TYPE uchar
174 #define ASC_MAX_TID 7
175 #define ASC_MAX_LUN 7
176 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
177 #define ASC_MAX_SENSE_LEN 32
178 #define ASC_MIN_SENSE_LEN 14
179 #define ASC_SCSI_RESET_HOLD_TIME_US 60
182 * Narrow boards only support 12-byte commands, while wide boards
183 * extend to 16-byte commands.
185 #define ASC_MAX_CDB_LEN 12
186 #define ADV_MAX_CDB_LEN 16
188 #define MS_SDTR_LEN 0x03
189 #define MS_WDTR_LEN 0x02
191 #define ASC_SG_LIST_PER_Q 7
193 #define QS_READY 0x01
194 #define QS_DISC1 0x02
195 #define QS_DISC2 0x04
197 #define QS_ABORTED 0x40
199 #define QC_NO_CALLBACK 0x01
200 #define QC_SG_SWAP_QUEUE 0x02
201 #define QC_SG_HEAD 0x04
202 #define QC_DATA_IN 0x08
203 #define QC_DATA_OUT 0x10
204 #define QC_URGENT 0x20
205 #define QC_MSG_OUT 0x40
206 #define QC_REQ_SENSE 0x80
207 #define QCSG_SG_XFER_LIST 0x02
208 #define QCSG_SG_XFER_MORE 0x04
209 #define QCSG_SG_XFER_END 0x08
210 #define QD_IN_PROGRESS 0x00
211 #define QD_NO_ERROR 0x01
212 #define QD_ABORTED_BY_HOST 0x02
213 #define QD_WITH_ERROR 0x04
214 #define QD_INVALID_REQUEST 0x80
215 #define QD_INVALID_HOST_NUM 0x81
216 #define QD_INVALID_DEVICE 0x82
217 #define QD_ERR_INTERNAL 0xFF
218 #define QHSTA_NO_ERROR 0x00
219 #define QHSTA_M_SEL_TIMEOUT 0x11
220 #define QHSTA_M_DATA_OVER_RUN 0x12
221 #define QHSTA_M_DATA_UNDER_RUN 0x12
222 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
223 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
224 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
225 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
226 #define QHSTA_D_HOST_ABORT_FAILED 0x23
227 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
228 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
229 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
230 #define QHSTA_M_WTM_TIMEOUT 0x41
231 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
232 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
233 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
234 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
235 #define QHSTA_M_BAD_TAG_CODE 0x46
236 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
237 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
238 #define QHSTA_D_LRAM_CMP_ERROR 0x81
239 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
240 #define ASC_FLAG_SCSIQ_REQ 0x01
241 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
242 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
243 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
244 #define ASC_FLAG_WIN16 0x10
245 #define ASC_FLAG_WIN32 0x20
246 #define ASC_FLAG_ISA_OVER_16MB 0x40
247 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
248 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
249 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
250 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
251 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
252 #define ASC_SCSIQ_CPY_BEG 4
253 #define ASC_SCSIQ_SGHD_CPY_BEG 2
254 #define ASC_SCSIQ_B_FWD 0
255 #define ASC_SCSIQ_B_BWD 1
256 #define ASC_SCSIQ_B_STATUS 2
257 #define ASC_SCSIQ_B_QNO 3
258 #define ASC_SCSIQ_B_CNTL 4
259 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
260 #define ASC_SCSIQ_D_DATA_ADDR 8
261 #define ASC_SCSIQ_D_DATA_CNT 12
262 #define ASC_SCSIQ_B_SENSE_LEN 20
263 #define ASC_SCSIQ_DONE_INFO_BEG 22
264 #define ASC_SCSIQ_D_SRBPTR 22
265 #define ASC_SCSIQ_B_TARGET_IX 26
266 #define ASC_SCSIQ_B_CDB_LEN 28
267 #define ASC_SCSIQ_B_TAG_CODE 29
268 #define ASC_SCSIQ_W_VM_ID 30
269 #define ASC_SCSIQ_DONE_STATUS 32
270 #define ASC_SCSIQ_HOST_STATUS 33
271 #define ASC_SCSIQ_SCSI_STATUS 34
272 #define ASC_SCSIQ_CDB_BEG 36
273 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
274 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
275 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
276 #define ASC_SCSIQ_B_SG_WK_QP 49
277 #define ASC_SCSIQ_B_SG_WK_IX 50
278 #define ASC_SCSIQ_W_ALT_DC1 52
279 #define ASC_SCSIQ_B_LIST_CNT 6
280 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
281 #define ASC_SGQ_B_SG_CNTL 4
282 #define ASC_SGQ_B_SG_HEAD_QP 5
283 #define ASC_SGQ_B_SG_LIST_CNT 6
284 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
285 #define ASC_SGQ_LIST_BEG 8
286 #define ASC_DEF_SCSI1_QNG 4
287 #define ASC_MAX_SCSI1_QNG 4
288 #define ASC_DEF_SCSI2_QNG 16
289 #define ASC_MAX_SCSI2_QNG 32
290 #define ASC_TAG_CODE_MASK 0x23
291 #define ASC_STOP_REQ_RISC_STOP 0x01
292 #define ASC_STOP_ACK_RISC_STOP 0x03
293 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
294 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
295 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
296 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
297 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
298 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
299 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
300 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
301 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
302 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
304 typedef struct asc_scsiq_1
{
313 ASC_PADDR sense_addr
;
318 typedef struct asc_scsiq_2
{
327 typedef struct asc_scsiq_3
{
334 typedef struct asc_scsiq_4
{
335 uchar cdb
[ASC_MAX_CDB_LEN
];
336 uchar y_first_sg_list_qp
;
337 uchar y_working_sg_qp
;
338 uchar y_working_sg_ix
;
341 ushort x_reconnect_rtn
;
342 ASC_PADDR x_saved_data_addr
;
343 ASC_DCNT x_saved_data_cnt
;
346 typedef struct asc_q_done_info
{
355 ASC_DCNT remain_bytes
;
358 typedef struct asc_sg_list
{
363 typedef struct asc_sg_head
{
366 ushort entry_to_copy
;
368 ASC_SG_LIST sg_list
[0];
371 typedef struct asc_scsi_q
{
375 ASC_SG_HEAD
*sg_head
;
376 ushort remain_sg_entry_cnt
;
377 ushort next_sg_index
;
380 typedef struct asc_scsi_req_q
{
384 ASC_SG_HEAD
*sg_head
;
387 uchar cdb
[ASC_MAX_CDB_LEN
];
388 uchar sense
[ASC_MIN_SENSE_LEN
];
391 typedef struct asc_scsi_bios_req_q
{
395 ASC_SG_HEAD
*sg_head
;
398 uchar cdb
[ASC_MAX_CDB_LEN
];
399 uchar sense
[ASC_MIN_SENSE_LEN
];
400 } ASC_SCSI_BIOS_REQ_Q
;
402 typedef struct asc_risc_q
{
411 typedef struct asc_sg_list_q
{
417 uchar sg_cur_list_cnt
;
420 typedef struct asc_risc_sg_list_q
{
424 ASC_SG_LIST sg_list
[7];
425 } ASC_RISC_SG_LIST_Q
;
427 #define ASCQ_ERR_Q_STATUS 0x0D
428 #define ASCQ_ERR_CUR_QNG 0x17
429 #define ASCQ_ERR_SG_Q_LINKS 0x18
430 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
431 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
432 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
435 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
437 #define ASC_WARN_NO_ERROR 0x0000
438 #define ASC_WARN_IO_PORT_ROTATE 0x0001
439 #define ASC_WARN_EEPROM_CHKSUM 0x0002
440 #define ASC_WARN_IRQ_MODIFIED 0x0004
441 #define ASC_WARN_AUTO_CONFIG 0x0008
442 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
443 #define ASC_WARN_EEPROM_RECOVER 0x0020
444 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
447 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
449 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
450 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
451 #define ASC_IERR_SET_PC_ADDR 0x0004
452 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
453 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
454 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
455 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
456 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
457 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
458 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
459 #define ASC_IERR_NO_BUS_TYPE 0x0400
460 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
461 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
462 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
464 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
465 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
466 #define ASC_MIN_FREE_Q (0x02)
467 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
468 #define ASC_MAX_TOTAL_QNG 240
469 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
470 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
471 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
472 #define ASC_MAX_INRAM_TAG_QNG 16
473 #define ASC_IOADR_GAP 0x10
474 #define ASC_SYN_MAX_OFFSET 0x0F
475 #define ASC_DEF_SDTR_OFFSET 0x0F
476 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
477 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
479 /* The narrow chip only supports a limited selection of transfer rates.
480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
481 * is Ultra-capable or not. These tables let us convert from one to the other.
483 static const unsigned char asc_syn_xfer_period
[8] = {
484 25, 30, 35, 40, 50, 60, 70, 85
487 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
488 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
491 typedef struct ext_msg
{
497 uchar sdtr_xfer_period
;
498 uchar sdtr_req_ack_offset
;
513 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
514 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
515 #define wdtr_width u_ext_msg.wdtr.wdtr_width
516 #define mdp_b3 u_ext_msg.mdp_b3
517 #define mdp_b2 u_ext_msg.mdp_b2
518 #define mdp_b1 u_ext_msg.mdp_b1
519 #define mdp_b0 u_ext_msg.mdp_b0
521 typedef struct asc_dvc_cfg
{
522 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
523 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
524 ASC_SCSI_BIT_ID_TYPE disc_enable
;
525 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
528 uchar isa_dma_channel
;
531 ushort mcode_version
;
532 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
533 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
534 uchar adapter_info
[6];
537 #define ASC_DEF_DVC_CNTL 0xFFFF
538 #define ASC_DEF_CHIP_SCSI_ID 7
539 #define ASC_DEF_ISA_DMA_SPEED 4
540 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
541 #define ASC_INIT_STATE_END_GET_CFG 0x0002
542 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
543 #define ASC_INIT_STATE_END_SET_CFG 0x0008
544 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
545 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
546 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
547 #define ASC_INIT_STATE_END_INQUIRY 0x0080
548 #define ASC_INIT_RESET_SCSI_DONE 0x0100
549 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
550 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
551 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
552 #define ASC_MIN_TAGGED_CMD 7
553 #define ASC_MAX_SCSI_RESET_WAIT 30
554 #define ASC_OVERRUN_BSIZE 64
556 struct asc_dvc_var
; /* Forward Declaration. */
558 typedef struct asc_dvc_var
{
564 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
565 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
566 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
567 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
568 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
569 ASC_SCSI_BIT_ID_TYPE start_motor
;
571 dma_addr_t overrun_dma
;
572 uchar scsi_reset_wait
;
577 uchar in_critical_cnt
;
578 uchar last_q_shortage
;
580 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
581 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
582 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
583 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
584 const uchar
*sdtr_period_tbl
;
586 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
589 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
590 ASC_DCNT max_dma_count
;
591 ASC_SCSI_BIT_ID_TYPE no_scam
;
592 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
593 uchar min_sdtr_index
;
594 uchar max_sdtr_index
;
595 struct asc_board
*drv_ptr
;
601 typedef struct asc_dvc_inq_info
{
602 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
605 typedef struct asc_cap_info
{
610 typedef struct asc_cap_info_array
{
611 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
612 } ASC_CAP_INFO_ARRAY
;
614 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
615 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
616 #define ASC_CNTL_INITIATOR (ushort)0x0001
617 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
618 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
619 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
620 #define ASC_CNTL_NO_SCAM (ushort)0x0010
621 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
622 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
623 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
624 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
625 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
626 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
627 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
628 #define ASC_CNTL_BURST_MODE (ushort)0x2000
629 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
630 #define ASC_EEP_DVC_CFG_BEG_VL 2
631 #define ASC_EEP_MAX_DVC_ADDR_VL 15
632 #define ASC_EEP_DVC_CFG_BEG 32
633 #define ASC_EEP_MAX_DVC_ADDR 45
634 #define ASC_EEP_MAX_RETRY 20
637 * These macros keep the chip SCSI id and ISA DMA speed
638 * bitfields in board order. C bitfields aren't portable
639 * between big and little-endian platforms so they are
643 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
644 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
645 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
646 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
647 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
648 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
650 typedef struct asceep_config
{
662 uchar id_speed
; /* low order 4 bits is chip scsi id */
663 /* high order 4 bits is isa dma speed */
664 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
665 uchar adapter_info
[6];
670 #define ASC_EEP_CMD_READ 0x80
671 #define ASC_EEP_CMD_WRITE 0x40
672 #define ASC_EEP_CMD_WRITE_ABLE 0x30
673 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
674 #define ASCV_MSGOUT_BEG 0x0000
675 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
676 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
677 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
678 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
679 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
680 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
681 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
682 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
683 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
684 #define ASCV_BREAK_ADDR (ushort)0x0028
685 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
686 #define ASCV_BREAK_CONTROL (ushort)0x002C
687 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
689 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
690 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
691 #define ASCV_MCODE_SIZE_W (ushort)0x0034
692 #define ASCV_STOP_CODE_B (ushort)0x0036
693 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
694 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
695 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
696 #define ASCV_HALTCODE_W (ushort)0x0040
697 #define ASCV_CHKSUM_W (ushort)0x0042
698 #define ASCV_MC_DATE_W (ushort)0x0044
699 #define ASCV_MC_VER_W (ushort)0x0046
700 #define ASCV_NEXTRDY_B (ushort)0x0048
701 #define ASCV_DONENEXT_B (ushort)0x0049
702 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
703 #define ASCV_SCSIBUSY_B (ushort)0x004B
704 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
705 #define ASCV_CURCDB_B (ushort)0x004D
706 #define ASCV_RCLUN_B (ushort)0x004E
707 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
708 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
709 #define ASCV_DISC_ENABLE_B (ushort)0x0052
710 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
711 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
712 #define ASCV_MCODE_CNTL_B (ushort)0x0056
713 #define ASCV_NULL_TARGET_B (ushort)0x0057
714 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
715 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
716 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
717 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
718 #define ASCV_HOST_FLAG_B (ushort)0x005D
719 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
720 #define ASCV_VER_SERIAL_B (ushort)0x0065
721 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
722 #define ASCV_WTM_FLAG_B (ushort)0x0068
723 #define ASCV_RISC_FLAG_B (ushort)0x006A
724 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
725 #define ASC_HOST_FLAG_IN_ISR 0x01
726 #define ASC_HOST_FLAG_ACK_INT 0x02
727 #define ASC_RISC_FLAG_GEN_INT 0x01
728 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
729 #define IOP_CTRL (0x0F)
730 #define IOP_STATUS (0x0E)
731 #define IOP_INT_ACK IOP_STATUS
732 #define IOP_REG_IFC (0x0D)
733 #define IOP_SYN_OFFSET (0x0B)
734 #define IOP_EXTRA_CONTROL (0x0D)
735 #define IOP_REG_PC (0x0C)
736 #define IOP_RAM_ADDR (0x0A)
737 #define IOP_RAM_DATA (0x08)
738 #define IOP_EEP_DATA (0x06)
739 #define IOP_EEP_CMD (0x07)
740 #define IOP_VERSION (0x03)
741 #define IOP_CONFIG_HIGH (0x04)
742 #define IOP_CONFIG_LOW (0x02)
743 #define IOP_SIG_BYTE (0x01)
744 #define IOP_SIG_WORD (0x00)
745 #define IOP_REG_DC1 (0x0E)
746 #define IOP_REG_DC0 (0x0C)
747 #define IOP_REG_SB (0x0B)
748 #define IOP_REG_DA1 (0x0A)
749 #define IOP_REG_DA0 (0x08)
750 #define IOP_REG_SC (0x09)
751 #define IOP_DMA_SPEED (0x07)
752 #define IOP_REG_FLAG (0x07)
753 #define IOP_FIFO_H (0x06)
754 #define IOP_FIFO_L (0x04)
755 #define IOP_REG_ID (0x05)
756 #define IOP_REG_QP (0x03)
757 #define IOP_REG_IH (0x02)
758 #define IOP_REG_IX (0x01)
759 #define IOP_REG_AX (0x00)
760 #define IFC_REG_LOCK (0x00)
761 #define IFC_REG_UNLOCK (0x09)
762 #define IFC_WR_EN_FILTER (0x10)
763 #define IFC_RD_NO_EEPROM (0x10)
764 #define IFC_SLEW_RATE (0x20)
765 #define IFC_ACT_NEG (0x40)
766 #define IFC_INP_FILTER (0x80)
767 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
768 #define SC_SEL (uchar)(0x80)
769 #define SC_BSY (uchar)(0x40)
770 #define SC_ACK (uchar)(0x20)
771 #define SC_REQ (uchar)(0x10)
772 #define SC_ATN (uchar)(0x08)
773 #define SC_IO (uchar)(0x04)
774 #define SC_CD (uchar)(0x02)
775 #define SC_MSG (uchar)(0x01)
776 #define SEC_SCSI_CTL (uchar)(0x80)
777 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
778 #define SEC_SLEW_RATE (uchar)(0x20)
779 #define SEC_ENABLE_FILTER (uchar)(0x10)
780 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
781 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
782 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
783 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
784 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
785 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
786 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
787 #define ASC_MAX_QNO 0xF8
788 #define ASC_DATA_SEC_BEG (ushort)0x0080
789 #define ASC_DATA_SEC_END (ushort)0x0080
790 #define ASC_CODE_SEC_BEG (ushort)0x0080
791 #define ASC_CODE_SEC_END (ushort)0x0080
792 #define ASC_QADR_BEG (0x4000)
793 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
794 #define ASC_QADR_END (ushort)0x7FFF
795 #define ASC_QLAST_ADR (ushort)0x7FC0
796 #define ASC_QBLK_SIZE 0x40
797 #define ASC_BIOS_DATA_QBEG 0xF8
798 #define ASC_MIN_ACTIVE_QNO 0x01
799 #define ASC_QLINK_END 0xFF
800 #define ASC_EEPROM_WORDS 0x10
801 #define ASC_MAX_MGS_LEN 0x10
802 #define ASC_BIOS_ADDR_DEF 0xDC00
803 #define ASC_BIOS_SIZE 0x3800
804 #define ASC_BIOS_RAM_OFF 0x3800
805 #define ASC_BIOS_RAM_SIZE 0x800
806 #define ASC_BIOS_MIN_ADDR 0xC000
807 #define ASC_BIOS_MAX_ADDR 0xEC00
808 #define ASC_BIOS_BANK_SIZE 0x0400
809 #define ASC_MCODE_START_ADDR 0x0080
810 #define ASC_CFG0_HOST_INT_ON 0x0020
811 #define ASC_CFG0_BIOS_ON 0x0040
812 #define ASC_CFG0_VERA_BURST_ON 0x0080
813 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
814 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
815 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
816 #define ASC_CFG_MSW_CLR_MASK 0x3080
817 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
818 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
819 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
820 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
821 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
822 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
823 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
824 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
825 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
826 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
827 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
828 #define CSW_HALTED (ASC_CS_TYPE)0x0010
829 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
830 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
831 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
832 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
833 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
834 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
835 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
836 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
837 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
838 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
839 #define CC_CHIP_RESET (uchar)0x80
840 #define CC_SCSI_RESET (uchar)0x40
841 #define CC_HALT (uchar)0x20
842 #define CC_SINGLE_STEP (uchar)0x10
843 #define CC_DMA_ABLE (uchar)0x08
844 #define CC_TEST (uchar)0x04
845 #define CC_BANK_ONE (uchar)0x02
846 #define CC_DIAG (uchar)0x01
847 #define ASC_1000_ID0W 0x04C1
848 #define ASC_1000_ID0W_FIX 0x00C1
849 #define ASC_1000_ID1B 0x25
850 #define ASC_EISA_REV_IOP_MASK (0x0C83)
851 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
852 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
853 #define INS_HALTINT (ushort)0x6281
854 #define INS_HALT (ushort)0x6280
855 #define INS_SINT (ushort)0x6200
856 #define INS_RFLAG_WTM (ushort)0x7380
857 #define ASC_MC_SAVE_CODE_WSIZE 0x500
858 #define ASC_MC_SAVE_DATA_WSIZE 0x40
860 typedef struct asc_mc_saved
{
861 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
862 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
865 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
866 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
867 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
868 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
869 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
870 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
871 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
872 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
873 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
874 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
875 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
876 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
877 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
878 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
879 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
880 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
881 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
882 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
883 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
884 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
885 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
886 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
887 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
888 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
889 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
890 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
891 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
892 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
893 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
894 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
895 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
896 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
897 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
898 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
899 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
900 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
901 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
902 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
903 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
904 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
905 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
906 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
907 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
908 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
909 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
910 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
911 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
912 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
913 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
914 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
915 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
916 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
917 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
918 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
919 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
920 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
921 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
922 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
923 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
924 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
925 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
926 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
927 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
928 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
929 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
930 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
931 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
934 * Portable Data Types
936 * Any instance where a 32-bit long or pointer type is assumed
937 * for precision or HW defined structures, the following define
938 * types must be used. In Linux the char, short, and int types
939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
940 * and long types are 64 bits on Alpha and UltraSPARC.
942 #define ADV_PADDR __u32 /* Physical address data type. */
943 #define ADV_VADDR __u32 /* Virtual address data type. */
944 #define ADV_DCNT __u32 /* Unsigned Data count type. */
945 #define ADV_SDCNT __s32 /* Signed Data count type. */
948 * These macros are used to convert a virtual address to a
949 * 32-bit value. This currently can be used on Linux Alpha
950 * which uses 64-bit virtual address but a 32-bit bus address.
951 * This is likely to break in the future, but doing this now
952 * will give us time to change the HW and FW to handle 64-bit
955 #define ADV_VADDR_TO_U32 virt_to_bus
956 #define ADV_U32_TO_VADDR bus_to_virt
958 #define AdvPortAddr void __iomem * /* Virtual memory address size */
961 * Define Adv Library required memory access macros.
963 #define ADV_MEM_READB(addr) readb(addr)
964 #define ADV_MEM_READW(addr) readw(addr)
965 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
966 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
967 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
969 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
972 * Define total number of simultaneous maximum element scatter-gather
973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
974 * maximum number of outstanding commands per wide host adapter. Each
975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
978 * structures or 255 scatter-gather elements.
980 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
983 * Define maximum number of scatter-gather elements per request.
985 #define ADV_MAX_SG_LIST 255
986 #define NO_OF_SG_PER_BLOCK 15
988 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
989 #define ADV_EEP_DVC_CFG_END (0x15)
990 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
991 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
993 #define ADV_EEP_DELAY_MS 100
995 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
996 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1002 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
1003 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1015 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
1017 typedef struct adveep_3550_config
{
1018 /* Word Offset, Description */
1020 ushort cfg_lsw
; /* 00 power up initialization */
1021 /* bit 13 set - Term Polarity Control */
1022 /* bit 14 set - BIOS Enable */
1023 /* bit 15 set - Big Endian Mode */
1024 ushort cfg_msw
; /* 01 unused */
1025 ushort disc_enable
; /* 02 disconnect enable */
1026 ushort wdtr_able
; /* 03 Wide DTR able */
1027 ushort sdtr_able
; /* 04 Synchronous DTR able */
1028 ushort start_motor
; /* 05 send start up motor */
1029 ushort tagqng_able
; /* 06 tag queuing able */
1030 ushort bios_scan
; /* 07 BIOS device control */
1031 ushort scam_tolerant
; /* 08 no scam */
1033 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1034 uchar bios_boot_delay
; /* power up wait */
1036 uchar scsi_reset_delay
; /* 10 reset delay */
1037 uchar bios_id_lun
; /* first boot device scsi id & lun */
1038 /* high nibble is lun */
1039 /* low nibble is scsi id */
1041 uchar termination
; /* 11 0 - automatic */
1042 /* 1 - low off / high off */
1043 /* 2 - low off / high on */
1044 /* 3 - low on / high on */
1045 /* There is no low on / high off */
1047 uchar reserved1
; /* reserved byte (not used) */
1049 ushort bios_ctrl
; /* 12 BIOS control bits */
1050 /* bit 0 BIOS don't act as initiator. */
1051 /* bit 1 BIOS > 1 GB support */
1052 /* bit 2 BIOS > 2 Disk Support */
1053 /* bit 3 BIOS don't support removables */
1054 /* bit 4 BIOS support bootable CD */
1055 /* bit 5 BIOS scan enabled */
1056 /* bit 6 BIOS support multiple LUNs */
1057 /* bit 7 BIOS display of message */
1058 /* bit 8 SCAM disabled */
1059 /* bit 9 Reset SCSI bus during init. */
1061 /* bit 11 No verbose initialization. */
1062 /* bit 12 SCSI parity enabled */
1066 ushort ultra_able
; /* 13 ULTRA speed able */
1067 ushort reserved2
; /* 14 reserved */
1068 uchar max_host_qng
; /* 15 maximum host queuing */
1069 uchar max_dvc_qng
; /* maximum per device queuing */
1070 ushort dvc_cntl
; /* 16 control bit for driver */
1071 ushort bug_fix
; /* 17 control bit for bug fix */
1072 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1073 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1074 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1075 ushort check_sum
; /* 21 EEP check sum */
1076 uchar oem_name
[16]; /* 22 OEM name */
1077 ushort dvc_err_code
; /* 30 last device driver error code */
1078 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1079 ushort adv_err_addr
; /* 32 last uc error address */
1080 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1081 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1082 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1083 ushort num_of_err
; /* 36 number of error */
1084 } ADVEEP_3550_CONFIG
;
1086 typedef struct adveep_38C0800_config
{
1087 /* Word Offset, Description */
1089 ushort cfg_lsw
; /* 00 power up initialization */
1090 /* bit 13 set - Load CIS */
1091 /* bit 14 set - BIOS Enable */
1092 /* bit 15 set - Big Endian Mode */
1093 ushort cfg_msw
; /* 01 unused */
1094 ushort disc_enable
; /* 02 disconnect enable */
1095 ushort wdtr_able
; /* 03 Wide DTR able */
1096 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1097 ushort start_motor
; /* 05 send start up motor */
1098 ushort tagqng_able
; /* 06 tag queuing able */
1099 ushort bios_scan
; /* 07 BIOS device control */
1100 ushort scam_tolerant
; /* 08 no scam */
1102 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1103 uchar bios_boot_delay
; /* power up wait */
1105 uchar scsi_reset_delay
; /* 10 reset delay */
1106 uchar bios_id_lun
; /* first boot device scsi id & lun */
1107 /* high nibble is lun */
1108 /* low nibble is scsi id */
1110 uchar termination_se
; /* 11 0 - automatic */
1111 /* 1 - low off / high off */
1112 /* 2 - low off / high on */
1113 /* 3 - low on / high on */
1114 /* There is no low on / high off */
1116 uchar termination_lvd
; /* 11 0 - automatic */
1117 /* 1 - low off / high off */
1118 /* 2 - low off / high on */
1119 /* 3 - low on / high on */
1120 /* There is no low on / high off */
1122 ushort bios_ctrl
; /* 12 BIOS control bits */
1123 /* bit 0 BIOS don't act as initiator. */
1124 /* bit 1 BIOS > 1 GB support */
1125 /* bit 2 BIOS > 2 Disk Support */
1126 /* bit 3 BIOS don't support removables */
1127 /* bit 4 BIOS support bootable CD */
1128 /* bit 5 BIOS scan enabled */
1129 /* bit 6 BIOS support multiple LUNs */
1130 /* bit 7 BIOS display of message */
1131 /* bit 8 SCAM disabled */
1132 /* bit 9 Reset SCSI bus during init. */
1134 /* bit 11 No verbose initialization. */
1135 /* bit 12 SCSI parity enabled */
1139 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1140 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1141 uchar max_host_qng
; /* 15 maximum host queueing */
1142 uchar max_dvc_qng
; /* maximum per device queuing */
1143 ushort dvc_cntl
; /* 16 control bit for driver */
1144 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1145 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1146 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1147 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1148 ushort check_sum
; /* 21 EEP check sum */
1149 uchar oem_name
[16]; /* 22 OEM name */
1150 ushort dvc_err_code
; /* 30 last device driver error code */
1151 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1152 ushort adv_err_addr
; /* 32 last uc error address */
1153 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1154 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1155 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1156 ushort reserved36
; /* 36 reserved */
1157 ushort reserved37
; /* 37 reserved */
1158 ushort reserved38
; /* 38 reserved */
1159 ushort reserved39
; /* 39 reserved */
1160 ushort reserved40
; /* 40 reserved */
1161 ushort reserved41
; /* 41 reserved */
1162 ushort reserved42
; /* 42 reserved */
1163 ushort reserved43
; /* 43 reserved */
1164 ushort reserved44
; /* 44 reserved */
1165 ushort reserved45
; /* 45 reserved */
1166 ushort reserved46
; /* 46 reserved */
1167 ushort reserved47
; /* 47 reserved */
1168 ushort reserved48
; /* 48 reserved */
1169 ushort reserved49
; /* 49 reserved */
1170 ushort reserved50
; /* 50 reserved */
1171 ushort reserved51
; /* 51 reserved */
1172 ushort reserved52
; /* 52 reserved */
1173 ushort reserved53
; /* 53 reserved */
1174 ushort reserved54
; /* 54 reserved */
1175 ushort reserved55
; /* 55 reserved */
1176 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1177 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1178 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1179 ushort subsysid
; /* 59 SubSystem ID */
1180 ushort reserved60
; /* 60 reserved */
1181 ushort reserved61
; /* 61 reserved */
1182 ushort reserved62
; /* 62 reserved */
1183 ushort reserved63
; /* 63 reserved */
1184 } ADVEEP_38C0800_CONFIG
;
1186 typedef struct adveep_38C1600_config
{
1187 /* Word Offset, Description */
1189 ushort cfg_lsw
; /* 00 power up initialization */
1190 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191 /* clear - Func. 0 INTA, Func. 1 INTB */
1192 /* bit 13 set - Load CIS */
1193 /* bit 14 set - BIOS Enable */
1194 /* bit 15 set - Big Endian Mode */
1195 ushort cfg_msw
; /* 01 unused */
1196 ushort disc_enable
; /* 02 disconnect enable */
1197 ushort wdtr_able
; /* 03 Wide DTR able */
1198 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1199 ushort start_motor
; /* 05 send start up motor */
1200 ushort tagqng_able
; /* 06 tag queuing able */
1201 ushort bios_scan
; /* 07 BIOS device control */
1202 ushort scam_tolerant
; /* 08 no scam */
1204 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1205 uchar bios_boot_delay
; /* power up wait */
1207 uchar scsi_reset_delay
; /* 10 reset delay */
1208 uchar bios_id_lun
; /* first boot device scsi id & lun */
1209 /* high nibble is lun */
1210 /* low nibble is scsi id */
1212 uchar termination_se
; /* 11 0 - automatic */
1213 /* 1 - low off / high off */
1214 /* 2 - low off / high on */
1215 /* 3 - low on / high on */
1216 /* There is no low on / high off */
1218 uchar termination_lvd
; /* 11 0 - automatic */
1219 /* 1 - low off / high off */
1220 /* 2 - low off / high on */
1221 /* 3 - low on / high on */
1222 /* There is no low on / high off */
1224 ushort bios_ctrl
; /* 12 BIOS control bits */
1225 /* bit 0 BIOS don't act as initiator. */
1226 /* bit 1 BIOS > 1 GB support */
1227 /* bit 2 BIOS > 2 Disk Support */
1228 /* bit 3 BIOS don't support removables */
1229 /* bit 4 BIOS support bootable CD */
1230 /* bit 5 BIOS scan enabled */
1231 /* bit 6 BIOS support multiple LUNs */
1232 /* bit 7 BIOS display of message */
1233 /* bit 8 SCAM disabled */
1234 /* bit 9 Reset SCSI bus during init. */
1235 /* bit 10 Basic Integrity Checking disabled */
1236 /* bit 11 No verbose initialization. */
1237 /* bit 12 SCSI parity enabled */
1238 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1241 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1242 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1243 uchar max_host_qng
; /* 15 maximum host queueing */
1244 uchar max_dvc_qng
; /* maximum per device queuing */
1245 ushort dvc_cntl
; /* 16 control bit for driver */
1246 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1247 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1248 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1249 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1250 ushort check_sum
; /* 21 EEP check sum */
1251 uchar oem_name
[16]; /* 22 OEM name */
1252 ushort dvc_err_code
; /* 30 last device driver error code */
1253 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1254 ushort adv_err_addr
; /* 32 last uc error address */
1255 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1256 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1257 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1258 ushort reserved36
; /* 36 reserved */
1259 ushort reserved37
; /* 37 reserved */
1260 ushort reserved38
; /* 38 reserved */
1261 ushort reserved39
; /* 39 reserved */
1262 ushort reserved40
; /* 40 reserved */
1263 ushort reserved41
; /* 41 reserved */
1264 ushort reserved42
; /* 42 reserved */
1265 ushort reserved43
; /* 43 reserved */
1266 ushort reserved44
; /* 44 reserved */
1267 ushort reserved45
; /* 45 reserved */
1268 ushort reserved46
; /* 46 reserved */
1269 ushort reserved47
; /* 47 reserved */
1270 ushort reserved48
; /* 48 reserved */
1271 ushort reserved49
; /* 49 reserved */
1272 ushort reserved50
; /* 50 reserved */
1273 ushort reserved51
; /* 51 reserved */
1274 ushort reserved52
; /* 52 reserved */
1275 ushort reserved53
; /* 53 reserved */
1276 ushort reserved54
; /* 54 reserved */
1277 ushort reserved55
; /* 55 reserved */
1278 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1279 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1280 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1281 ushort subsysid
; /* 59 SubSystem ID */
1282 ushort reserved60
; /* 60 reserved */
1283 ushort reserved61
; /* 61 reserved */
1284 ushort reserved62
; /* 62 reserved */
1285 ushort reserved63
; /* 63 reserved */
1286 } ADVEEP_38C1600_CONFIG
;
1291 #define ASC_EEP_CMD_DONE 0x0200
1294 #define BIOS_CTRL_BIOS 0x0001
1295 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1296 #define BIOS_CTRL_GT_2_DISK 0x0004
1297 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1298 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1299 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1300 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1301 #define BIOS_CTRL_NO_SCAM 0x0100
1302 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1303 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1304 #define BIOS_CTRL_SCSI_PARITY 0x1000
1305 #define BIOS_CTRL_AIPP_DIS 0x2000
1307 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1309 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1316 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1318 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1321 * Byte I/O register address from base of 'iop_base'.
