2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <http://www.gnu.org/licenses/>.
22 Abstract: rt2x00 generic device routines.
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
31 #include "rt2x00lib.h"
36 u32
rt2x00lib_get_bssidx(struct rt2x00_dev
*rt2x00dev
,
37 struct ieee80211_vif
*vif
)
40 * When in STA mode, bssidx is always 0 otherwise local_address[5]
41 * contains the bss number, see BSS_ID_MASK comments for details.
43 if (rt2x00dev
->intf_sta_count
)
45 return vif
->addr
[5] & (rt2x00dev
->ops
->max_ap_intf
- 1);
47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx
);
50 * Radio control handlers.
52 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
57 * Don't enable the radio twice.
58 * And check if the hardware button has been disabled.
60 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
64 * Initialize all data queues.
66 rt2x00queue_init_queues(rt2x00dev
);
72 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
76 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
78 rt2x00leds_led_radio(rt2x00dev
, true);
79 rt2x00led_led_activity(rt2x00dev
, true);
81 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
86 rt2x00queue_start_queues(rt2x00dev
);
87 rt2x00link_start_tuner(rt2x00dev
);
88 rt2x00link_start_agc(rt2x00dev
);
89 if (rt2x00_has_cap_vco_recalibration(rt2x00dev
))
90 rt2x00link_start_vcocal(rt2x00dev
);
93 * Start watchdog monitoring.
95 rt2x00link_start_watchdog(rt2x00dev
);
100 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
106 * Stop watchdog monitoring.
108 rt2x00link_stop_watchdog(rt2x00dev
);
113 rt2x00link_stop_agc(rt2x00dev
);
114 if (rt2x00_has_cap_vco_recalibration(rt2x00dev
))
115 rt2x00link_stop_vcocal(rt2x00dev
);
116 rt2x00link_stop_tuner(rt2x00dev
);
117 rt2x00queue_stop_queues(rt2x00dev
);
118 rt2x00queue_flush_queues(rt2x00dev
, true);
123 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
124 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
125 rt2x00led_led_activity(rt2x00dev
, false);
126 rt2x00leds_led_radio(rt2x00dev
, false);
129 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
130 struct ieee80211_vif
*vif
)
132 struct rt2x00_dev
*rt2x00dev
= data
;
133 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
136 * It is possible the radio was disabled while the work had been
137 * scheduled. If that happens we should return here immediately,
138 * note that in the spinlock protected area above the delayed_flags
139 * have been cleared correctly.
141 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
144 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
))
145 rt2x00queue_update_beacon(rt2x00dev
, vif
);
148 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
150 struct rt2x00_dev
*rt2x00dev
=
151 container_of(work
, struct rt2x00_dev
, intf_work
);
154 * Iterate over each interface and perform the
155 * requested configurations.
157 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
158 IEEE80211_IFACE_ITER_RESUME_ALL
,
159 rt2x00lib_intf_scheduled_iter
,
163 static void rt2x00lib_autowakeup(struct work_struct
*work
)
165 struct rt2x00_dev
*rt2x00dev
=
166 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
168 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
171 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
172 rt2x00_err(rt2x00dev
, "Device failed to wakeup\n");
173 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
177 * Interrupt context handlers.
179 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
180 struct ieee80211_vif
*vif
)
182 struct ieee80211_tx_control control
= {};
183 struct rt2x00_dev
*rt2x00dev
= data
;
187 * Only AP mode interfaces do broad- and multicast buffering
189 if (vif
->type
!= NL80211_IFTYPE_AP
)
193 * Send out buffered broad- and multicast frames
195 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
197 rt2x00mac_tx(rt2x00dev
->hw
, &control
, skb
);
198 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
202 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
203 struct ieee80211_vif
*vif
)
205 struct rt2x00_dev
*rt2x00dev
= data
;
207 if (vif
->type
!= NL80211_IFTYPE_AP
&&
208 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
209 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
210 vif
->type
!= NL80211_IFTYPE_WDS
)
214 * Update the beacon without locking. This is safe on PCI devices
215 * as they only update the beacon periodically here. This should
216 * never be called for USB devices.
