4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
45 struct dma_pool
{ /* the pool */
46 struct list_head page_list
;
53 struct list_head pools
;
56 struct dma_page
{ /* cacheable header for 'allocation' bytes */
57 struct list_head page_list
;
64 static DEFINE_MUTEX(pools_lock
);
67 show_pools(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
72 struct dma_page
*page
;
73 struct dma_pool
*pool
;
78 temp
= scnprintf(next
, size
, "poolinfo - 0.1\n");
82 mutex_lock(&pools_lock
);
83 list_for_each_entry(pool
, &dev
->dma_pools
, pools
) {
87 spin_lock_irq(&pool
->lock
);
88 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
90 blocks
+= page
->in_use
;
92 spin_unlock_irq(&pool
->lock
);
94 /* per-pool info, no real statistics yet */
95 temp
= scnprintf(next
, size
, "%-16s %4u %4Zu %4Zu %2u\n",
97 pages
* (pool
->allocation
/ pool
->size
),
102 mutex_unlock(&pools_lock
);
104 return PAGE_SIZE
- size
;
107 static DEVICE_ATTR(pools
, S_IRUGO
, show_pools
, NULL
);
110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111 * @name: name of pool, for diagnostics
112 * @dev: device that will be doing the DMA
113 * @size: size of the blocks in this pool.
114 * @align: alignment requirement for blocks; must be a power of two
115 * @boundary: returned blocks won't cross this power of two boundary
116 * Context: !in_interrupt()
118 * Returns a dma allocation pool with the requested characteristics, or
119 * null if one can't be created. Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory. Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives. The actual size of blocks allocated may be
123 * larger than requested because of alignment.
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary. This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
130 struct dma_pool
*dma_pool_create(const char *name
, struct device
*dev
,
131 size_t size
, size_t align
, size_t boundary
)
133 struct dma_pool
*retval
;
138 } else if (align
& (align
- 1)) {
144 } else if (size
< 4) {
148 if ((size
% align
) != 0)
149 size
= ALIGN(size
, align
);
151 allocation
= max_t(size_t, size
, PAGE_SIZE
);
154 boundary
= allocation
;
155 } else if ((boundary
< size
) || (boundary
& (boundary
- 1))) {
159 retval
= kmalloc_node(sizeof(*retval
), GFP_KERNEL
, dev_to_node(dev
));
163 strlcpy(retval
->name
, name
, sizeof(retval
->name
));
167 INIT_LIST_HEAD(&retval
->page_list
);
168 spin_lock_init(&retval
->lock
);
170 retval
->boundary
= boundary
;
171 retval
->allocation
= allocation
;
173 INIT_LIST_HEAD(&retval
->pools
);
175 mutex_lock(&pools_lock
);
176 if (list_empty(&dev
->dma_pools
) &&
177 device_create_file(dev
, &dev_attr_pools
)) {
181 list_add(&retval
->pools
, &dev
->dma_pools
);
182 mutex_unlock(&pools_lock
);
186 EXPORT_SYMBOL(dma_pool_create
);
188 static void pool_initialise_page(struct dma_pool
*pool
, struct dma_page
*page
)
190 unsigned int offset
= 0;
191 unsigned int next_boundary
= pool
->boundary
;
194 unsigned int next
= offset
+ pool
->size
;
195 if (unlikely((next
+ pool
->size
) >= next_boundary
)) {
196 next
= next_boundary
;
197 next_boundary
+= pool
->boundary
;
199 *(int *)(page
->vaddr
+ offset
) = next
;
201 } while (offset
< pool
->allocation
);
204 static struct dma_page
*pool_alloc_page(struct dma_pool
*pool
, gfp_t mem_flags
)
206 struct dma_page
*page
;
208 page
= kmalloc(sizeof(*page
), mem_flags
);
211 page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->allocation
,
212 &page
->dma
, mem_flags
);
215 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
217 pool_initialise_page(pool
, page
);
227 static inline int is_page_busy(struct dma_page
*page
)
229 return page
->in_use
!= 0;
232 static void pool_free_page(struct dma_pool
*pool
, struct dma_page
*page
)
234 dma_addr_t dma
= page
->dma
;
237 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
239 dma_free_coherent(pool
->dev
, pool
->allocation
, page
->vaddr
, dma
);
240 list_del(&page
->page_list
);
245 * dma_pool_destroy - destroys a pool of dma memory blocks.