1323 #define IOPB_INTR_STATUS_REG 0x00
1324 #define IOPB_CHIP_ID_1 0x01
1325 #define IOPB_INTR_ENABLES 0x02
1326 #define IOPB_CHIP_TYPE_REV 0x03
1327 #define IOPB_RES_ADDR_4 0x04
1328 #define IOPB_RES_ADDR_5 0x05
1329 #define IOPB_RAM_DATA 0x06
1330 #define IOPB_RES_ADDR_7 0x07
1331 #define IOPB_FLAG_REG 0x08
1332 #define IOPB_RES_ADDR_9 0x09
1333 #define IOPB_RISC_CSR 0x0A
1334 #define IOPB_RES_ADDR_B 0x0B
1335 #define IOPB_RES_ADDR_C 0x0C
1336 #define IOPB_RES_ADDR_D 0x0D
1337 #define IOPB_SOFT_OVER_WR 0x0E
1338 #define IOPB_RES_ADDR_F 0x0F
1339 #define IOPB_MEM_CFG 0x10
1340 #define IOPB_RES_ADDR_11 0x11
1341 #define IOPB_GPIO_DATA 0x12
1342 #define IOPB_RES_ADDR_13 0x13
1343 #define IOPB_FLASH_PAGE 0x14
1344 #define IOPB_RES_ADDR_15 0x15
1345 #define IOPB_GPIO_CNTL 0x16
1346 #define IOPB_RES_ADDR_17 0x17
1347 #define IOPB_FLASH_DATA 0x18
1348 #define IOPB_RES_ADDR_19 0x19
1349 #define IOPB_RES_ADDR_1A 0x1A
1350 #define IOPB_RES_ADDR_1B 0x1B
1351 #define IOPB_RES_ADDR_1C 0x1C
1352 #define IOPB_RES_ADDR_1D 0x1D
1353 #define IOPB_RES_ADDR_1E 0x1E
1354 #define IOPB_RES_ADDR_1F 0x1F
1355 #define IOPB_DMA_CFG0 0x20
1356 #define IOPB_DMA_CFG1 0x21
1357 #define IOPB_TICKLE 0x22
1358 #define IOPB_DMA_REG_WR 0x23
1359 #define IOPB_SDMA_STATUS 0x24
1360 #define IOPB_SCSI_BYTE_CNT 0x25
1361 #define IOPB_HOST_BYTE_CNT 0x26
1362 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1363 #define IOPB_BYTE_TO_XFER_0 0x28
1364 #define IOPB_BYTE_TO_XFER_1 0x29
1365 #define IOPB_BYTE_TO_XFER_2 0x2A
1366 #define IOPB_BYTE_TO_XFER_3 0x2B
1367 #define IOPB_ACC_GRP 0x2C
1368 #define IOPB_RES_ADDR_2D 0x2D
1369 #define IOPB_DEV_ID 0x2E
1370 #define IOPB_RES_ADDR_2F 0x2F
1371 #define IOPB_SCSI_DATA 0x30
1372 #define IOPB_RES_ADDR_31 0x31
1373 #define IOPB_RES_ADDR_32 0x32
1374 #define IOPB_SCSI_DATA_HSHK 0x33
1375 #define IOPB_SCSI_CTRL 0x34
1376 #define IOPB_RES_ADDR_35 0x35
1377 #define IOPB_RES_ADDR_36 0x36
1378 #define IOPB_RES_ADDR_37 0x37
1379 #define IOPB_RAM_BIST 0x38
1380 #define IOPB_PLL_TEST 0x39
1381 #define IOPB_PCI_INT_CFG 0x3A
1382 #define IOPB_RES_ADDR_3B 0x3B
1383 #define IOPB_RFIFO_CNT 0x3C
1384 #define IOPB_RES_ADDR_3D 0x3D
1385 #define IOPB_RES_ADDR_3E 0x3E
1386 #define IOPB_RES_ADDR_3F 0x3F
1389 * Word I/O register address from base of 'iop_base'.
1391 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1392 #define IOPW_CTRL_REG 0x02 /* CC */
1393 #define IOPW_RAM_ADDR 0x04 /* LA */
1394 #define IOPW_RAM_DATA 0x06 /* LD */
1395 #define IOPW_RES_ADDR_08 0x08
1396 #define IOPW_RISC_CSR 0x0A /* CSR */
1397 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1398 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1399 #define IOPW_RES_ADDR_10 0x10
1400 #define IOPW_SEL_MASK 0x12 /* SM */
1401 #define IOPW_RES_ADDR_14 0x14
1402 #define IOPW_FLASH_ADDR 0x16 /* FA */
1403 #define IOPW_RES_ADDR_18 0x18
1404 #define IOPW_EE_CMD 0x1A /* EC */
1405 #define IOPW_EE_DATA 0x1C /* ED */
1406 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1407 #define IOPW_RES_ADDR_20 0x20
1408 #define IOPW_Q_BASE 0x22 /* QB */
1409 #define IOPW_QP 0x24 /* QP */
1410 #define IOPW_IX 0x26 /* IX */
1411 #define IOPW_SP 0x28 /* SP */
1412 #define IOPW_PC 0x2A /* PC */
1413 #define IOPW_RES_ADDR_2C 0x2C
1414 #define IOPW_RES_ADDR_2E 0x2E
1415 #define IOPW_SCSI_DATA 0x30 /* SD */
1416 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1417 #define IOPW_SCSI_CTRL 0x34 /* SC */
1418 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1419 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1420 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1421 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1422 #define IOPW_RES_ADDR_3C 0x3C
1423 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1426 * Doubleword I/O register address from base of 'iop_base'.
1428 #define IOPDW_RES_ADDR_0 0x00
1429 #define IOPDW_RAM_DATA 0x04
1430 #define IOPDW_RES_ADDR_8 0x08
1431 #define IOPDW_RES_ADDR_C 0x0C
1432 #define IOPDW_RES_ADDR_10 0x10
1433 #define IOPDW_COMMA 0x14
1434 #define IOPDW_COMMB 0x18
1435 #define IOPDW_RES_ADDR_1C 0x1C
1436 #define IOPDW_SDMA_ADDR0 0x20
1437 #define IOPDW_SDMA_ADDR1 0x24
1438 #define IOPDW_SDMA_COUNT 0x28
1439 #define IOPDW_SDMA_ERROR 0x2C
1440 #define IOPDW_RDMA_ADDR0 0x30
1441 #define IOPDW_RDMA_ADDR1 0x34
1442 #define IOPDW_RDMA_COUNT 0x38
1443 #define IOPDW_RDMA_ERROR 0x3C
1445 #define ADV_CHIP_ID_BYTE 0x25
1446 #define ADV_CHIP_ID_WORD 0x04C1
1448 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1449 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1450 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1451 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1452 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1453 #define ADV_INTR_ENABLE_RST_INTR 0x20
1454 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1455 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1457 #define ADV_INTR_STATUS_INTRA 0x01
1458 #define ADV_INTR_STATUS_INTRB 0x02
1459 #define ADV_INTR_STATUS_INTRC 0x04
1461 #define ADV_RISC_CSR_STOP (0x0000)
1462 #define ADV_RISC_TEST_COND (0x2000)
1463 #define ADV_RISC_CSR_RUN (0x4000)
1464 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1466 #define ADV_CTRL_REG_HOST_INTR 0x0100
1467 #define ADV_CTRL_REG_SEL_INTR 0x0200
1468 #define ADV_CTRL_REG_DPR_INTR 0x0400
1469 #define ADV_CTRL_REG_RTA_INTR 0x0800
1470 #define ADV_CTRL_REG_RMA_INTR 0x1000
1471 #define ADV_CTRL_REG_RES_BIT14 0x2000
1472 #define ADV_CTRL_REG_DPE_INTR 0x4000
1473 #define ADV_CTRL_REG_POWER_DONE 0x8000
1474 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1476 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1477 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1478 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1479 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1480 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1482 #define ADV_TICKLE_NOP 0x00
1483 #define ADV_TICKLE_A 0x01
1484 #define ADV_TICKLE_B 0x02
1485 #define ADV_TICKLE_C 0x03
1487 #define AdvIsIntPending(port) \
1488 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1491 * SCSI_CFG0 Register bit definitions
1493 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1494 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1495 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1496 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1498 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1499 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1500 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1503 #define OUR_ID 0x000F /* SCSI ID */
1506 * SCSI_CFG1 Register bit definitions
1508 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1509 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1511 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1512 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1513 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1516 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1517 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1518 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1519 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1520 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1521 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1522 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1525 * Addendum for ASC-38C0800 Chip
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1535 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1536 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1537 #define HVD 0x1000 /* HVD Device Detect */
1538 #define LVD 0x0800 /* LVD Device Detect */
1539 #define SE 0x0400 /* SE Device Detect */
1540 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1541 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1542 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1543 #define TERM_SE 0x0030 /* SE Termination Bits */
1544 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1545 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1546 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1547 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1548 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1549 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1550 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1551 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1553 #define CABLE_ILLEGAL_A 0x7
1554 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1556 #define CABLE_ILLEGAL_B 0xB
1557 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1560 * MEM_CFG Register bit definitions
1562 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1563 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1564 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1565 #define RAM_SZ_2KB 0x00 /* 2 KB */
1566 #define RAM_SZ_4KB 0x04 /* 4 KB */
1567 #define RAM_SZ_8KB 0x08 /* 8 KB */
1568 #define RAM_SZ_16KB 0x0C /* 16 KB */
1569 #define RAM_SZ_32KB 0x10 /* 32 KB */
1570 #define RAM_SZ_64KB 0x14 /* 64 KB */
1573 * DMA_CFG0 Register bit definitions
1575 * This register is only accessible to the host.
1577 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1578 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1579 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1580 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1581 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1582 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1583 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1584 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1585 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1586 #define START_CTL 0x0C /* DMA start conditions */
1587 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1588 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1589 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1590 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1591 #define READ_CMD 0x03 /* Memory Read Method */
1592 #define READ_CMD_MR 0x00 /* Memory Read */
1593 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1594 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1597 * ASC-38C0800 RAM BIST Register bit definitions
1599 #define RAM_TEST_MODE 0x80
1600 #define PRE_TEST_MODE 0x40
1601 #define NORMAL_MODE 0x00
1602 #define RAM_TEST_DONE 0x10
1603 #define RAM_TEST_STATUS 0x0F
1604 #define RAM_TEST_HOST_ERROR 0x08
1605 #define RAM_TEST_INTRAM_ERROR 0x04
1606 #define RAM_TEST_RISC_ERROR 0x02
1607 #define RAM_TEST_SCSI_ERROR 0x01
1608 #define RAM_TEST_SUCCESS 0x00
1609 #define PRE_TEST_VALUE 0x05
1610 #define NORMAL_VALUE 0x00
1613 * ASC38C1600 Definitions
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1618 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1626 #define TOTEMPOLE 0x02
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1640 * Adv Library Status Definitions
1644 #define ADV_SUCCESS 1
1646 #define ADV_ERROR (-1)
1649 * ADV_DVC_VAR 'warn_code' values
1651 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1652 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1653 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1654 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1656 #define ADV_MAX_TID 15 /* max. target identifier */
1657 #define ADV_MAX_LUN 7 /* max. logical unit number */
1660 * Fixed locations of microcode operating variables.
1662 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1663 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1664 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1665 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1666 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1667 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1668 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1669 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1670 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1671 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1672 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1673 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1674 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1675 #define ASC_MC_CHIP_TYPE 0x009A
1676 #define ASC_MC_INTRB_CODE 0x009B
1677 #define ASC_MC_WDTR_ABLE 0x009C
1678 #define ASC_MC_SDTR_ABLE 0x009E
1679 #define ASC_MC_TAGQNG_ABLE 0x00A0
1680 #define ASC_MC_DISC_ENABLE 0x00A2
1681 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1682 #define ASC_MC_IDLE_CMD 0x00A6
1683 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1684 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1685 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1686 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1687 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1688 #define ASC_MC_SDTR_DONE 0x00B6
1689 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1690 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1691 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1692 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1693 #define ASC_MC_WDTR_DONE 0x0124
1694 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1695 #define ASC_MC_ICQ 0x0160
1696 #define ASC_MC_IRQ 0x0164
1697 #define ASC_MC_PPR_ABLE 0x017A
1700 * BIOS LRAM variable absolute offsets.
1702 #define BIOS_CODESEG 0x54
1703 #define BIOS_CODELEN 0x56
1704 #define BIOS_SIGNATURE 0x58
1705 #define BIOS_VERSION 0x5A
1708 * Microcode Control Flags
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1713 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1714 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1719 #define HSHK_CFG_WIDE_XFR 0x8000
1720 #define HSHK_CFG_RATE 0x0F00
1721 #define HSHK_CFG_OFFSET 0x001F
1723 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1724 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1725 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1726 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1728 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1730 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1732 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1734 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1735 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1736 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1737 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1738 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1743 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1744 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1747 * All fields here are accessed by the board microcode and need to be
1750 typedef struct adv_carr_t
{
1751 ADV_VADDR carr_va
; /* Carrier Virtual Address */
1752 ADV_PADDR carr_pa
; /* Carrier Physical Address */
1753 ADV_VADDR areq_vpa
; /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1755 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1757 * next_vpa [3:1] Reserved Bits
1758 * next_vpa [0] Done Flag set in Response Queue.
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1766 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0
1768 #define ASC_RQ_DONE 0x00000001
1769 #define ASC_RQ_GOOD 0x00000002
1770 #define ASC_CQ_STOPPER 0x00000000
1772 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1774 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1775 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1777 #define ADV_CARRIER_BUFSIZE \
1778 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1786 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */
1787 #define ADV_SCSIQ_DONE 0x02 /* request done */
1788 #define ADV_DONT_RETRY 0x08 /* don't do retry */
1790 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1791 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1792 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1795 * Adapter temporary configuration structure
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1800 * Field naming convention:
1802 * *_enable indicates the field enables or disables a feature. The
1803 * value of the field is never reset.
1805 typedef struct adv_dvc_cfg
{
1806 ushort disc_enable
; /* enable disconnection */
1807 uchar chip_version
; /* chip version */
1808 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809 ushort control_flag
; /* Microcode Control Flag */
1810 ushort mcode_date
; /* Microcode date */
1811 ushort mcode_version
; /* Microcode version */
1812 ushort serial1
; /* EEPROM serial number word 1 */
1813 ushort serial2
; /* EEPROM serial number word 2 */
1814 ushort serial3
; /* EEPROM serial number word 3 */
1818 struct adv_scsi_req_q
;
1820 typedef struct asc_sg_block
{
1824 uchar sg_cnt
; /* Valid entries in block. */
1825 ADV_PADDR sg_ptr
; /* Pointer to next sg block. */
1827 ADV_PADDR sg_addr
; /* SG element address. */
1828 ADV_DCNT sg_count
; /* SG element count. */
1829 } sg_list
[NO_OF_SG_PER_BLOCK
];
1833 * ADV_SCSI_REQ_Q - microcode request structure
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1840 * All fields accessed by microcode must be maintained in little_endian
1843 typedef struct adv_scsi_req_q
{
1844 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1846 uchar target_id
; /* Device target identifier. */
1847 uchar target_lun
; /* Device target logical unit number. */
1848 ADV_PADDR data_addr
; /* Data buffer physical address. */
1849 ADV_DCNT data_cnt
; /* Data count. Ucode sets to residual. */
1850 ADV_PADDR sense_addr
;
1854 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1856 uchar done_status
; /* Completion status. */
1857 uchar scsi_status
; /* SCSI status byte. */
1858 uchar host_status
; /* Ucode host status. */
1859 uchar sg_working_ix
;
1860 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1861 ADV_PADDR sg_real_addr
; /* SG list physical address. */
1862 ADV_PADDR scsiq_rptr
;
1863 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1864 ADV_VADDR scsiq_ptr
;
1867 * End of microcode structure - 60 bytes. The rest of the structure
1868 * is used by the Adv Library and ignored by the microcode.
1871 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1872 char *vdata_addr
; /* Data buffer virtual address. */
1874 uchar pad
[2]; /* Pad out to a word boundary. */
1878 * The following two structures are used to process Wide Board requests.
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1890 * Both structures must be 32 byte aligned.
1892 typedef struct adv_sgblk
{
1893 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1894 uchar align
[32]; /* Sgblock structure padding. */
1895 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1898 typedef struct adv_req
{
1899 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1900 uchar align
[32]; /* Request structure padding. */
1901 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1902 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1903 struct adv_req
*next_reqp
; /* Next Request Structure. */
1907 * Adapter operation variable structure.
1909 * One structure is required per host adapter.
1911 * Field naming convention:
1913 * *_able indicates both whether a feature should be enabled or disabled
1914 * and whether a device isi capable of the feature. At initialization
1915 * this field may be set, but later if a device is found to be incapable
1916 * of the feature, the field is cleared.
1918 typedef struct adv_dvc_var
{
1919 AdvPortAddr iop_base
; /* I/O port address */
1920 ushort err_code
; /* fatal error code */
1921 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1922 ushort wdtr_able
; /* try WDTR for a device */
1923 ushort sdtr_able
; /* try SDTR for a device */
1924 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1925 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1926 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1927 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1928 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1929 ushort tagqng_able
; /* try tagged queuing with a device */
1930 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1931 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1932 ushort start_motor
; /* start motor command allowed */
1933 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1934 uchar chip_no
; /* should be assigned by caller */
1935 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1936 ushort no_scam
; /* scam_tolerant of EEPROM */
1937 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1938 uchar chip_scsi_id
; /* chip SCSI target ID */
1940 uchar bist_err_code
;
1941 ADV_CARR_T
*carrier_buf
;
1942 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1943 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1944 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1945 ushort carr_pending_cnt
; /* Count of pending carriers. */
1946 struct adv_req
*orig_reqp
; /* adv_req_t memory block. */
1948 * Note: The following fields will not be used after initialization. The
1949 * driver may discard the buffer after initialization is done.
1951 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1955 * Microcode idle loop commands
1957 #define IDLE_CMD_COMPLETED 0
1958 #define IDLE_CMD_STOP_CHIP 0x0001
1959 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1960 #define IDLE_CMD_SEND_INT 0x0004
1961 #define IDLE_CMD_ABORT 0x0008
1962 #define IDLE_CMD_DEVICE_RESET 0x0010
1963 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1965 #define IDLE_CMD_SCSIREQ 0x0080
1967 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1968 #define IDLE_CMD_STATUS_FAILURE 0x0002
1971 * AdvSendIdleCmd() flag definitions.
1973 #define ADV_NOWAIT 0x01
1976 * Wait loop time out values.
1978 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1979 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1980 #define SCSI_MAX_RETRY 10 /* retry count */
1982 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1983 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1984 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1985 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1987 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1989 /* Read byte from a register. */
1990 #define AdvReadByteRegister(iop_base, reg_off) \
1991 (ADV_MEM_READB((iop_base) + (reg_off)))
1993 /* Write byte to a register. */
1994 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1997 /* Read word (2 bytes) from a register. */
1998 #define AdvReadWordRegister(iop_base, reg_off) \
1999 (ADV_MEM_READW((iop_base) + (reg_off)))
2001 /* Write word (2 bytes) to a register. */
2002 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2003 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2005 /* Write dword (4 bytes) to a register. */
2006 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2009 /* Read byte from LRAM. */
2010 #define AdvReadByteLram(iop_base, addr, byte) \
2012 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2016 /* Write byte to LRAM. */
2017 #define AdvWriteByteLram(iop_base, addr, byte) \
2018 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2021 /* Read word (2 bytes) from LRAM. */
2022 #define AdvReadWordLram(iop_base, addr, word) \
2024 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2028 /* Write word (2 bytes) to LRAM. */
2029 #define AdvWriteWordLram(iop_base, addr, word) \
2030 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2033 /* Write little-endian double word (4 bytes) to LRAM */
2034 /* Because of unspecified C language ordering don't use auto-increment. */
2035 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2043 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044 #define AdvReadWordAutoIncLram(iop_base) \
2045 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2047 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048 #define AdvWriteWordAutoIncLram(iop_base, word) \
2049 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2052 * Define macro to check for Condor signature.
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2057 #define AdvFindSignature(iop_base) \
2058 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059 ADV_CHIP_ID_BYTE) && \
2060 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2066 * The second parameter 'bus_type' is currently unused.
2068 #define AdvGetChipVersion(iop_base, bus_type) \
2069 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2080 * ADV_TRUE(1) - Queue was successfully aborted.
2081 * ADV_FALSE(0) - Queue was not found on the active queue list.
2083 #define AdvAbortQueue(asc_dvc, scsiq) \
2084 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2088 * Send a Bus Device Reset Message to the specified target ID.
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2094 * ADV_TRUE(1) - All requests on the target are purged.
2095 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2098 #define AdvResetDevice(asc_dvc, target_id) \
2099 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100 (ADV_DCNT) (target_id))
2103 * SCSI Wide Type definition.
2105 #define ADV_SCSI_BIT_ID_TYPE ushort
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2110 #define ADV_SCAN_LUN 0x01
2111 #define ADV_CAPINFO_NOLUN 0x02
2114 * Convert target id to target id bit mask.
2116 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2122 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2123 #define QD_NO_ERROR 0x01
2124 #define QD_ABORTED_BY_HOST 0x02
2125 #define QD_WITH_ERROR 0x04
2127 #define QHSTA_NO_ERROR 0x00
2128 #define QHSTA_M_SEL_TIMEOUT 0x11
2129 #define QHSTA_M_DATA_OVER_RUN 0x12
2130 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131 #define QHSTA_M_QUEUE_ABORTED 0x15
2132 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2133 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2134 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2135 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2136 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2137 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2138 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2139 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2141 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2142 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2143 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2144 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2145 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2146 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2147 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2148 #define QHSTA_M_WTM_TIMEOUT 0x41
2149 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2150 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2151 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2153 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2154 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2156 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7)
2158 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF)
2159 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2162 * Total contiguous memory needed for driver SG blocks.
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2169 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2170 (sizeof(ADV_SG_BLOCK) * \
2171 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2173 /* struct asc_board flags */
2174 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2176 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2178 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2180 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2182 #ifdef CONFIG_PROC_FS
2183 /* /proc/scsi/advansys/[0...] related definitions */
2184 #define ASC_PRTBUF_SIZE 2048
2185 #define ASC_PRTLINE_SIZE 160
2187 #define ASC_PRT_NEXT() \
2191 if (leftlen == 0) { \
2196 #endif /* CONFIG_PROC_FS */
2198 /* Asc Library return codes */
2201 #define ASC_NOERROR 1
2203 #define ASC_ERROR (-1)
2205 /* struct scsi_cmnd function return codes */
2206 #define STATUS_BYTE(byte) (byte)
2207 #define MSG_BYTE(byte) ((byte) << 8)
2208 #define HOST_BYTE(byte) ((byte) << 16)
2209 #define DRIVER_BYTE(byte) ((byte) << 24)
2211 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212 #ifndef ADVANSYS_STATS
2213 #define ASC_STATS_ADD(shost, counter, count)
2214 #else /* ADVANSYS_STATS */
2215 #define ASC_STATS_ADD(shost, counter, count) \
2216 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217 #endif /* ADVANSYS_STATS */
2219 /* If the result wraps when calculating tenths, return 0. */
2220 #define ASC_TENTHS(num, den) \
2221 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2225 * Display a message to the console.
2227 #define ASC_PRINT(s) \
2229 printk("advansys: "); \
2233 #define ASC_PRINT1(s, a1) \
2235 printk("advansys: "); \
2236 printk((s), (a1)); \
2239 #define ASC_PRINT2(s, a1, a2) \
2241 printk("advansys: "); \
2242 printk((s), (a1), (a2)); \
2245 #define ASC_PRINT3(s, a1, a2, a3) \
2247 printk("advansys: "); \
2248 printk((s), (a1), (a2), (a3)); \
2251 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2253 printk("advansys: "); \
2254 printk((s), (a1), (a2), (a3), (a4)); \
2257 #ifndef ADVANSYS_DEBUG
2259 #define ASC_DBG(lvl, s...)
2260 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2270 #else /* ADVANSYS_DEBUG */
2273 * Debugging Message Levels:
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2279 #define ASC_DBG(lvl, format, arg...) { \
2280 if (asc_dbglvl >= (lvl)) \
2281 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2282 __func__ , ## arg); \
2285 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2287 if (asc_dbglvl >= (lvl)) { \
2288 asc_prt_scsi_host(s); \
2292 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2294 if (asc_dbglvl >= (lvl)) { \
2295 asc_prt_asc_scsi_q(scsiqp); \
2299 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2301 if (asc_dbglvl >= (lvl)) { \
2302 asc_prt_asc_qdone_info(qdone); \
2306 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2308 if (asc_dbglvl >= (lvl)) { \
2309 asc_prt_adv_scsi_req_q(scsiqp); \
2313 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2315 if (asc_dbglvl >= (lvl)) { \
2316 asc_prt_hex((name), (start), (length)); \
2320 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2323 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2326 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328 #endif /* ADVANSYS_DEBUG */
2330 #ifdef ADVANSYS_STATS
2332 /* Per board statistics structure */
2334 /* Driver Entrypoint Statistics */
2335 ADV_DCNT queuecommand
; /* # calls to advansys_queuecommand() */
2336 ADV_DCNT reset
; /* # calls to advansys_eh_bus_reset() */
2337 ADV_DCNT biosparam
; /* # calls to advansys_biosparam() */
2338 ADV_DCNT interrupt
; /* # advansys_interrupt() calls */
2339 ADV_DCNT callback
; /* # calls to asc/adv_isr_callback() */
2340 ADV_DCNT done
; /* # calls to request's scsi_done function */
2341 ADV_DCNT build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2342 ADV_DCNT adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2343 ADV_DCNT adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345 ADV_DCNT exe_noerror
; /* # ASC_NOERROR returns. */
2346 ADV_DCNT exe_busy
; /* # ASC_BUSY returns. */
2347 ADV_DCNT exe_error
; /* # ASC_ERROR returns. */
2348 ADV_DCNT exe_unknown
; /* # unknown returns. */
2349 /* Data Transfer Statistics */
2350 ADV_DCNT xfer_cnt
; /* # I/O requests received */
2351 ADV_DCNT xfer_elem
; /* # scatter-gather elements */
2352 ADV_DCNT xfer_sect
; /* # 512-byte blocks */
2354 #endif /* ADVANSYS_STATS */
2357 * Structure allocated for each board.
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2365 uint flags
; /* Board flags */
2368 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2369 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2372 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2373 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2375 ushort asc_n_io_port
; /* Number I/O ports. */
2376 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2377 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2378 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2379 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2381 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2382 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2383 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2384 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2386 ulong last_reset
; /* Saved last reset time */
2387 /* /proc/scsi/advansys/[0...] */
2388 char *prtbuf
; /* /proc print buffer */
2389 #ifdef ADVANSYS_STATS
2390 struct asc_stats asc_stats
; /* Board statistics */
2391 #endif /* ADVANSYS_STATS */
2393 * The following fields are used only for Narrow Boards.
2395 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2397 * The following fields are used only for Wide Boards.
2399 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2400 ushort ioport
; /* I/O Port address. */
2401 adv_req_t
*adv_reqp
; /* Request structures. */
2402 adv_sgblk_t
*adv_sgblkp
; /* Scatter-gather structures. */
2403 ushort bios_signature
; /* BIOS Signature. */
2404 ushort bios_version
; /* BIOS Version. */
2405 ushort bios_codeseg
; /* BIOS Code Segment. */
2406 ushort bios_codelen
; /* BIOS Code Segment Length. */
2409 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410 dvc_var.asc_dvc_var)
2411 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412 dvc_var.adv_dvc_var)
2413 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2415 #ifdef ADVANSYS_DEBUG
2416 static int asc_dbglvl
= 3;
2419 * asc_prt_asc_dvc_var()
2421 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2423 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2425 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2428 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2429 (unsigned)h
->init_sdtr
);
2431 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2433 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2434 (unsigned)h
->chip_no
);
2436 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2438 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2440 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2442 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2443 (unsigned)h
->in_critical_cnt
);
2445 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2447 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2448 (unsigned)h
->pci_fix_asyn_xfer
);
2450 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2454 * asc_prt_asc_dvc_cfg()
2456 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2458 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2460 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2462 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463 h
->disc_enable
, h
->sdtr_enable
);
2465 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466 "chip_version %d,\n", h
->chip_scsi_id
, h
->isa_dma_speed
,
2467 h
->isa_dma_channel
, h
->chip_version
);
2469 printk(" mcode_date 0x%x, mcode_version %d\n",
2470 h
->mcode_date
, h
->mcode_version
);
2474 * asc_prt_adv_dvc_var()
2476 * Display an ADV_DVC_VAR structure.
2478 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2480 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2482 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2485 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2486 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2488 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2491 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2493 (ulong
)h
->carr_freelist
);
2495 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n",
2496 (ulong
)h
->icq_sp
, (ulong
)h
->irq_sp
);
2498 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2499 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2501 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2502 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2506 * asc_prt_adv_dvc_cfg()
2508 * Display an ADV_DVC_CFG structure.
2510 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2512 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2514 printk(" disc_enable 0x%x, termination 0x%x\n",
2515 h
->disc_enable
, h
->termination
);
2517 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2518 h
->chip_version
, h
->mcode_date
);
2520 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2521 h
->mcode_version
, h
->control_flag
);
2525 * asc_prt_scsi_host()
2527 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2529 struct asc_board
*boardp
= shost_priv(s
);
2531 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2532 printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533 s
->host_busy
, s
->host_no
, (unsigned)s
->last_reset
);
2535 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2538 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2541 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542 s
->cmd_per_lun
, s
->sg_tablesize
, s
->unchecked_isa_dma
);
2544 if (ASC_NARROW_BOARD(boardp
)) {
2545 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2546 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2548 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2549 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2559 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2566 printk("%s: (%d bytes)\n", f
, l
);
2568 for (i
= 0; i
< l
; i
+= 32) {
2570 /* Display a maximum of 8 double-words per line. */
2571 if ((k
= (l
- i
) / 4) >= 8) {
2578 for (j
= 0; j
< k
; j
++) {
2579 printk(" %2.2X%2.2X%2.2X%2.2X",
2580 (unsigned)s
[i
+ (j
* 4)],
2581 (unsigned)s
[i
+ (j
* 4) + 1],
2582 (unsigned)s
[i
+ (j
* 4) + 2],
2583 (unsigned)s
[i
+ (j
* 4) + 3]);
2591 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2594 printk(" %2.2X%2.2X",
2595 (unsigned)s
[i
+ (j
* 4)],
2596 (unsigned)s
[i
+ (j
* 4) + 1]);
2599 printk(" %2.2X%2.2X%2.2X",
2600 (unsigned)s
[i
+ (j
* 4) + 1],
2601 (unsigned)s
[i
+ (j
* 4) + 2],
2602 (unsigned)s
[i
+ (j
* 4) + 3]);
2611 * asc_prt_asc_scsi_q()
2613 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2618 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2621 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622 q
->q2
.target_ix
, q
->q1
.target_lun
, (ulong
)q
->q2
.srb_ptr
,
2626 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2628 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2629 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2631 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2633 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2637 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2638 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2640 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2641 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2643 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2650 * asc_prt_asc_qdone_info()
2652 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2654 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2655 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656 (ulong
)q
->d2
.srb_ptr
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2659 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2664 * asc_prt_adv_sgblock()
2666 * Display an ADV_SG_BLOCK structure.
2668 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2672 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673 (ulong
)b
, sgblockno
);
2674 printk(" sg_cnt %u, sg_ptr 0x%lx\n",
2675 b
->sg_cnt
, (ulong
)le32_to_cpu(b
->sg_ptr
));
2676 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2678 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2679 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2680 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681 i
, (ulong
)b
->sg_list
[i
].sg_addr
,
2682 (ulong
)b
->sg_list
[i
].sg_count
);
2687 * asc_prt_adv_scsi_req_q()
2689 * Display an ADV_SCSI_REQ_Q structure.
2691 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2694 struct asc_sg_block
*sg_ptr
;
2696 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2698 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699 q
->target_id
, q
->target_lun
, (ulong
)q
->srb_ptr
, q
->a_flag
);
2701 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
), (ulong
)q
->vdata_addr
);
2704 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705 (ulong
)le32_to_cpu(q
->data_cnt
),
2706 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2709 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2712 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2713 q
->sg_working_ix
, q
->target_cmd
);
2715 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2717 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2719 /* Display the request's ADV_SG_BLOCK structures. */
2720 if (q
->sg_list_ptr
!= NULL
) {
2724 * 'sg_ptr' is a physical address. Convert it to a virtual
2725 * address by indexing 'sg_blk_cnt' into the virtual address
2726 * array 'sg_list_ptr'.
2728 * XXX - Assumes all SG physical blocks are virtually contiguous.
2731 &(((ADV_SG_BLOCK
*)(q
->sg_list_ptr
))[sg_blk_cnt
]);
2732 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2733 if (sg_ptr
->sg_ptr
== 0) {
2740 #endif /* ADVANSYS_DEBUG */
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'. I don't know what it stands for. The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt. Now the driver keeps a per-host map of integers to
2747 * pointers. It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2753 static u32
advansys_ptr_to_srb(struct asc_dvc_var
*asc_dvc
, void *ptr
)
2758 for (i
= 0; i
< asc_dvc
->ptr_map_count
; i
++) {
2759 if (!asc_dvc
->ptr_map
[i
])
2763 if (asc_dvc
->ptr_map_count
== 0)
2764 asc_dvc
->ptr_map_count
= 1;
2766 asc_dvc
->ptr_map_count
*= 2;
2768 new_ptr
= krealloc(asc_dvc
->ptr_map
,
2769 asc_dvc
->ptr_map_count
* sizeof(void *), GFP_ATOMIC
);
2772 asc_dvc
->ptr_map
= new_ptr
;
2774 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr
, i
);
2775 asc_dvc
->ptr_map
[i
] = ptr
;
2779 static void * advansys_srb_to_ptr(struct asc_dvc_var
*asc_dvc
, u32 srb
)
2784 if (srb
>= asc_dvc
->ptr_map_count
) {
2785 printk("advansys: bad SRB %u, max %u\n", srb
,
2786 asc_dvc
->ptr_map_count
);
2789 ptr
= asc_dvc
->ptr_map
[srb
];
2790 asc_dvc
->ptr_map
[srb
] = NULL
;
2791 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr
, srb
);
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2804 static const char *advansys_info(struct Scsi_Host
*shost
)
2806 static char info
[ASC_INFO_SIZE
];
2807 struct asc_board
*boardp
= shost_priv(shost
);
2808 ASC_DVC_VAR
*asc_dvc_varp
;
2809 ADV_DVC_VAR
*adv_dvc_varp
;
2811 char *widename
= NULL
;
2813 if (ASC_NARROW_BOARD(boardp
)) {
2814 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2815 ASC_DBG(1, "begin\n");
2816 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
2817 if ((asc_dvc_varp
->bus_type
& ASC_IS_ISAPNP
) ==
2819 busname
= "ISA PnP";
2824 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825 ASC_VERSION
, busname
,
2826 (ulong
)shost
->io_port
,
2827 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2828 boardp
->irq
, shost
->dma_channel
);
2830 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2832 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2834 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2835 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2836 == ASC_IS_PCI_ULTRA
) {
2837 busname
= "PCI Ultra";
2843 shost_printk(KERN_ERR
, shost
, "unknown bus "
2844 "type %d\n", asc_dvc_varp
->bus_type
);
2847 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2849 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2854 * Wide Adapter Information
2856 * Memory-mapped I/O is used instead of I/O space to access
2857 * the adapter, but display the I/O Port range. The Memory
2858 * I/O address is displayed through the driver /proc file.
2860 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2861 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2862 widename
= "Ultra-Wide";
2863 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2864 widename
= "Ultra2-Wide";
2866 widename
= "Ultra3-Wide";
2869 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2871 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2873 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2874 ASC_DBG(1, "end\n");
2878 #ifdef CONFIG_PROC_FS
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2890 static int asc_prt_line(char *buf
, int buflen
, char *fmt
, ...)
2894 char s
[ASC_PRTLINE_SIZE
];
2896 va_start(args
, fmt
);
2897 ret
= vsprintf(s
, fmt
, args
);
2898 BUG_ON(ret
>= ASC_PRTLINE_SIZE
);
2903 ret
= min(buflen
, ret
);
2904 memcpy(buf
, s
, ret
);
2911 * asc_prt_board_devices()
2913 * Print driver information for devices attached to the board.
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2921 static int asc_prt_board_devices(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2923 struct asc_board
*boardp
= shost_priv(shost
);
2933 len
= asc_prt_line(cp
, leftlen
,
2934 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2938 if (ASC_NARROW_BOARD(boardp
)) {
2939 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2941 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2944 len
= asc_prt_line(cp
, leftlen
, "Target IDs Detected:");
2946 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2947 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) {
2948 len
= asc_prt_line(cp
, leftlen
, " %X,", i
);
2952 len
= asc_prt_line(cp
, leftlen
, " (%X=Host Adapter)\n", chip_scsi_id
);
2959 * Display Wide Board BIOS Information.
2961 static int asc_prt_adv_bios(struct Scsi_Host
*shost
, char *cp
, int cplen
)
2963 struct asc_board
*boardp
= shost_priv(shost
);
2967 ushort major
, minor
, letter
;
2972 len
= asc_prt_line(cp
, leftlen
, "\nROM BIOS Version: ");
2976 * If the BIOS saved a valid signature, then fill in
2977 * the BIOS code segment base address.