218 WARN_ON(rt2x00_is_usb(rt2x00dev
));
219 rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
222 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
227 /* send buffered bc/mc frames out for every bssid */
228 ieee80211_iterate_active_interfaces_atomic(
229 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
230 rt2x00lib_bc_buffer_iter
, rt2x00dev
);
232 * Devices with pre tbtt interrupt don't need to update the beacon
233 * here as they will fetch the next beacon directly prior to
236 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev
))
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(
241 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
242 rt2x00lib_beaconupdate_iter
, rt2x00dev
);
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
246 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
251 /* fetch next beacon */
252 ieee80211_iterate_active_interfaces_atomic(
253 rt2x00dev
->hw
, IEEE80211_IFACE_ITER_RESUME_ALL
,
254 rt2x00lib_beaconupdate_iter
, rt2x00dev
);
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
258 void rt2x00lib_dmastart(struct queue_entry
*entry
)
260 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
261 rt2x00queue_index_inc(entry
, Q_INDEX
);
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
265 void rt2x00lib_dmadone(struct queue_entry
*entry
)
267 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
268 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
269 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
273 static inline int rt2x00lib_txdone_bar_status(struct queue_entry
*entry
)
275 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
276 struct ieee80211_bar
*bar
= (void *) entry
->skb
->data
;
277 struct rt2x00_bar_list_entry
*bar_entry
;
280 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
284 * Unlike all other frames, the status report for BARs does
285 * not directly come from the hardware as it is incapable of
286 * matching a BA to a previously send BAR. The hardware will
287 * report all BARs as if they weren't acked at all.
289 * Instead the RX-path will scan for incoming BAs and set the
290 * block_acked flag if it sees one that was likely caused by
293 * Remove remaining BARs here and return their status for
294 * TX done processing.
298 list_for_each_entry_rcu(bar_entry
, &rt2x00dev
->bar_list
, list
) {
299 if (bar_entry
->entry
!= entry
)
302 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
303 /* Return whether this BAR was blockacked or not */
304 ret
= bar_entry
->block_acked
;
305 /* Remove the BAR from our checklist */
306 list_del_rcu(&bar_entry
->list
);
307 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
308 kfree_rcu(bar_entry
, head
);
317 void rt2x00lib_txdone(struct queue_entry
*entry
,
318 struct txdone_entry_desc
*txdesc
)
320 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
321 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
322 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
323 unsigned int header_length
, i
;
324 u8 rate_idx
, rate_flags
, retry_rates
;
325 u8 skbdesc_flags
= skbdesc
->flags
;
331 rt2x00queue_unmap_skb(entry
);
334 * Remove the extra tx headroom from the skb.
336 skb_pull(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
339 * Signal that the TX descriptor is no longer in the skb.
341 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
344 * Determine the length of 802.11 header.
346 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
349 * Remove L2 padding which was added during
351 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
352 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
355 * If the IV/EIV data was stripped from the frame before it was
356 * passed to the hardware, we should now reinsert it again because
357 * mac80211 will expect the same data to be present it the
358 * frame as it was passed to us.
360 if (rt2x00_has_cap_hw_crypto(rt2x00dev
))
361 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
364 * Send frame to debugfs immediately, after this call is completed
365 * we are going to overwrite the skb->cb array.
367 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
->skb
);
370 * Determine if the frame has been successfully transmitted and
371 * remove BARs from our check list while checking for their
375 rt2x00lib_txdone_bar_status(entry
) ||
376 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
377 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
380 * Update TX statistics.
382 rt2x00dev
->link
.qual
.tx_success
+= success
;
383 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
385 rate_idx
= skbdesc
->tx_rate_idx
;
386 rate_flags
= skbdesc
->tx_rate_flags
;
387 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
388 (txdesc
->retry
+ 1) : 1;
391 * Initialize TX status
393 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
394 tx_info
->status
.ack_signal
= 0;
397 * Frame was send with retries, hardware tried
398 * different rates to send out the frame, at each
399 * retry it lowered the rate 1 step except when the
400 * lowest rate was used.
402 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
403 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
404 tx_info
->status
.rates
[i
].flags
= rate_flags
;
406 if (rate_idx
- i
== 0) {
408 * The lowest rate (index 0) was used until the
409 * number of max retries was reached.
