1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9 * <http://rt2x00.serialmonkey.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
26 * Abstract: rt2800 MMIO device routines.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
34 #include "rt2x00mmio.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
40 * TX descriptor initialization
42 __le32
*rt2800mmio_get_txwi(struct queue_entry
*entry
)
44 return (__le32
*) entry
->skb
->data
;
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi
);
48 void rt2800mmio_write_tx_desc(struct queue_entry
*entry
,
49 struct txentry_desc
*txdesc
)
51 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
52 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
53 __le32
*txd
= entry_priv
->desc
;
55 const unsigned int txwi_size
= entry
->queue
->winfo_size
;
58 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 * data. It means that LAST_SEC0 is always 0.
66 * Initialize TX descriptor
69 rt2x00_set_field32(&word
, TXD_W0_SD_PTR0
, skbdesc
->skb_dma
);
70 rt2x00_desc_write(txd
, 0, word
);
73 rt2x00_set_field32(&word
, TXD_W1_SD_LEN1
, entry
->skb
->len
);
74 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC1
,
75 !test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
76 rt2x00_set_field32(&word
, TXD_W1_BURST
,
77 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
78 rt2x00_set_field32(&word
, TXD_W1_SD_LEN0
, txwi_size
);
79 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC0
, 0);
80 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 0);
81 rt2x00_desc_write(txd
, 1, word
);
84 rt2x00_set_field32(&word
, TXD_W2_SD_PTR1
,
85 skbdesc
->skb_dma
+ txwi_size
);
86 rt2x00_desc_write(txd
, 2, word
);
89 rt2x00_set_field32(&word
, TXD_W3_WIV
,
90 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
->flags
));
91 rt2x00_set_field32(&word
, TXD_W3_QSEL
, 2);
92 rt2x00_desc_write(txd
, 3, word
);
95 * Register descriptor details in skb frame descriptor.
98 skbdesc
->desc_len
= TXD_DESC_SIZE
;
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc
);
103 * RX control handlers
105 void rt2800mmio_fill_rxdone(struct queue_entry
*entry
,
106 struct rxdone_entry_desc
*rxdesc
)
108 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
109 __le32
*rxd
= entry_priv
->desc
;
112 rt2x00_desc_read(rxd
, 3, &word
);
114 if (rt2x00_get_field32(word
, RXD_W3_CRC_ERROR
))
115 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
118 * Unfortunately we don't know the cipher type used during
119 * decryption. This prevents us from correct providing
120 * correct statistics through debugfs.
122 rxdesc
->cipher_status
= rt2x00_get_field32(word
, RXD_W3_CIPHER_ERROR
);
124 if (rt2x00_get_field32(word
, RXD_W3_DECRYPTED
)) {
126 * Hardware has stripped IV/EIV data from 802.11 frame during
127 * decryption. Unfortunately the descriptor doesn't contain
128 * any fields with the EIV/IV data either, so they can't
129 * be restored by rt2x00lib.
131 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
134 * The hardware has already checked the Michael Mic and has
135 * stripped it from the frame. Signal this to mac80211.
137 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
139 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
140 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
141 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
142 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
145 if (rt2x00_get_field32(word
, RXD_W3_MY_BSS
))
146 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
148 if (rt2x00_get_field32(word
, RXD_W3_L2PAD
))
149 rxdesc
->dev_flags
|= RXDONE_L2PAD
;
152 * Process the RXWI structure that is at the start of the buffer.
154 rt2800_process_rxwi(entry
, rxdesc
);
156 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone
);
159 * Interrupt functions.
161 static void rt2800mmio_wakeup(struct rt2x00_dev
*rt2x00dev
)
163 struct ieee80211_conf conf
= { .flags
= 0 };
164 struct rt2x00lib_conf libconf
= { .conf
= &conf
};
166 rt2800_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
169 static bool rt2800mmio_txdone_entry_check(struct queue_entry
*entry
, u32 status
)
175 wcid
= rt2x00_get_field32(status
, TX_STA_FIFO_WCID
);
177 txwi
= rt2800_drv_get_txwi(entry
);
178 rt2x00_desc_read(txwi
, 1, &word
);
179 tx_wcid
= rt2x00_get_field32(word
, TXWI_W1_WIRELESS_CLI_ID
);
181 return (tx_wcid
== wcid
);
184 static bool rt2800mmio_txdone_find_entry(struct queue_entry
*entry
, void *data
)
186 u32 status
= *(u32
*)data
;
189 * rt2800pci hardware might reorder frames when exchanging traffic
190 * with multiple BA enabled STAs.