2979 if (boardp
->bios_signature
!= 0x55AA) {
2980 len
= asc_prt_line(cp
, leftlen
, "Disabled or Pre-3.1\n");
2982 len
= asc_prt_line(cp
, leftlen
,
2983 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2985 len
= asc_prt_line(cp
, leftlen
,
2986 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2989 major
= (boardp
->bios_version
>> 12) & 0xF;
2990 minor
= (boardp
->bios_version
>> 8) & 0xF;
2991 letter
= (boardp
->bios_version
& 0xFF);
2993 len
= asc_prt_line(cp
, leftlen
, "%d.%d%c\n",
2995 letter
>= 26 ? '?' : letter
+ 'A');
2999 * Current available ROM BIOS release is 3.1I for UW
3000 * and 3.2I for U2W. This code doesn't differentiate
3001 * UW and U2W boards.
3003 if (major
< 3 || (major
<= 3 && minor
< 1) ||
3004 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
3005 len
= asc_prt_line(cp
, leftlen
,
3006 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3008 len
= asc_prt_line(cp
, leftlen
,
3009 "ftp://ftp.connectcom.net/pub\n");
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3021 * Serial Number consists fo 12 alpha-numeric digits.
3023 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
3024 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
3025 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
3026 * 5 - Product revision (A-J) Word0: " "
3028 * Signature Word1: 15-9 (7 bits)
3029 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
3032 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3034 * Note 1: Only production cards will have a serial number.
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3040 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
3044 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
3048 * First word - 6 digits.
3052 /* Product type - 1st digit. */
3053 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
3054 /* Product type is P=Prototype */
3059 /* Manufacturing location - 2nd digit. */
3060 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
3062 /* Product ID - 3rd, 4th digits. */
3064 *cp
++ = '0' + (num
/ 100);
3066 *cp
++ = '0' + (num
/ 10);
3068 /* Product revision - 5th digit. */
3069 *cp
++ = 'A' + (num
% 10);
3079 * If bit 15 of third word is set, then the
3080 * last digit of the year is greater than 7.
3082 if (serialnum
[2] & 0x8000) {
3083 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
3085 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
3088 /* Week of year - 7th, 8th digits. */
3090 *cp
++ = '0' + num
/ 10;
3097 w
= serialnum
[2] & 0x7FFF;
3099 /* Serial number - 9th digit. */
3100 *cp
++ = 'A' + (w
/ 1000);
3102 /* 10th, 11th, 12th digits. */
3104 *cp
++ = '0' + num
/ 100;
3106 *cp
++ = '0' + num
/ 10;
3110 *cp
= '\0'; /* Null Terminate the string. */
3116 * asc_prt_asc_board_eeprom()
3118 * Print board EEPROM configuration.
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3126 static int asc_prt_asc_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3128 struct asc_board
*boardp
= shost_priv(shost
);
3129 ASC_DVC_VAR
*asc_dvc_varp
;
3136 int isa_dma_speed
[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137 #endif /* CONFIG_ISA */
3138 uchar serialstr
[13];
3140 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
3141 ep
= &boardp
->eep_config
.asc_eep
;
3146 len
= asc_prt_line(cp
, leftlen
,
3147 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3151 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
3154 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3158 if (ep
->adapter_info
[5] == 0xBB) {
3159 len
= asc_prt_line(cp
, leftlen
,
3160 " Default Settings Used for EEPROM-less Adapter.\n");
3163 len
= asc_prt_line(cp
, leftlen
,
3164 " Serial Number Signature Not Present.\n");
3169 len
= asc_prt_line(cp
, leftlen
,
3170 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
3175 len
= asc_prt_line(cp
, leftlen
,
3176 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
3179 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3181 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3182 len
= asc_prt_line(cp
, leftlen
, " %d", i
);
3185 len
= asc_prt_line(cp
, leftlen
, "\n");
3188 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3190 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3191 len
= asc_prt_line(cp
, leftlen
, " %c",
3193 disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3197 len
= asc_prt_line(cp
, leftlen
, "\n");
3200 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3202 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3203 len
= asc_prt_line(cp
, leftlen
, " %c",
3205 use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3209 len
= asc_prt_line(cp
, leftlen
, "\n");
3212 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3214 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3215 len
= asc_prt_line(cp
, leftlen
, " %c",
3217 start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3221 len
= asc_prt_line(cp
, leftlen
, "\n");
3224 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3226 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3227 len
= asc_prt_line(cp
, leftlen
, " %c",
3229 init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3233 len
= asc_prt_line(cp
, leftlen
, "\n");
3237 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
3238 len
= asc_prt_line(cp
, leftlen
,
3239 " Host ISA DMA speed: %d MB/S\n",
3240 isa_dma_speed
[ASC_EEP_GET_DMA_SPD(ep
)]);
3243 #endif /* CONFIG_ISA */
3249 * asc_prt_adv_board_eeprom()
3251 * Print board EEPROM configuration.
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3259 static int asc_prt_adv_board_eeprom(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3261 struct asc_board
*boardp
= shost_priv(shost
);
3262 ADV_DVC_VAR
*adv_dvc_varp
;
3268 uchar serialstr
[13];
3269 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
3270 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
3271 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
3274 ushort sdtr_speed
= 0;
3276 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
3277 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3278 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
3279 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3280 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
3282 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
3288 len
= asc_prt_line(cp
, leftlen
,
3289 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3293 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3294 wordp
= &ep_3550
->serial_number_word1
;
3295 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3296 wordp
= &ep_38C0800
->serial_number_word1
;
3298 wordp
= &ep_38C1600
->serial_number_word1
;
3301 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
) {
3303 asc_prt_line(cp
, leftlen
, " Serial Number: %s\n",
3307 len
= asc_prt_line(cp
, leftlen
,
3308 " Serial Number Signature Not Present.\n");
3312 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3313 len
= asc_prt_line(cp
, leftlen
,
3314 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315 ep_3550
->adapter_scsi_id
,
3316 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
3318 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3319 len
= asc_prt_line(cp
, leftlen
,
3320 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321 ep_38C0800
->adapter_scsi_id
,
3322 ep_38C0800
->max_host_qng
,
3323 ep_38C0800
->max_dvc_qng
);
3326 len
= asc_prt_line(cp
, leftlen
,
3327 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328 ep_38C1600
->adapter_scsi_id
,
3329 ep_38C1600
->max_host_qng
,
3330 ep_38C1600
->max_dvc_qng
);
3333 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3334 word
= ep_3550
->termination
;
3335 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3336 word
= ep_38C0800
->termination_lvd
;
3338 word
= ep_38C1600
->termination_lvd
;
3342 termstr
= "Low Off/High Off";
3345 termstr
= "Low Off/High On";
3348 termstr
= "Low On/High On";
3352 termstr
= "Automatic";
3356 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3357 len
= asc_prt_line(cp
, leftlen
,
3358 " termination: %u (%s), bios_ctrl: 0x%x\n",
3359 ep_3550
->termination
, termstr
,
3360 ep_3550
->bios_ctrl
);
3362 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3363 len
= asc_prt_line(cp
, leftlen
,
3364 " termination: %u (%s), bios_ctrl: 0x%x\n",
3365 ep_38C0800
->termination_lvd
, termstr
,
3366 ep_38C0800
->bios_ctrl
);
3369 len
= asc_prt_line(cp
, leftlen
,
3370 " termination: %u (%s), bios_ctrl: 0x%x\n",
3371 ep_38C1600
->termination_lvd
, termstr
,
3372 ep_38C1600
->bios_ctrl
);
3376 len
= asc_prt_line(cp
, leftlen
, " Target ID: ");
3378 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3379 len
= asc_prt_line(cp
, leftlen
, " %X", i
);
3382 len
= asc_prt_line(cp
, leftlen
, "\n");
3385 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3386 word
= ep_3550
->disc_enable
;
3387 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3388 word
= ep_38C0800
->disc_enable
;
3390 word
= ep_38C1600
->disc_enable
;
3392 len
= asc_prt_line(cp
, leftlen
, " Disconnects: ");
3394 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3395 len
= asc_prt_line(cp
, leftlen
, " %c",
3396 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3399 len
= asc_prt_line(cp
, leftlen
, "\n");
3402 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3403 word
= ep_3550
->tagqng_able
;
3404 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3405 word
= ep_38C0800
->tagqng_able
;
3407 word
= ep_38C1600
->tagqng_able
;
3409 len
= asc_prt_line(cp
, leftlen
, " Command Queuing: ");
3411 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3412 len
= asc_prt_line(cp
, leftlen
, " %c",
3413 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3416 len
= asc_prt_line(cp
, leftlen
, "\n");
3419 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3420 word
= ep_3550
->start_motor
;
3421 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3422 word
= ep_38C0800
->start_motor
;
3424 word
= ep_38C1600
->start_motor
;
3426 len
= asc_prt_line(cp
, leftlen
, " Start Motor: ");
3428 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3429 len
= asc_prt_line(cp
, leftlen
, " %c",
3430 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3433 len
= asc_prt_line(cp
, leftlen
, "\n");
3436 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3437 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3439 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3440 len
= asc_prt_line(cp
, leftlen
, " %c",
3442 sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3446 len
= asc_prt_line(cp
, leftlen
, "\n");
3450 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3451 len
= asc_prt_line(cp
, leftlen
, " Ultra Transfer: ");
3453 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3454 len
= asc_prt_line(cp
, leftlen
, " %c",
3456 ultra_able
& ADV_TID_TO_TIDMASK(i
))
3460 len
= asc_prt_line(cp
, leftlen
, "\n");
3464 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3465 word
= ep_3550
->wdtr_able
;
3466 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3467 word
= ep_38C0800
->wdtr_able
;
3469 word
= ep_38C1600
->wdtr_able
;
3471 len
= asc_prt_line(cp
, leftlen
, " Wide Transfer: ");
3473 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3474 len
= asc_prt_line(cp
, leftlen
, " %c",
3475 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3478 len
= asc_prt_line(cp
, leftlen
, "\n");
3481 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3482 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3483 len
= asc_prt_line(cp
, leftlen
,
3484 " Synchronous Transfer Speed (Mhz):\n ");
3486 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3490 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3491 } else if (i
== 4) {
3492 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3493 } else if (i
== 8) {
3494 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3495 } else if (i
== 12) {
3496 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3498 switch (sdtr_speed
& ADV_MAX_TID
) {
3521 len
= asc_prt_line(cp
, leftlen
, "%X:%s ", i
, speed_str
);
3524 len
= asc_prt_line(cp
, leftlen
, "\n ");
3529 len
= asc_prt_line(cp
, leftlen
, "\n");
3537 * asc_prt_driver_conf()
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3545 static int asc_prt_driver_conf(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3547 struct asc_board
*boardp
= shost_priv(shost
);
3556 len
= asc_prt_line(cp
, leftlen
,
3557 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3561 len
= asc_prt_line(cp
, leftlen
,
3562 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563 shost
->host_busy
, shost
->last_reset
, shost
->max_id
,
3564 shost
->max_lun
, shost
->max_channel
);
3567 len
= asc_prt_line(cp
, leftlen
,
3568 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3570 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3573 len
= asc_prt_line(cp
, leftlen
,
3574 " unchecked_isa_dma %d, use_clustering %d\n",
3575 shost
->unchecked_isa_dma
, shost
->use_clustering
);
3578 len
= asc_prt_line(cp
, leftlen
,
3579 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580 boardp
->flags
, boardp
->last_reset
, jiffies
,
3581 boardp
->asc_n_io_port
);
3584 len
= asc_prt_line(cp
, leftlen
, " io_port 0x%x\n", shost
->io_port
);
3587 if (ASC_NARROW_BOARD(boardp
)) {
3588 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
3590 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
3597 * asc_prt_asc_board_info()
3599 * Print dynamic board configuration information.
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3607 static int asc_prt_asc_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3609 struct asc_board
*boardp
= shost_priv(shost
);
3617 int renegotiate
= 0;
3619 v
= &boardp
->dvc_var
.asc_dvc_var
;
3620 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3621 chip_scsi_id
= c
->chip_scsi_id
;
3626 len
= asc_prt_line(cp
, leftlen
,
3627 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3631 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3632 "mcode_version 0x%x, err_code %u\n",
3633 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3637 /* Current number of commands waiting for the host. */
3638 len
= asc_prt_line(cp
, leftlen
,
3639 " Total Command Pending: %d\n", v
->cur_total_qng
);
3642 len
= asc_prt_line(cp
, leftlen
, " Command Queuing:");
3644 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3645 if ((chip_scsi_id
== i
) ||
3646 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3649 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3652 use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ?
3656 len
= asc_prt_line(cp
, leftlen
, "\n");
3659 /* Current number of commands waiting for a device. */
3660 len
= asc_prt_line(cp
, leftlen
, " Command Queue Pending:");
3662 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3663 if ((chip_scsi_id
== i
) ||
3664 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3667 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3670 len
= asc_prt_line(cp
, leftlen
, "\n");
3673 /* Current limit on number of commands that can be sent to a device. */
3674 len
= asc_prt_line(cp
, leftlen
, " Command Queue Limit:");
3676 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3677 if ((chip_scsi_id
== i
) ||
3678 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3681 len
= asc_prt_line(cp
, leftlen
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3684 len
= asc_prt_line(cp
, leftlen
, "\n");
3687 /* Indicate whether the device has returned queue full status. */
3688 len
= asc_prt_line(cp
, leftlen
, " Command Queue Full:");
3690 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3691 if ((chip_scsi_id
== i
) ||
3692 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3695 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
)) {
3696 len
= asc_prt_line(cp
, leftlen
, " %X:Y-%d",
3697 i
, boardp
->queue_full_cnt
[i
]);
3699 len
= asc_prt_line(cp
, leftlen
, " %X:N", i
);
3703 len
= asc_prt_line(cp
, leftlen
, "\n");
3706 len
= asc_prt_line(cp
, leftlen
, " Synchronous Transfer:");
3708 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3709 if ((chip_scsi_id
== i
) ||
3710 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3713 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3716 sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3720 len
= asc_prt_line(cp
, leftlen
, "\n");
3723 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3724 uchar syn_period_ix
;
3726 if ((chip_scsi_id
== i
) ||
3727 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3728 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3732 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3735 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3736 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3740 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3743 len
= asc_prt_line(cp
, leftlen
,
3744 " Transfer Period Factor: %d (%d.%d Mhz),",
3745 v
->sdtr_period_tbl
[syn_period_ix
],
3747 v
->sdtr_period_tbl
[syn_period_ix
],
3754 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
3756 sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3760 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3761 len
= asc_prt_line(cp
, leftlen
, "*\n");
3764 len
= asc_prt_line(cp
, leftlen
, "\n");
3770 len
= asc_prt_line(cp
, leftlen
,
3771 " * = Re-negotiation pending before next command.\n");
3779 * asc_prt_adv_board_info()
3781 * Print dynamic board configuration information.
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3789 static int asc_prt_adv_board_info(struct Scsi_Host
*shost
, char *cp
, int cplen
)
3791 struct asc_board
*boardp
= shost_priv(shost
);
3798 AdvPortAddr iop_base
;
3799 ushort chip_scsi_id
;
3803 ushort sdtr_able
, wdtr_able
;
3804 ushort wdtr_done
, sdtr_done
;
3806 int renegotiate
= 0;
3808 v
= &boardp
->dvc_var
.adv_dvc_var
;
3809 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3810 iop_base
= v
->iop_base
;
3811 chip_scsi_id
= v
->chip_scsi_id
;
3816 len
= asc_prt_line(cp
, leftlen
,
3817 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3821 len
= asc_prt_line(cp
, leftlen
,
3822 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3824 AdvReadWordRegister(iop_base
,
3825 IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3829 len
= asc_prt_line(cp
, leftlen
, " chip_version %u, mcode_date 0x%x, "
3830 "mcode_version 0x%x\n", c
->chip_version
,
3831 c
->mcode_date
, c
->mcode_version
);
3834 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3835 len
= asc_prt_line(cp
, leftlen
, " Queuing Enabled:");
3837 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3838 if ((chip_scsi_id
== i
) ||
3839 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3843 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3845 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3849 len
= asc_prt_line(cp
, leftlen
, "\n");
3852 len
= asc_prt_line(cp
, leftlen
, " Queue Limit:");
3854 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3855 if ((chip_scsi_id
== i
) ||
3856 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3860 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3863 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3866 len
= asc_prt_line(cp
, leftlen
, "\n");
3869 len
= asc_prt_line(cp
, leftlen
, " Command Pending:");
3871 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3872 if ((chip_scsi_id
== i
) ||
3873 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3877 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3880 len
= asc_prt_line(cp
, leftlen
, " %X:%d", i
, lrambyte
);
3883 len
= asc_prt_line(cp
, leftlen
, "\n");
3886 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3887 len
= asc_prt_line(cp
, leftlen
, " Wide Enabled:");
3889 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3890 if ((chip_scsi_id
== i
) ||
3891 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3895 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3897 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3901 len
= asc_prt_line(cp
, leftlen
, "\n");
3904 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3905 len
= asc_prt_line(cp
, leftlen
, " Transfer Bit Width:");
3907 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3908 if ((chip_scsi_id
== i
) ||
3909 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3913 AdvReadWordLram(iop_base
,
3914 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3917 len
= asc_prt_line(cp
, leftlen
, " %X:%d",
3918 i
, (lramword
& 0x8000) ? 16 : 8);
3921 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3922 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3923 len
= asc_prt_line(cp
, leftlen
, "*");
3928 len
= asc_prt_line(cp
, leftlen
, "\n");
3931 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3932 len
= asc_prt_line(cp
, leftlen
, " Synchronous Enabled:");
3934 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3935 if ((chip_scsi_id
== i
) ||
3936 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3940 len
= asc_prt_line(cp
, leftlen
, " %X:%c",
3942 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' :
3946 len
= asc_prt_line(cp
, leftlen
, "\n");
3949 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3950 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3952 AdvReadWordLram(iop_base
,
3953 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3955 lramword
&= ~0x8000;
3957 if ((chip_scsi_id
== i
) ||
3958 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3959 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3963 len
= asc_prt_line(cp
, leftlen
, " %X:", i
);
3966 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3967 len
= asc_prt_line(cp
, leftlen
, " Asynchronous");
3971 asc_prt_line(cp
, leftlen
,
3972 " Transfer Period Factor: ");
3975 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3977 asc_prt_line(cp
, leftlen
, "9 (80.0 Mhz),");
3979 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3981 asc_prt_line(cp
, leftlen
, "10 (40.0 Mhz),");
3983 } else { /* 20 Mhz or below. */
3985 period
= (((lramword
>> 8) * 25) + 50) / 4;
3987 if (period
== 0) { /* Should never happen. */
3989 asc_prt_line(cp
, leftlen
,
3993 len
= asc_prt_line(cp
, leftlen
,
3995 period
, 250 / period
,
4002 len
= asc_prt_line(cp
, leftlen
, " REQ/ACK Offset: %d",
4007 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
4008 len
= asc_prt_line(cp
, leftlen
, "*\n");
4011 len
= asc_prt_line(cp
, leftlen
, "\n");
4017 len
= asc_prt_line(cp
, leftlen
,
4018 " * = Re-negotiation pending before next command.\n");
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4032 asc_proc_copy(off_t advoffset
, off_t offset
, char *curbuf
, int leftlen
,
4033 char *cp
, int cplen
)
4037 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038 (unsigned)offset
, (unsigned)advoffset
, cplen
);
4039 if (offset
<= advoffset
) {
4040 /* Read offset below current offset, copy everything. */
4041 cnt
= min(cplen
, leftlen
);
4042 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4044 memcpy(curbuf
, cp
, cnt
);
4045 } else if (offset
< advoffset
+ cplen
) {
4046 /* Read offset within current range, partial copy. */
4047 cnt
= (advoffset
+ cplen
) - offset
;
4048 cp
= (cp
+ cplen
) - cnt
;
4049 cnt
= min(cnt
, leftlen
);
4050 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051 (ulong
)curbuf
, (ulong
)cp
, cnt
);
4052 memcpy(curbuf
, cp
, cnt
);
4057 #ifdef ADVANSYS_STATS
4059 * asc_prt_board_stats()
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4067 static int asc_prt_board_stats(struct Scsi_Host
*shost
, char *cp
, int cplen
)
4069 struct asc_board
*boardp
= shost_priv(shost
);
4070 struct asc_stats
*s
= &boardp
->asc_stats
;
4072 int leftlen
= cplen
;
4073 int len
, totlen
= 0;
4075 len
= asc_prt_line(cp
, leftlen
,
4076 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4080 len
= asc_prt_line(cp
, leftlen
,
4081 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082 s
->queuecommand
, s
->reset
, s
->biosparam
,
4086 len
= asc_prt_line(cp
, leftlen
,
4087 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088 s
->callback
, s
->done
, s
->build_error
,
4089 s
->adv_build_noreq
, s
->adv_build_nosg
);
4092 len
= asc_prt_line(cp
, leftlen
,
4093 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
4099 * Display data transfer statistics.
4101 if (s
->xfer_cnt
> 0) {
4102 len
= asc_prt_line(cp
, leftlen
, " xfer_cnt %lu, xfer_elem %lu, ",
4103 s
->xfer_cnt
, s
->xfer_elem
);
4106 len
= asc_prt_line(cp
, leftlen
, "xfer_bytes %lu.%01lu kb\n",
4107 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
4110 /* Scatter gather transfer statistics */
4111 len
= asc_prt_line(cp
, leftlen
, " avg_num_elem %lu.%01lu, ",
4112 s
->xfer_elem
/ s
->xfer_cnt
,
4113 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
4116 len
= asc_prt_line(cp
, leftlen
, "avg_elem_size %lu.%01lu kb, ",
4117 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
4118 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
4121 len
= asc_prt_line(cp
, leftlen
, "avg_xfer_size %lu.%01lu kb\n",
4122 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
4123 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
4129 #endif /* ADVANSYS_STATS */
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4152 advansys_proc_info(struct Scsi_Host
*shost
, char *buffer
, char **start
,
4153 off_t offset
, int length
, int inout
)
4155 struct asc_board
*boardp
= shost_priv(shost
);
4164 ASC_DBG(1, "begin\n");
4167 * User write not supported.
4173 * User read of /proc/scsi/advansys/[0...] file.
4176 /* Copy read data starting at the beginning of the buffer. */
4184 * Get board configuration information.
4186 * advansys_info() returns the board string from its own static buffer.
4188 cp
= (char *)advansys_info(shost
);
4191 /* Copy board information. */
4192 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4196 ASC_DBG(1, "totcnt %d\n", totcnt
);
4203 * Display Wide Board BIOS Information.
4205 if (!ASC_NARROW_BOARD(boardp
)) {
4206 cp
= boardp
->prtbuf
;
4207 cplen
= asc_prt_adv_bios(shost
, cp
, ASC_PRTBUF_SIZE
);
4208 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4209 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
,
4214 ASC_DBG(1, "totcnt %d\n", totcnt
);
4222 * Display driver information for each device attached to the board.
4224 cp
= boardp
->prtbuf
;
4225 cplen
= asc_prt_board_devices(shost
, cp
, ASC_PRTBUF_SIZE
);
4226 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4227 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4231 ASC_DBG(1, "totcnt %d\n", totcnt
);
4238 * Display EEPROM configuration for the board.
4240 cp
= boardp
->prtbuf
;
4241 if (ASC_NARROW_BOARD(boardp
)) {
4242 cplen
= asc_prt_asc_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4244 cplen
= asc_prt_adv_board_eeprom(shost
, cp
, ASC_PRTBUF_SIZE
);
4246 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4247 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4251 ASC_DBG(1, "totcnt %d\n", totcnt
);
4258 * Display driver configuration and information for the board.
4260 cp
= boardp
->prtbuf
;
4261 cplen
= asc_prt_driver_conf(shost
, cp
, ASC_PRTBUF_SIZE
);
4262 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4263 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4267 ASC_DBG(1, "totcnt %d\n", totcnt
);
4273 #ifdef ADVANSYS_STATS
4275 * Display driver statistics for the board.
4277 cp
= boardp
->prtbuf
;
4278 cplen
= asc_prt_board_stats(shost
, cp
, ASC_PRTBUF_SIZE
);
4279 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4280 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4284 ASC_DBG(1, "totcnt %d\n", totcnt
);
4289 #endif /* ADVANSYS_STATS */
4292 * Display Asc Library dynamic configuration information
4295 cp
= boardp
->prtbuf
;
4296 if (ASC_NARROW_BOARD(boardp
)) {
4297 cplen
= asc_prt_asc_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4299 cplen
= asc_prt_adv_board_info(shost
, cp
, ASC_PRTBUF_SIZE
);
4301 BUG_ON(cplen
>= ASC_PRTBUF_SIZE
);
4302 cnt
= asc_proc_copy(advoffset
, offset
, curbuf
, leftlen
, cp
, cplen
);
4306 ASC_DBG(1, "totcnt %d\n", totcnt
);
4312 ASC_DBG(1, "totcnt %d\n", totcnt
);
4316 #endif /* CONFIG_PROC_FS */
4318 static void asc_scsi_done(struct scsi_cmnd
*scp
)
4320 scsi_dma_unmap(scp
);
4321 ASC_STATS(scp
->device
->host
, done
);
4322 scp
->scsi_done(scp
);
4325 static void AscSetBank(PortAddr iop_base
, uchar bank
)
4329 val
= AscGetChipControl(iop_base
) &
4331 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
4335 } else if (bank
== 2) {
4336 val
|= CC_DIAG
| CC_BANK_ONE
;
4338 val
&= ~CC_BANK_ONE
;
4340 AscSetChipControl(iop_base
, val
);
4343 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
4345 AscSetBank(iop_base
, 1);
4346 AscWriteChipIH(iop_base
, ins_code
);
4347 AscSetBank(iop_base
, 0);
4350 static int AscStartChip(PortAddr iop_base
)
4352 AscSetChipControl(iop_base
, 0);
4353 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4359 static int AscStopChip(PortAddr iop_base
)
4364 AscGetChipControl(iop_base
) &
4365 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
4366 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
4367 AscSetChipIH(iop_base
, INS_HALT
);
4368 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4369 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
4375 static int AscIsChipHalted(PortAddr iop_base
)
4377 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
4378 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
4385 static int AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
4390 iop_base
= asc_dvc
->iop_base
;
4391 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
4395 AscStopChip(iop_base
);
4396 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
4398 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
4399 AscSetChipIH(iop_base
, INS_HALT
);
4400 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
4401 AscSetChipControl(iop_base
, CC_HALT
);
4403 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
4404 AscSetChipStatus(iop_base
, 0);
4405 return (AscIsChipHalted(iop_base
));
4408 static int AscFindSignature(PortAddr iop_base
)
4412 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413 iop_base
, AscGetChipSignatureByte(iop_base
));
4414 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
4415 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416 iop_base
, AscGetChipSignatureWord(iop_base
));
4417 sig_word
= AscGetChipSignatureWord(iop_base
);
4418 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
4419 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
4426 static void AscEnableInterrupt(PortAddr iop_base
)
4430 cfg
= AscGetChipCfgLsw(iop_base
);
4431 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
4434 static void AscDisableInterrupt(PortAddr iop_base
)
4438 cfg
= AscGetChipCfgLsw(iop_base
);
4439 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
4442 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
4444 unsigned char byte_data
;
4445 unsigned short word_data
;
4447 if (isodd_word(addr
)) {
4448 AscSetChipLramAddr(iop_base
, addr
- 1);
4449 word_data
= AscGetChipLramData(iop_base
);
4450 byte_data
= (word_data
>> 8) & 0xFF;
4452 AscSetChipLramAddr(iop_base
, addr
);
4453 word_data
= AscGetChipLramData(iop_base
);
4454 byte_data
= word_data
& 0xFF;
4459 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
4463 AscSetChipLramAddr(iop_base
, addr
);
4464 word_data
= AscGetChipLramData(iop_base
);
4468 #if CC_VERY_LONG_SG_LIST
4469 static ASC_DCNT
AscReadLramDWord(PortAddr iop_base
, ushort addr
)
4471 ushort val_low
, val_high
;
4472 ASC_DCNT dword_data
;
4474 AscSetChipLramAddr(iop_base
, addr
);
4475 val_low
= AscGetChipLramData(iop_base
);
4476 val_high
= AscGetChipLramData(iop_base
);
4477 dword_data
= ((ASC_DCNT
) val_high
<< 16) | (ASC_DCNT
) val_low
;
4478 return (dword_data
);
4480 #endif /* CC_VERY_LONG_SG_LIST */
4483 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
4487 AscSetChipLramAddr(iop_base
, s_addr
);
4488 for (i
= 0; i
< words
; i
++) {
4489 AscSetChipLramData(iop_base
, set_wval
);
4493 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
4495 AscSetChipLramAddr(iop_base
, addr
);
4496 AscSetChipLramData(iop_base
, word_val
);
4499 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
4503 if (isodd_word(addr
)) {
4505 word_data
= AscReadLramWord(iop_base
, addr
);
4506 word_data
&= 0x00FF;
4507 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
4509 word_data
= AscReadLramWord(iop_base
, addr
);
4510 word_data
&= 0xFF00;
4511 word_data
|= ((ushort
)byte_val
& 0x00FF);
4513 AscWriteLramWord(iop_base
, addr
, word_data
);
4517 * Copy 2 bytes to LRAM.
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4523 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
4524 const uchar
*s_buffer
, int words
)
4528 AscSetChipLramAddr(iop_base
, s_addr
);
4529 for (i
= 0; i
< 2 * words
; i
+= 2) {
4531 * On a little-endian system the second argument below
4532 * produces a little-endian ushort which is written to
4533 * LRAM in little-endian order. On a big-endian system
4534 * the second argument produces a big-endian ushort which
4535 * is "transparently" byte-swapped by outpw() and written
4536 * in little-endian order to LRAM.
4538 outpw(iop_base
+ IOP_RAM_DATA
,
4539 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
4544 * Copy 4 bytes to LRAM.
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when writen to LRAM.
4550 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
4551 ushort s_addr
, uchar
*s_buffer
, int dwords
)
4555 AscSetChipLramAddr(iop_base
, s_addr
);
4556 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
4557 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
4558 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
4563 * Copy 2 bytes from LRAM.
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4569 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
4570 ushort s_addr
, uchar
*d_buffer
, int words
)
4575 AscSetChipLramAddr(iop_base
, s_addr
);
4576 for (i
= 0; i
< 2 * words
; i
+= 2) {
4577 word
= inpw(iop_base
+ IOP_RAM_DATA
);
4578 d_buffer
[i
] = word
& 0xff;
4579 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
4583 static ASC_DCNT
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
4589 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
4590 sum
+= AscReadLramWord(iop_base
, s_addr
);
4595 static ushort
AscInitLram(ASC_DVC_VAR
*asc_dvc
)
4602 iop_base
= asc_dvc
->iop_base
;
4604 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
4605 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
4607 i
= ASC_MIN_ACTIVE_QNO
;
4608 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
4609 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4611 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4612 (uchar
)(asc_dvc
->max_total_qng
));
4613 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4616 s_addr
+= ASC_QBLK_SIZE
;
4617 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
4618 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4620 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4622 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4625 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
4626 (uchar
)ASC_QLINK_END
);
4627 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
4628 (uchar
)(asc_dvc
->max_total_qng
- 1));
4629 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
4630 (uchar
)asc_dvc
->max_total_qng
);
4632 s_addr
+= ASC_QBLK_SIZE
;
4633 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
4634 i
++, s_addr
+= ASC_QBLK_SIZE
) {
4635 AscWriteLramByte(iop_base
,
4636 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
4637 AscWriteLramByte(iop_base
,
4638 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
4639 AscWriteLramByte(iop_base
,
4640 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
4646 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
4647 const uchar
*mcode_buf
, ushort mcode_size
)
4650 ushort mcode_word_size
;
4651 ushort mcode_chksum
;
4653 /* Write the microcode buffer starting at LRAM address 0. */
4654 mcode_word_size
= (ushort
)(mcode_size
>> 1);
4655 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
4656 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
4658 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
4659 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
4660 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
4661 (ushort
)ASC_CODE_SEC_BEG
,
4662 (ushort
)((mcode_size
-
4666 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
4667 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
4668 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
4672 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
4678 iop_base
= asc_dvc
->iop_base
;
4679 AscPutRiscVarFreeQHead(iop_base
, 1);
4680 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4681 AscPutVarFreeQHead(iop_base
, 1);
4682 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
4683 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
4684 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
4685 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
4686 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
4687 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
4688 asc_dvc
->max_total_qng
);
4689 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
4690 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
4691 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
4692 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
4693 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
4694 AscPutQDoneInProgress(iop_base
, 0);
4695 lram_addr
= ASC_QADR_BEG
;
4696 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
4697 AscWriteLramWord(iop_base
, lram_addr
, 0);
4701 static ushort
AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
4708 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
4710 iop_base
= asc_dvc
->iop_base
;
4712 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
4713 AscPutMCodeInitSDTRAtID(iop_base
, i
,
4714 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
4717 AscInitQLinkVar(asc_dvc
);
4718 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
4719 asc_dvc
->cfg
->disc_enable
);
4720 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
4721 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
4723 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
4725 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
4726 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4727 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
4728 warn_code
= -ENOMEM
;
4731 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
4732 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
4733 (uchar
*)&phy_addr
, 1);
4734 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
4735 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4736 (uchar
*)&phy_size
, 1);
4738 asc_dvc
->cfg
->mcode_date
=
4739 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4740 asc_dvc
->cfg
->mcode_version
=
4741 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4743 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4744 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4745 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4747 goto err_mcode_start
;
4749 if (AscStartChip(iop_base
) != 1) {
4750 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4752 goto err_mcode_start
;
4758 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4759 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4761 asc_dvc
->overrun_dma
= 0;
4765 static ushort
AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4767 const struct firmware
*fw
;
4768 const char fwname
[] = "advansys/mcode.bin";
4770 unsigned long chksum
;
4774 iop_base
= asc_dvc
->iop_base
;
4776 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4777 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4778 AscResetChipAndScsiBus(asc_dvc
);
4779 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4781 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4782 if (asc_dvc
->err_code
!= 0)
4784 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4785 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4788 AscDisableInterrupt(iop_base
);
4789 warn_code
|= AscInitLram(asc_dvc
);
4790 if (asc_dvc
->err_code
!= 0)
4793 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4795 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4797 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4801 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4803 release_firmware(fw
);
4804 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4807 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4808 (fw
->data
[1] << 8) | fw
->data
[0];
4809 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4810 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4811 fw
->size
- 4) != chksum
) {
4812 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4813 release_firmware(fw
);
4816 release_firmware(fw
);
4817 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4818 if (!asc_dvc
->overrun_dma
)
4820 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4821 AscEnableInterrupt(iop_base
);
4826 * Load the Microcode
4828 * Write the microcode image to RISC memory starting at address 0.
4830 * The microcode is stored compressed in the following format:
4832 * 254 word (508 byte) table indexed by byte code followed
4833 * by the following byte codes:
4836 * 00: Emit word 0 in table.
4837 * 01: Emit word 1 in table.
4839 * FD: Emit word 253 in table.