411 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
415 tx_info
->status
.rates
[i
].count
= 1;
417 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
418 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
420 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
422 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
424 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
428 * Every single frame has it's own tx status, hence report
429 * every frame as ampdu of size 1.
431 * TODO: if we can find out how many frames were aggregated
432 * by the hw we could provide the real ampdu_len to mac80211
433 * which would allow the rc algorithm to better decide on
434 * which rates are suitable.
436 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
437 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
438 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
439 tx_info
->status
.ampdu_len
= 1;
440 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
443 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU_NO_BACK
;
446 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
448 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
450 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
454 * Only send the status report to mac80211 when it's a frame
455 * that originated in mac80211. If this was a extra frame coming
456 * through a mac80211 library call (RTS/CTS) then we should not
457 * send the status report back.
459 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
460 if (test_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
))
461 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
463 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
465 dev_kfree_skb_any(entry
->skb
);
468 * Make this entry available for reuse.
473 rt2x00dev
->ops
->lib
->clear_entry(entry
);
475 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
478 * If the data queue was below the threshold before the txdone
479 * handler we must make sure the packet queue in the mac80211 stack
480 * is reenabled when the txdone handler has finished. This has to be
481 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
482 * before it was stopped.
484 spin_lock_bh(&entry
->queue
->tx_lock
);
485 if (!rt2x00queue_threshold(entry
->queue
))
486 rt2x00queue_unpause_queue(entry
->queue
);
487 spin_unlock_bh(&entry
->queue
->tx_lock
);
489 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
491 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
493 struct txdone_entry_desc txdesc
;
496 __set_bit(status
, &txdesc
.flags
);
499 rt2x00lib_txdone(entry
, &txdesc
);
501 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
503 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
505 struct ieee80211_mgmt
*mgmt
= (void *)data
;
508 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
511 if (pos
+ 2 + pos
[1] > end
)
523 static void rt2x00lib_sleep(struct work_struct
*work
)
525 struct rt2x00_dev
*rt2x00dev
=
526 container_of(work
, struct rt2x00_dev
, sleep_work
);
528 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
532 * Check again is powersaving is enabled, to prevent races from delayed
535 if (!test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
536 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
537 IEEE80211_CONF_CHANGE_PS
);
540 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev
*rt2x00dev
,
542 struct rxdone_entry_desc
*rxdesc
)
544 struct rt2x00_bar_list_entry
*entry
;
545 struct ieee80211_bar
*ba
= (void *)skb
->data
;
547 if (likely(!ieee80211_is_back(ba
->frame_control
)))
550 if (rxdesc
->size
< sizeof(*ba
) + FCS_LEN
)
554 list_for_each_entry_rcu(entry
, &rt2x00dev
->bar_list
, list
) {
556 if (ba
->start_seq_num
!= entry
->start_seq_num
)
559 #define TID_CHECK(a, b) ( \
560 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
561 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
563 if (!TID_CHECK(ba->control, entry->control))
568 if (!ether_addr_equal_64bits(ba
->ra
, entry
->ta
))
571 if (!ether_addr_equal_64bits(ba
->ta
, entry
->ra
))
574 /* Mark BAR since we received the according BA */
575 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
576 entry
->block_acked
= 1;
577 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
584 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
586 struct rxdone_entry_desc
*rxdesc
)
588 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
589 struct ieee80211_tim_ie
*tim_ie
;
594 /* If this is not a beacon, or if mac80211 has no powersaving
595 * configured, or if the device is already in powersaving mode
596 * we can exit now. */
597 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
598 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
601 /* min. beacon length + FCS_LEN */
602 if (skb
->len
<= 40 + FCS_LEN
)
605 /* and only beacons from the associated BSSID, please */
606 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
610 rt2x00dev
->last_beacon
= jiffies
;
612 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
616 if (tim
[1] < sizeof(*tim_ie
))
620 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
622 /* Check whenever the PHY can be turned off again. */
624 /* 1. What about buffered unicast traffic for our AID? */
625 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
627 /* 2. Maybe the AP wants to send multicast/broadcast data? */
628 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
630 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
631 queue_work(rt2x00dev
->workqueue
, &rt2x00dev
->sleep_work
);
634 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
635 struct rxdone_entry_desc
*rxdesc
)
637 struct ieee80211_supported_band
*sband
;
638 const struct rt2x00_rate
*rate
;
640 int signal
= rxdesc
->signal
;
641 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
643 switch (rxdesc
->rate_mode
) {
647 * For non-HT rates the MCS value needs to contain the
648 * actually used rate modulation (CCK or OFDM).