192 * For example, a tx queue
193 * [ STA1 | STA2 | STA1 | STA2 ]
194 * can result in tx status reports
195 * [ STA1 | STA1 | STA2 | STA2 ]
196 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
198 * To mitigate this effect, associate the tx status to the first frame
199 * in the tx queue with a matching wcid.
201 if (rt2800mmio_txdone_entry_check(entry
, status
) &&
202 !test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
204 * Got a matching frame, associate the tx status with
207 entry
->status
= status
;
208 set_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
);
212 /* Check the next frame */
216 static bool rt2800mmio_txdone_match_first(struct queue_entry
*entry
, void *data
)
218 u32 status
= *(u32
*)data
;
221 * Find the first frame without tx status and assign this status to it
222 * regardless if it matches or not.
224 if (!test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
226 * Got a matching frame, associate the tx status with
229 entry
->status
= status
;
230 set_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
);
234 /* Check the next frame */
237 static bool rt2800mmio_txdone_release_entries(struct queue_entry
*entry
,
240 if (test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
241 rt2800_txdone_entry(entry
, entry
->status
,
242 rt2800mmio_get_txwi(entry
));
246 /* No more frames to release */
250 static bool rt2800mmio_txdone(struct rt2x00_dev
*rt2x00dev
)
252 struct data_queue
*queue
;
255 int max_tx_done
= 16;
257 while (kfifo_get(&rt2x00dev
->txstatus_fifo
, &status
)) {
258 qid
= rt2x00_get_field32(status
, TX_STA_FIFO_PID_QUEUE
);
259 if (unlikely(qid
>= QID_RX
)) {
261 * Unknown queue, this shouldn't happen. Just drop
264 rt2x00_warn(rt2x00dev
, "Got TX status report with unexpected pid %u, dropping\n",
269 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, qid
);
270 if (unlikely(queue
== NULL
)) {
272 * The queue is NULL, this shouldn't happen. Stop
273 * processing here and drop the tx status
275 rt2x00_warn(rt2x00dev
, "Got TX status for an unavailable queue %u, dropping\n",
280 if (unlikely(rt2x00queue_empty(queue
))) {
282 * The queue is empty. Stop processing here
283 * and drop the tx status.
285 rt2x00_warn(rt2x00dev
, "Got TX status for an empty queue %u, dropping\n",
291 * Let's associate this tx status with the first
294 if (!rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
296 rt2800mmio_txdone_find_entry
)) {
298 * We cannot match the tx status to any frame, so just
301 if (!rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
303 rt2800mmio_txdone_match_first
)) {
304 rt2x00_warn(rt2x00dev
, "No frame found for TX status on queue %u, dropping\n",
311 * Release all frames with a valid tx status.
313 rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
315 rt2800mmio_txdone_release_entries
);
317 if (--max_tx_done
== 0)
324 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
325 struct rt2x00_field32 irq_field
)
330 * Enable a single interrupt. The interrupt mask register
331 * access needs locking.
333 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
334 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
335 rt2x00_set_field32(®
, irq_field
, 1);
336 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
337 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
340 void rt2800mmio_txstatus_tasklet(unsigned long data
)
342 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
343 if (rt2800mmio_txdone(rt2x00dev
))
344 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
347 * No need to enable the tx status interrupt here as we always
348 * leave it enabled to minimize the possibility of a tx status
349 * register overflow. See comment in interrupt handler.