4842 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4843 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4845 * Returns 0 or an error if the checksum doesn't match
4847 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4848 int size
, int memsize
, int chksum
)
4850 int i
, j
, end
, len
= 0;
4853 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4855 for (i
= 253 * 2; i
< size
; i
++) {
4856 if (buf
[i
] == 0xff) {
4857 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4858 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4859 AdvWriteWordAutoIncLram(iop_base
, word
);
4863 } else if (buf
[i
] == 0xfe) {
4864 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4865 AdvWriteWordAutoIncLram(iop_base
, word
);
4869 unsigned int off
= buf
[i
] * 2;
4870 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4871 AdvWriteWordAutoIncLram(iop_base
, word
);
4878 while (len
< memsize
) {
4879 AdvWriteWordAutoIncLram(iop_base
, 0);
4883 /* Verify the microcode checksum. */
4885 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4887 for (len
= 0; len
< end
; len
+= 2) {
4888 sum
+= AdvReadWordAutoIncLram(iop_base
);
4892 return ASC_IERR_MCODE_CHKSUM
;
4897 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*asc_dvc
)
4901 ADV_PADDR carr_paddr
;
4903 carrp
= (ADV_CARR_T
*) ADV_16BALIGN(asc_dvc
->carrier_buf
);
4904 asc_dvc
->carr_freelist
= NULL
;
4905 if (carrp
== asc_dvc
->carrier_buf
) {
4906 buf_size
= ADV_CARRIER_BUFSIZE
;
4908 buf_size
= ADV_CARRIER_BUFSIZE
- sizeof(ADV_CARR_T
);
4912 /* Get physical address of the carrier 'carrp'. */
4913 carr_paddr
= cpu_to_le32(virt_to_bus(carrp
));
4915 buf_size
-= sizeof(ADV_CARR_T
);
4917 carrp
->carr_pa
= carr_paddr
;
4918 carrp
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(carrp
));
4921 * Insert the carrier at the beginning of the freelist.
4924 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
4925 asc_dvc
->carr_freelist
= carrp
;
4928 } while (buf_size
> 0);
4932 * Send an idle command to the chip and wait for completion.
4934 * Command completion is polled for once per microsecond.
4936 * The function can be called from anywhere including an interrupt handler.
4937 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4938 * functions to prevent reentrancy.
4941 * ADV_TRUE - command completed successfully
4942 * ADV_FALSE - command failed
4943 * ADV_ERROR - command timed out
4946 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4947 ushort idle_cmd
, ADV_DCNT idle_cmd_parameter
)
4951 AdvPortAddr iop_base
;
4953 iop_base
= asc_dvc
->iop_base
;
4956 * Clear the idle command status which is set by the microcode
4957 * to a non-zero value to indicate when the command is completed.
4958 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4960 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4963 * Write the idle command value after the idle command parameter
4964 * has been written to avoid a race condition. If the order is not
4965 * followed, the microcode may process the idle command before the
4966 * parameters have been written to LRAM.
4968 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4969 cpu_to_le32(idle_cmd_parameter
));
4970 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4973 * Tickle the RISC to tell it to process the idle command.
4975 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4976 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4978 * Clear the tickle value. In the ASC-3550 the RISC flag
4979 * command 'clr_tickle_b' does not work unless the host
4982 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4985 /* Wait for up to 100 millisecond for the idle command to timeout. */
4986 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4987 /* Poll once each microsecond for command completion. */
4988 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4989 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4997 BUG(); /* The idle command should never timeout. */
5002 * Reset SCSI Bus and purge all outstanding requests.
5005 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
5006 * ADV_FALSE(0) - Microcode command failed.
5007 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5008 * may be hung which requires driver recovery.
5010 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
5015 * Send the SCSI Bus Reset idle start idle command which asserts
5016 * the SCSI Bus Reset signal.
5018 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
5019 if (status
!= ADV_TRUE
) {
5024 * Delay for the specified SCSI Bus Reset hold time.
5026 * The hold time delay is done on the host because the RISC has no
5027 * microsecond accurate timer.
5029 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
5032 * Send the SCSI Bus Reset end idle command which de-asserts
5033 * the SCSI Bus Reset signal and purges any pending requests.
5035 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
5036 if (status
!= ADV_TRUE
) {
5040 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
5046 * Initialize the ASC-3550.
5048 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5050 * For a non-fatal error return a warning code. If there are no warnings
5051 * then 0 is returned.
5053 * Needed after initialization for error recovery.
5055 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
5057 const struct firmware
*fw
;
5058 const char fwname
[] = "advansys/3550.bin";
5059 AdvPortAddr iop_base
;
5067 unsigned long chksum
;
5070 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5071 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
5072 uchar max_cmd
[ADV_MAX_TID
+ 1];
5074 /* If there is already an error, don't continue. */
5075 if (asc_dvc
->err_code
!= 0)
5079 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5081 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
5082 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5087 iop_base
= asc_dvc
->iop_base
;
5090 * Save the RISC memory BIOS region before writing the microcode.
5091 * The BIOS may already be loaded and using its RISC LRAM region
5092 * so its region must be saved and restored.
5094 * Note: This code makes the assumption, which is currently true,
5095 * that a chip reset does not clear RISC LRAM.
5097 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5098 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5103 * Save current per TID negotiated values.
5105 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
5106 ushort bios_version
, major
, minor
;
5109 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
5110 major
= (bios_version
>> 12) & 0xF;
5111 minor
= (bios_version
>> 8) & 0xF;
5112 if (major
< 3 || (major
== 3 && minor
== 1)) {
5113 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5114 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
5116 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5119 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5120 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5121 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5122 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5126 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5128 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5130 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5134 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5136 release_firmware(fw
);
5137 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5140 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5141 (fw
->data
[1] << 8) | fw
->data
[0];
5142 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5143 fw
->size
- 4, ADV_3550_MEMSIZE
,
5145 release_firmware(fw
);
5146 if (asc_dvc
->err_code
)
5150 * Restore the RISC memory BIOS region.
5152 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5153 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5158 * Calculate and write the microcode code checksum to the microcode
5159 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5161 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5162 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5164 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5165 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5166 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5168 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5171 * Read and save microcode version and date.
5173 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5174 asc_dvc
->cfg
->mcode_date
);
5175 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5176 asc_dvc
->cfg
->mcode_version
);
5179 * Set the chip type to indicate the ASC3550.
5181 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
5184 * If the PCI Configuration Command Register "Parity Error Response
5185 * Control" Bit was clear (0), then set the microcode variable
5186 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5187 * to ignore DMA parity errors.
5189 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5190 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5191 word
|= CONTROL_FLAG_IGNORE_PERR
;
5192 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5196 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5197 * threshold of 128 bytes. This register is only accessible to the host.
5199 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5200 START_CTL_EMFU
| READ_CMD_MRM
);
5203 * Microcode operating variables for WDTR, SDTR, and command tag
5204 * queuing will be set in slave_configure() based on what a
5205 * device reports it is capable of in Inquiry byte 7.
5207 * If SCSI Bus Resets have been disabled, then directly set
5208 * SDTR and WDTR from the EEPROM configuration. This will allow
5209 * the BIOS and warm boot to work without a SCSI bus hang on
5210 * the Inquiry caused by host and target mismatched DTR values.
5211 * Without the SCSI Bus Reset, before an Inquiry a device can't
5212 * be assumed to be in Asynchronous, Narrow mode.
5214 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5215 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5216 asc_dvc
->wdtr_able
);
5217 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5218 asc_dvc
->sdtr_able
);
5222 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5223 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5224 * bitmask. These values determine the maximum SDTR speed negotiated
5227 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5228 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5229 * without determining here whether the device supports SDTR.
5231 * 4-bit speed SDTR speed name
5232 * =========== ===============
5233 * 0000b (0x0) SDTR disabled
5235 * 0010b (0x2) 10 Mhz
5236 * 0011b (0x3) 20 Mhz (Ultra)
5237 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
5238 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
5239 * 0110b (0x6) Undefined
5241 * 1111b (0xF) Undefined
5244 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5245 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
5246 /* Set Ultra speed for TID 'tid'. */
5247 word
|= (0x3 << (4 * (tid
% 4)));
5249 /* Set Fast speed for TID 'tid'. */
5250 word
|= (0x2 << (4 * (tid
% 4)));
5252 if (tid
== 3) { /* Check if done with sdtr_speed1. */
5253 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
5255 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
5256 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
5258 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
5259 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
5261 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
5262 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
5268 * Set microcode operating variable for the disconnect per TID bitmask.
5270 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5271 asc_dvc
->cfg
->disc_enable
);
5274 * Set SCSI_CFG0 Microcode Default Value.
5276 * The microcode will set the SCSI_CFG0 register using this value
5277 * after it is started below.
5279 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5280 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5281 asc_dvc
->chip_scsi_id
);
5284 * Determine SCSI_CFG1 Microcode Default Value.
5286 * The microcode will set the SCSI_CFG1 register using this value
5287 * after it is started below.
5290 /* Read current SCSI_CFG1 Register value. */
5291 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5294 * If all three connectors are in use, return an error.
5296 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
5297 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
5298 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
5303 * If the internal narrow cable is reversed all of the SCSI_CTRL
5304 * register signals will be set. Check for and return an error if
5305 * this condition is found.
5307 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5308 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5313 * If this is a differential board and a single-ended device
5314 * is attached to one of the connectors, return an error.
5316 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
5317 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
5322 * If automatic termination control is enabled, then set the
5323 * termination value based on a table listed in a_condor.h.
5325 * If manual termination was specified with an EEPROM setting
5326 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5327 * is ready to be 'ored' into SCSI_CFG1.
5329 if (asc_dvc
->cfg
->termination
== 0) {
5331 * The software always controls termination by setting TERM_CTL_SEL.
5332 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5334 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
5336 switch (scsi_cfg1
& CABLE_DETECT
) {
5337 /* TERM_CTL_H: on, TERM_CTL_L: on */
5344 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
5347 /* TERM_CTL_H: on, TERM_CTL_L: off */
5353 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
5356 /* TERM_CTL_H: off, TERM_CTL_L: off */
5364 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5366 scsi_cfg1
&= ~TERM_CTL
;
5369 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5370 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5371 * referenced, because the hardware internally inverts
5372 * the Termination High and Low bits if TERM_POL is set.
5374 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
5377 * Set SCSI_CFG1 Microcode Default Value
5379 * Set filter value and possibly modified termination control
5380 * bits in the Microcode SCSI_CFG1 Register Value.
5382 * The microcode will set the SCSI_CFG1 register using this value
5383 * after it is started below.
5385 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
5386 FLTR_DISABLE
| scsi_cfg1
);
5389 * Set MEM_CFG Microcode Default Value
5391 * The microcode will set the MEM_CFG register using this value
5392 * after it is started below.
5394 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5397 * ASC-3550 has 8KB internal memory.
5399 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5400 BIOS_EN
| RAM_SZ_8KB
);
5403 * Set SEL_MASK Microcode Default Value
5405 * The microcode will set the SEL_MASK register using this value
5406 * after it is started below.
5408 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5409 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5411 AdvBuildCarrierFreelist(asc_dvc
);
5414 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5417 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5418 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5421 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5422 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5425 * The first command issued will be placed in the stopper carrier.
5427 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5430 * Set RISC ICQ physical address start value.
5432 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5435 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5437 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5438 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5441 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5442 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5445 * The first command completed by the RISC will be placed in
5448 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5449 * completed the RISC will set the ASC_RQ_STOPPER bit.
5451 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5454 * Set RISC IRQ physical address start value.
5456 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5457 asc_dvc
->carr_pending_cnt
= 0;
5459 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5460 (ADV_INTR_ENABLE_HOST_INTR
|
5461 ADV_INTR_ENABLE_GLOBAL_INTR
));
5463 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5464 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5466 /* finally, finally, gentlemen, start your engine */
5467 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5470 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5471 * Resets should be performed. The RISC has to be running
5472 * to issue a SCSI Bus Reset.
5474 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5476 * If the BIOS Signature is present in memory, restore the
5477 * BIOS Handshake Configuration Table and do not perform
5480 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5483 * Restore per TID negotiated values.
5485 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5486 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5487 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5489 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5490 AdvWriteByteLram(iop_base
,
5491 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5495 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5496 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5505 * Initialize the ASC-38C0800.
5507 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5509 * For a non-fatal error return a warning code. If there are no warnings
5510 * then 0 is returned.
5512 * Needed after initialization for error recovery.
5514 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
5516 const struct firmware
*fw
;
5517 const char fwname
[] = "advansys/38C0800.bin";
5518 AdvPortAddr iop_base
;
5526 unsigned long chksum
;
5530 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5531 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5532 uchar max_cmd
[ADV_MAX_TID
+ 1];
5534 /* If there is already an error, don't continue. */
5535 if (asc_dvc
->err_code
!= 0)
5539 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5541 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
5542 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5547 iop_base
= asc_dvc
->iop_base
;
5550 * Save the RISC memory BIOS region before writing the microcode.
5551 * The BIOS may already be loaded and using its RISC LRAM region
5552 * so its region must be saved and restored.
5554 * Note: This code makes the assumption, which is currently true,
5555 * that a chip reset does not clear RISC LRAM.
5557 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5558 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5563 * Save current per TID negotiated values.
5565 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5566 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5567 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5568 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5569 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5574 * RAM BIST (RAM Built-In Self Test)
5576 * Address : I/O base + offset 0x38h register (byte).
5577 * Function: Bit 7-6(RW) : RAM mode
5578 * Normal Mode : 0x00
5579 * Pre-test Mode : 0x40
5580 * RAM Test Mode : 0x80
5582 * Bit 4(RO) : Done bit
5583 * Bit 3-0(RO) : Status
5585 * Int_RAM Error : 0x04
5590 * Note: RAM BIST code should be put right here, before loading the
5591 * microcode and after saving the RISC memory BIOS region.
5597 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5598 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5599 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5600 * to NORMAL_MODE, return an error too.
5602 for (i
= 0; i
< 2; i
++) {
5603 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5604 mdelay(10); /* Wait for 10ms before reading back. */
5605 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5606 if ((byte
& RAM_TEST_DONE
) == 0
5607 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5608 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5612 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5613 mdelay(10); /* Wait for 10ms before reading back. */
5614 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5616 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5622 * LRAM Test - It takes about 1.5 ms to run through the test.
5624 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5625 * If Done bit not set or Status not 0, save register byte, set the
5626 * err_code, and return an error.
5628 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5629 mdelay(10); /* Wait for 10ms before checking status. */
5631 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5632 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5633 /* Get here if Done bit not set or Status not 0. */
5634 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5635 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5639 /* We need to reset back to normal mode after LRAM test passes. */
5640 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5642 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5644 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5646 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5650 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5652 release_firmware(fw
);
5653 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5656 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5657 (fw
->data
[1] << 8) | fw
->data
[0];
5658 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5659 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
5661 release_firmware(fw
);
5662 if (asc_dvc
->err_code
)
5666 * Restore the RISC memory BIOS region.
5668 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5669 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5674 * Calculate and write the microcode code checksum to the microcode
5675 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5677 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5678 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5680 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5681 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5682 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5684 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5687 * Read microcode version and date.
5689 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5690 asc_dvc
->cfg
->mcode_date
);
5691 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5692 asc_dvc
->cfg
->mcode_version
);
5695 * Set the chip type to indicate the ASC38C0800.
5697 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
5700 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5701 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5702 * cable detection and then we are able to read C_DET[3:0].
5704 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5705 * Microcode Default Value' section below.
5707 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5708 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5709 scsi_cfg1
| DIS_TERM_DRV
);
5712 * If the PCI Configuration Command Register "Parity Error Response
5713 * Control" Bit was clear (0), then set the microcode variable
5714 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5715 * to ignore DMA parity errors.
5717 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5718 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5719 word
|= CONTROL_FLAG_IGNORE_PERR
;
5720 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5724 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5725 * bits for the default FIFO threshold.
5727 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5729 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5731 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5732 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5736 * Microcode operating variables for WDTR, SDTR, and command tag
5737 * queuing will be set in slave_configure() based on what a
5738 * device reports it is capable of in Inquiry byte 7.
5740 * If SCSI Bus Resets have been disabled, then directly set
5741 * SDTR and WDTR from the EEPROM configuration. This will allow
5742 * the BIOS and warm boot to work without a SCSI bus hang on
5743 * the Inquiry caused by host and target mismatched DTR values.
5744 * Without the SCSI Bus Reset, before an Inquiry a device can't
5745 * be assumed to be in Asynchronous, Narrow mode.
5747 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5748 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5749 asc_dvc
->wdtr_able
);
5750 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5751 asc_dvc
->sdtr_able
);
5755 * Set microcode operating variables for DISC and SDTR_SPEED1,
5756 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5757 * configuration values.
5759 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5760 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5761 * without determining here whether the device supports SDTR.
5763 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5764 asc_dvc
->cfg
->disc_enable
);
5765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5766 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5767 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5768 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5771 * Set SCSI_CFG0 Microcode Default Value.
5773 * The microcode will set the SCSI_CFG0 register using this value
5774 * after it is started below.
5776 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5777 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5778 asc_dvc
->chip_scsi_id
);
5781 * Determine SCSI_CFG1 Microcode Default Value.
5783 * The microcode will set the SCSI_CFG1 register using this value
5784 * after it is started below.
5787 /* Read current SCSI_CFG1 Register value. */
5788 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5791 * If the internal narrow cable is reversed all of the SCSI_CTRL
5792 * register signals will be set. Check for and return an error if
5793 * this condition is found.
5795 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5796 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5801 * All kind of combinations of devices attached to one of four
5802 * connectors are acceptable except HVD device attached. For example,
5803 * LVD device can be attached to SE connector while SE device attached
5804 * to LVD connector. If LVD device attached to SE connector, it only
5805 * runs up to Ultra speed.
5807 * If an HVD device is attached to one of LVD connectors, return an
5808 * error. However, there is no way to detect HVD device attached to
5811 if (scsi_cfg1
& HVD
) {
5812 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5817 * If either SE or LVD automatic termination control is enabled, then
5818 * set the termination value based on a table listed in a_condor.h.
5820 * If manual termination was specified with an EEPROM setting then
5821 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5822 * to be 'ored' into SCSI_CFG1.
5824 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5825 /* SE automatic termination control is enabled. */
5826 switch (scsi_cfg1
& C_DET_SE
) {
5827 /* TERM_SE_HI: on, TERM_SE_LO: on */
5831 asc_dvc
->cfg
->termination
|= TERM_SE
;
5834 /* TERM_SE_HI: on, TERM_SE_LO: off */
5836 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5841 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5842 /* LVD automatic termination control is enabled. */
5843 switch (scsi_cfg1
& C_DET_LVD
) {
5844 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5848 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5851 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5858 * Clear any set TERM_SE and TERM_LVD bits.
5860 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5863 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5865 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5868 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5869 * bits and set possibly modified termination control bits in the
5870 * Microcode SCSI_CFG1 Register Value.
5872 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5875 * Set SCSI_CFG1 Microcode Default Value
5877 * Set possibly modified termination control and reset DIS_TERM_DRV
5878 * bits in the Microcode SCSI_CFG1 Register Value.
5880 * The microcode will set the SCSI_CFG1 register using this value
5881 * after it is started below.
5883 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5886 * Set MEM_CFG Microcode Default Value
5888 * The microcode will set the MEM_CFG register using this value
5889 * after it is started below.
5891 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5894 * ASC-38C0800 has 16KB internal memory.
5896 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5897 BIOS_EN
| RAM_SZ_16KB
);
5900 * Set SEL_MASK Microcode Default Value
5902 * The microcode will set the SEL_MASK register using this value
5903 * after it is started below.
5905 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5906 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5908 AdvBuildCarrierFreelist(asc_dvc
);
5911 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5914 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5915 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5918 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5919 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
5922 * The first command issued will be placed in the stopper carrier.
5924 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5927 * Set RISC ICQ physical address start value.
5928 * carr_pa is LE, must be native before write
5930 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5933 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5935 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
5936 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5939 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
5940 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
5943 * The first command completed by the RISC will be placed in
5946 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5947 * completed the RISC will set the ASC_RQ_STOPPER bit.
5949 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
5952 * Set RISC IRQ physical address start value.
5954 * carr_pa is LE, must be native before write *
5956 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5957 asc_dvc
->carr_pending_cnt
= 0;
5959 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5960 (ADV_INTR_ENABLE_HOST_INTR
|
5961 ADV_INTR_ENABLE_GLOBAL_INTR
));
5963 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5964 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5966 /* finally, finally, gentlemen, start your engine */
5967 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5970 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5971 * Resets should be performed. The RISC has to be running
5972 * to issue a SCSI Bus Reset.
5974 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5976 * If the BIOS Signature is present in memory, restore the
5977 * BIOS Handshake Configuration Table and do not perform
5980 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5983 * Restore per TID negotiated values.
5985 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5986 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5987 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5989 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5990 AdvWriteByteLram(iop_base
,
5991 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5995 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5996 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6005 * Initialize the ASC-38C1600.
6007 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6009 * For a non-fatal error return a warning code. If there are no warnings
6010 * then 0 is returned.
6012 * Needed after initialization for error recovery.
6014 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
6016 const struct firmware
*fw
;
6017 const char fwname
[] = "advansys/38C1600.bin";
6018 AdvPortAddr iop_base
;
6026 unsigned long chksum
;
6030 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
6031 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
6032 uchar max_cmd
[ASC_MAX_TID
+ 1];
6034 /* If there is already an error, don't continue. */
6035 if (asc_dvc
->err_code
!= 0) {
6040 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6042 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
6043 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
6048 iop_base
= asc_dvc
->iop_base
;
6051 * Save the RISC memory BIOS region before writing the microcode.
6052 * The BIOS may already be loaded and using its RISC LRAM region
6053 * so its region must be saved and restored.
6055 * Note: This code makes the assumption, which is currently true,
6056 * that a chip reset does not clear RISC LRAM.
6058 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6059 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6064 * Save current per TID negotiated values.
6066 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6067 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6068 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6069 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6070 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6071 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6076 * RAM BIST (Built-In Self Test)
6078 * Address : I/O base + offset 0x38h register (byte).
6079 * Function: Bit 7-6(RW) : RAM mode
6080 * Normal Mode : 0x00
6081 * Pre-test Mode : 0x40
6082 * RAM Test Mode : 0x80
6084 * Bit 4(RO) : Done bit
6085 * Bit 3-0(RO) : Status
6087 * Int_RAM Error : 0x04
6092 * Note: RAM BIST code should be put right here, before loading the
6093 * microcode and after saving the RISC memory BIOS region.
6099 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6100 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6101 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6102 * to NORMAL_MODE, return an error too.
6104 for (i
= 0; i
< 2; i
++) {
6105 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
6106 mdelay(10); /* Wait for 10ms before reading back. */
6107 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6108 if ((byte
& RAM_TEST_DONE
) == 0
6109 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
6110 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6114 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6115 mdelay(10); /* Wait for 10ms before reading back. */
6116 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
6118 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
6124 * LRAM Test - It takes about 1.5 ms to run through the test.
6126 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6127 * If Done bit not set or Status not 0, save register byte, set the
6128 * err_code, and return an error.
6130 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
6131 mdelay(10); /* Wait for 10ms before checking status. */
6133 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
6134 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
6135 /* Get here if Done bit not set or Status not 0. */
6136 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
6137 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
6141 /* We need to reset back to normal mode after LRAM test passes. */
6142 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
6144 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
6146 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
6148 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
6152 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
6154 release_firmware(fw
);
6155 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
6158 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
6159 (fw
->data
[1] << 8) | fw
->data
[0];
6160 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
6161 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
6163 release_firmware(fw
);
6164 if (asc_dvc
->err_code
)
6168 * Restore the RISC memory BIOS region.
6170 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
6171 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
6176 * Calculate and write the microcode code checksum to the microcode
6177 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6179 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
6180 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
6182 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
6183 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
6184 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
6186 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
6189 * Read microcode version and date.
6191 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
6192 asc_dvc
->cfg
->mcode_date
);
6193 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
6194 asc_dvc
->cfg
->mcode_version
);
6197 * Set the chip type to indicate the ASC38C1600.
6199 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
6202 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6203 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6204 * cable detection and then we are able to read C_DET[3:0].
6206 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6207 * Microcode Default Value' section below.
6209 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6210 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
6211 scsi_cfg1
| DIS_TERM_DRV
);
6214 * If the PCI Configuration Command Register "Parity Error Response
6215 * Control" Bit was clear (0), then set the microcode variable
6216 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6217 * to ignore DMA parity errors.
6219 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
6220 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6221 word
|= CONTROL_FLAG_IGNORE_PERR
;
6222 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6226 * If the BIOS control flag AIPP (Asynchronous Information
6227 * Phase Protection) disable bit is not set, then set the firmware
6228 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6229 * AIPP checking and encoding.
6231 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
6232 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6233 word
|= CONTROL_FLAG_ENABLE_AIPP
;
6234 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
6238 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6239 * and START_CTL_TH [3:2].
6241 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
6242 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
6245 * Microcode operating variables for WDTR, SDTR, and command tag
6246 * queuing will be set in slave_configure() based on what a
6247 * device reports it is capable of in Inquiry byte 7.
6249 * If SCSI Bus Resets have been disabled, then directly set
6250 * SDTR and WDTR from the EEPROM configuration. This will allow
6251 * the BIOS and warm boot to work without a SCSI bus hang on
6252 * the Inquiry caused by host and target mismatched DTR values.
6253 * Without the SCSI Bus Reset, before an Inquiry a device can't
6254 * be assumed to be in Asynchronous, Narrow mode.
6256 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
6257 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
6258 asc_dvc
->wdtr_able
);
6259 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
6260 asc_dvc
->sdtr_able
);
6264 * Set microcode operating variables for DISC and SDTR_SPEED1,
6265 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6266 * configuration values.
6268 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6269 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6270 * without determining here whether the device supports SDTR.
6272 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
6273 asc_dvc
->cfg
->disc_enable
);
6274 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
6275 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
6276 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
6277 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
6280 * Set SCSI_CFG0 Microcode Default Value.
6282 * The microcode will set the SCSI_CFG0 register using this value
6283 * after it is started below.
6285 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
6286 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
6287 asc_dvc
->chip_scsi_id
);
6290 * Calculate SCSI_CFG1 Microcode Default Value.
6292 * The microcode will set the SCSI_CFG1 register using this value
6293 * after it is started below.
6295 * Each ASC-38C1600 function has only two cable detect bits.
6296 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6298 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
6301 * If the cable is reversed all of the SCSI_CTRL register signals
6302 * will be set. Check for and return an error if this condition is
6305 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
6306 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
6311 * Each ASC-38C1600 function has two connectors. Only an HVD device
6312 * can not be connected to either connector. An LVD device or SE device
6313 * may be connected to either connecor. If an SE device is connected,
6314 * then at most Ultra speed (20 Mhz) can be used on both connectors.
6316 * If an HVD device is attached, return an error.
6318 if (scsi_cfg1
& HVD
) {
6319 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
6324 * Each function in the ASC-38C1600 uses only the SE cable detect and
6325 * termination because there are two connectors for each function. Each
6326 * function may use either LVD or SE mode. Corresponding the SE automatic
6327 * termination control EEPROM bits are used for each function. Each
6328 * function has its own EEPROM. If SE automatic control is enabled for
6329 * the function, then set the termination value based on a table listed
6332 * If manual termination is specified in the EEPROM for the function,
6333 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6334 * ready to be 'ored' into SCSI_CFG1.
6336 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
6337 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
6338 /* SE automatic termination control is enabled. */
6339 switch (scsi_cfg1
& C_DET_SE
) {
6340 /* TERM_SE_HI: on, TERM_SE_LO: on */
6344 asc_dvc
->cfg
->termination
|= TERM_SE
;
6348 if (PCI_FUNC(pdev
->devfn
) == 0) {
6349 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6351 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6352 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
6359 * Clear any set TERM_SE bits.
6361 scsi_cfg1
&= ~TERM_SE
;
6364 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6366 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
6369 * Clear Big Endian and Terminator Polarity bits and set possibly
6370 * modified termination control bits in the Microcode SCSI_CFG1
6373 * Big Endian bit is not used even on big endian machines.
6375 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
6378 * Set SCSI_CFG1 Microcode Default Value
6380 * Set possibly modified termination control bits in the Microcode
6381 * SCSI_CFG1 Register Value.
6383 * The microcode will set the SCSI_CFG1 register using this value
6384 * after it is started below.
6386 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
6389 * Set MEM_CFG Microcode Default Value
6391 * The microcode will set the MEM_CFG register using this value
6392 * after it is started below.
6394 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6397 * ASC-38C1600 has 32KB internal memory.
6399 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6400 * out a special 16K Adv Library and Microcode version. After the issue
6401 * resolved, we should turn back to the 32K support. Both a_condor.h and
6402 * mcode.sas files also need to be updated.
6404 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6405 * BIOS_EN | RAM_SZ_32KB);
6407 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
6408 BIOS_EN
| RAM_SZ_16KB
);
6411 * Set SEL_MASK Microcode Default Value
6413 * The microcode will set the SEL_MASK register using this value
6414 * after it is started below.
6416 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
6417 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
6419 AdvBuildCarrierFreelist(asc_dvc
);
6422 * Set-up the Host->RISC Initiator Command Queue (ICQ).
6424 if ((asc_dvc
->icq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6425 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6428 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6429 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->icq_sp
->next_vpa
));
6432 * The first command issued will be placed in the stopper carrier.
6434 asc_dvc
->icq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6437 * Set RISC ICQ physical address start value. Initialize the
6438 * COMMA register to the same value otherwise the RISC will
6439 * prematurely detect a command is available.
6441 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
6442 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
6443 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
6446 * Set-up the RISC->Host Initiator Response Queue (IRQ).
6448 if ((asc_dvc
->irq_sp
= asc_dvc
->carr_freelist
) == NULL
) {
6449 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
6452 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
6453 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
));
6456 * The first command completed by the RISC will be placed in
6459 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6460 * completed the RISC will set the ASC_RQ_STOPPER bit.
6462 asc_dvc
->irq_sp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
6465 * Set RISC IRQ physical address start value.
6467 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
6468 asc_dvc
->carr_pending_cnt
= 0;
6470 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
6471 (ADV_INTR_ENABLE_HOST_INTR
|
6472 ADV_INTR_ENABLE_GLOBAL_INTR
));
6473 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
6474 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
6476 /* finally, finally, gentlemen, start your engine */
6477 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
6480 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6481 * Resets should be performed. The RISC has to be running
6482 * to issue a SCSI Bus Reset.
6484 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
6486 * If the BIOS Signature is present in memory, restore the
6487 * per TID microcode operating variables.
6489 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
6492 * Restore per TID negotiated values.
6494 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6495 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6496 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6497 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
6499 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
6500 AdvWriteByteLram(iop_base
,
6501 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6505 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
6506 warn_code
= ASC_WARN_BUSRESET_ERROR
;
6515 * Reset chip and SCSI Bus.
6518 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
6519 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
6521 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
6524 ushort wdtr_able
, sdtr_able
, tagqng_able
;
6525 ushort ppr_able
= 0;
6526 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
6527 AdvPortAddr iop_base
;
6530 iop_base
= asc_dvc
->iop_base
;
6533 * Save current per TID negotiated values.
6535 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6536 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6537 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6538 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6540 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6541 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6542 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6547 * Force the AdvInitAsc3550/38C0800Driver() function to
6548 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6549 * The initialization functions assumes a SCSI Bus Reset is not
6550 * needed if the BIOS signature word is present.
6552 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6553 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
6556 * Stop chip and reset it.
6558 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
6559 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
6561 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
6562 ADV_CTRL_REG_CMD_WR_IO_REG
);
6565 * Reset Adv Library error code, if any, and try
6566 * re-initializing the chip.
6568 asc_dvc
->err_code
= 0;
6569 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6570 status
= AdvInitAsc38C1600Driver(asc_dvc
);
6571 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6572 status
= AdvInitAsc38C0800Driver(asc_dvc
);
6574 status
= AdvInitAsc3550Driver(asc_dvc
);
6577 /* Translate initialization return value to status value. */
6585 * Restore the BIOS signature word.
6587 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
6590 * Restore per TID negotiated values.
6592 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
6593 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
6594 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
6595 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
6597 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
6598 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
6599 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
6607 * adv_async_callback() - Adv Library asynchronous event callback function.
6609 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
6612 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
6614 * The firmware detected a SCSI Bus reset.
6616 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6619 case ADV_ASYNC_RDMA_FAILURE
:
6621 * Handle RDMA failure by resetting the SCSI Bus and
6622 * possibly the chip if it is unresponsive. Log the error
6623 * with a unique code.
6625 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6626 AdvResetChipAndSB(adv_dvc_varp
);
6629 case ADV_HOST_SCSI_BUS_RESET
:
6631 * Host generated SCSI bus reset occurred.
6633 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6637 ASC_DBG(0, "unknown code 0x%x\n", code
);
6643 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6645 * Callback function for the Wide SCSI Adv Library.
6647 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
6649 struct asc_board
*boardp
;
6651 adv_sgblk_t
*sgblkp
;
6652 struct scsi_cmnd
*scp
;
6653 struct Scsi_Host
*shost
;
6656 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6657 (ulong
)adv_dvc_varp
, (ulong
)scsiqp
);
6658 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
6661 * Get the adv_req_t structure for the command that has been
6662 * completed. The adv_req_t structure actually contains the
6663 * completed ADV_SCSI_REQ_Q structure.
6665 reqp
= (adv_req_t
*)ADV_U32_TO_VADDR(scsiqp
->srb_ptr
);
6666 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
6668 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6673 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6674 * command that has been completed.
6676 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6677 * if any, are dropped, because a board structure pointer can not be
6681 ASC_DBG(1, "scp 0x%p\n", scp
);
6684 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6687 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6689 shost
= scp
->device
->host
;
6690 ASC_STATS(shost
, callback
);
6691 ASC_DBG(1, "shost 0x%p\n", shost
);
6693 boardp
= shost_priv(shost
);
6694 BUG_ON(adv_dvc_varp
!= &boardp
->dvc_var
.adv_dvc_var
);
6697 * 'done_status' contains the command's ending status.
6699 switch (scsiqp
->done_status
) {
6701 ASC_DBG(2, "QD_NO_ERROR\n");
6705 * Check for an underrun condition.
6707 * If there was no error and an underrun condition, then
6708 * then return the number of underrun bytes.
6710 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
6711 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
6712 resid_cnt
<= scsi_bufflen(scp
)) {
6713 ASC_DBG(1, "underrun condition %lu bytes\n",
6715 scsi_set_resid(scp
, resid_cnt
);
6720 ASC_DBG(2, "QD_WITH_ERROR\n");
6721 switch (scsiqp
->host_status
) {
6722 case QHSTA_NO_ERROR
:
6723 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
6724 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6725 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6726 SCSI_SENSE_BUFFERSIZE
);
6728 * Note: The 'status_byte()' macro used by
6729 * target drivers defined in scsi.h shifts the
6730 * status byte returned by host drivers right
6731 * by 1 bit. This is why target drivers also
6732 * use right shifted status byte definitions.
6733 * For instance target drivers use
6734 * CHECK_CONDITION, defined to 0x1, instead of
6735 * the SCSI defined check condition value of
6736 * 0x2. Host drivers are supposed to return
6737 * the status byte as it is defined by SCSI.
6739 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
6740 STATUS_BYTE(scsiqp
->scsi_status
);
6742 scp
->result
= STATUS_BYTE(scsiqp
->scsi_status
);
6747 /* Some other QHSTA error occurred. */
6748 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
6749 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
6754 case QD_ABORTED_BY_HOST
:
6755 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6757 HOST_BYTE(DID_ABORT
) | STATUS_BYTE(scsiqp
->scsi_status
);
6761 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
6763 HOST_BYTE(DID_ERROR
) | STATUS_BYTE(scsiqp
->scsi_status
);
6768 * If the 'init_tidmask' bit isn't already set for the target and the
6769 * current request finished normally, then set the bit for the target
6770 * to indicate that a device is present.
6772 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6773 scsiqp
->done_status
== QD_NO_ERROR
&&
6774 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6775 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6781 * Free all 'adv_sgblk_t' structures allocated for the request.
6783 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6784 /* Remove 'sgblkp' from the request list. */
6785 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6787 /* Add 'sgblkp' to the board free list. */
6788 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
6789 boardp
->adv_sgblkp
= sgblkp
;
6793 * Free the adv_req_t structure used with the command by adding
6794 * it back to the board free list.
6796 reqp
->next_reqp
= boardp
->adv_reqp
;
6797 boardp
->adv_reqp
= reqp
;
6799 ASC_DBG(1, "done\n");
6803 * Adv Library Interrupt Service Routine
6805 * This function is called by a driver's interrupt service routine.