246 * @pool: dma pool that will be destroyed
247 * Context: !in_interrupt()
249 * Caller guarantees that no more memory from the pool is in use,
250 * and that nothing will try to use the pool after this call.
252 void dma_pool_destroy(struct dma_pool
*pool
)
254 mutex_lock(&pools_lock
);
255 list_del(&pool
->pools
);
256 if (pool
->dev
&& list_empty(&pool
->dev
->dma_pools
))
257 device_remove_file(pool
->dev
, &dev_attr_pools
);
258 mutex_unlock(&pools_lock
);
260 while (!list_empty(&pool
->page_list
)) {
261 struct dma_page
*page
;
262 page
= list_entry(pool
->page_list
.next
,
263 struct dma_page
, page_list
);
264 if (is_page_busy(page
)) {
267 "dma_pool_destroy %s, %p busy\n",
268 pool
->name
, page
->vaddr
);
271 "dma_pool_destroy %s, %p busy\n",
272 pool
->name
, page
->vaddr
);
273 /* leak the still-in-use consistent memory */
274 list_del(&page
->page_list
);
277 pool_free_page(pool
, page
);
282 EXPORT_SYMBOL(dma_pool_destroy
);
285 * dma_pool_alloc - get a block of consistent memory
286 * @pool: dma pool that will produce the block
287 * @mem_flags: GFP_* bitmask
288 * @handle: pointer to dma address of block
290 * This returns the kernel virtual address of a currently unused block,
291 * and reports its dma address through the handle.
292 * If such a memory block can't be allocated, %NULL is returned.
294 void *dma_pool_alloc(struct dma_pool
*pool
, gfp_t mem_flags
,
298 struct dma_page
*page
;
302 might_sleep_if(mem_flags
& __GFP_WAIT
);
304 spin_lock_irqsave(&pool
->lock
, flags
);
305 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
306 if (page
->offset
< pool
->allocation
)
310 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
311 spin_unlock_irqrestore(&pool
->lock
, flags
);
313 page
= pool_alloc_page(pool
, mem_flags
);
317 spin_lock_irqsave(&pool
->lock
, flags
);
319 list_add(&page
->page_list
, &pool
->page_list
);
322 offset
= page
->offset
;
323 page
->offset
= *(int *)(page
->vaddr
+ offset
);
324 retval
= offset
+ page
->vaddr
;
325 *handle
= offset
+ page
->dma
;
330 /* page->offset is stored in first 4 bytes */
331 for (i
= sizeof(page
->offset
); i
< pool
->size
; i
++) {
332 if (data
[i
] == POOL_POISON_FREED
)
336 "dma_pool_alloc %s, %p (corrupted)\n",
339 pr_err("dma_pool_alloc %s, %p (corrupted)\n",
343 * Dump the first 4 bytes even if they are not
346 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1,
347 data
, pool
->size
, 1);
351 memset(retval
, POOL_POISON_ALLOCATED
, pool
->size
);
353 spin_unlock_irqrestore(&pool
->lock
, flags
);
356 EXPORT_SYMBOL(dma_pool_alloc
);
358 static struct dma_page
*pool_find_page(struct dma_pool
*pool
, dma_addr_t dma
)
360 struct dma_page
*page
;
362 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
365 if (dma
< (page
->dma
+ pool
->allocation
))
372 * dma_pool_free - put block back into dma pool
373 * @pool: the dma pool holding the block
374 * @vaddr: virtual address of block
375 * @dma: dma address of block
377 * Caller promises neither device nor driver will again touch this block
378 * unless it is first re-allocated.