352 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet
);
354 void rt2800mmio_pretbtt_tasklet(unsigned long data
)
356 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
357 rt2x00lib_pretbtt(rt2x00dev
);
358 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
359 rt2800mmio_enable_interrupt(rt2x00dev
, INT_MASK_CSR_PRE_TBTT
);
361 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet
);
363 void rt2800mmio_tbtt_tasklet(unsigned long data
)
365 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
366 struct rt2800_drv_data
*drv_data
= rt2x00dev
->drv_data
;
369 rt2x00lib_beacondone(rt2x00dev
);
371 if (rt2x00dev
->intf_ap_count
) {
373 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
374 * causing beacon skew and as a result causing problems with
375 * some powersaving clients over time. Shorten the beacon
376 * interval every 64 beacons by 64us to mitigate this effect.
378 if (drv_data
->tbtt_tick
== (BCN_TBTT_OFFSET
- 2)) {
379 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
380 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
381 (rt2x00dev
->beacon_int
* 16) - 1);
382 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
383 } else if (drv_data
->tbtt_tick
== (BCN_TBTT_OFFSET
- 1)) {
384 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
385 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
386 (rt2x00dev
->beacon_int
* 16));
387 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
389 drv_data
->tbtt_tick
++;
390 drv_data
->tbtt_tick
%= BCN_TBTT_OFFSET
;
393 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
394 rt2800mmio_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TBTT
);
396 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet
);
398 void rt2800mmio_rxdone_tasklet(unsigned long data
)
400 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
401 if (rt2x00mmio_rxdone(rt2x00dev
))
402 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
403 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
404 rt2800mmio_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RX_DONE
);
406 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet
);
408 void rt2800mmio_autowake_tasklet(unsigned long data
)
410 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
411 rt2800mmio_wakeup(rt2x00dev
);
412 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
413 rt2800mmio_enable_interrupt(rt2x00dev
,
414 INT_MASK_CSR_AUTO_WAKEUP
);
416 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet
);
418 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev
*rt2x00dev
)
424 * The TX_FIFO_STATUS interrupt needs special care. We should
425 * read TX_STA_FIFO but we should do it immediately as otherwise
426 * the register can overflow and we would lose status reports.
428 * Hence, read the TX_STA_FIFO register and copy all tx status
429 * reports into a kernel FIFO which is handled in the txstatus
430 * tasklet. We use a tasklet to process the tx status reports
431 * because we can schedule the tasklet multiple times (when the
432 * interrupt fires again during tx status processing).
434 * Furthermore we don't disable the TX_FIFO_STATUS
435 * interrupt here but leave it enabled so that the TX_STA_FIFO
436 * can also be read while the tx status tasklet gets executed.
438 * Since we have only one producer and one consumer we don't
439 * need to lock the kfifo.
441 for (i
= 0; i
< rt2x00dev
->tx
->limit
; i
++) {
442 rt2x00mmio_register_read(rt2x00dev
, TX_STA_FIFO
, &status
);
444 if (!rt2x00_get_field32(status
, TX_STA_FIFO_VALID
))
447 if (!kfifo_put(&rt2x00dev
->txstatus_fifo
, status
)) {
448 rt2x00_warn(rt2x00dev
, "TX status FIFO overrun, drop tx status report\n");
453 /* Schedule the tasklet for processing the tx status. */
454 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
457 irqreturn_t
rt2800mmio_interrupt(int irq
, void *dev_instance
)
459 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
462 /* Read status and ACK all interrupts */
463 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
464 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
469 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
473 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
474 * for interrupts and interrupt masks we can just use the value of
475 * INT_SOURCE_CSR to create the interrupt mask.
479 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TX_FIFO_STATUS
)) {
480 rt2800mmio_txstatus_interrupt(rt2x00dev
);
482 * Never disable the TX_FIFO_STATUS interrupt.
484 rt2x00_set_field32(&mask
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
487 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_PRE_TBTT
))
488 tasklet_hi_schedule(&rt2x00dev
->pretbtt_tasklet
);
490 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TBTT
))
491 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
493 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RX_DONE
))
494 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
496 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_AUTO_WAKEUP
))
497 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
500 * Disable all interrupts for which a tasklet was scheduled right now,
501 * the tasklet will reenable the appropriate interrupts.
503 spin_lock(&rt2x00dev
->irqmask_lock
);
504 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
506 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
507 spin_unlock(&rt2x00dev
->irqmask_lock
);
511 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt
);
513 void rt2800mmio_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
514 enum dev_state state
)
520 * When interrupts are being enabled, the interrupt registers
521 * should clear the register to assure a clean state.