6806 * The function disables and re-enables interrupts.
6808 * When a microcode idle command is completed, the ADV_DVC_VAR
6809 * 'idle_cmd_done' field is set to ADV_TRUE.
6811 * Note: AdvISR() can be called when interrupts are disabled or even
6812 * when there is no hardware interrupt condition present. It will
6813 * always check for completed idle commands and microcode requests.
6814 * This is an important feature that shouldn't be changed because it
6815 * allows commands to be completed from polling mode loops.
6818 * ADV_TRUE(1) - interrupt was pending
6819 * ADV_FALSE(0) - no interrupt was pending
6821 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6823 AdvPortAddr iop_base
;
6826 ADV_CARR_T
*free_carrp
;
6827 ADV_VADDR irq_next_vpa
;
6828 ADV_SCSI_REQ_Q
*scsiq
;
6830 iop_base
= asc_dvc
->iop_base
;
6832 /* Reading the register clears the interrupt. */
6833 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6835 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6836 ADV_INTR_STATUS_INTRC
)) == 0) {
6841 * Notify the driver of an asynchronous microcode condition by
6842 * calling the adv_async_callback function. The function
6843 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6845 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6848 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6850 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6851 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6852 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6853 asc_dvc
->carr_pending_cnt
!= 0) {
6854 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6856 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6857 AdvWriteByteRegister(iop_base
,
6864 adv_async_callback(asc_dvc
, intrb_code
);
6868 * Check if the IRQ stopper carrier contains a completed request.
6870 while (((irq_next_vpa
=
6871 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ASC_RQ_DONE
) != 0) {
6873 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6874 * The RISC will have set 'areq_vpa' to a virtual address.
6876 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6877 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6878 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6879 * in AdvExeScsiQueue().
6881 scsiq
= (ADV_SCSI_REQ_Q
*)
6882 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
));
6885 * Request finished with good status and the queue was not
6886 * DMAed to host memory by the firmware. Set all status fields
6887 * to indicate good status.
6889 if ((irq_next_vpa
& ASC_RQ_GOOD
) != 0) {
6890 scsiq
->done_status
= QD_NO_ERROR
;
6891 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6892 scsiq
->data_cnt
= 0L;
6896 * Advance the stopper pointer to the next carrier
6897 * ignoring the lower four bits. Free the previous
6900 free_carrp
= asc_dvc
->irq_sp
;
6901 asc_dvc
->irq_sp
= (ADV_CARR_T
*)
6902 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa
));
6904 free_carrp
->next_vpa
=
6905 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->carr_freelist
));
6906 asc_dvc
->carr_freelist
= free_carrp
;
6907 asc_dvc
->carr_pending_cnt
--;
6909 target_bit
= ADV_TID_TO_TIDMASK(scsiq
->target_id
);
6912 * Clear request microcode control flag.
6917 * Notify the driver of the completed request by passing
6918 * the ADV_SCSI_REQ_Q pointer to its callback function.
6920 scsiq
->a_flag
|= ADV_SCSIQ_DONE
;
6921 adv_isr_callback(asc_dvc
, scsiq
);
6923 * Note: After the driver callback function is called, 'scsiq'
6924 * can no longer be referenced.
6926 * Fall through and continue processing other completed
6933 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6935 if (asc_dvc
->err_code
== 0) {
6936 asc_dvc
->err_code
= err_code
;
6937 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6943 static void AscAckInterrupt(PortAddr iop_base
)
6951 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6952 if (loop
++ > 0x7FFF) {
6955 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6957 AscReadLramByte(iop_base
,
6958 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6959 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6960 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6961 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6963 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6964 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6969 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6972 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6974 const uchar
*period_table
;
6979 period_table
= asc_dvc
->sdtr_period_tbl
;
6980 max_index
= (int)asc_dvc
->max_sdtr_index
;
6981 min_index
= (int)asc_dvc
->min_sdtr_index
;
6982 if ((syn_time
<= period_table
[max_index
])) {
6983 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6984 if (syn_time
<= period_table
[i
]) {
6988 return (uchar
)max_index
;
6990 return (uchar
)(max_index
+ 1);
6995 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6998 uchar sdtr_period_index
;
7001 iop_base
= asc_dvc
->iop_base
;
7002 sdtr_buf
.msg_type
= EXTENDED_MESSAGE
;
7003 sdtr_buf
.msg_len
= MS_SDTR_LEN
;
7004 sdtr_buf
.msg_req
= EXTENDED_SDTR
;
7005 sdtr_buf
.xfer_period
= sdtr_period
;
7006 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
7007 sdtr_buf
.req_ack_offset
= sdtr_offset
;
7008 sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
7009 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
7010 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
7012 sizeof(EXT_MSG
) >> 1);
7013 return ((sdtr_period_index
<< 4) | sdtr_offset
);
7015 sdtr_buf
.req_ack_offset
= 0;
7016 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
7018 sizeof(EXT_MSG
) >> 1);
7024 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
7027 uchar sdtr_period_ix
;
7029 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
7030 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
7032 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
7036 static int AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
7038 ASC_SCSI_BIT_ID_TYPE org_id
;
7042 AscSetBank(iop_base
, 1);
7043 org_id
= AscReadChipDvcID(iop_base
);
7044 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
7045 if (org_id
== (0x01 << i
))
7048 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
7049 AscWriteChipDvcID(iop_base
, id
);
7050 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
7051 AscSetBank(iop_base
, 0);
7052 AscSetChipSyn(iop_base
, sdtr_data
);
7053 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
7059 AscSetBank(iop_base
, 1);
7060 AscWriteChipDvcID(iop_base
, org_id
);
7061 AscSetBank(iop_base
, 0);
7065 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
7067 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7068 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
7071 static int AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
7077 ushort int_halt_code
;
7078 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7079 ASC_SCSI_BIT_ID_TYPE target_id
;
7086 uchar q_cntl
, tid_no
;
7090 struct asc_board
*boardp
;
7092 BUG_ON(!asc_dvc
->drv_ptr
);
7093 boardp
= asc_dvc
->drv_ptr
;
7095 iop_base
= asc_dvc
->iop_base
;
7096 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
7098 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
7099 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
7100 target_ix
= AscReadLramByte(iop_base
,
7101 (ushort
)(halt_q_addr
+
7102 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
7103 q_cntl
= AscReadLramByte(iop_base
,
7104 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7105 tid_no
= ASC_TIX_TO_TID(target_ix
);
7106 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
7107 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7108 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
7112 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
7113 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7114 AscSetChipSDTR(iop_base
, 0, tid_no
);
7115 boardp
->sdtr_data
[tid_no
] = 0;
7117 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7119 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
7120 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
7121 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7122 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7124 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7126 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
7127 AscMemWordCopyPtrFromLram(iop_base
,
7130 sizeof(EXT_MSG
) >> 1);
7132 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7133 ext_msg
.msg_req
== EXTENDED_SDTR
&&
7134 ext_msg
.msg_len
== MS_SDTR_LEN
) {
7136 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
7138 sdtr_accept
= FALSE
;
7139 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
7141 if ((ext_msg
.xfer_period
<
7142 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
7143 || (ext_msg
.xfer_period
>
7144 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7146 sdtr_accept
= FALSE
;
7147 ext_msg
.xfer_period
=
7148 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
7153 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
7154 ext_msg
.req_ack_offset
);
7155 if ((sdtr_data
== 0xFF)) {
7157 q_cntl
|= QC_MSG_OUT
;
7158 asc_dvc
->init_sdtr
&= ~target_id
;
7159 asc_dvc
->sdtr_done
&= ~target_id
;
7160 AscSetChipSDTR(iop_base
, asyn_sdtr
,
7162 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7165 if (ext_msg
.req_ack_offset
== 0) {
7167 q_cntl
&= ~QC_MSG_OUT
;
7168 asc_dvc
->init_sdtr
&= ~target_id
;
7169 asc_dvc
->sdtr_done
&= ~target_id
;
7170 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7172 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
7173 q_cntl
&= ~QC_MSG_OUT
;
7174 asc_dvc
->sdtr_done
|= target_id
;
7175 asc_dvc
->init_sdtr
|= target_id
;
7176 asc_dvc
->pci_fix_asyn_xfer
&=
7179 AscCalSDTRData(asc_dvc
,
7180 ext_msg
.xfer_period
,
7183 AscSetChipSDTR(iop_base
, sdtr_data
,
7185 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7187 q_cntl
|= QC_MSG_OUT
;
7188 AscMsgOutSDTR(asc_dvc
,
7189 ext_msg
.xfer_period
,
7190 ext_msg
.req_ack_offset
);
7191 asc_dvc
->pci_fix_asyn_xfer
&=
7194 AscCalSDTRData(asc_dvc
,
7195 ext_msg
.xfer_period
,
7198 AscSetChipSDTR(iop_base
, sdtr_data
,
7200 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
7201 asc_dvc
->sdtr_done
|= target_id
;
7202 asc_dvc
->init_sdtr
|= target_id
;
7206 AscWriteLramByte(iop_base
,
7207 (ushort
)(halt_q_addr
+
7208 (ushort
)ASC_SCSIQ_B_CNTL
),
7210 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7212 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
7213 ext_msg
.msg_req
== EXTENDED_WDTR
&&
7214 ext_msg
.msg_len
== MS_WDTR_LEN
) {
7216 ext_msg
.wdtr_width
= 0;
7217 AscMemWordCopyPtrToLram(iop_base
,
7220 sizeof(EXT_MSG
) >> 1);
7221 q_cntl
|= QC_MSG_OUT
;
7222 AscWriteLramByte(iop_base
,
7223 (ushort
)(halt_q_addr
+
7224 (ushort
)ASC_SCSIQ_B_CNTL
),
7226 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7230 ext_msg
.msg_type
= MESSAGE_REJECT
;
7231 AscMemWordCopyPtrToLram(iop_base
,
7234 sizeof(EXT_MSG
) >> 1);
7235 q_cntl
|= QC_MSG_OUT
;
7236 AscWriteLramByte(iop_base
,
7237 (ushort
)(halt_q_addr
+
7238 (ushort
)ASC_SCSIQ_B_CNTL
),
7240 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7243 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
7245 q_cntl
|= QC_REQ_SENSE
;
7247 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
7249 asc_dvc
->sdtr_done
&= ~target_id
;
7251 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
7252 q_cntl
|= QC_MSG_OUT
;
7253 AscMsgOutSDTR(asc_dvc
,
7255 sdtr_period_tbl
[(sdtr_data
>> 4) &
7259 (uchar
)(sdtr_data
& (uchar
)
7260 ASC_SYN_MAX_OFFSET
));
7263 AscWriteLramByte(iop_base
,
7264 (ushort
)(halt_q_addr
+
7265 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7267 tag_code
= AscReadLramByte(iop_base
,
7268 (ushort
)(halt_q_addr
+ (ushort
)
7269 ASC_SCSIQ_B_TAG_CODE
));
7271 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
7272 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
7275 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7276 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
7279 AscWriteLramByte(iop_base
,
7280 (ushort
)(halt_q_addr
+
7281 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
7284 q_status
= AscReadLramByte(iop_base
,
7285 (ushort
)(halt_q_addr
+ (ushort
)
7286 ASC_SCSIQ_B_STATUS
));
7287 q_status
|= (QS_READY
| QS_BUSY
);
7288 AscWriteLramByte(iop_base
,
7289 (ushort
)(halt_q_addr
+
7290 (ushort
)ASC_SCSIQ_B_STATUS
),
7293 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
7294 scsi_busy
&= ~target_id
;
7295 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7297 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7299 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
7301 AscMemWordCopyPtrFromLram(iop_base
,
7304 sizeof(EXT_MSG
) >> 1);
7306 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
7307 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
7308 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
7310 asc_dvc
->init_sdtr
&= ~target_id
;
7311 asc_dvc
->sdtr_done
&= ~target_id
;
7312 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
7313 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
7315 q_cntl
&= ~QC_MSG_OUT
;
7316 AscWriteLramByte(iop_base
,
7317 (ushort
)(halt_q_addr
+
7318 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
7319 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7321 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
7323 scsi_status
= AscReadLramByte(iop_base
,
7324 (ushort
)((ushort
)halt_q_addr
+
7326 ASC_SCSIQ_SCSI_STATUS
));
7328 AscReadLramByte(iop_base
,
7329 (ushort
)((ushort
)ASC_QADR_BEG
+
7330 (ushort
)target_ix
));
7331 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
7333 scsi_busy
= AscReadLramByte(iop_base
,
7334 (ushort
)ASCV_SCSIBUSY_B
);
7335 scsi_busy
|= target_id
;
7336 AscWriteLramByte(iop_base
,
7337 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
7338 asc_dvc
->queue_full_or_busy
|= target_id
;
7340 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
7341 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
7343 asc_dvc
->max_dvc_qng
[tid_no
] =
7346 AscWriteLramByte(iop_base
,
7348 ASCV_MAX_DVC_QNG_BEG
7354 * Set the device queue depth to the
7355 * number of active requests when the
7356 * QUEUE FULL condition was encountered.
7358 boardp
->queue_full
|= target_id
;
7359 boardp
->queue_full_cnt
[tid_no
] =
7364 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7367 #if CC_VERY_LONG_SG_LIST
7368 else if (int_halt_code
== ASC_HALT_HOST_COPY_SG_LIST_TO_RISC
) {
7372 uchar first_sg_wk_q_no
;
7373 ASC_SCSI_Q
*scsiq
; /* Ptr to driver request. */
7374 ASC_SG_HEAD
*sg_head
; /* Ptr to driver SG request. */
7375 ASC_SG_LIST_Q scsi_sg_q
; /* Structure written to queue. */
7376 ushort sg_list_dwords
;
7377 ushort sg_entry_cnt
;
7381 q_no
= AscReadLramByte(iop_base
, (ushort
)ASCV_REQ_SG_LIST_QP
);
7382 if (q_no
== ASC_QLINK_END
)
7385 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7388 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7389 * structure pointer using a macro provided by the driver.
7390 * The ASC_SCSI_REQ pointer provides a pointer to the
7391 * host ASC_SG_HEAD structure.
7393 /* Read request's SRB pointer. */
7394 scsiq
= (ASC_SCSI_Q
*)
7395 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base
,
7398 ASC_SCSIQ_D_SRBPTR
))));
7401 * Get request's first and working SG queue.
7403 sg_wk_q_no
= AscReadLramByte(iop_base
,
7405 ASC_SCSIQ_B_SG_WK_QP
));
7407 first_sg_wk_q_no
= AscReadLramByte(iop_base
,
7409 ASC_SCSIQ_B_FIRST_SG_WK_QP
));
7412 * Reset request's working SG queue back to the
7415 AscWriteLramByte(iop_base
,
7417 (ushort
)ASC_SCSIQ_B_SG_WK_QP
),
7420 sg_head
= scsiq
->sg_head
;
7423 * Set sg_entry_cnt to the number of SG elements
7424 * that will be completed on this interrupt.
7426 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7427 * SG elements. The data_cnt and data_addr fields which
7428 * add 1 to the SG element capacity are not used when
7429 * restarting SG handling after a halt.
7431 if (scsiq
->remain_sg_entry_cnt
> (ASC_MAX_SG_LIST
- 1)) {
7432 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
7435 * Keep track of remaining number of SG elements that
7436 * will need to be handled on the next interrupt.
7438 scsiq
->remain_sg_entry_cnt
-= (ASC_MAX_SG_LIST
- 1);
7440 sg_entry_cnt
= scsiq
->remain_sg_entry_cnt
;
7441 scsiq
->remain_sg_entry_cnt
= 0;
7445 * Copy SG elements into the list of allocated SG queues.
7447 * Last index completed is saved in scsiq->next_sg_index.
7449 next_qp
= first_sg_wk_q_no
;
7450 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7451 scsi_sg_q
.sg_head_qp
= q_no
;
7452 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
7453 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
7454 scsi_sg_q
.seq_no
= i
+ 1;
7455 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
7456 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
7457 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
7459 * After very first SG queue RISC FW uses next
7460 * SG queue first element then checks sg_list_cnt
7461 * against zero and then decrements, so set
7462 * sg_list_cnt 1 less than number of SG elements
7465 scsi_sg_q
.sg_list_cnt
= ASC_SG_LIST_PER_Q
- 1;
7466 scsi_sg_q
.sg_cur_list_cnt
=
7467 ASC_SG_LIST_PER_Q
- 1;
7470 * This is the last SG queue in the list of
7471 * allocated SG queues. If there are more
7472 * SG elements than will fit in the allocated
7473 * queues, then set the QCSG_SG_XFER_MORE flag.
7475 if (scsiq
->remain_sg_entry_cnt
!= 0) {
7476 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
7478 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
7480 /* equals sg_entry_cnt * 2 */
7481 sg_list_dwords
= sg_entry_cnt
<< 1;
7482 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
- 1;
7483 scsi_sg_q
.sg_cur_list_cnt
= sg_entry_cnt
- 1;
7487 scsi_sg_q
.q_no
= next_qp
;
7488 AscMemWordCopyPtrToLram(iop_base
,
7489 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
7490 (uchar
*)&scsi_sg_q
,
7491 sizeof(ASC_SG_LIST_Q
) >> 1);
7493 AscMemDWordCopyPtrToLram(iop_base
,
7494 q_addr
+ ASC_SGQ_LIST_BEG
,
7496 sg_list
[scsiq
->next_sg_index
],
7499 scsiq
->next_sg_index
+= ASC_SG_LIST_PER_Q
;
7502 * If the just completed SG queue contained the
7503 * last SG element, then no more SG queues need
7506 if (scsi_sg_q
.cntl
& QCSG_SG_XFER_END
) {
7510 next_qp
= AscReadLramByte(iop_base
,
7513 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7517 * Clear the halt condition so the RISC will be restarted
7520 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
7523 #endif /* CC_VERY_LONG_SG_LIST */
7529 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7531 * Calling/Exit State:
7535 * Input an ASC_QDONE_INFO structure from the chip
7538 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
7543 AscSetChipLramAddr(iop_base
, s_addr
);
7544 for (i
= 0; i
< 2 * words
; i
+= 2) {
7548 word
= inpw(iop_base
+ IOP_RAM_DATA
);
7549 inbuf
[i
] = word
& 0xff;
7550 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
7552 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
7556 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
7558 ASC_QDONE_INFO
*scsiq
, ASC_DCNT max_dma_count
)
7563 DvcGetQinfo(iop_base
,
7564 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
7566 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
7568 _val
= AscReadLramWord(iop_base
,
7569 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
7570 scsiq
->q_status
= (uchar
)_val
;
7571 scsiq
->q_no
= (uchar
)(_val
>> 8);
7572 _val
= AscReadLramWord(iop_base
,
7573 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
7574 scsiq
->cntl
= (uchar
)_val
;
7575 sg_queue_cnt
= (uchar
)(_val
>> 8);
7576 _val
= AscReadLramWord(iop_base
,
7578 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
7579 scsiq
->sense_len
= (uchar
)_val
;
7580 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
7583 * Read high word of remain bytes from alternate location.
7585 scsiq
->remain_bytes
= (((ADV_DCNT
)AscReadLramWord(iop_base
,
7588 ASC_SCSIQ_W_ALT_DC1
)))
7591 * Read low word of remain bytes from original location.
7593 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
7594 (ushort
)(q_addr
+ (ushort
)
7595 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
7597 scsiq
->remain_bytes
&= max_dma_count
;
7598 return sg_queue_cnt
;
7602 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7604 * Interrupt callback function for the Narrow SCSI Asc Library.
7606 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
7608 struct asc_board
*boardp
;
7609 struct scsi_cmnd
*scp
;
7610 struct Scsi_Host
*shost
;
7612 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
7613 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
7615 scp
= advansys_srb_to_ptr(asc_dvc_varp
, qdonep
->d2
.srb_ptr
);
7619 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
7621 shost
= scp
->device
->host
;
7622 ASC_STATS(shost
, callback
);
7623 ASC_DBG(1, "shost 0x%p\n", shost
);
7625 boardp
= shost_priv(shost
);
7626 BUG_ON(asc_dvc_varp
!= &boardp
->dvc_var
.asc_dvc_var
);
7628 dma_unmap_single(boardp
->dev
, scp
->SCp
.dma_handle
,
7629 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7631 * 'qdonep' contains the command's ending status.
7633 switch (qdonep
->d3
.done_stat
) {
7635 ASC_DBG(2, "QD_NO_ERROR\n");
7639 * Check for an underrun condition.
7641 * If there was no error and an underrun condition, then
7642 * return the number of underrun bytes.
7644 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
7645 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
7646 ASC_DBG(1, "underrun condition %u bytes\n",
7647 (unsigned)qdonep
->remain_bytes
);
7648 scsi_set_resid(scp
, qdonep
->remain_bytes
);
7653 ASC_DBG(2, "QD_WITH_ERROR\n");
7654 switch (qdonep
->d3
.host_stat
) {
7655 case QHSTA_NO_ERROR
:
7656 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
7657 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7658 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
7659 SCSI_SENSE_BUFFERSIZE
);
7661 * Note: The 'status_byte()' macro used by
7662 * target drivers defined in scsi.h shifts the
7663 * status byte returned by host drivers right
7664 * by 1 bit. This is why target drivers also
7665 * use right shifted status byte definitions.
7666 * For instance target drivers use
7667 * CHECK_CONDITION, defined to 0x1, instead of
7668 * the SCSI defined check condition value of
7669 * 0x2. Host drivers are supposed to return
7670 * the status byte as it is defined by SCSI.
7672 scp
->result
= DRIVER_BYTE(DRIVER_SENSE
) |
7673 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7675 scp
->result
= STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7680 /* QHSTA error occurred */
7681 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
7682 scp
->result
= HOST_BYTE(DID_BAD_TARGET
);
7687 case QD_ABORTED_BY_HOST
:
7688 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7690 HOST_BYTE(DID_ABORT
) | MSG_BYTE(qdonep
->d3
.
7692 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7696 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
7698 HOST_BYTE(DID_ERROR
) | MSG_BYTE(qdonep
->d3
.
7700 STATUS_BYTE(qdonep
->d3
.scsi_stat
);
7705 * If the 'init_tidmask' bit isn't already set for the target and the
7706 * current request finished normally, then set the bit for the target
7707 * to indicate that a device is present.
7709 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
7710 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
7711 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
7712 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
7718 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
7727 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
7728 ASC_SCSI_BIT_ID_TYPE target_id
;
7732 uchar cur_target_qng
;
7733 ASC_QDONE_INFO scsiq_buf
;
7734 ASC_QDONE_INFO
*scsiq
;
7737 iop_base
= asc_dvc
->iop_base
;
7739 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
7740 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
7741 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
7742 next_qp
= AscReadLramByte(iop_base
,
7743 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
7744 if (next_qp
!= ASC_QLINK_END
) {
7745 AscPutVarDoneQTail(iop_base
, next_qp
);
7746 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7747 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
7748 asc_dvc
->max_dma_count
);
7749 AscWriteLramByte(iop_base
,
7751 (ushort
)ASC_SCSIQ_B_STATUS
),
7753 q_status
& (uchar
)~(QS_READY
|
7755 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
7756 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
7757 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
7759 sg_list_qp
= next_qp
;
7760 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
7761 sg_list_qp
= AscReadLramByte(iop_base
,
7765 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
7766 if (sg_list_qp
== ASC_QLINK_END
) {
7767 AscSetLibErrorCode(asc_dvc
,
7768 ASCQ_ERR_SG_Q_LINKS
);
7769 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7770 scsiq
->d3
.host_stat
=
7771 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
7772 goto FATAL_ERR_QDONE
;
7774 AscWriteLramByte(iop_base
,
7775 (ushort
)(sg_q_addr
+ (ushort
)
7776 ASC_SCSIQ_B_STATUS
),
7779 n_q_used
= sg_queue_cnt
+ 1;
7780 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
7782 if (asc_dvc
->queue_full_or_busy
& target_id
) {
7783 cur_target_qng
= AscReadLramByte(iop_base
,
7789 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
7790 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
7792 scsi_busy
&= ~target_id
;
7793 AscWriteLramByte(iop_base
,
7794 (ushort
)ASCV_SCSIBUSY_B
,
7796 asc_dvc
->queue_full_or_busy
&= ~target_id
;
7799 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
7800 asc_dvc
->cur_total_qng
-= n_q_used
;
7801 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
7802 asc_dvc
->cur_dvc_qng
[tid_no
]--;
7805 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
7806 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
7807 goto FATAL_ERR_QDONE
;
7809 if ((scsiq
->d2
.srb_ptr
== 0UL) ||
7810 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
7812 } else if (scsiq
->q_status
== QS_DONE
) {
7813 false_overrun
= FALSE
;
7814 if (scsiq
->extra_bytes
!= 0) {
7815 scsiq
->remain_bytes
+=
7816 (ADV_DCNT
)scsiq
->extra_bytes
;
7818 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
7819 if (scsiq
->d3
.host_stat
==
7820 QHSTA_M_DATA_OVER_RUN
) {
7822 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
7824 scsiq
->d3
.done_stat
=
7826 scsiq
->d3
.host_stat
=
7828 } else if (false_overrun
) {
7829 scsiq
->d3
.done_stat
=
7831 scsiq
->d3
.host_stat
=
7834 } else if (scsiq
->d3
.host_stat
==
7835 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
7836 AscStopChip(iop_base
);
7837 AscSetChipControl(iop_base
,
7838 (uchar
)(CC_SCSI_RESET
7841 AscSetChipControl(iop_base
, CC_HALT
);
7842 AscSetChipStatus(iop_base
,
7843 CIW_CLR_SCSI_RESET_INT
);
7844 AscSetChipStatus(iop_base
, 0);
7845 AscSetChipControl(iop_base
, 0);
7848 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7849 asc_isr_callback(asc_dvc
, scsiq
);
7851 if ((AscReadLramByte(iop_base
,
7852 (ushort
)(q_addr
+ (ushort
)
7855 asc_dvc
->unit_not_ready
&= ~target_id
;
7856 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
7857 asc_dvc
->start_motor
&=
7864 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
7866 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
7867 asc_isr_callback(asc_dvc
, scsiq
);
7875 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
7877 ASC_CS_TYPE chipstat
;
7879 ushort saved_ram_addr
;
7881 uchar saved_ctrl_reg
;
7886 iop_base
= asc_dvc
->iop_base
;
7887 int_pending
= FALSE
;
7889 if (AscIsIntPending(iop_base
) == 0)
7892 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
7895 if (asc_dvc
->in_critical_cnt
!= 0) {
7896 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
7899 if (asc_dvc
->is_in_int
) {
7900 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
7903 asc_dvc
->is_in_int
= TRUE
;
7904 ctrl_reg
= AscGetChipControl(iop_base
);
7905 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
7906 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
7907 chipstat
= AscGetChipStatus(iop_base
);
7908 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
7909 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
7912 asc_dvc
->sdtr_done
= 0;
7913 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7914 while ((AscGetChipStatus(iop_base
) &
7915 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
7918 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
7919 AscSetChipControl(iop_base
, CC_HALT
);
7920 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
7921 AscSetChipStatus(iop_base
, 0);
7922 chipstat
= AscGetChipStatus(iop_base
);
7925 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
7926 host_flag
= AscReadLramByte(iop_base
,
7928 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
7929 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
7930 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
7931 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
7932 AscAckInterrupt(iop_base
);
7934 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
7935 if (AscIsrChipHalted(asc_dvc
) == ERR
) {
7936 goto ISR_REPORT_QDONE_FATAL_ERROR
;
7938 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
7941 ISR_REPORT_QDONE_FATAL_ERROR
:
7942 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
7944 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
7949 AscIsrQDone(asc_dvc
)) == 1) {
7952 } while (status
== 0x11);
7954 if ((status
& 0x80) != 0)
7958 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7959 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7960 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7961 asc_dvc
->is_in_int
= FALSE
;
7968 * Reset the bus associated with the command 'scp'.
7970 * This function runs its own thread. Interrupts must be blocked but
7971 * sleeping is allowed and no locking other than for host structures is
7972 * required. Returns SUCCESS or FAILED.
7974 static int advansys_reset(struct scsi_cmnd
*scp
)
7976 struct Scsi_Host
*shost
= scp
->device
->host
;
7977 struct asc_board
*boardp
= shost_priv(shost
);
7978 unsigned long flags
;
7982 ASC_DBG(1, "0x%p\n", scp
);
7984 ASC_STATS(shost
, reset
);
7986 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset started...\n");
7988 if (ASC_NARROW_BOARD(boardp
)) {
7989 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7991 /* Reset the chip and SCSI bus. */
7992 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7993 status
= AscInitAsc1000Driver(asc_dvc
);
7995 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7996 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7997 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error: "
7998 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
8001 } else if (status
) {
8002 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset warning: "
8005 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
8009 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8010 spin_lock_irqsave(shost
->host_lock
, flags
);
8013 * If the suggest reset bus flags are set, then reset the bus.
8014 * Otherwise only reset the device.
8016 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8019 * Reset the target's SCSI bus.
8021 ASC_DBG(1, "before AdvResetChipAndSB()\n");
8022 switch (AdvResetChipAndSB(adv_dvc
)) {
8024 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset "
8029 scmd_printk(KERN_INFO
, scp
, "SCSI bus reset error\n");
8033 spin_lock_irqsave(shost
->host_lock
, flags
);
8037 /* Save the time of the most recently completed reset. */
8038 boardp
->last_reset
= jiffies
;
8039 spin_unlock_irqrestore(shost
->host_lock
, flags
);
8041 ASC_DBG(1, "ret %d\n", ret
);
8047 * advansys_biosparam()
8049 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8050 * support is enabled for a drive.
8052 * ip (information pointer) is an int array with the following definition:
8058 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
8059 sector_t capacity
, int ip
[])
8061 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8063 ASC_DBG(1, "begin\n");
8064 ASC_STATS(sdev
->host
, biosparam
);
8065 if (ASC_NARROW_BOARD(boardp
)) {
8066 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
8067 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
8075 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
8076 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
8084 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
8085 ASC_DBG(1, "end\n");
8090 * First-level interrupt handler.
8092 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8094 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
8096 struct Scsi_Host
*shost
= dev_id
;
8097 struct asc_board
*boardp
= shost_priv(shost
);
8098 irqreturn_t result
= IRQ_NONE
;
8100 ASC_DBG(2, "boardp 0x%p\n", boardp
);
8101 spin_lock(shost
->host_lock
);
8102 if (ASC_NARROW_BOARD(boardp
)) {
8103 if (AscIsIntPending(shost
->io_port
)) {
8104 result
= IRQ_HANDLED
;
8105 ASC_STATS(shost
, interrupt
);
8106 ASC_DBG(1, "before AscISR()\n");
8107 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
8110 ASC_DBG(1, "before AdvISR()\n");
8111 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
8112 result
= IRQ_HANDLED
;
8113 ASC_STATS(shost
, interrupt
);
8116 spin_unlock(shost
->host_lock
);
8118 ASC_DBG(1, "end\n");
8122 static int AscHostReqRiscHalt(PortAddr iop_base
)
8126 uchar saved_stop_code
;
8128 if (AscIsChipHalted(iop_base
))
8130 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
8131 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
8132 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
8134 if (AscIsChipHalted(iop_base
)) {
8139 } while (count
++ < 20);
8140 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
8145 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
8149 if (AscHostReqRiscHalt(iop_base
)) {
8150 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
8151 AscStartChip(iop_base
);
8156 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
8158 char type
= sdev
->type
;
8159 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
8161 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
8163 if (asc_dvc
->init_sdtr
& tid_bits
)
8166 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
8167 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
8169 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
8170 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
8171 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
8172 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
8174 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
8175 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
8176 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
8180 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
8182 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
8183 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
8185 if (sdev
->lun
== 0) {
8186 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
8187 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
8188 asc_dvc
->init_sdtr
|= tid_bit
;
8190 asc_dvc
->init_sdtr
&= ~tid_bit
;
8193 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
8194 AscAsyncFix(asc_dvc
, sdev
);
8197 if (sdev
->tagged_supported
) {
8198 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
8199 if (sdev
->lun
== 0) {
8200 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
8201 asc_dvc
->use_tagged_qng
|= tid_bit
;
8203 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8204 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8207 if (sdev
->lun
== 0) {
8208 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
8209 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
8211 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8214 if ((sdev
->lun
== 0) &&
8215 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
8216 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
8217 asc_dvc
->cfg
->disc_enable
);
8218 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
8219 asc_dvc
->use_tagged_qng
);
8220 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
8221 asc_dvc
->cfg
->can_tagged_qng
);
8223 asc_dvc
->max_dvc_qng
[sdev
->id
] =
8224 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
8225 AscWriteLramByte(asc_dvc
->iop_base
,
8226 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
8227 asc_dvc
->max_dvc_qng
[sdev
->id
]);
8234 * If the EEPROM enabled WDTR for the device and the device supports wide
8235 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8236 * write the new value to the microcode.
8239 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8241 unsigned short cfg_word
;
8242 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8243 if ((cfg_word
& tidmask
) != 0)
8246 cfg_word
|= tidmask
;
8247 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
8250 * Clear the microcode SDTR and WDTR negotiation done indicators for
8251 * the target to cause it to negotiate with the new setting set above.
8252 * WDTR when accepted causes the target to enter asynchronous mode, so
8253 * SDTR must be negotiated.
8255 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8256 cfg_word
&= ~tidmask
;
8257 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8258 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8259 cfg_word
&= ~tidmask
;
8260 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
8264 * Synchronous Transfers
8266 * If the EEPROM enabled SDTR for the device and the device
8267 * supports synchronous transfers, then turn on the device's
8268 * 'sdtr_able' bit. Write the new value to the microcode.
8271 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
8273 unsigned short cfg_word
;
8274 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8275 if ((cfg_word
& tidmask
) != 0)
8278 cfg_word
|= tidmask
;
8279 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
8282 * Clear the microcode "SDTR negotiation" done indicator for the
8283 * target to cause it to negotiate with the new setting set above.
8285 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8286 cfg_word
&= ~tidmask
;
8287 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
8291 * PPR (Parallel Protocol Request) Capable
8293 * If the device supports DT mode, then it must be PPR capable.
8294 * The PPR message will be used in place of the SDTR and WDTR
8295 * messages to negotiate synchronous speed and offset, transfer
8296 * width, and protocol options.
8298 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
8299 AdvPortAddr iop_base
, unsigned short tidmask
)
8301 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8302 adv_dvc
->ppr_able
|= tidmask
;
8303 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
8307 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
8309 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
8310 unsigned short tidmask
= 1 << sdev
->id
;
8312 if (sdev
->lun
== 0) {
8314 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8315 * is enabled in the EEPROM and the device supports the
8316 * feature, then enable it in the microcode.
8319 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
8320 advansys_wide_enable_wdtr(iop_base
, tidmask
);
8321 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
8322 advansys_wide_enable_sdtr(iop_base
, tidmask
);
8323 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
8324 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
8327 * Tag Queuing is disabled for the BIOS which runs in polled
8328 * mode and would see no benefit from Tag Queuing. Also by
8329 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8330 * bugs will at least work with the BIOS.
8332 if ((adv_dvc
->tagqng_able
& tidmask
) &&
8333 sdev
->tagged_supported
) {
8334 unsigned short cfg_word
;
8335 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
8336 cfg_word
|= tidmask
;
8337 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
8339 AdvWriteByteLram(iop_base
,
8340 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
8341 adv_dvc
->max_dvc_qng
);
8345 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
) {
8346 scsi_adjust_queue_depth(sdev
, MSG_ORDERED_TAG
,
8347 adv_dvc
->max_dvc_qng
);
8349 scsi_adjust_queue_depth(sdev
, 0, sdev
->host
->cmd_per_lun
);
8354 * Set the number of commands to queue per device for the
8355 * specified host adapter.