380 void dma_pool_free(struct dma_pool
*pool
, void *vaddr
, dma_addr_t dma
)
382 struct dma_page
*page
;
386 spin_lock_irqsave(&pool
->lock
, flags
);
387 page
= pool_find_page(pool
, dma
);
389 spin_unlock_irqrestore(&pool
->lock
, flags
);
392 "dma_pool_free %s, %p/%lx (bad dma)\n",
393 pool
->name
, vaddr
, (unsigned long)dma
);
395 printk(KERN_ERR
"dma_pool_free %s, %p/%lx (bad dma)\n",
396 pool
->name
, vaddr
, (unsigned long)dma
);
400 offset
= vaddr
- page
->vaddr
;
402 if ((dma
- page
->dma
) != offset
) {
403 spin_unlock_irqrestore(&pool
->lock
, flags
);
406 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
407 pool
->name
, vaddr
, (unsigned long long)dma
);
410 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
411 pool
->name
, vaddr
, (unsigned long long)dma
);
415 unsigned int chain
= page
->offset
;
416 while (chain
< pool
->allocation
) {
417 if (chain
!= offset
) {
418 chain
= *(int *)(page
->vaddr
+ chain
);
421 spin_unlock_irqrestore(&pool
->lock
, flags
);
423 dev_err(pool
->dev
, "dma_pool_free %s, dma %Lx "
424 "already free\n", pool
->name
,
425 (unsigned long long)dma
);
427 printk(KERN_ERR
"dma_pool_free %s, dma %Lx "
428 "already free\n", pool
->name
,
429 (unsigned long long)dma
);
433 memset(vaddr
, POOL_POISON_FREED
, pool
->size
);
437 *(int *)vaddr
= page
->offset
;
438 page
->offset
= offset
;
440 * Resist a temptation to do
441 * if (!is_page_busy(page)) pool_free_page(pool, page);
442 * Better have a few empty pages hang around.
444 spin_unlock_irqrestore(&pool
->lock
, flags
);
446 EXPORT_SYMBOL(dma_pool_free
);
451 static void dmam_pool_release(struct device
*dev
, void *res
)
453 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
455 dma_pool_destroy(pool
);
458 static int dmam_pool_match(struct device
*dev
, void *res
, void *match_data
)
460 return *(struct dma_pool
**)res
== match_data
;
464 * dmam_pool_create - Managed dma_pool_create()
465 * @name: name of pool, for diagnostics
466 * @dev: device that will be doing the DMA
467 * @size: size of the blocks in this pool.
468 * @align: alignment requirement for blocks; must be a power of two
469 * @allocation: returned blocks won't cross this boundary (or zero)
471 * Managed dma_pool_create(). DMA pool created with this function is
472 * automatically destroyed on driver detach.
474 struct dma_pool
*dmam_pool_create(const char *name
, struct device
*dev
,
475 size_t size
, size_t align
, size_t allocation
)
477 struct dma_pool
**ptr
, *pool
;
479 ptr
= devres_alloc(dmam_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
483 pool
= *ptr
= dma_pool_create(name
, dev
, size
, align
, allocation
);
485 devres_add(dev
, ptr
);
491 EXPORT_SYMBOL(dmam_pool_create
);
494 * dmam_pool_destroy - Managed dma_pool_destroy()
495 * @pool: dma pool that will be destroyed
497 * Managed dma_pool_destroy().
499 void dmam_pool_destroy(struct dma_pool
*pool
)
501 struct device
*dev
= pool
->dev
;
503 WARN_ON(devres_release(dev
, dmam_pool_release
, dmam_pool_match
, pool
));
505 EXPORT_SYMBOL(dmam_pool_destroy
);