523 if (state
== STATE_RADIO_IRQ_ON
) {
524 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
525 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
528 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
530 if (state
== STATE_RADIO_IRQ_ON
) {
531 rt2x00_set_field32(®
, INT_MASK_CSR_RX_DONE
, 1);
532 rt2x00_set_field32(®
, INT_MASK_CSR_TBTT
, 1);
533 rt2x00_set_field32(®
, INT_MASK_CSR_PRE_TBTT
, 1);
534 rt2x00_set_field32(®
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
535 rt2x00_set_field32(®
, INT_MASK_CSR_AUTO_WAKEUP
, 1);
537 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
538 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
540 if (state
== STATE_RADIO_IRQ_OFF
) {
542 * Wait for possibly running tasklets to finish.
544 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
545 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
546 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
547 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
548 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
551 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq
);
556 void rt2800mmio_start_queue(struct data_queue
*queue
)
558 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
561 switch (queue
->qid
) {
563 rt2x00mmio_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
564 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
565 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
568 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
569 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
570 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 1);
571 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
572 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
574 rt2x00mmio_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
575 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 1);
576 rt2x00mmio_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
582 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue
);
584 void rt2800mmio_kick_queue(struct data_queue
*queue
)
586 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
587 struct queue_entry
*entry
;
589 switch (queue
->qid
) {
594 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
595 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX(queue
->qid
),
599 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
600 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX(5),
607 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue
);
609 void rt2800mmio_stop_queue(struct data_queue
*queue
)
611 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
614 switch (queue
->qid
) {
616 rt2x00mmio_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
617 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
618 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
621 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
622 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
623 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
624 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
625 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
627 rt2x00mmio_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
628 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 0);
629 rt2x00mmio_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
632 * Wait for current invocation to finish. The tasklet
633 * won't be scheduled anymore afterwards since we disabled
634 * the TBTT and PRE TBTT timer.
636 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
637 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
644 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue
);
646 void rt2800mmio_queue_init(struct data_queue
*queue
)
648 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
649 unsigned short txwi_size
, rxwi_size
;
651 rt2800_get_txwi_rxwi_size(rt2x00dev
, &txwi_size
, &rxwi_size
);
653 switch (queue
->qid
) {
656 queue
->data_size
= AGGREGATION_SIZE
;
657 queue
->desc_size
= RXD_DESC_SIZE
;
658 queue
->winfo_size
= rxwi_size
;
659 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
667 queue
->data_size
= AGGREGATION_SIZE
;
668 queue
->desc_size
= TXD_DESC_SIZE
;
669 queue
->winfo_size
= txwi_size
;
670 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
675 queue
->data_size
= 0; /* No DMA required for beacons */
676 queue
->desc_size
= TXD_DESC_SIZE
;
677 queue
->winfo_size
= txwi_size
;
678 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
688 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init
);
691 * Initialization functions.
693 bool rt2800mmio_get_entry_state(struct queue_entry
*entry
)
695 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
698 if (entry
->queue
->qid
== QID_RX
) {
699 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
701 return (!rt2x00_get_field32(word
, RXD_W1_DMA_DONE
));
703 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
705 return (!rt2x00_get_field32(word
, TXD_W1_DMA_DONE
));
708 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state
);
710 void rt2800mmio_clear_entry(struct queue_entry
*entry
)
712 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
713 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
714 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
717 if (entry
->queue
->qid
== QID_RX
) {
718 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
719 rt2x00_set_field32(&word
, RXD_W0_SDP0
, skbdesc
->skb_dma
);
720 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
722 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
723 rt2x00_set_field32(&word
, RXD_W1_DMA_DONE
, 0);
724 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
727 * Set RX IDX in register to inform hardware that we have
728 * handled this entry and it is available for reuse again.
730 rt2x00mmio_register_write(rt2x00dev
, RX_CRX_IDX
,
733 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
734 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 1);
735 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
738 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry
);
740 int rt2800mmio_init_queues(struct rt2x00_dev
*rt2x00dev
)
742 struct queue_entry_priv_mmio
*entry_priv
;
745 * Initialize registers.