8357 static int advansys_slave_configure(struct scsi_device
*sdev
)
8359 struct asc_board
*boardp
= shost_priv(sdev
->host
);
8361 if (ASC_NARROW_BOARD(boardp
))
8362 advansys_narrow_slave_configure(sdev
,
8363 &boardp
->dvc_var
.asc_dvc_var
);
8365 advansys_wide_slave_configure(sdev
,
8366 &boardp
->dvc_var
.adv_dvc_var
);
8371 static __le32
advansys_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
8373 struct asc_board
*board
= shost_priv(scp
->device
->host
);
8374 scp
->SCp
.dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
8375 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8376 dma_cache_sync(board
->dev
, scp
->sense_buffer
,
8377 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
8378 return cpu_to_le32(scp
->SCp
.dma_handle
);
8381 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8382 struct asc_scsi_q
*asc_scsi_q
)
8384 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8387 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
8390 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8392 asc_scsi_q
->q2
.srb_ptr
= advansys_ptr_to_srb(asc_dvc
, scp
);
8393 if (asc_scsi_q
->q2
.srb_ptr
== BAD_SRB
) {
8394 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8399 * Build the ASC_SCSI_Q request.
8401 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
8402 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
8403 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
8404 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
8405 asc_scsi_q
->q2
.target_ix
=
8406 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
8407 asc_scsi_q
->q1
.sense_addr
= advansys_get_sense_buffer_dma(scp
);
8408 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
8411 * If there are any outstanding requests for the current target,
8412 * then every 255th request send an ORDERED request. This heuristic
8413 * tries to retain the benefit of request sorting while preventing
8414 * request starvation. 255 is the max number of tags or pending commands
8415 * a device may have outstanding.
8417 * The request count is incremented below for every successfully
8421 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
8422 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
8423 asc_scsi_q
->q2
.tag_code
= MSG_ORDERED_TAG
;
8425 asc_scsi_q
->q2
.tag_code
= MSG_SIMPLE_TAG
;
8428 /* Build ASC_SCSI_Q */
8429 use_sg
= scsi_dma_map(scp
);
8432 struct scatterlist
*slp
;
8433 struct asc_sg_head
*asc_sg_head
;
8435 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
8436 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8437 "sg_tablesize %d\n", use_sg
,
8438 scp
->device
->host
->sg_tablesize
);
8439 scsi_dma_unmap(scp
);
8440 scp
->result
= HOST_BYTE(DID_ERROR
);
8444 asc_sg_head
= kzalloc(sizeof(asc_scsi_q
->sg_head
) +
8445 use_sg
* sizeof(struct asc_sg_list
), GFP_ATOMIC
);
8447 scsi_dma_unmap(scp
);
8448 scp
->result
= HOST_BYTE(DID_SOFT_ERROR
);
8452 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
8453 asc_scsi_q
->sg_head
= asc_sg_head
;
8454 asc_scsi_q
->q1
.data_cnt
= 0;
8455 asc_scsi_q
->q1
.data_addr
= 0;
8456 /* This is a byte value, otherwise it would need to be swapped. */
8457 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
8458 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
8459 asc_sg_head
->entry_cnt
);
8462 * Convert scatter-gather list into ASC_SG_HEAD list.
8464 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
8465 asc_sg_head
->sg_list
[sgcnt
].addr
=
8466 cpu_to_le32(sg_dma_address(slp
));
8467 asc_sg_head
->sg_list
[sgcnt
].bytes
=
8468 cpu_to_le32(sg_dma_len(slp
));
8469 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8470 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8474 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8476 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
8477 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8483 * Build scatter-gather list for Adv Library (Wide Board).
8485 * Additional ADV_SG_BLOCK structures will need to be allocated
8486 * if the total number of scatter-gather elements exceeds
8487 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8488 * assumed to be physically contiguous.
8491 * ADV_SUCCESS(1) - SG List successfully created
8492 * ADV_ERROR(-1) - SG List creation failed
8495 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
, struct scsi_cmnd
*scp
,
8498 adv_sgblk_t
*sgblkp
;
8499 ADV_SCSI_REQ_Q
*scsiqp
;
8500 struct scatterlist
*slp
;
8502 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
8503 ADV_PADDR sg_block_paddr
;
8506 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8507 slp
= scsi_sglist(scp
);
8508 sg_elem_cnt
= use_sg
;
8509 prev_sg_block
= NULL
;
8510 reqp
->sgblkp
= NULL
;
8514 * Allocate a 'adv_sgblk_t' structure from the board free
8515 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8516 * (15) scatter-gather elements.
8518 if ((sgblkp
= boardp
->adv_sgblkp
) == NULL
) {
8519 ASC_DBG(1, "no free adv_sgblk_t\n");
8520 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
8523 * Allocation failed. Free 'adv_sgblk_t' structures
8524 * already allocated for the request.
8526 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
8527 /* Remove 'sgblkp' from the request list. */
8528 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
8530 /* Add 'sgblkp' to the board free list. */
8531 sgblkp
->next_sgblkp
= boardp
->adv_sgblkp
;
8532 boardp
->adv_sgblkp
= sgblkp
;
8537 /* Complete 'adv_sgblk_t' board allocation. */
8538 boardp
->adv_sgblkp
= sgblkp
->next_sgblkp
;
8539 sgblkp
->next_sgblkp
= NULL
;
8542 * Get 8 byte aligned virtual and physical addresses
8543 * for the allocated ADV_SG_BLOCK structure.
8545 sg_block
= (ADV_SG_BLOCK
*)ADV_8BALIGN(&sgblkp
->sg_block
);
8546 sg_block_paddr
= virt_to_bus(sg_block
);
8549 * Check if this is the first 'adv_sgblk_t' for the
8552 if (reqp
->sgblkp
== NULL
) {
8553 /* Request's first scatter-gather block. */
8554 reqp
->sgblkp
= sgblkp
;
8557 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8560 scsiqp
->sg_list_ptr
= sg_block
;
8561 scsiqp
->sg_real_addr
= cpu_to_le32(sg_block_paddr
);
8563 /* Request's second or later scatter-gather block. */
8564 sgblkp
->next_sgblkp
= reqp
->sgblkp
;
8565 reqp
->sgblkp
= sgblkp
;
8568 * Point the previous ADV_SG_BLOCK structure to
8569 * the newly allocated ADV_SG_BLOCK structure.
8571 prev_sg_block
->sg_ptr
= cpu_to_le32(sg_block_paddr
);
8574 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
8575 sg_block
->sg_list
[i
].sg_addr
=
8576 cpu_to_le32(sg_dma_address(slp
));
8577 sg_block
->sg_list
[i
].sg_count
=
8578 cpu_to_le32(sg_dma_len(slp
));
8579 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
8580 DIV_ROUND_UP(sg_dma_len(slp
), 512));
8582 if (--sg_elem_cnt
== 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */
8583 sg_block
->sg_cnt
= i
+ 1;
8584 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
8589 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
8590 prev_sg_block
= sg_block
;
8595 * Build a request structure for the Adv Library (Wide Board).
8597 * If an adv_req_t can not be allocated to issue the request,
8598 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8600 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8601 * microcode for DMA addresses or math operations are byte swapped
8602 * to little-endian order.
8605 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
8606 ADV_SCSI_REQ_Q
**adv_scsiqpp
)
8609 ADV_SCSI_REQ_Q
*scsiqp
;
8615 * Allocate an adv_req_t structure from the board to execute
8618 if (boardp
->adv_reqp
== NULL
) {
8619 ASC_DBG(1, "no free adv_req_t\n");
8620 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
8623 reqp
= boardp
->adv_reqp
;
8624 boardp
->adv_reqp
= reqp
->next_reqp
;
8625 reqp
->next_reqp
= NULL
;
8629 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8631 scsiqp
= (ADV_SCSI_REQ_Q
*)ADV_32BALIGN(&reqp
->scsi_req_q
);
8634 * Initialize the structure.
8636 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
8639 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8641 scsiqp
->srb_ptr
= ADV_VADDR_TO_U32(reqp
);
8644 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8649 * Build the ADV_SCSI_REQ_Q request.
8652 /* Set CDB length and copy it to the request structure. */
8653 scsiqp
->cdb_len
= scp
->cmd_len
;
8654 /* Copy first 12 CDB bytes to cdb[]. */
8655 for (i
= 0; i
< scp
->cmd_len
&& i
< 12; i
++) {
8656 scsiqp
->cdb
[i
] = scp
->cmnd
[i
];
8658 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8659 for (; i
< scp
->cmd_len
; i
++) {
8660 scsiqp
->cdb16
[i
- 12] = scp
->cmnd
[i
];
8663 scsiqp
->target_id
= scp
->device
->id
;
8664 scsiqp
->target_lun
= scp
->device
->lun
;
8666 scsiqp
->sense_addr
= cpu_to_le32(virt_to_bus(&scp
->sense_buffer
[0]));
8667 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
8669 /* Build ADV_SCSI_REQ_Q */
8671 use_sg
= scsi_dma_map(scp
);
8673 /* Zero-length transfer */
8674 reqp
->sgblkp
= NULL
;
8675 scsiqp
->data_cnt
= 0;
8676 scsiqp
->vdata_addr
= NULL
;
8678 scsiqp
->data_addr
= 0;
8679 scsiqp
->sg_list_ptr
= NULL
;
8680 scsiqp
->sg_real_addr
= 0;
8682 if (use_sg
> ADV_MAX_SG_LIST
) {
8683 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
8684 "ADV_MAX_SG_LIST %d\n", use_sg
,
8685 scp
->device
->host
->sg_tablesize
);
8686 scsi_dma_unmap(scp
);
8687 scp
->result
= HOST_BYTE(DID_ERROR
);
8690 * Free the 'adv_req_t' structure by adding it back
8691 * to the board free list.
8693 reqp
->next_reqp
= boardp
->adv_reqp
;
8694 boardp
->adv_reqp
= reqp
;
8699 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
8701 ret
= adv_get_sglist(boardp
, reqp
, scp
, use_sg
);
8702 if (ret
!= ADV_SUCCESS
) {
8704 * Free the adv_req_t structure by adding it back to
8705 * the board free list.
8707 reqp
->next_reqp
= boardp
->adv_reqp
;
8708 boardp
->adv_reqp
= reqp
;
8713 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
8716 ASC_STATS(scp
->device
->host
, xfer_cnt
);
8718 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
8719 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
8721 *adv_scsiqpp
= scsiqp
;
8726 static int AscSgListToQueue(int sg_list
)
8730 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
8731 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
8733 return n_sg_list_qs
+ 1;
8737 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
8741 ASC_SCSI_BIT_ID_TYPE target_id
;
8744 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
8745 tid_no
= ASC_TIX_TO_TID(target_ix
);
8746 if ((asc_dvc
->unit_not_ready
& target_id
) ||
8747 (asc_dvc
->queue_full_or_busy
& target_id
)) {
8751 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8752 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
8754 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
8755 (uint
) ASC_MIN_FREE_Q
;
8757 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
8758 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
8759 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
8760 asc_dvc
->max_dvc_qng
[tid_no
]) {
8766 if ((n_qs
> asc_dvc
->last_q_shortage
)
8767 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
8768 asc_dvc
->last_q_shortage
= n_qs
;
8774 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
8780 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
8781 q_status
= (uchar
)AscReadLramByte(iop_base
,
8783 ASC_SCSIQ_B_STATUS
));
8784 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
8785 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
8787 return ASC_QLINK_END
;
8791 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
8795 for (i
= 0; i
< n_free_q
; i
++) {
8796 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
8797 if (free_q_head
== ASC_QLINK_END
)
8805 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8807 * Calling/Exit State:
8811 * Output an ASC_SCSI_Q structure to the chip
8814 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
8818 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
8819 AscSetChipLramAddr(iop_base
, s_addr
);
8820 for (i
= 0; i
< 2 * words
; i
+= 2) {
8821 if (i
== 4 || i
== 20) {
8824 outpw(iop_base
+ IOP_RAM_DATA
,
8825 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
8829 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8834 uchar syn_period_ix
;
8838 iop_base
= asc_dvc
->iop_base
;
8839 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
8840 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
8841 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
8842 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8844 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
8845 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
8846 AscMsgOutSDTR(asc_dvc
,
8847 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
8849 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
8851 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8852 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
8853 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
8855 scsiq
->q1
.status
= QS_FREE
;
8856 AscMemWordCopyPtrToLram(iop_base
,
8857 q_addr
+ ASC_SCSIQ_CDB_BEG
,
8858 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
8860 DvcPutScsiQ(iop_base
,
8861 q_addr
+ ASC_SCSIQ_CPY_BEG
,
8862 (uchar
*)&scsiq
->q1
.cntl
,
8863 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
8864 AscWriteLramWord(iop_base
,
8865 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
8866 (ushort
)(((ushort
)scsiq
->q1
.
8867 q_no
<< 8) | (ushort
)QS_READY
));
8872 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
8876 ASC_SG_HEAD
*sg_head
;
8877 ASC_SG_LIST_Q scsi_sg_q
;
8878 ASC_DCNT saved_data_addr
;
8879 ASC_DCNT saved_data_cnt
;
8881 ushort sg_list_dwords
;
8883 ushort sg_entry_cnt
;
8887 iop_base
= asc_dvc
->iop_base
;
8888 sg_head
= scsiq
->sg_head
;
8889 saved_data_addr
= scsiq
->q1
.data_addr
;
8890 saved_data_cnt
= scsiq
->q1
.data_cnt
;
8891 scsiq
->q1
.data_addr
= (ASC_PADDR
) sg_head
->sg_list
[0].addr
;
8892 scsiq
->q1
.data_cnt
= (ASC_DCNT
) sg_head
->sg_list
[0].bytes
;
8893 #if CC_VERY_LONG_SG_LIST
8895 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8896 * then not all SG elements will fit in the allocated queues.
8897 * The rest of the SG elements will be copied when the RISC
8898 * completes the SG elements that fit and halts.
8900 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8902 * Set sg_entry_cnt to be the number of SG elements that
8903 * will fit in the allocated SG queues. It is minus 1, because
8904 * the first SG element is handled above. ASC_MAX_SG_LIST is
8905 * already inflated by 1 to account for this. For example it
8906 * may be 50 which is 1 + 7 queues * 7 SG elements.
8908 sg_entry_cnt
= ASC_MAX_SG_LIST
- 1;
8911 * Keep track of remaining number of SG elements that will
8912 * need to be handled from a_isr.c.
8914 scsiq
->remain_sg_entry_cnt
=
8915 sg_head
->entry_cnt
- ASC_MAX_SG_LIST
;
8917 #endif /* CC_VERY_LONG_SG_LIST */
8919 * Set sg_entry_cnt to be the number of SG elements that
8920 * will fit in the allocated SG queues. It is minus 1, because
8921 * the first SG element is handled above.
8923 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
8924 #if CC_VERY_LONG_SG_LIST
8926 #endif /* CC_VERY_LONG_SG_LIST */
8927 if (sg_entry_cnt
!= 0) {
8928 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
8929 q_addr
= ASC_QNO_TO_QADDR(q_no
);
8931 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
8932 scsi_sg_q
.sg_head_qp
= q_no
;
8933 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
8934 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
8935 scsi_sg_q
.seq_no
= i
+ 1;
8936 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
8937 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
8938 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
8940 scsi_sg_q
.sg_list_cnt
=
8942 scsi_sg_q
.sg_cur_list_cnt
=
8945 scsi_sg_q
.sg_list_cnt
=
8946 ASC_SG_LIST_PER_Q
- 1;
8947 scsi_sg_q
.sg_cur_list_cnt
=
8948 ASC_SG_LIST_PER_Q
- 1;
8951 #if CC_VERY_LONG_SG_LIST
8953 * This is the last SG queue in the list of
8954 * allocated SG queues. If there are more
8955 * SG elements than will fit in the allocated
8956 * queues, then set the QCSG_SG_XFER_MORE flag.
8958 if (sg_head
->entry_cnt
> ASC_MAX_SG_LIST
) {
8959 scsi_sg_q
.cntl
|= QCSG_SG_XFER_MORE
;
8961 #endif /* CC_VERY_LONG_SG_LIST */
8962 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
8963 #if CC_VERY_LONG_SG_LIST
8965 #endif /* CC_VERY_LONG_SG_LIST */
8966 sg_list_dwords
= sg_entry_cnt
<< 1;
8968 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
8969 scsi_sg_q
.sg_cur_list_cnt
=
8972 scsi_sg_q
.sg_list_cnt
=
8974 scsi_sg_q
.sg_cur_list_cnt
=
8979 next_qp
= AscReadLramByte(iop_base
,
8982 scsi_sg_q
.q_no
= next_qp
;
8983 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
8984 AscMemWordCopyPtrToLram(iop_base
,
8985 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
8986 (uchar
*)&scsi_sg_q
,
8987 sizeof(ASC_SG_LIST_Q
) >> 1);
8988 AscMemDWordCopyPtrToLram(iop_base
,
8989 q_addr
+ ASC_SGQ_LIST_BEG
,
8993 sg_index
+= ASC_SG_LIST_PER_Q
;
8994 scsiq
->next_sg_index
= sg_index
;
8997 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8999 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
9000 scsiq
->q1
.data_addr
= saved_data_addr
;
9001 scsiq
->q1
.data_cnt
= saved_data_cnt
;
9006 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
9015 iop_base
= asc_dvc
->iop_base
;
9016 target_ix
= scsiq
->q2
.target_ix
;
9017 tid_no
= ASC_TIX_TO_TID(target_ix
);
9019 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
9020 if (n_q_required
> 1) {
9021 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
9022 (uchar
)n_q_required
);
9023 if (next_qp
!= ASC_QLINK_END
) {
9024 asc_dvc
->last_q_shortage
= 0;
9025 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
9026 scsiq
->q1
.q_no
= free_q_head
;
9027 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
9030 } else if (n_q_required
== 1) {
9031 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
9032 if (next_qp
!= ASC_QLINK_END
) {
9033 scsiq
->q1
.q_no
= free_q_head
;
9034 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
9038 AscPutVarFreeQHead(iop_base
, next_qp
);
9039 asc_dvc
->cur_total_qng
+= n_q_required
;
9040 asc_dvc
->cur_dvc_qng
[tid_no
]++;
9045 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
9046 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
9065 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
9070 int disable_syn_offset_one_fix
;
9073 ushort sg_entry_cnt
= 0;
9074 ushort sg_entry_cnt_minus_one
= 0;
9081 ASC_SG_HEAD
*sg_head
;
9084 iop_base
= asc_dvc
->iop_base
;
9085 sg_head
= scsiq
->sg_head
;
9086 if (asc_dvc
->err_code
!= 0)
9089 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
9090 scsiq
->q1
.extra_bytes
= 0;
9093 target_ix
= scsiq
->q2
.target_ix
;
9094 tid_no
= ASC_TIX_TO_TID(target_ix
);
9096 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
9097 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
9098 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
9099 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
9100 AscMsgOutSDTR(asc_dvc
,
9102 sdtr_period_tbl
[(sdtr_data
>> 4) &
9106 (uchar
)(sdtr_data
& (uchar
)
9107 ASC_SYN_MAX_OFFSET
));
9108 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
9111 if (asc_dvc
->in_critical_cnt
!= 0) {
9112 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
9115 asc_dvc
->in_critical_cnt
++;
9116 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9117 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
9118 asc_dvc
->in_critical_cnt
--;
9121 #if !CC_VERY_LONG_SG_LIST
9122 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9123 asc_dvc
->in_critical_cnt
--;
9126 #endif /* !CC_VERY_LONG_SG_LIST */
9127 if (sg_entry_cnt
== 1) {
9128 scsiq
->q1
.data_addr
=
9129 (ADV_PADDR
)sg_head
->sg_list
[0].addr
;
9130 scsiq
->q1
.data_cnt
=
9131 (ADV_DCNT
)sg_head
->sg_list
[0].bytes
;
9132 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
9134 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
9136 scsi_cmd
= scsiq
->cdbptr
[0];
9137 disable_syn_offset_one_fix
= FALSE
;
9138 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
9139 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
9140 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
9142 for (i
= 0; i
< sg_entry_cnt
; i
++) {
9144 (ADV_DCNT
)le32_to_cpu(sg_head
->sg_list
[i
].
9148 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
9150 if (data_cnt
!= 0UL) {
9151 if (data_cnt
< 512UL) {
9152 disable_syn_offset_one_fix
= TRUE
;
9154 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
9157 _syn_offset_one_disable_cmd
[i
];
9158 if (disable_cmd
== 0xFF) {
9161 if (scsi_cmd
== disable_cmd
) {
9162 disable_syn_offset_one_fix
=
9170 if (disable_syn_offset_one_fix
) {
9171 scsiq
->q2
.tag_code
&= ~MSG_SIMPLE_TAG
;
9172 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
9173 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
9175 scsiq
->q2
.tag_code
&= 0x27;
9177 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
9178 if (asc_dvc
->bug_fix_cntl
) {
9179 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9180 if ((scsi_cmd
== READ_6
) ||
9181 (scsi_cmd
== READ_10
)) {
9183 (ADV_PADDR
)le32_to_cpu(sg_head
->
9185 [sg_entry_cnt_minus_one
].
9187 (ADV_DCNT
)le32_to_cpu(sg_head
->
9189 [sg_entry_cnt_minus_one
].
9192 (uchar
)((ushort
)addr
& 0x0003);
9193 if ((extra_bytes
!= 0)
9197 ASC_TAG_FLAG_EXTRA_BYTES
)
9199 scsiq
->q2
.tag_code
|=
9200 ASC_TAG_FLAG_EXTRA_BYTES
;
9201 scsiq
->q1
.extra_bytes
=
9204 le32_to_cpu(sg_head
->
9206 [sg_entry_cnt_minus_one
].
9209 (ASC_DCNT
) extra_bytes
;
9212 [sg_entry_cnt_minus_one
].
9214 cpu_to_le32(data_cnt
);
9219 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
9220 #if CC_VERY_LONG_SG_LIST
9222 * Set the sg_entry_cnt to the maximum possible. The rest of
9223 * the SG elements will be copied when the RISC completes the
9224 * SG elements that fit and halts.
9226 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
9227 sg_entry_cnt
= ASC_MAX_SG_LIST
;
9229 #endif /* CC_VERY_LONG_SG_LIST */
9230 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
9231 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
9232 (uint
) n_q_required
)
9233 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9235 AscSendScsiQueue(asc_dvc
, scsiq
,
9236 n_q_required
)) == 1) {
9237 asc_dvc
->in_critical_cnt
--;
9242 if (asc_dvc
->bug_fix_cntl
) {
9243 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
9244 if ((scsi_cmd
== READ_6
) ||
9245 (scsi_cmd
== READ_10
)) {
9247 le32_to_cpu(scsiq
->q1
.data_addr
) +
9248 le32_to_cpu(scsiq
->q1
.data_cnt
);
9250 (uchar
)((ushort
)addr
& 0x0003);
9251 if ((extra_bytes
!= 0)
9255 ASC_TAG_FLAG_EXTRA_BYTES
)
9258 le32_to_cpu(scsiq
->q1
.
9260 if (((ushort
)data_cnt
& 0x01FF)
9262 scsiq
->q2
.tag_code
|=
9263 ASC_TAG_FLAG_EXTRA_BYTES
;
9264 data_cnt
-= (ASC_DCNT
)
9266 scsiq
->q1
.data_cnt
=
9269 scsiq
->q1
.extra_bytes
=
9277 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
9278 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
9279 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
9280 n_q_required
)) == 1) {
9281 asc_dvc
->in_critical_cnt
--;
9286 asc_dvc
->in_critical_cnt
--;
9291 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9293 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9294 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
9295 * RISC to notify it a new command is ready to be executed.
9297 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9298 * set to SCSI_MAX_RETRY.
9300 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9301 * for DMA addresses or math operations are byte swapped to little-endian
9305 * ADV_SUCCESS(1) - The request was successfully queued.
9306 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
9307 * request completes.
9308 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
9311 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, ADV_SCSI_REQ_Q
*scsiq
)
9313 AdvPortAddr iop_base
;
9314 ADV_PADDR req_paddr
;
9315 ADV_CARR_T
*new_carrp
;
9318 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9320 if (scsiq
->target_id
> ADV_MAX_TID
) {
9321 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
9322 scsiq
->done_status
= QD_WITH_ERROR
;
9326 iop_base
= asc_dvc
->iop_base
;
9329 * Allocate a carrier ensuring at least one carrier always
9330 * remains on the freelist and initialize fields.
9332 if ((new_carrp
= asc_dvc
->carr_freelist
) == NULL
) {
9335 asc_dvc
->carr_freelist
= (ADV_CARR_T
*)
9336 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp
->next_vpa
));
9337 asc_dvc
->carr_pending_cnt
++;
9340 * Set the carrier to be a stopper by setting 'next_vpa'
9341 * to the stopper value. The current stopper will be changed
9342 * below to point to the new stopper.
9344 new_carrp
->next_vpa
= cpu_to_le32(ASC_CQ_STOPPER
);
9347 * Clear the ADV_SCSI_REQ_Q done flag.
9349 scsiq
->a_flag
&= ~ADV_SCSIQ_DONE
;
9351 req_paddr
= virt_to_bus(scsiq
);
9352 BUG_ON(req_paddr
& 31);
9353 /* Wait for assertion before making little-endian */
9354 req_paddr
= cpu_to_le32(req_paddr
);
9356 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9357 scsiq
->scsiq_ptr
= cpu_to_le32(ADV_VADDR_TO_U32(scsiq
));
9358 scsiq
->scsiq_rptr
= req_paddr
;
9360 scsiq
->carr_va
= cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc
->icq_sp
));
9362 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9363 * order during initialization.
9365 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
9368 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9369 * the microcode. The newly allocated stopper will become the new
9372 asc_dvc
->icq_sp
->areq_vpa
= req_paddr
;
9375 * Set the 'next_vpa' pointer for the old stopper to be the
9376 * physical address of the new stopper. The RISC can only
9377 * follow physical addresses.
9379 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
9382 * Set the host adapter stopper pointer to point to the new carrier.
9384 asc_dvc
->icq_sp
= new_carrp
;
9386 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
9387 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
9389 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9391 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
9392 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
9394 * Clear the tickle value. In the ASC-3550 the RISC flag
9395 * command 'clr_tickle_a' does not work unless the host
9398 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
9401 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
9403 * Notify the RISC a carrier is ready by writing the physical
9404 * address of the new carrier stopper to the COMMA register.
9406 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
9407 le32_to_cpu(new_carrp
->carr_pa
));
9414 * Execute a single 'Scsi_Cmnd'.
9416 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
9419 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
9421 ASC_DBG(1, "scp 0x%p\n", scp
);
9423 if (ASC_NARROW_BOARD(boardp
)) {
9424 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
9425 struct asc_scsi_q asc_scsi_q
;
9427 /* asc_build_req() can not return ASC_BUSY. */
9428 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
9429 if (ret
== ASC_ERROR
) {
9430 ASC_STATS(scp
->device
->host
, build_error
);
9434 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
9435 kfree(asc_scsi_q
.sg_head
);
9436 err_code
= asc_dvc
->err_code
;
9438 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
9439 ADV_SCSI_REQ_Q
*adv_scsiqp
;
9441 switch (adv_build_req(boardp
, scp
, &adv_scsiqp
)) {
9443 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9446 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9448 * The asc_stats fields 'adv_build_noreq' and
9449 * 'adv_build_nosg' count wide board busy conditions.
9450 * They are updated in adv_build_req and
9451 * adv_get_sglist, respectively.
9456 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9457 ASC_STATS(scp
->device
->host
, build_error
);
9461 ret
= AdvExeScsiQueue(adv_dvc
, adv_scsiqp
);
9462 err_code
= adv_dvc
->err_code
;
9467 ASC_STATS(scp
->device
->host
, exe_noerror
);
9469 * Increment monotonically increasing per device
9470 * successful request counter. Wrapping doesn't matter.
9472 boardp
->reqcnt
[scp
->device
->id
]++;
9473 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9476 ASC_STATS(scp
->device
->host
, exe_busy
);
9479 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
9480 "err_code 0x%x\n", err_code
);
9481 ASC_STATS(scp
->device
->host
, exe_error
);
9482 scp
->result
= HOST_BYTE(DID_ERROR
);
9485 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
9486 "err_code 0x%x\n", err_code
);
9487 ASC_STATS(scp
->device
->host
, exe_unknown
);
9488 scp
->result
= HOST_BYTE(DID_ERROR
);
9492 ASC_DBG(1, "end\n");
9497 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9499 * This function always returns 0. Command return status is saved
9500 * in the 'scp' result field.
9503 advansys_queuecommand(struct scsi_cmnd
*scp
, void (*done
)(struct scsi_cmnd
*))
9505 struct Scsi_Host
*shost
= scp
->device
->host
;
9506 int asc_res
, result
= 0;
9508 ASC_STATS(shost
, queuecommand
);
9509 scp
->scsi_done
= done
;
9511 asc_res
= asc_execute_scsi_cmnd(scp
);
9517 result
= SCSI_MLQUEUE_HOST_BUSY
;
9528 static ushort __devinit
AscGetEisaChipCfg(PortAddr iop_base
)
9530 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9531 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
9532 return inpw(eisa_cfg_iop
);
9536 * Return the BIOS address of the adapter at the specified
9537 * I/O port and with the specified bus type.
9539 static unsigned short __devinit
9540 AscGetChipBiosAddress(PortAddr iop_base
, unsigned short bus_type
)
9542 unsigned short cfg_lsw
;
9543 unsigned short bios_addr
;
9546 * The PCI BIOS is re-located by the motherboard BIOS. Because
9547 * of this the driver can not determine where a PCI BIOS is
9548 * loaded and executes.
9550 if (bus_type
& ASC_IS_PCI
)
9553 if ((bus_type
& ASC_IS_EISA
) != 0) {
9554 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
9556 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
9560 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9563 * ISA PnP uses the top bit as the 32K BIOS flag
9565 if (bus_type
== ASC_IS_ISAPNP
)
9567 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
9571 static uchar __devinit
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
9575 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
9576 return (new_host_id
);
9578 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
9580 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
9581 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9582 return (AscGetChipScsiID(iop_base
));
9585 static unsigned char __devinit
AscGetChipScsiCtrl(PortAddr iop_base
)
9589 AscSetBank(iop_base
, 1);
9590 sc
= inp(iop_base
+ IOP_REG_SC
);
9591 AscSetBank(iop_base
, 0);
9595 static unsigned char __devinit
9596 AscGetChipVersion(PortAddr iop_base
, unsigned short bus_type
)
9598 if (bus_type
& ASC_IS_EISA
) {
9600 unsigned char revision
;
9601 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
9602 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
9603 revision
= inp(eisa_iop
);
9604 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
9606 return AscGetChipVerNo(iop_base
);
9610 static void __devinit
AscEnableIsaDma(uchar dma_channel
)
9612 if (dma_channel
< 4) {
9613 outp(0x000B, (ushort
)(0xC0 | dma_channel
));
9614 outp(0x000A, dma_channel
);
9615 } else if (dma_channel
< 8) {
9616 outp(0x00D6, (ushort
)(0xC0 | (dma_channel
- 4)));
9617 outp(0x00D4, (ushort
)(dma_channel
- 4));
9620 #endif /* CONFIG_ISA */
9622 static int AscStopQueueExe(PortAddr iop_base
)
9626 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
9627 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
9628 ASC_STOP_REQ_RISC_STOP
);
9630 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
9631 ASC_STOP_ACK_RISC_STOP
) {
9635 } while (count
++ < 20);
9640 static ASC_DCNT __devinit
AscGetMaxDmaCount(ushort bus_type
)
9642 if (bus_type
& ASC_IS_ISA
)
9643 return ASC_MAX_ISA_DMA_COUNT
;
9644 else if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
9645 return ASC_MAX_VL_DMA_COUNT
;
9646 return ASC_MAX_PCI_DMA_COUNT
;
9650 static ushort __devinit
AscGetIsaDmaChannel(PortAddr iop_base
)
9654 channel
= AscGetChipCfgLsw(iop_base
) & 0x0003;
9655 if (channel
== 0x03)
9657 else if (channel
== 0x00)
9659 return (channel
+ 4);
9662 static ushort __devinit
AscSetIsaDmaChannel(PortAddr iop_base
, ushort dma_channel
)
9667 if ((dma_channel
>= 5) && (dma_channel
<= 7)) {
9668 if (dma_channel
== 7)
9671 value
= dma_channel
- 4;
9672 cfg_lsw
= AscGetChipCfgLsw(iop_base
) & 0xFFFC;
9674 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
9675 return (AscGetIsaDmaChannel(iop_base
));
9680 static uchar __devinit
AscGetIsaDmaSpeed(PortAddr iop_base
)
9684 AscSetBank(iop_base
, 1);
9685 speed_value
= AscReadChipDmaSpeed(iop_base
);
9686 speed_value
&= 0x07;
9687 AscSetBank(iop_base
, 0);
9691 static uchar __devinit
AscSetIsaDmaSpeed(PortAddr iop_base
, uchar speed_value
)
9693 speed_value
&= 0x07;
9694 AscSetBank(iop_base
, 1);
9695 AscWriteChipDmaSpeed(iop_base
, speed_value
);
9696 AscSetBank(iop_base
, 0);
9697 return AscGetIsaDmaSpeed(iop_base
);
9699 #endif /* CONFIG_ISA */
9701 static ushort __devinit
AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
9708 iop_base
= asc_dvc
->iop_base
;
9710 asc_dvc
->err_code
= 0;
9711 if ((asc_dvc
->bus_type
&
9712 (ASC_IS_ISA
| ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
9713 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
9715 AscSetChipControl(iop_base
, CC_HALT
);
9716 AscSetChipStatus(iop_base
, 0);
9717 asc_dvc
->bug_fix_cntl
= 0;
9718 asc_dvc
->pci_fix_asyn_xfer
= 0;
9719 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
9720 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9721 asc_dvc
->sdtr_done
= 0;
9722 asc_dvc
->cur_total_qng
= 0;
9723 asc_dvc
->is_in_int
= 0;
9724 asc_dvc
->in_critical_cnt
= 0;
9725 asc_dvc
->last_q_shortage
= 0;
9726 asc_dvc
->use_tagged_qng
= 0;
9727 asc_dvc
->no_scam
= 0;
9728 asc_dvc
->unit_not_ready
= 0;
9729 asc_dvc
->queue_full_or_busy
= 0;
9730 asc_dvc
->redo_scam
= 0;
9732 asc_dvc
->min_sdtr_index
= 0;
9733 asc_dvc
->cfg
->can_tagged_qng
= 0;
9734 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
9735 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
9736 asc_dvc
->init_sdtr
= 0;
9737 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
9738 asc_dvc
->scsi_reset_wait
= 3;
9739 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
9740 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
9741 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9742 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
9743 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
9744 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
9745 asc_dvc
->cfg
->chip_version
= chip_version
;
9746 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
9747 asc_dvc
->max_sdtr_index
= 7;
9748 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
9749 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
9750 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
9751 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
9752 asc_dvc
->max_sdtr_index
= 15;
9753 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
9754 AscSetExtraControl(iop_base
,
9755 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9756 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
9757 AscSetExtraControl(iop_base
,
9758 (SEC_ACTIVE_NEGATE
|
9759 SEC_ENABLE_FILTER
));
9762 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
9763 AscSetExtraControl(iop_base
,
9764 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
9767 asc_dvc
->cfg
->isa_dma_speed
= ASC_DEF_ISA_DMA_SPEED
;
9769 if ((asc_dvc
->bus_type
& ASC_IS_ISA
) != 0) {
9770 if (chip_version
>= ASC_CHIP_MIN_VER_ISA_PNP
) {
9771 AscSetChipIFC(iop_base
, IFC_INIT_DEFAULT
);
9772 asc_dvc
->bus_type
= ASC_IS_ISAPNP
;
9774 asc_dvc
->cfg
->isa_dma_channel
=
9775 (uchar
)AscGetIsaDmaChannel(iop_base
);
9777 #endif /* CONFIG_ISA */
9778 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9779 asc_dvc
->cur_dvc_qng
[i
] = 0;
9780 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
9781 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
9782 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
9783 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
9788 static int __devinit
AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
9792 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
9793 unsigned char read_back
;
9794 AscSetChipEEPCmd(iop_base
, cmd_reg
);
9796 read_back
= AscGetChipEEPCmd(iop_base
);
9797 if (read_back
== cmd_reg
)
9803 static void __devinit
AscWaitEEPRead(void)
9808 static ushort __devinit
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
9813 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9815 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
9816 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
9818 read_wval
= AscGetChipEEPData(iop_base
);
9823 static ushort __devinit
9824 AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9831 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9834 wbuf
= (ushort
*)cfg_buf
;
9836 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9837 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9838 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9841 if (bus_type
& ASC_IS_VL
) {
9842 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9843 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9845 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9846 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9848 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9849 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9850 if (s_addr
<= uchar_end_in_config
) {
9852 * Swap all char fields - must unswap bytes already swapped
9853 * by AscReadEEPWord().