747 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
748 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR0
,
749 entry_priv
->desc_dma
);
750 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT0
,
751 rt2x00dev
->tx
[0].limit
);
752 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX0
, 0);
753 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX0
, 0);
755 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
756 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR1
,
757 entry_priv
->desc_dma
);
758 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT1
,
759 rt2x00dev
->tx
[1].limit
);
760 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX1
, 0);
761 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX1
, 0);
763 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
764 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR2
,
765 entry_priv
->desc_dma
);
766 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT2
,
767 rt2x00dev
->tx
[2].limit
);
768 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX2
, 0);
769 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX2
, 0);
771 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
772 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR3
,
773 entry_priv
->desc_dma
);
774 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT3
,
775 rt2x00dev
->tx
[3].limit
);
776 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX3
, 0);
777 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX3
, 0);
779 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR4
, 0);
780 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT4
, 0);
781 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX4
, 0);
782 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX4
, 0);
784 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR5
, 0);
785 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT5
, 0);
786 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX5
, 0);
787 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX5
, 0);
789 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
790 rt2x00mmio_register_write(rt2x00dev
, RX_BASE_PTR
,
791 entry_priv
->desc_dma
);
792 rt2x00mmio_register_write(rt2x00dev
, RX_MAX_CNT
,
793 rt2x00dev
->rx
[0].limit
);
794 rt2x00mmio_register_write(rt2x00dev
, RX_CRX_IDX
,
795 rt2x00dev
->rx
[0].limit
- 1);
796 rt2x00mmio_register_write(rt2x00dev
, RX_DRX_IDX
, 0);
798 rt2800_disable_wpdma(rt2x00dev
);
800 rt2x00mmio_register_write(rt2x00dev
, DELAY_INT_CFG
, 0);
804 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues
);
806 int rt2800mmio_init_registers(struct rt2x00_dev
*rt2x00dev
)
813 rt2x00mmio_register_read(rt2x00dev
, WPDMA_RST_IDX
, ®
);
814 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX0
, 1);
815 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX1
, 1);
816 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX2
, 1);
817 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX3
, 1);
818 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX4
, 1);
819 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX5
, 1);
820 rt2x00_set_field32(®
, WPDMA_RST_IDX_DRX_IDX0
, 1);
821 rt2x00mmio_register_write(rt2x00dev
, WPDMA_RST_IDX
, reg
);
823 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e1f);
824 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e00);
826 if (rt2x00_is_pcie(rt2x00dev
) &&
827 (rt2x00_rt(rt2x00dev
, RT3090
) ||
828 rt2x00_rt(rt2x00dev
, RT3390
) ||
829 rt2x00_rt(rt2x00dev
, RT3572
) ||
830 rt2x00_rt(rt2x00dev
, RT3593
) ||
831 rt2x00_rt(rt2x00dev
, RT5390
) ||
832 rt2x00_rt(rt2x00dev
, RT5392
) ||
833 rt2x00_rt(rt2x00dev
, RT5592
))) {
834 rt2x00mmio_register_read(rt2x00dev
, AUX_CTRL
, ®
);
835 rt2x00_set_field32(®
, AUX_CTRL_FORCE_PCIE_CLK
, 1);
836 rt2x00_set_field32(®
, AUX_CTRL_WAKE_PCIE_EN
, 1);
837 rt2x00mmio_register_write(rt2x00dev
, AUX_CTRL
, reg
);
840 rt2x00mmio_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
843 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_CSR
, 1);
844 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_BBP
, 1);
845 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
847 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
851 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers
);
854 * Device state switch handlers.
856 int rt2800mmio_enable_radio(struct rt2x00_dev
*rt2x00dev
)
858 /* Wait for DMA, ignore error until we initialize queues. */
859 rt2800_wait_wpdma_ready(rt2x00dev
);
861 if (unlikely(rt2800mmio_init_queues(rt2x00dev
)))
864 return rt2800_enable_radio(rt2x00dev
);
866 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio
);
868 MODULE_AUTHOR(DRV_PROJECT
);
869 MODULE_VERSION(DRV_VERSION
);
870 MODULE_DESCRIPTION("rt2800 MMIO library");
871 MODULE_LICENSE("GPL");