9855 *wbuf
= le16_to_cpu(wval
);
9857 /* Don't swap word field at the end - cntl field. */
9860 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
9863 * Read the checksum word which will be compared against 'sum'
9864 * by the caller. Word field already swapped.
9866 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
9870 static int __devinit
AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
9877 iop_base
= asc_dvc
->iop_base
;
9879 q_addr
= ASC_QNO_TO_QADDR(241);
9880 saved_word
= AscReadLramWord(iop_base
, q_addr
);
9881 AscSetChipLramAddr(iop_base
, q_addr
);
9882 AscSetChipLramData(iop_base
, 0x55AA);
9884 AscSetChipLramAddr(iop_base
, q_addr
);
9885 if (AscGetChipLramData(iop_base
) == 0x55AA) {
9887 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
9892 static void __devinit
AscWaitEEPWrite(void)
9897 static int __devinit
AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
9904 AscSetChipEEPData(iop_base
, data_reg
);
9906 read_back
= AscGetChipEEPData(iop_base
);
9907 if (read_back
== data_reg
) {
9910 if (retry
++ > ASC_EEP_MAX_RETRY
) {
9916 static ushort __devinit
9917 AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
9921 read_wval
= AscReadEEPWord(iop_base
, addr
);
9922 if (read_wval
!= word_val
) {
9923 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
9925 AscWriteEEPDataReg(iop_base
, word_val
);
9927 AscWriteEEPCmdReg(iop_base
,
9928 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
9930 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
9932 return (AscReadEEPWord(iop_base
, addr
));
9937 static int __devinit
9938 AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
9947 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
9949 wbuf
= (ushort
*)cfg_buf
;
9952 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9953 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9955 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9959 if (bus_type
& ASC_IS_VL
) {
9960 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
9961 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
9963 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
9964 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
9966 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
9967 if (s_addr
<= uchar_end_in_config
) {
9969 * This is a char field. Swap char fields before they are
9970 * swapped again by AscWriteEEPWord().
9972 word
= cpu_to_le16(*wbuf
);
9974 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
9978 /* Don't swap word field at the end - cntl field. */
9980 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
9984 sum
+= *wbuf
; /* Checksum calculated from word values. */
9986 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9988 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
9992 /* Read EEPROM back again. */
9993 wbuf
= (ushort
*)cfg_buf
;
9995 * Read two config words; Byte-swapping done by AscReadEEPWord().
9997 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
9998 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
10002 if (bus_type
& ASC_IS_VL
) {
10003 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
10004 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
10006 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
10007 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
10009 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
10010 if (s_addr
<= uchar_end_in_config
) {
10012 * Swap all char fields. Must unswap bytes already swapped
10013 * by AscReadEEPWord().
10016 le16_to_cpu(AscReadEEPWord
10017 (iop_base
, (uchar
)s_addr
));
10019 /* Don't swap word field at the end - cntl field. */
10020 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
10022 if (*wbuf
!= word
) {
10026 /* Read checksum; Byte swapping not needed. */
10027 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
10033 static int __devinit
10034 AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
, ushort bus_type
)
10041 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
10045 if (++retry
> ASC_EEP_MAX_RETRY
) {
10052 static ushort __devinit
AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
10054 ASCEEP_CONFIG eep_config_buf
;
10055 ASCEEP_CONFIG
*eep_config
;
10059 ushort cfg_msw
, cfg_lsw
;
10063 iop_base
= asc_dvc
->iop_base
;
10065 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
10066 AscStopQueueExe(iop_base
);
10067 if ((AscStopChip(iop_base
) == FALSE
) ||
10068 (AscGetChipScsiCtrl(iop_base
) != 0)) {
10069 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
10070 AscResetChipAndScsiBus(asc_dvc
);
10071 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
10073 if (AscIsChipHalted(iop_base
) == FALSE
) {
10074 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
10075 return (warn_code
);
10077 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
10078 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
10079 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
10080 return (warn_code
);
10082 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
10083 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10084 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
10085 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10086 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10087 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10088 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10090 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
10091 ASC_DBG(1, "chksum 0x%x\n", chksum
);
10095 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10096 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10097 if (asc_dvc
->cfg
->chip_version
== 3) {
10098 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
10099 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10100 eep_config
->cfg_lsw
=
10101 AscGetChipCfgLsw(iop_base
);
10103 if (eep_config
->cfg_msw
!= cfg_msw
) {
10104 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
10105 eep_config
->cfg_msw
=
10106 AscGetChipCfgMsw(iop_base
);
10110 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10111 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
10112 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
10113 if (chksum
!= eep_config
->chksum
) {
10114 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
10115 ASC_CHIP_VER_PCI_ULTRA_3050
) {
10116 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10117 eep_config
->init_sdtr
= 0xFF;
10118 eep_config
->disc_enable
= 0xFF;
10119 eep_config
->start_motor
= 0xFF;
10120 eep_config
->use_cmd_qng
= 0;
10121 eep_config
->max_total_qng
= 0xF0;
10122 eep_config
->max_tag_qng
= 0x20;
10123 eep_config
->cntl
= 0xBFFF;
10124 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
10125 eep_config
->no_scam
= 0;
10126 eep_config
->adapter_info
[0] = 0;
10127 eep_config
->adapter_info
[1] = 0;
10128 eep_config
->adapter_info
[2] = 0;
10129 eep_config
->adapter_info
[3] = 0;
10130 eep_config
->adapter_info
[4] = 0;
10131 /* Indicate EEPROM-less board. */
10132 eep_config
->adapter_info
[5] = 0xBB;
10135 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10137 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10140 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
10141 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
10142 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
10143 asc_dvc
->cfg
->isa_dma_speed
= ASC_EEP_GET_DMA_SPD(eep_config
);
10144 asc_dvc
->start_motor
= eep_config
->start_motor
;
10145 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
10146 asc_dvc
->no_scam
= eep_config
->no_scam
;
10147 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
10148 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
10149 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
10150 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
10151 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
10152 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
10153 if (!AscTestExternalLram(asc_dvc
)) {
10154 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
10155 ASC_IS_PCI_ULTRA
)) {
10156 eep_config
->max_total_qng
=
10157 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
10158 eep_config
->max_tag_qng
=
10159 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
10161 eep_config
->cfg_msw
|= 0x0800;
10163 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10164 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
10165 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
10169 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
10170 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
10172 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
10173 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
10175 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
10176 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
10178 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
10179 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
10181 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
10182 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
10183 eep_config
->use_cmd_qng
) {
10184 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
10185 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10187 ASC_EEP_SET_CHIP_ID(eep_config
,
10188 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
10189 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
10190 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
10191 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
10192 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
10195 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
10196 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
10197 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
10198 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
10199 (uchar
)(ASC_DEF_SDTR_OFFSET
|
10200 (asc_dvc
->min_sdtr_index
<< 4));
10202 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
10204 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
10205 asc_dvc
->bus_type
)) != 0) {
10207 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10211 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10214 return (warn_code
);
10217 static int __devinit
AscInitGetConfig(struct Scsi_Host
*shost
)
10219 struct asc_board
*board
= shost_priv(shost
);
10220 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10221 unsigned short warn_code
= 0;
10223 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
10224 if (asc_dvc
->err_code
!= 0)
10225 return asc_dvc
->err_code
;
10227 if (AscFindSignature(asc_dvc
->iop_base
)) {
10228 warn_code
|= AscInitAscDvcVar(asc_dvc
);
10229 warn_code
|= AscInitFromEEP(asc_dvc
);
10230 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
10231 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
10232 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
10234 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10237 switch (warn_code
) {
10238 case 0: /* No error */
10240 case ASC_WARN_IO_PORT_ROTATE
:
10241 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10244 case ASC_WARN_AUTO_CONFIG
:
10245 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10248 case ASC_WARN_EEPROM_CHKSUM
:
10249 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10251 case ASC_WARN_IRQ_MODIFIED
:
10252 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10254 case ASC_WARN_CMD_QNG_CONFLICT
:
10255 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
10259 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10264 if (asc_dvc
->err_code
!= 0)
10265 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10266 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10268 return asc_dvc
->err_code
;
10271 static int __devinit
AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
10273 struct asc_board
*board
= shost_priv(shost
);
10274 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
10275 PortAddr iop_base
= asc_dvc
->iop_base
;
10276 unsigned short cfg_msw
;
10277 unsigned short warn_code
= 0;
10279 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
10280 if (asc_dvc
->err_code
!= 0)
10281 return asc_dvc
->err_code
;
10282 if (!AscFindSignature(asc_dvc
->iop_base
)) {
10283 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10284 return asc_dvc
->err_code
;
10287 cfg_msw
= AscGetChipCfgMsw(iop_base
);
10288 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
10289 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
10290 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
10291 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10293 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
10294 asc_dvc
->cfg
->cmd_qng_enabled
) {
10295 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
10296 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
10298 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
10299 warn_code
|= ASC_WARN_AUTO_CONFIG
;
10302 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
10304 AscSetChipCfgMsw(iop_base
, cfg_msw
);
10305 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
10307 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
10308 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
10309 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
10310 asc_dvc
->bug_fix_cntl
|=
10311 ASC_BUG_FIX_ASYN_USE_SYN
;
10315 #endif /* CONFIG_PCI */
10316 if (asc_dvc
->bus_type
== ASC_IS_ISAPNP
) {
10317 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
)
10318 == ASC_CHIP_VER_ASYN_BUG
) {
10319 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_ASYN_USE_SYN
;
10322 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
10323 asc_dvc
->cfg
->chip_scsi_id
) {
10324 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
10327 if (asc_dvc
->bus_type
& ASC_IS_ISA
) {
10328 AscSetIsaDmaChannel(iop_base
, asc_dvc
->cfg
->isa_dma_channel
);
10329 AscSetIsaDmaSpeed(iop_base
, asc_dvc
->cfg
->isa_dma_speed
);
10331 #endif /* CONFIG_ISA */
10333 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
10335 switch (warn_code
) {
10336 case 0: /* No error. */
10338 case ASC_WARN_IO_PORT_ROTATE
:
10339 shost_printk(KERN_WARNING
, shost
, "I/O port address "
10342 case ASC_WARN_AUTO_CONFIG
:
10343 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
10346 case ASC_WARN_EEPROM_CHKSUM
:
10347 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
10349 case ASC_WARN_IRQ_MODIFIED
:
10350 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
10352 case ASC_WARN_CMD_QNG_CONFLICT
:
10353 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
10357 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
10362 if (asc_dvc
->err_code
!= 0)
10363 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
10364 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
10366 return asc_dvc
->err_code
;
10370 * EEPROM Configuration.
10372 * All drivers should use this structure to set the default EEPROM
10373 * configuration. The BIOS now uses this structure when it is built.
10374 * Additional structure information can be found in a_condor.h where
10375 * the structure is defined.
10377 * The *_Field_IsChar structs are needed to correct for endianness.
10378 * These values are read from the board 16 bits at a time directly
10379 * into the structs. Because some fields are char, the values will be
10380 * in the wrong order. The *_Field_IsChar tells when to flip the
10381 * bytes. Data read and written to PCI memory is automatically swapped
10382 * on big-endian platforms so char fields read as words are actually being
10383 * unswapped on big-endian platforms.
10385 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata
= {
10386 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
10387 0x0000, /* cfg_msw */
10388 0xFFFF, /* disc_enable */
10389 0xFFFF, /* wdtr_able */
10390 0xFFFF, /* sdtr_able */
10391 0xFFFF, /* start_motor */
10392 0xFFFF, /* tagqng_able */
10393 0xFFFF, /* bios_scan */
10394 0, /* scam_tolerant */
10395 7, /* adapter_scsi_id */
10396 0, /* bios_boot_delay */
10397 3, /* scsi_reset_delay */
10398 0, /* bios_id_lun */
10399 0, /* termination */
10401 0xFFE7, /* bios_ctrl */
10402 0xFFFF, /* ultra_able */
10404 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
10405 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10408 0, /* serial_number_word1 */
10409 0, /* serial_number_word2 */
10410 0, /* serial_number_word3 */
10412 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10413 , /* oem_name[16] */
10414 0, /* dvc_err_code */
10415 0, /* adv_err_code */
10416 0, /* adv_err_addr */
10417 0, /* saved_dvc_err_code */
10418 0, /* saved_adv_err_code */
10419 0, /* saved_adv_err_addr */
10423 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata
= {
10426 0, /* -disc_enable */
10429 0, /* start_motor */
10430 0, /* tagqng_able */
10432 0, /* scam_tolerant */
10433 1, /* adapter_scsi_id */
10434 1, /* bios_boot_delay */
10435 1, /* scsi_reset_delay */
10436 1, /* bios_id_lun */
10437 1, /* termination */
10440 0, /* ultra_able */
10442 1, /* max_host_qng */
10443 1, /* max_dvc_qng */
10446 0, /* serial_number_word1 */
10447 0, /* serial_number_word2 */
10448 0, /* serial_number_word3 */
10450 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10451 , /* oem_name[16] */
10452 0, /* dvc_err_code */
10453 0, /* adv_err_code */
10454 0, /* adv_err_addr */
10455 0, /* saved_dvc_err_code */
10456 0, /* saved_adv_err_code */
10457 0, /* saved_adv_err_addr */
10461 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata
= {
10462 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10463 0x0000, /* 01 cfg_msw */
10464 0xFFFF, /* 02 disc_enable */
10465 0xFFFF, /* 03 wdtr_able */
10466 0x4444, /* 04 sdtr_speed1 */
10467 0xFFFF, /* 05 start_motor */
10468 0xFFFF, /* 06 tagqng_able */
10469 0xFFFF, /* 07 bios_scan */
10470 0, /* 08 scam_tolerant */
10471 7, /* 09 adapter_scsi_id */
10472 0, /* bios_boot_delay */
10473 3, /* 10 scsi_reset_delay */
10474 0, /* bios_id_lun */
10475 0, /* 11 termination_se */
10476 0, /* termination_lvd */
10477 0xFFE7, /* 12 bios_ctrl */
10478 0x4444, /* 13 sdtr_speed2 */
10479 0x4444, /* 14 sdtr_speed3 */
10480 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10481 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10482 0, /* 16 dvc_cntl */
10483 0x4444, /* 17 sdtr_speed4 */
10484 0, /* 18 serial_number_word1 */
10485 0, /* 19 serial_number_word2 */
10486 0, /* 20 serial_number_word3 */
10487 0, /* 21 check_sum */
10488 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10489 , /* 22-29 oem_name[16] */
10490 0, /* 30 dvc_err_code */
10491 0, /* 31 adv_err_code */
10492 0, /* 32 adv_err_addr */
10493 0, /* 33 saved_dvc_err_code */
10494 0, /* 34 saved_adv_err_code */
10495 0, /* 35 saved_adv_err_addr */
10496 0, /* 36 reserved */
10497 0, /* 37 reserved */
10498 0, /* 38 reserved */
10499 0, /* 39 reserved */
10500 0, /* 40 reserved */
10501 0, /* 41 reserved */
10502 0, /* 42 reserved */
10503 0, /* 43 reserved */
10504 0, /* 44 reserved */
10505 0, /* 45 reserved */
10506 0, /* 46 reserved */
10507 0, /* 47 reserved */
10508 0, /* 48 reserved */
10509 0, /* 49 reserved */
10510 0, /* 50 reserved */
10511 0, /* 51 reserved */
10512 0, /* 52 reserved */
10513 0, /* 53 reserved */
10514 0, /* 54 reserved */
10515 0, /* 55 reserved */
10516 0, /* 56 cisptr_lsw */
10517 0, /* 57 cisprt_msw */
10518 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10519 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
10520 0, /* 60 reserved */
10521 0, /* 61 reserved */
10522 0, /* 62 reserved */
10523 0 /* 63 reserved */
10526 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata
= {
10527 0, /* 00 cfg_lsw */
10528 0, /* 01 cfg_msw */
10529 0, /* 02 disc_enable */
10530 0, /* 03 wdtr_able */
10531 0, /* 04 sdtr_speed1 */
10532 0, /* 05 start_motor */
10533 0, /* 06 tagqng_able */
10534 0, /* 07 bios_scan */
10535 0, /* 08 scam_tolerant */
10536 1, /* 09 adapter_scsi_id */
10537 1, /* bios_boot_delay */
10538 1, /* 10 scsi_reset_delay */
10539 1, /* bios_id_lun */
10540 1, /* 11 termination_se */
10541 1, /* termination_lvd */
10542 0, /* 12 bios_ctrl */
10543 0, /* 13 sdtr_speed2 */
10544 0, /* 14 sdtr_speed3 */
10545 1, /* 15 max_host_qng */
10546 1, /* max_dvc_qng */
10547 0, /* 16 dvc_cntl */
10548 0, /* 17 sdtr_speed4 */
10549 0, /* 18 serial_number_word1 */
10550 0, /* 19 serial_number_word2 */
10551 0, /* 20 serial_number_word3 */
10552 0, /* 21 check_sum */
10553 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10554 , /* 22-29 oem_name[16] */
10555 0, /* 30 dvc_err_code */
10556 0, /* 31 adv_err_code */
10557 0, /* 32 adv_err_addr */
10558 0, /* 33 saved_dvc_err_code */
10559 0, /* 34 saved_adv_err_code */
10560 0, /* 35 saved_adv_err_addr */
10561 0, /* 36 reserved */
10562 0, /* 37 reserved */
10563 0, /* 38 reserved */
10564 0, /* 39 reserved */
10565 0, /* 40 reserved */
10566 0, /* 41 reserved */
10567 0, /* 42 reserved */
10568 0, /* 43 reserved */
10569 0, /* 44 reserved */
10570 0, /* 45 reserved */
10571 0, /* 46 reserved */
10572 0, /* 47 reserved */
10573 0, /* 48 reserved */
10574 0, /* 49 reserved */
10575 0, /* 50 reserved */
10576 0, /* 51 reserved */
10577 0, /* 52 reserved */
10578 0, /* 53 reserved */
10579 0, /* 54 reserved */
10580 0, /* 55 reserved */
10581 0, /* 56 cisptr_lsw */
10582 0, /* 57 cisprt_msw */
10583 0, /* 58 subsysvid */
10584 0, /* 59 subsysid */
10585 0, /* 60 reserved */
10586 0, /* 61 reserved */
10587 0, /* 62 reserved */
10588 0 /* 63 reserved */
10591 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata
= {
10592 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
10593 0x0000, /* 01 cfg_msw */
10594 0xFFFF, /* 02 disc_enable */
10595 0xFFFF, /* 03 wdtr_able */
10596 0x5555, /* 04 sdtr_speed1 */
10597 0xFFFF, /* 05 start_motor */
10598 0xFFFF, /* 06 tagqng_able */
10599 0xFFFF, /* 07 bios_scan */
10600 0, /* 08 scam_tolerant */
10601 7, /* 09 adapter_scsi_id */
10602 0, /* bios_boot_delay */
10603 3, /* 10 scsi_reset_delay */
10604 0, /* bios_id_lun */
10605 0, /* 11 termination_se */
10606 0, /* termination_lvd */
10607 0xFFE7, /* 12 bios_ctrl */
10608 0x5555, /* 13 sdtr_speed2 */
10609 0x5555, /* 14 sdtr_speed3 */
10610 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
10611 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
10612 0, /* 16 dvc_cntl */
10613 0x5555, /* 17 sdtr_speed4 */
10614 0, /* 18 serial_number_word1 */
10615 0, /* 19 serial_number_word2 */
10616 0, /* 20 serial_number_word3 */
10617 0, /* 21 check_sum */
10618 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10619 , /* 22-29 oem_name[16] */
10620 0, /* 30 dvc_err_code */
10621 0, /* 31 adv_err_code */
10622 0, /* 32 adv_err_addr */
10623 0, /* 33 saved_dvc_err_code */
10624 0, /* 34 saved_adv_err_code */
10625 0, /* 35 saved_adv_err_addr */
10626 0, /* 36 reserved */
10627 0, /* 37 reserved */
10628 0, /* 38 reserved */
10629 0, /* 39 reserved */
10630 0, /* 40 reserved */
10631 0, /* 41 reserved */
10632 0, /* 42 reserved */
10633 0, /* 43 reserved */
10634 0, /* 44 reserved */
10635 0, /* 45 reserved */
10636 0, /* 46 reserved */
10637 0, /* 47 reserved */
10638 0, /* 48 reserved */
10639 0, /* 49 reserved */
10640 0, /* 50 reserved */
10641 0, /* 51 reserved */
10642 0, /* 52 reserved */
10643 0, /* 53 reserved */
10644 0, /* 54 reserved */
10645 0, /* 55 reserved */
10646 0, /* 56 cisptr_lsw */
10647 0, /* 57 cisprt_msw */
10648 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
10649 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
10650 0, /* 60 reserved */
10651 0, /* 61 reserved */
10652 0, /* 62 reserved */
10653 0 /* 63 reserved */
10656 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata
= {
10657 0, /* 00 cfg_lsw */
10658 0, /* 01 cfg_msw */
10659 0, /* 02 disc_enable */
10660 0, /* 03 wdtr_able */
10661 0, /* 04 sdtr_speed1 */
10662 0, /* 05 start_motor */
10663 0, /* 06 tagqng_able */
10664 0, /* 07 bios_scan */
10665 0, /* 08 scam_tolerant */
10666 1, /* 09 adapter_scsi_id */
10667 1, /* bios_boot_delay */
10668 1, /* 10 scsi_reset_delay */
10669 1, /* bios_id_lun */
10670 1, /* 11 termination_se */
10671 1, /* termination_lvd */
10672 0, /* 12 bios_ctrl */
10673 0, /* 13 sdtr_speed2 */
10674 0, /* 14 sdtr_speed3 */
10675 1, /* 15 max_host_qng */
10676 1, /* max_dvc_qng */
10677 0, /* 16 dvc_cntl */
10678 0, /* 17 sdtr_speed4 */
10679 0, /* 18 serial_number_word1 */
10680 0, /* 19 serial_number_word2 */
10681 0, /* 20 serial_number_word3 */
10682 0, /* 21 check_sum */
10683 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10684 , /* 22-29 oem_name[16] */
10685 0, /* 30 dvc_err_code */
10686 0, /* 31 adv_err_code */
10687 0, /* 32 adv_err_addr */
10688 0, /* 33 saved_dvc_err_code */
10689 0, /* 34 saved_adv_err_code */
10690 0, /* 35 saved_adv_err_addr */
10691 0, /* 36 reserved */
10692 0, /* 37 reserved */
10693 0, /* 38 reserved */
10694 0, /* 39 reserved */
10695 0, /* 40 reserved */
10696 0, /* 41 reserved */
10697 0, /* 42 reserved */
10698 0, /* 43 reserved */
10699 0, /* 44 reserved */
10700 0, /* 45 reserved */
10701 0, /* 46 reserved */
10702 0, /* 47 reserved */
10703 0, /* 48 reserved */
10704 0, /* 49 reserved */
10705 0, /* 50 reserved */
10706 0, /* 51 reserved */
10707 0, /* 52 reserved */
10708 0, /* 53 reserved */
10709 0, /* 54 reserved */
10710 0, /* 55 reserved */
10711 0, /* 56 cisptr_lsw */
10712 0, /* 57 cisprt_msw */
10713 0, /* 58 subsysvid */
10714 0, /* 59 subsysid */
10715 0, /* 60 reserved */
10716 0, /* 61 reserved */
10717 0, /* 62 reserved */
10718 0 /* 63 reserved */
10723 * Wait for EEPROM command to complete
10725 static void __devinit
AdvWaitEEPCmd(AdvPortAddr iop_base
)
10729 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
10730 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
10731 ASC_EEP_CMD_DONE
) {
10736 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
10742 * Read the EEPROM from specified location
10744 static ushort __devinit
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
10746 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10747 ASC_EEP_CMD_READ
| eep_word_addr
);
10748 AdvWaitEEPCmd(iop_base
);
10749 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
10753 * Write the EEPROM from 'cfg_buf'.
10755 static void __devinit
10756 AdvSet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10759 ushort addr
, chksum
;
10760 ushort
*charfields
;
10762 wbuf
= (ushort
*)cfg_buf
;
10763 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10766 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10767 AdvWaitEEPCmd(iop_base
);
10770 * Write EEPROM from word 0 to word 20.
10772 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10773 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10776 if (*charfields
++) {
10777 word
= cpu_to_le16(*wbuf
);
10781 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10782 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10783 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10784 ASC_EEP_CMD_WRITE
| addr
);
10785 AdvWaitEEPCmd(iop_base
);
10786 mdelay(ADV_EEP_DELAY_MS
);
10790 * Write EEPROM checksum at word 21.
10792 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10793 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10794 AdvWaitEEPCmd(iop_base
);
10799 * Write EEPROM OEM name at words 22 to 29.
10801 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10802 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10805 if (*charfields
++) {
10806 word
= cpu_to_le16(*wbuf
);
10810 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10811 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10812 ASC_EEP_CMD_WRITE
| addr
);
10813 AdvWaitEEPCmd(iop_base
);
10815 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10816 AdvWaitEEPCmd(iop_base
);
10820 * Write the EEPROM from 'cfg_buf'.
10822 static void __devinit
10823 AdvSet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
10826 ushort
*charfields
;
10827 ushort addr
, chksum
;
10829 wbuf
= (ushort
*)cfg_buf
;
10830 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
10833 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10834 AdvWaitEEPCmd(iop_base
);
10837 * Write EEPROM from word 0 to word 20.
10839 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10840 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10843 if (*charfields
++) {
10844 word
= cpu_to_le16(*wbuf
);
10848 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10849 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10850 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10851 ASC_EEP_CMD_WRITE
| addr
);
10852 AdvWaitEEPCmd(iop_base
);
10853 mdelay(ADV_EEP_DELAY_MS
);
10857 * Write EEPROM checksum at word 21.
10859 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10860 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10861 AdvWaitEEPCmd(iop_base
);
10866 * Write EEPROM OEM name at words 22 to 29.
10868 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10869 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10872 if (*charfields
++) {
10873 word
= cpu_to_le16(*wbuf
);
10877 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10878 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10879 ASC_EEP_CMD_WRITE
| addr
);
10880 AdvWaitEEPCmd(iop_base
);
10882 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10883 AdvWaitEEPCmd(iop_base
);
10887 * Write the EEPROM from 'cfg_buf'.
10889 static void __devinit
10890 AdvSet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
10893 ushort
*charfields
;
10894 ushort addr
, chksum
;
10896 wbuf
= (ushort
*)cfg_buf
;
10897 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
10900 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
10901 AdvWaitEEPCmd(iop_base
);
10904 * Write EEPROM from word 0 to word 20.
10906 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
10907 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
10910 if (*charfields
++) {
10911 word
= cpu_to_le16(*wbuf
);
10915 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
10916 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10917 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10918 ASC_EEP_CMD_WRITE
| addr
);
10919 AdvWaitEEPCmd(iop_base
);
10920 mdelay(ADV_EEP_DELAY_MS
);
10924 * Write EEPROM checksum at word 21.
10926 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
10927 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
10928 AdvWaitEEPCmd(iop_base
);
10933 * Write EEPROM OEM name at words 22 to 29.
10935 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
10936 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
10939 if (*charfields
++) {
10940 word
= cpu_to_le16(*wbuf
);
10944 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
10945 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
10946 ASC_EEP_CMD_WRITE
| addr
);
10947 AdvWaitEEPCmd(iop_base
);
10949 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
10950 AdvWaitEEPCmd(iop_base
);
10954 * Read EEPROM configuration into the specified buffer.
10956 * Return a checksum based on the EEPROM configuration read.
10958 static ushort __devinit
10959 AdvGet3550EEPConfig(AdvPortAddr iop_base
, ADVEEP_3550_CONFIG
*cfg_buf
)
10961 ushort wval
, chksum
;
10964 ushort
*charfields
;
10966 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
10967 wbuf
= (ushort
*)cfg_buf
;
10970 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
10971 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
10972 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
10973 chksum
+= wval
; /* Checksum is calculated from word values. */
10974 if (*charfields
++) {
10975 *wbuf
= le16_to_cpu(wval
);
10980 /* Read checksum word. */
10981 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10985 /* Read rest of EEPROM not covered by the checksum. */
10986 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
10987 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
10988 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
10989 if (*charfields
++) {
10990 *wbuf
= le16_to_cpu(*wbuf
);
10997 * Read EEPROM configuration into the specified buffer.
10999 * Return a checksum based on the EEPROM configuration read.
11001 static ushort __devinit
11002 AdvGet38C0800EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C0800_CONFIG
*cfg_buf
)
11004 ushort wval
, chksum
;
11007 ushort
*charfields
;
11009 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
11010 wbuf
= (ushort
*)cfg_buf
;
11013 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
11014 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
11015 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
11016 chksum
+= wval
; /* Checksum is calculated from word values. */
11017 if (*charfields
++) {
11018 *wbuf
= le16_to_cpu(wval
);
11023 /* Read checksum word. */
11024 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11028 /* Read rest of EEPROM not covered by the checksum. */
11029 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11030 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11031 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11032 if (*charfields
++) {
11033 *wbuf
= le16_to_cpu(*wbuf
);
11040 * Read EEPROM configuration into the specified buffer.
11042 * Return a checksum based on the EEPROM configuration read.
11044 static ushort __devinit
11045 AdvGet38C1600EEPConfig(AdvPortAddr iop_base
, ADVEEP_38C1600_CONFIG
*cfg_buf
)
11047 ushort wval
, chksum
;
11050 ushort
*charfields
;
11052 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
11053 wbuf
= (ushort
*)cfg_buf
;
11056 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
11057 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
11058 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
11059 chksum
+= wval
; /* Checksum is calculated from word values. */
11060 if (*charfields
++) {
11061 *wbuf
= le16_to_cpu(wval
);
11066 /* Read checksum word. */
11067 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11071 /* Read rest of EEPROM not covered by the checksum. */
11072 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
11073 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
11074 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
11075 if (*charfields
++) {
11076 *wbuf
= le16_to_cpu(*wbuf
);
11083 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11084 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11085 * all of this is done.
11087 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11089 * For a non-fatal error return a warning code. If there are no warnings
11090 * then 0 is returned.
11092 * Note: Chip is stopped on entry.
11094 static int __devinit
AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
11096 AdvPortAddr iop_base
;
11098 ADVEEP_3550_CONFIG eep_config
;
11100 iop_base
= asc_dvc
->iop_base
;
11105 * Read the board's EEPROM configuration.
11107 * Set default values if a bad checksum is found.
11109 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
11110 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11113 * Set EEPROM default values.
11115 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
11116 sizeof(ADVEEP_3550_CONFIG
));
11119 * Assume the 6 byte board serial number that was read from
11120 * EEPROM is correct even if the EEPROM checksum failed.
11122 eep_config
.serial_number_word3
=
11123 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11125 eep_config
.serial_number_word2
=
11126 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11128 eep_config
.serial_number_word1
=
11129 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11131 AdvSet3550EEPConfig(iop_base
, &eep_config
);
11134 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11135 * EEPROM configuration that was read.
11137 * This is the mapping of EEPROM fields to Adv Library fields.
11139 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11140 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
11141 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
11142 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11143 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11144 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11145 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11146 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11147 asc_dvc
->start_motor
= eep_config
.start_motor
;
11148 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11149 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11150 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11151 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11152 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11153 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11156 * Set the host maximum queuing (max. 253, min. 16) and the per device
11157 * maximum queuing (max. 63, min. 4).
11159 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11160 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11161 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11162 /* If the value is zero, assume it is uninitialized. */
11163 if (eep_config
.max_host_qng
== 0) {
11164 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11166 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11170 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11171 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11172 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11173 /* If the value is zero, assume it is uninitialized. */
11174 if (eep_config
.max_dvc_qng
== 0) {
11175 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11177 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11182 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11183 * set 'max_dvc_qng' to 'max_host_qng'.
11185 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11186 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11190 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11191 * values based on possibly adjusted EEPROM values.
11193 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11194 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11197 * If the EEPROM 'termination' field is set to automatic (0), then set
11198 * the ADV_DVC_CFG 'termination' field to automatic also.
11200 * If the termination is specified with a non-zero 'termination'
11201 * value check that a legal value is set and set the ADV_DVC_CFG
11202 * 'termination' field appropriately.
11204 if (eep_config
.termination
== 0) {
11205 asc_dvc
->cfg
->termination
= 0; /* auto termination */
11207 /* Enable manual control with low off / high off. */
11208 if (eep_config
.termination
== 1) {
11209 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
11211 /* Enable manual control with low off / high on. */
11212 } else if (eep_config
.termination
== 2) {
11213 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
11215 /* Enable manual control with low on / high on. */
11216 } else if (eep_config
.termination
== 3) {
11217 asc_dvc
->cfg
->termination
=
11218 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
11221 * The EEPROM 'termination' field contains a bad value. Use
11222 * automatic termination instead.
11224 asc_dvc
->cfg
->termination
= 0;
11225 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11233 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11234 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11235 * all of this is done.
11237 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11239 * For a non-fatal error return a warning code. If there are no warnings
11240 * then 0 is returned.
11242 * Note: Chip is stopped on entry.
11244 static int __devinit
AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
11246 AdvPortAddr iop_base
;
11248 ADVEEP_38C0800_CONFIG eep_config
;
11249 uchar tid
, termination
;
11250 ushort sdtr_speed
= 0;
11252 iop_base
= asc_dvc
->iop_base
;
11257 * Read the board's EEPROM configuration.
11259 * Set default values if a bad checksum is found.
11261 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
11262 eep_config
.check_sum
) {
11263 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11266 * Set EEPROM default values.
11268 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
11269 sizeof(ADVEEP_38C0800_CONFIG
));
11272 * Assume the 6 byte board serial number that was read from
11273 * EEPROM is correct even if the EEPROM checksum failed.
11275 eep_config
.serial_number_word3
=
11276 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11278 eep_config
.serial_number_word2
=
11279 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11281 eep_config
.serial_number_word1
=
11282 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11284 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
11287 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11288 * EEPROM configuration that was read.
11290 * This is the mapping of EEPROM fields to Adv Library fields.
11292 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11293 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11294 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11295 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11296 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11297 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11298 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11299 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11300 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11301 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
11302 asc_dvc
->start_motor
= eep_config
.start_motor
;
11303 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11304 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11305 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11306 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
11307 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
11308 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
11311 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11312 * are set, then set an 'sdtr_able' bit for it.
11314 asc_dvc
->sdtr_able
= 0;
11315 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
11317 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11318 } else if (tid
== 4) {
11319 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11320 } else if (tid
== 8) {
11321 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11322 } else if (tid
== 12) {
11323 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11325 if (sdtr_speed
& ADV_MAX_TID
) {
11326 asc_dvc
->sdtr_able
|= (1 << tid
);
11332 * Set the host maximum queuing (max. 253, min. 16) and the per device
11333 * maximum queuing (max. 63, min. 4).
11335 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11336 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11337 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11338 /* If the value is zero, assume it is uninitialized. */
11339 if (eep_config
.max_host_qng
== 0) {
11340 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11342 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11346 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11347 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11348 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11349 /* If the value is zero, assume it is uninitialized. */
11350 if (eep_config
.max_dvc_qng
== 0) {
11351 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11353 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11358 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11359 * set 'max_dvc_qng' to 'max_host_qng'.
11361 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11362 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11366 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11367 * values based on possibly adjusted EEPROM values.
11369 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11370 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11373 * If the EEPROM 'termination' field is set to automatic (0), then set
11374 * the ADV_DVC_CFG 'termination' field to automatic also.
11376 * If the termination is specified with a non-zero 'termination'
11377 * value check that a legal value is set and set the ADV_DVC_CFG
11378 * 'termination' field appropriately.
11380 if (eep_config
.termination_se
== 0) {
11381 termination
= 0; /* auto termination for SE */
11383 /* Enable manual control with low off / high off. */
11384 if (eep_config
.termination_se
== 1) {
11387 /* Enable manual control with low off / high on. */
11388 } else if (eep_config
.termination_se
== 2) {
11389 termination
= TERM_SE_HI
;
11391 /* Enable manual control with low on / high on. */
11392 } else if (eep_config
.termination_se
== 3) {
11393 termination
= TERM_SE
;
11396 * The EEPROM 'termination_se' field contains a bad value.
11397 * Use automatic termination instead.
11400 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11404 if (eep_config
.termination_lvd
== 0) {
11405 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11407 /* Enable manual control with low off / high off. */
11408 if (eep_config
.termination_lvd
== 1) {
11409 asc_dvc
->cfg
->termination
= termination
;
11411 /* Enable manual control with low off / high on. */
11412 } else if (eep_config
.termination_lvd
== 2) {
11413 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11415 /* Enable manual control with low on / high on. */
11416 } else if (eep_config
.termination_lvd
== 3) {
11417 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11420 * The EEPROM 'termination_lvd' field contains a bad value.
11421 * Use automatic termination instead.
11423 asc_dvc
->cfg
->termination
= termination
;
11424 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11432 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11433 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11434 * all of this is done.
11436 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11438 * For a non-fatal error return a warning code. If there are no warnings
11439 * then 0 is returned.
11441 * Note: Chip is stopped on entry.
11443 static int __devinit
AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
11445 AdvPortAddr iop_base
;
11447 ADVEEP_38C1600_CONFIG eep_config
;
11448 uchar tid
, termination
;
11449 ushort sdtr_speed
= 0;
11451 iop_base
= asc_dvc
->iop_base
;
11456 * Read the board's EEPROM configuration.
11458 * Set default values if a bad checksum is found.
11460 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
11461 eep_config
.check_sum
) {
11462 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
11463 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
11466 * Set EEPROM default values.
11468 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
11469 sizeof(ADVEEP_38C1600_CONFIG
));
11471 if (PCI_FUNC(pdev
->devfn
) != 0) {
11474 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11475 * and old Mac system booting problem. The Expansion
11476 * ROM must be disabled in Function 1 for these systems
11478 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
11480 * Clear the INTAB (bit 11) if the GPIO 0 input
11481 * indicates the Function 1 interrupt line is wired
11484 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11485 * 1 - Function 1 interrupt line wired to INT A.
11486 * 0 - Function 1 interrupt line wired to INT B.
11488 * Note: Function 0 is always wired to INTA.
11489 * Put all 5 GPIO bits in input mode and then read
11490 * their input values.
11492 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
11493 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
11494 if ((ints
& 0x01) == 0)
11495 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
11499 * Assume the 6 byte board serial number that was read from
11500 * EEPROM is correct even if the EEPROM checksum failed.
11502 eep_config
.serial_number_word3
=
11503 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
11504 eep_config
.serial_number_word2
=
11505 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
11506 eep_config
.serial_number_word1
=
11507 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
11509 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
11513 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11514 * EEPROM configuration that was read.
11516 * This is the mapping of EEPROM fields to Adv Library fields.
11518 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
11519 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
11520 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
11521 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
11522 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
11523 asc_dvc
->ppr_able
= 0;
11524 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
11525 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
11526 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11527 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11528 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
11529 asc_dvc
->start_motor
= eep_config
.start_motor
;
11530 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
11531 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
11532 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
11535 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11536 * are set, then set an 'sdtr_able' bit for it.
11538 asc_dvc
->sdtr_able
= 0;
11539 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
11541 sdtr_speed
= asc_dvc
->sdtr_speed1
;
11542 } else if (tid
== 4) {
11543 sdtr_speed
= asc_dvc
->sdtr_speed2
;
11544 } else if (tid
== 8) {
11545 sdtr_speed
= asc_dvc
->sdtr_speed3
;
11546 } else if (tid
== 12) {
11547 sdtr_speed
= asc_dvc
->sdtr_speed4
;
11549 if (sdtr_speed
& ASC_MAX_TID
) {
11550 asc_dvc
->sdtr_able
|= (1 << tid
);
11556 * Set the host maximum queuing (max. 253, min. 16) and the per device
11557 * maximum queuing (max. 63, min. 4).
11559 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
11560 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11561 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
11562 /* If the value is zero, assume it is uninitialized. */
11563 if (eep_config
.max_host_qng
== 0) {
11564 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
11566 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
11570 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
11571 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11572 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
11573 /* If the value is zero, assume it is uninitialized. */
11574 if (eep_config
.max_dvc_qng
== 0) {
11575 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
11577 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
11582 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11583 * set 'max_dvc_qng' to 'max_host_qng'.
11585 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
11586 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
11590 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11591 * values based on possibly adjusted EEPROM values.
11593 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
11594 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
11597 * If the EEPROM 'termination' field is set to automatic (0), then set
11598 * the ASC_DVC_CFG 'termination' field to automatic also.
11600 * If the termination is specified with a non-zero 'termination'
11601 * value check that a legal value is set and set the ASC_DVC_CFG
11602 * 'termination' field appropriately.
11604 if (eep_config
.termination_se
== 0) {
11605 termination
= 0; /* auto termination for SE */
11607 /* Enable manual control with low off / high off. */
11608 if (eep_config
.termination_se
== 1) {
11611 /* Enable manual control with low off / high on. */
11612 } else if (eep_config
.termination_se
== 2) {
11613 termination
= TERM_SE_HI
;
11615 /* Enable manual control with low on / high on. */
11616 } else if (eep_config
.termination_se
== 3) {
11617 termination
= TERM_SE
;
11620 * The EEPROM 'termination_se' field contains a bad value.
11621 * Use automatic termination instead.
11624 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11628 if (eep_config
.termination_lvd
== 0) {
11629 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
11631 /* Enable manual control with low off / high off. */
11632 if (eep_config
.termination_lvd
== 1) {
11633 asc_dvc
->cfg
->termination
= termination
;
11635 /* Enable manual control with low off / high on. */
11636 } else if (eep_config
.termination_lvd
== 2) {
11637 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
11639 /* Enable manual control with low on / high on. */
11640 } else if (eep_config
.termination_lvd
== 3) {
11641 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
11644 * The EEPROM 'termination_lvd' field contains a bad value.
11645 * Use automatic termination instead.
11647 asc_dvc
->cfg
->termination
= termination
;
11648 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
11656 * Initialize the ADV_DVC_VAR structure.
11658 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11660 * For a non-fatal error return a warning code. If there are no warnings
11661 * then 0 is returned.
11663 static int __devinit
11664 AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
11666 struct asc_board
*board
= shost_priv(shost
);
11667 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
11668 unsigned short warn_code
= 0;
11669 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
11673 asc_dvc
->err_code
= 0;
11676 * Save the state of the PCI Configuration Command Register
11677 * "Parity Error Response Control" Bit. If the bit is clear (0),
11678 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11679 * DMA parity errors.
11681 asc_dvc
->cfg
->control_flag
= 0;
11682 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
11683 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
11684 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
11686 asc_dvc
->cfg
->chip_version
=
11687 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
11689 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11690 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
11691 (ushort
)ADV_CHIP_ID_BYTE
);
11693 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11694 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
11695 (ushort
)ADV_CHIP_ID_WORD
);
11698 * Reset the chip to start and allow register writes.
11700 if (AdvFindSignature(iop_base
) == 0) {
11701 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
11705 * The caller must set 'chip_type' to a valid setting.
11707 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
11708 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
11709 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
11710 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
11717 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11718 ADV_CTRL_REG_CMD_RESET
);
11720 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
11721 ADV_CTRL_REG_CMD_WR_IO_REG
);
11723 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
11724 status
= AdvInitFrom38C1600EEP(asc_dvc
);
11725 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11726 status
= AdvInitFrom38C0800EEP(asc_dvc
);
11728 status
= AdvInitFrom3550EEP(asc_dvc
);
11730 warn_code
|= status
;
11733 if (warn_code
!= 0)
11734 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
11736 if (asc_dvc
->err_code
)
11737 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
11738 asc_dvc
->err_code
);
11740 return asc_dvc
->err_code
;
11744 static struct scsi_host_template advansys_template
= {
11745 .proc_name
= DRV_NAME
,
11746 #ifdef CONFIG_PROC_FS
11747 .proc_info
= advansys_proc_info
,
11750 .info
= advansys_info
,
11751 .queuecommand
= advansys_queuecommand
,
11752 .eh_bus_reset_handler
= advansys_reset
,
11753 .bios_param
= advansys_biosparam
,
11754 .slave_configure
= advansys_slave_configure
,
11756 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11757 * must be set. The flag will be cleared in advansys_board_found
11758 * for non-ISA adapters.
11760 .unchecked_isa_dma
= 1,
11762 * All adapters controlled by this driver are capable of large
11763 * scatter-gather lists. According to the mid-level SCSI documentation
11764 * this obviates any performance gain provided by setting
11765 * 'use_clustering'. But empirically while CPU utilization is increased
11766 * by enabling clustering, I/O throughput increases as well.
11768 .use_clustering
= ENABLE_CLUSTERING
,
11771 static int __devinit
advansys_wide_init_chip(struct Scsi_Host
*shost
)
11773 struct asc_board
*board
= shost_priv(shost
);
11774 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11776 adv_req_t
*reqp
= NULL
;
11779 int warn_code
, err_code
;
11782 * Allocate buffer carrier structures. The total size
11783 * is about 4 KB, so allocate all at once.
11785 adv_dvc
->carrier_buf
= kmalloc(ADV_CARRIER_BUFSIZE
, GFP_KERNEL
);
11786 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc
->carrier_buf
);
11788 if (!adv_dvc
->carrier_buf
)
11789 goto kmalloc_failed
;
11792 * Allocate up to 'max_host_qng' request structures for the Wide
11793 * board. The total size is about 16 KB, so allocate all at once.
11794 * If the allocation fails decrement and try again.
11796 for (req_cnt
= adv_dvc
->max_host_qng
; req_cnt
> 0; req_cnt
--) {
11797 reqp
= kmalloc(sizeof(adv_req_t
) * req_cnt
, GFP_KERNEL
);
11799 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp
, req_cnt
,
11800 (ulong
)sizeof(adv_req_t
) * req_cnt
);
11807 goto kmalloc_failed
;
11809 adv_dvc
->orig_reqp
= reqp
;
11812 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11813 * the Wide board. Each structure is about 136 bytes.
11815 board
->adv_sgblkp
= NULL
;
11816 for (sg_cnt
= 0; sg_cnt
< ADV_TOT_SG_BLOCK
; sg_cnt
++) {
11817 sgp
= kmalloc(sizeof(adv_sgblk_t
), GFP_KERNEL
);
11822 sgp
->next_sgblkp
= board
->adv_sgblkp
;
11823 board
->adv_sgblkp
= sgp
;
11827 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt
, sizeof(adv_sgblk_t
),
11828 sizeof(adv_sgblk_t
) * sg_cnt
);
11830 if (!board
->adv_sgblkp
)
11831 goto kmalloc_failed
;
11834 * Point 'adv_reqp' to the request structures and
11835 * link them together.
11838 reqp
[req_cnt
].next_reqp
= NULL
;
11839 for (; req_cnt
> 0; req_cnt
--) {
11840 reqp
[req_cnt
- 1].next_reqp
= &reqp
[req_cnt
];
11842 board
->adv_reqp
= &reqp
[0];
11844 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
11845 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11846 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
11847 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
11848 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11849 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
11851 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11852 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
11854 err_code
= adv_dvc
->err_code
;
11856 if (warn_code
|| err_code
) {
11857 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
11858 "0x%x\n", warn_code
, err_code
);
11864 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
11865 err_code
= ADV_ERROR
;
11870 static void advansys_wide_free_mem(struct asc_board
*board
)
11872 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
11873 kfree(adv_dvc
->carrier_buf
);
11874 adv_dvc
->carrier_buf
= NULL
;
11875 kfree(adv_dvc
->orig_reqp
);
11876 adv_dvc
->orig_reqp
= board
->adv_reqp
= NULL
;
11877 while (board
->adv_sgblkp
) {
11878 adv_sgblk_t
*sgp
= board
->adv_sgblkp
;
11879 board
->adv_sgblkp
= sgp
->next_sgblkp
;
11884 static int __devinit
advansys_board_found(struct Scsi_Host
*shost
,
11885 unsigned int iop
, int bus_type
)
11887 struct pci_dev
*pdev
;
11888 struct asc_board
*boardp
= shost_priv(shost
);
11889 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
11890 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
11891 int share_irq
, warn_code
, ret
;
11893 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
11895 if (ASC_NARROW_BOARD(boardp
)) {
11896 ASC_DBG(1, "narrow board\n");
11897 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
11898 asc_dvc_varp
->bus_type
= bus_type
;
11899 asc_dvc_varp
->drv_ptr
= boardp
;
11900 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
11901 asc_dvc_varp
->iop_base
= iop
;
11904 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
11905 adv_dvc_varp
->drv_ptr
= boardp
;
11906 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
11907 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
11908 ASC_DBG(1, "wide board ASC-3550\n");
11909 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
11910 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
11911 ASC_DBG(1, "wide board ASC-38C0800\n");
11912 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
11914 ASC_DBG(1, "wide board ASC-38C1600\n");
11915 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
11918 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
11919 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
11920 if (!boardp
->ioremap_addr
) {
11921 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
11923 (long)pci_resource_start(pdev
, 1),
11924 boardp
->asc_n_io_port
);
11928 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
11929 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
11932 * Even though it isn't used to access wide boards, other
11933 * than for the debug line below, save I/O Port address so
11934 * that it can be reported.
11936 boardp
->ioport
= iop
;
11938 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11939 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
11940 #endif /* CONFIG_PCI */
11943 #ifdef CONFIG_PROC_FS
11945 * Allocate buffer for printing information from
11946 * /proc/scsi/advansys/[0...].
11948 boardp
->prtbuf
= kmalloc(ASC_PRTBUF_SIZE
, GFP_KERNEL
);
11949 if (!boardp
->prtbuf
) {
11950 shost_printk(KERN_ERR
, shost
, "kmalloc(%d) returned NULL\n",
11955 #endif /* CONFIG_PROC_FS */
11957 if (ASC_NARROW_BOARD(boardp
)) {
11959 * Set the board bus type and PCI IRQ before
11960 * calling AscInitGetConfig().
11962 switch (asc_dvc_varp
->bus_type
) {
11965 shost
->unchecked_isa_dma
= TRUE
;
11969 shost
->unchecked_isa_dma
= FALSE
;
11973 shost
->unchecked_isa_dma
= FALSE
;
11974 share_irq
= IRQF_SHARED
;
11976 #endif /* CONFIG_ISA */
11979 shost
->unchecked_isa_dma
= FALSE
;
11980 share_irq
= IRQF_SHARED
;
11982 #endif /* CONFIG_PCI */
11984 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
11985 "%d\n", asc_dvc_varp
->bus_type
);
11986 shost
->unchecked_isa_dma
= TRUE
;
11992 * NOTE: AscInitGetConfig() may change the board's
11993 * bus_type value. The bus_type value should no
11994 * longer be used. If the bus_type field must be
11995 * referenced only use the bit-wise AND operator "&".
11997 ASC_DBG(2, "AscInitGetConfig()\n");
11998 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
12002 * For Wide boards set PCI information before calling
12003 * AdvInitGetConfig().
12005 shost
->unchecked_isa_dma
= FALSE
;
12006 share_irq
= IRQF_SHARED
;
12007 ASC_DBG(2, "AdvInitGetConfig()\n");
12009 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
12010 #endif /* CONFIG_PCI */
12014 goto err_free_proc
;
12017 * Save the EEPROM configuration so that it can be displayed
12018 * from /proc/scsi/advansys/[0...].
12020 if (ASC_NARROW_BOARD(boardp
)) {
12025 * Set the adapter's target id bit in the 'init_tidmask' field.
12027 boardp
->init_tidmask
|=
12028 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
12031 * Save EEPROM settings for the board.
12033 ep
= &boardp
->eep_config
.asc_eep
;
12035 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
12036 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
12037 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
12038 ASC_EEP_SET_DMA_SPD(ep
, asc_dvc_varp
->cfg
->isa_dma_speed
);
12039 ep
->start_motor
= asc_dvc_varp
->start_motor
;
12040 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
12041 ep
->no_scam
= asc_dvc_varp
->no_scam
;
12042 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
12043 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
12044 /* 'max_tag_qng' is set to the same value for every device. */
12045 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
12046 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
12047 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
12048 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
12049 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
12050 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
12051 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
12054 * Modify board configuration.
12056 ASC_DBG(2, "AscInitSetConfig()\n");
12057 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
12059 goto err_free_proc
;
12061 ADVEEP_3550_CONFIG
*ep_3550
;
12062 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
12063 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
12066 * Save Wide EEP Configuration Information.
12068 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
12069 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
12071 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
12072 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12073 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12074 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
12075 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
12076 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12077 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12078 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
12079 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
12080 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12081 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
12082 ep_3550
->scsi_reset_delay
=
12083 adv_dvc_varp
->scsi_reset_wait
;
12084 ep_3550
->serial_number_word1
=
12085 adv_dvc_varp
->cfg
->serial1
;
12086 ep_3550
->serial_number_word2
=
12087 adv_dvc_varp
->cfg
->serial2
;
12088 ep_3550
->serial_number_word3
=
12089 adv_dvc_varp
->cfg
->serial3
;
12090 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
12091 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
12093 ep_38C0800
->adapter_scsi_id
=
12094 adv_dvc_varp
->chip_scsi_id
;
12095 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12096 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12097 ep_38C0800
->termination_lvd
=
12098 adv_dvc_varp
->cfg
->termination
;
12099 ep_38C0800
->disc_enable
=
12100 adv_dvc_varp
->cfg
->disc_enable
;
12101 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12102 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12103 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12104 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12105 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12106 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12107 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12108 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12109 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
12110 ep_38C0800
->scsi_reset_delay
=
12111 adv_dvc_varp
->scsi_reset_wait
;
12112 ep_38C0800
->serial_number_word1
=
12113 adv_dvc_varp
->cfg
->serial1
;
12114 ep_38C0800
->serial_number_word2
=
12115 adv_dvc_varp
->cfg
->serial2
;
12116 ep_38C0800
->serial_number_word3
=
12117 adv_dvc_varp
->cfg
->serial3
;
12119 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
12121 ep_38C1600
->adapter_scsi_id
=
12122 adv_dvc_varp
->chip_scsi_id
;
12123 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
12124 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
12125 ep_38C1600
->termination_lvd
=
12126 adv_dvc_varp
->cfg
->termination
;
12127 ep_38C1600
->disc_enable
=
12128 adv_dvc_varp
->cfg
->disc_enable
;
12129 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
12130 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
12131 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12132 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
12133 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
12134 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
12135 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
12136 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
12137 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
12138 ep_38C1600
->scsi_reset_delay
=
12139 adv_dvc_varp
->scsi_reset_wait
;
12140 ep_38C1600
->serial_number_word1
=
12141 adv_dvc_varp
->cfg
->serial1
;
12142 ep_38C1600
->serial_number_word2
=
12143 adv_dvc_varp
->cfg
->serial2
;
12144 ep_38C1600
->serial_number_word3
=
12145 adv_dvc_varp
->cfg
->serial3
;
12149 * Set the adapter's target id bit in the 'init_tidmask' field.
12151 boardp
->init_tidmask
|=
12152 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
12156 * Channels are numbered beginning with 0. For AdvanSys one host
12157 * structure supports one channel. Multi-channel boards have a
12158 * separate host structure for each channel.
12160 shost
->max_channel
= 0;
12161 if (ASC_NARROW_BOARD(boardp
)) {
12162 shost
->max_id
= ASC_MAX_TID
+ 1;
12163 shost
->max_lun
= ASC_MAX_LUN
+ 1;
12164 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
12166 shost
->io_port
= asc_dvc_varp
->iop_base
;
12167 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
12168 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
12170 /* Set maximum number of queues the adapter can handle. */
12171 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
12173 shost
->max_id
= ADV_MAX_TID
+ 1;
12174 shost
->max_lun
= ADV_MAX_LUN
+ 1;
12175 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
12178 * Save the I/O Port address and length even though
12179 * I/O ports are not used to access Wide boards.
12180 * Instead the Wide boards are accessed with
12181 * PCI Memory Mapped I/O.
12183 shost
->io_port
= iop
;
12185 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
12187 /* Set maximum number of queues the adapter can handle. */
12188 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
12192 * Following v1.3.89, 'cmd_per_lun' is no longer needed
12193 * and should be set to zero.
12195 * But because of a bug introduced in v1.3.89 if the driver is
12196 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12197 * SCSI function 'allocate_device' will panic. To allow the driver
12198 * to work as a module in these kernels set 'cmd_per_lun' to 1.
12200 * Note: This is wrong. cmd_per_lun should be set to the depth
12201 * you want on untagged devices always.
12204 shost
->cmd_per_lun
= 1;
12206 shost->cmd_per_lun = 0;
12210 * Set the maximum number of scatter-gather elements the
12211 * adapter can handle.
12213 if (ASC_NARROW_BOARD(boardp
)) {
12215 * Allow two commands with 'sg_tablesize' scatter-gather
12216 * elements to be executed simultaneously. This value is
12217 * the theoretical hardware limit. It may be decreased
12220 shost
->sg_tablesize
=
12221 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
12222 ASC_SG_LIST_PER_Q
) + 1;
12224 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
12228 * The value of 'sg_tablesize' can not exceed the SCSI
12229 * mid-level driver definition of SG_ALL. SG_ALL also
12230 * must not be exceeded, because it is used to define the
12231 * size of the scatter-gather table in 'struct asc_sg_head'.
12233 if (shost
->sg_tablesize
> SG_ALL
) {
12234 shost
->sg_tablesize
= SG_ALL
;
12237 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
12239 /* BIOS start address. */
12240 if (ASC_NARROW_BOARD(boardp
)) {
12241 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
12242 asc_dvc_varp
->bus_type
);
12245 * Fill-in BIOS board variables. The Wide BIOS saves
12246 * information in LRAM that is used by the driver.
12248 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12249 BIOS_SIGNATURE
, boardp
->bios_signature
);
12250 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12251 BIOS_VERSION
, boardp
->bios_version
);
12252 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12253 BIOS_CODESEG
, boardp
->bios_codeseg
);
12254 AdvReadWordLram(adv_dvc_varp
->iop_base
,
12255 BIOS_CODELEN
, boardp
->bios_codelen
);
12257 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12258 boardp
->bios_signature
, boardp
->bios_version
);
12260 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12261 boardp
->bios_codeseg
, boardp
->bios_codelen
);
12264 * If the BIOS saved a valid signature, then fill in
12265 * the BIOS code segment base address.
12267 if (boardp
->bios_signature
== 0x55AA) {
12269 * Convert x86 realmode code segment to a linear
12270 * address by shifting left 4.
12272 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
12279 * Register Board Resources - I/O Port, DMA, IRQ
12282 /* Register DMA Channel for Narrow boards. */
12283 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
12285 if (ASC_NARROW_BOARD(boardp
)) {
12286 /* Register DMA channel for ISA bus. */
12287 if (asc_dvc_varp
->bus_type
& ASC_IS_ISA
) {
12288 shost
->dma_channel
= asc_dvc_varp
->cfg
->isa_dma_channel
;
12289 ret
= request_dma(shost
->dma_channel
, DRV_NAME
);
12291 shost_printk(KERN_ERR
, shost
, "request_dma() "
12293 shost
->dma_channel
, ret
);
12294 goto err_free_proc
;
12296 AscEnableIsaDma(shost
->dma_channel
);
12299 #endif /* CONFIG_ISA */
12301 /* Register IRQ Number. */
12302 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
12304 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
12308 if (ret
== -EBUSY
) {
12309 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12310 "already in use\n", boardp
->irq
);
12311 } else if (ret
== -EINVAL
) {
12312 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12313 "not valid\n", boardp
->irq
);
12315 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
12316 "failed with %d\n", boardp
->irq
, ret
);
12322 * Initialize board RISC chip and enable interrupts.
12324 if (ASC_NARROW_BOARD(boardp
)) {
12325 ASC_DBG(2, "AscInitAsc1000Driver()\n");
12327 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
12328 if (!asc_dvc_varp
->overrun_buf
) {
12332 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
12334 if (warn_code
|| asc_dvc_varp
->err_code
) {
12335 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
12336 "warn 0x%x, error 0x%x\n",
12337 asc_dvc_varp
->init_state
, warn_code
,
12338 asc_dvc_varp
->err_code
);
12339 if (!asc_dvc_varp
->overrun_dma
) {
12345 if (advansys_wide_init_chip(shost
)) {
12351 ASC_DBG_PRT_SCSI_HOST(2, shost
);
12353 ret
= scsi_add_host(shost
, boardp
->dev
);
12357 scsi_scan_host(shost
);
12361 if (ASC_NARROW_BOARD(boardp
)) {
12362 if (asc_dvc_varp
->overrun_dma
)
12363 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
12364 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
12365 kfree(asc_dvc_varp
->overrun_buf
);
12367 advansys_wide_free_mem(boardp
);
12369 free_irq(boardp
->irq
, shost
);
12372 if (shost
->dma_channel
!= NO_ISA_DMA
)
12373 free_dma(shost
->dma_channel
);
12376 kfree(boardp
->prtbuf
);
12378 if (boardp
->ioremap_addr
)
12379 iounmap(boardp
->ioremap_addr
);
12385 * advansys_release()
12387 * Release resources allocated for a single AdvanSys adapter.
12389 static int advansys_release(struct Scsi_Host
*shost
)
12391 struct asc_board
*board
= shost_priv(shost
);
12392 ASC_DBG(1, "begin\n");
12393 scsi_remove_host(shost
);
12394 free_irq(board
->irq
, shost
);
12396 if (shost
->dma_channel
!= NO_ISA_DMA
) {
12397 ASC_DBG(1, "free_dma()\n");
12398 free_dma(shost
->dma_channel
);
12401 if (ASC_NARROW_BOARD(board
)) {
12402 dma_unmap_single(board
->dev
,
12403 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
12404 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
12405 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
12407 iounmap(board
->ioremap_addr
);
12408 advansys_wide_free_mem(board
);
12410 kfree(board
->prtbuf
);
12411 scsi_host_put(shost
);
12412 ASC_DBG(1, "end\n");
12416 #define ASC_IOADR_TABLE_MAX_IX 11
12418 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
12419 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12420 0x0210, 0x0230, 0x0250, 0x0330
12424 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
12430 static unsigned int __devinit
advansys_isa_irq_no(PortAddr iop_base
)
12432 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12433 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x03) + 10;
12434 if (chip_irq
== 13)
12439 static int __devinit
advansys_isa_probe(struct device
*dev
, unsigned int id
)
12442 PortAddr iop_base
= _asc_def_iop_base
[id
];
12443 struct Scsi_Host
*shost
;
12444 struct asc_board
*board
;
12446 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12447 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12450 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12451 if (!AscFindSignature(iop_base
))
12452 goto release_region
;
12453 if (!(AscGetChipVersion(iop_base
, ASC_IS_ISA
) & ASC_CHIP_VER_ISA_BIT
))
12454 goto release_region
;
12457 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12459 goto release_region
;
12461 board
= shost_priv(shost
);
12462 board
->irq
= advansys_isa_irq_no(iop_base
);
12465 err
= advansys_board_found(shost
, iop_base
, ASC_IS_ISA
);
12469 dev_set_drvdata(dev
, shost
);
12473 scsi_host_put(shost
);
12475 release_region(iop_base
, ASC_IOADR_GAP
);
12479 static int __devexit
advansys_isa_remove(struct device
*dev
, unsigned int id
)
12481 int ioport
= _asc_def_iop_base
[id
];
12482 advansys_release(dev_get_drvdata(dev
));
12483 release_region(ioport
, ASC_IOADR_GAP
);
12487 static struct isa_driver advansys_isa_driver
= {
12488 .probe
= advansys_isa_probe
,
12489 .remove
= __devexit_p(advansys_isa_remove
),
12491 .owner
= THIS_MODULE
,
12497 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
12507 static unsigned int __devinit
advansys_vlb_irq_no(PortAddr iop_base
)
12509 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
12510 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
12511 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
12516 static int __devinit
advansys_vlb_probe(struct device
*dev
, unsigned int id
)
12519 PortAddr iop_base
= _asc_def_iop_base
[id
];
12520 struct Scsi_Host
*shost
;
12521 struct asc_board
*board
;
12523 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
12524 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
12527 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
12528 if (!AscFindSignature(iop_base
))
12529 goto release_region
;
12531 * I don't think this condition can actually happen, but the old
12532 * driver did it, and the chances of finding a VLB setup in 2007
12533 * to do testing with is slight to none.
12535 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
12536 goto release_region
;
12539 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12541 goto release_region
;
12543 board
= shost_priv(shost
);
12544 board
->irq
= advansys_vlb_irq_no(iop_base
);
12547 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
12551 dev_set_drvdata(dev
, shost
);
12555 scsi_host_put(shost
);
12557 release_region(iop_base
, ASC_IOADR_GAP
);
12561 static struct isa_driver advansys_vlb_driver
= {
12562 .probe
= advansys_vlb_probe
,
12563 .remove
= __devexit_p(advansys_isa_remove
),
12565 .owner
= THIS_MODULE
,
12566 .name
= "advansys_vlb",
12570 static struct eisa_device_id advansys_eisa_table
[] __devinitdata
= {
12576 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
12579 * EISA is a little more tricky than PCI; each EISA device may have two
12580 * channels, and this driver is written to make each channel its own Scsi_Host
12582 struct eisa_scsi_data
{
12583 struct Scsi_Host
*host
[2];
12587 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
12597 static unsigned int __devinit
advansys_eisa_irq_no(struct eisa_device
*edev
)
12599 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
12600 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
12601 if ((chip_irq
== 13) || (chip_irq
> 15))
12606 static int __devinit
advansys_eisa_probe(struct device
*dev
)
12608 int i
, ioport
, irq
= 0;
12610 struct eisa_device
*edev
= to_eisa_device(dev
);
12611 struct eisa_scsi_data
*data
;
12614 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
12617 ioport
= edev
->base_addr
+ 0xc30;
12620 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
12621 struct asc_board
*board
;
12622 struct Scsi_Host
*shost
;
12623 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
12624 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
12625 ioport
+ ASC_IOADR_GAP
- 1);
12628 if (!AscFindSignature(ioport
)) {
12629 release_region(ioport
, ASC_IOADR_GAP
);
12634 * I don't know why we need to do this for EISA chips, but
12635 * not for any others. It looks to be equivalent to
12636 * AscGetChipCfgMsw, but I may have overlooked something,
12637 * so I'm not converting it until I get an EISA board to
12643 irq
= advansys_eisa_irq_no(edev
);
12646 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12648 goto release_region
;
12650 board
= shost_priv(shost
);
12654 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
12656 data
->host
[i
] = shost
;
12660 scsi_host_put(shost
);
12662 release_region(ioport
, ASC_IOADR_GAP
);
12668 dev_set_drvdata(dev
, data
);
12672 kfree(data
->host
[0]);
12673 kfree(data
->host
[1]);
12679 static __devexit
int advansys_eisa_remove(struct device
*dev
)
12682 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
12684 for (i
= 0; i
< 2; i
++) {
12686 struct Scsi_Host
*shost
= data
->host
[i
];
12689 ioport
= shost
->io_port
;
12690 advansys_release(shost
);
12691 release_region(ioport
, ASC_IOADR_GAP
);
12698 static struct eisa_driver advansys_eisa_driver
= {
12699 .id_table
= advansys_eisa_table
,
12702 .probe
= advansys_eisa_probe
,
12703 .remove
= __devexit_p(advansys_eisa_remove
),
12707 /* PCI Devices supported by this driver */
12708 static struct pci_device_id advansys_pci_tbl
[] __devinitdata
= {
12709 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
12710 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12711 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
12712 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12713 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
12714 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12715 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
12716 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12717 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
12718 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12719 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
12720 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
12724 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
12726 static void __devinit
advansys_set_latency(struct pci_dev
*pdev
)
12728 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
12729 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
12730 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
12733 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
12734 if (latency
< 0x20)
12735 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
12739 static int __devinit
12740 advansys_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
12743 struct Scsi_Host
*shost
;
12744 struct asc_board
*board
;
12746 err
= pci_enable_device(pdev
);
12749 err
= pci_request_regions(pdev
, DRV_NAME
);
12751 goto disable_device
;
12752 pci_set_master(pdev
);
12753 advansys_set_latency(pdev
);
12756 if (pci_resource_len(pdev
, 0) == 0)
12757 goto release_region
;
12759 ioport
= pci_resource_start(pdev
, 0);
12762 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
12764 goto release_region
;
12766 board
= shost_priv(shost
);
12767 board
->irq
= pdev
->irq
;
12768 board
->dev
= &pdev
->dev
;
12770 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
12771 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
12772 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
12773 board
->flags
|= ASC_IS_WIDE_BOARD
;
12776 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
12780 pci_set_drvdata(pdev
, shost
);
12784 scsi_host_put(shost
);
12786 pci_release_regions(pdev
);
12788 pci_disable_device(pdev
);
12793 static void __devexit
advansys_pci_remove(struct pci_dev
*pdev
)
12795 advansys_release(pci_get_drvdata(pdev
));
12796 pci_release_regions(pdev
);
12797 pci_disable_device(pdev
);
12800 static struct pci_driver advansys_pci_driver
= {
12802 .id_table
= advansys_pci_tbl
,
12803 .probe
= advansys_pci_probe
,
12804 .remove
= __devexit_p(advansys_pci_remove
),
12807 static int __init
advansys_init(void)
12811 error
= isa_register_driver(&advansys_isa_driver
,
12812 ASC_IOADR_TABLE_MAX_IX
);
12816 error
= isa_register_driver(&advansys_vlb_driver
,
12817 ASC_IOADR_TABLE_MAX_IX
);
12819 goto unregister_isa
;
12821 error
= eisa_driver_register(&advansys_eisa_driver
);
12823 goto unregister_vlb
;
12825 error
= pci_register_driver(&advansys_pci_driver
);
12827 goto unregister_eisa
;
12832 eisa_driver_unregister(&advansys_eisa_driver
);
12834 isa_unregister_driver(&advansys_vlb_driver
);
12836 isa_unregister_driver(&advansys_isa_driver
);
12841 static void __exit
advansys_exit(void)
12843 pci_unregister_driver(&advansys_pci_driver
);
12844 eisa_driver_unregister(&advansys_eisa_driver
);
12845 isa_unregister_driver(&advansys_vlb_driver
);
12846 isa_unregister_driver(&advansys_isa_driver
);
12849 module_init(advansys_init
);
12850 module_exit(advansys_exit
);
12852 MODULE_LICENSE("GPL");
12853 MODULE_FIRMWARE("advansys/mcode.bin");
12854 MODULE_FIRMWARE("advansys/3550.bin");
12855 MODULE_FIRMWARE("advansys/38C0800.bin");
12856 MODULE_FIRMWARE("advansys/38C1600.bin");