650 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
651 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
653 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
654 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
655 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
656 if (((type
== RXDONE_SIGNAL_PLCP
) &&
657 (rate
->plcp
== signal
)) ||
658 ((type
== RXDONE_SIGNAL_BITRATE
) &&
659 (rate
->bitrate
== signal
)) ||
660 ((type
== RXDONE_SIGNAL_MCS
) &&
661 (rate
->mcs
== signal
))) {
666 case RATE_MODE_HT_MIX
:
667 case RATE_MODE_HT_GREENFIELD
:
668 if (signal
>= 0 && signal
<= 76)
675 rt2x00_warn(rt2x00dev
, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
676 rxdesc
->rate_mode
, signal
, type
);
680 void rt2x00lib_rxdone(struct queue_entry
*entry
, gfp_t gfp
)
682 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
683 struct rxdone_entry_desc rxdesc
;
685 struct ieee80211_rx_status
*rx_status
;
686 unsigned int header_length
;
689 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
690 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
693 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
697 * Allocate a new sk_buffer. If no new buffer available, drop the
698 * received frame and reuse the existing buffer.
700 skb
= rt2x00queue_alloc_rxskb(entry
, gfp
);
707 rt2x00queue_unmap_skb(entry
);
710 * Extract the RXD details.
712 memset(&rxdesc
, 0, sizeof(rxdesc
));
713 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
716 * Check for valid size in case we get corrupted descriptor from
719 if (unlikely(rxdesc
.size
== 0 ||
720 rxdesc
.size
> entry
->queue
->data_size
)) {
721 rt2x00_err(rt2x00dev
, "Wrong frame size %d max %d\n",
722 rxdesc
.size
, entry
->queue
->data_size
);
723 dev_kfree_skb(entry
->skb
);
728 * The data behind the ieee80211 header must be
729 * aligned on a 4 byte boundary.
731 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
734 * Hardware might have stripped the IV/EIV/ICV data,
735 * in that case it is possible that the data was
736 * provided separately (through hardware descriptor)
737 * in which case we should reinsert the data into the frame.
739 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
740 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
741 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
743 else if (header_length
&&
744 (rxdesc
.size
> header_length
) &&
745 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
746 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
748 /* Trim buffer to correct size */
749 skb_trim(entry
->skb
, rxdesc
.size
);
752 * Translate the signal to the correct bitrate index.
754 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
755 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
756 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
757 rxdesc
.flags
|= RX_FLAG_HT
;
760 * Check if this is a beacon, and more frames have been
761 * buffered while we were in powersaving mode.
763 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
766 * Check for incoming BlockAcks to match to the BlockAckReqs
769 rt2x00lib_rxdone_check_ba(rt2x00dev
, entry
->skb
, &rxdesc
);
772 * Update extra components
774 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
775 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
776 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
->skb
);
779 * Initialize RX status information, and send frame
782 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
784 /* Ensure that all fields of rx_status are initialized
785 * properly. The skb->cb array was used for driver
786 * specific informations, so rx_status might contain
789 memset(rx_status
, 0, sizeof(*rx_status
));
791 rx_status
->mactime
= rxdesc
.timestamp
;
792 rx_status
->band
= rt2x00dev
->curr_band
;
793 rx_status
->freq
= rt2x00dev
->curr_freq
;
794 rx_status
->rate_idx
= rate_idx
;
795 rx_status
->signal
= rxdesc
.rssi
;
796 rx_status
->flag
= rxdesc
.flags
;
797 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
799 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
803 * Replace the skb with the freshly allocated one.
809 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
810 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
811 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
812 rt2x00dev
->ops
->lib
->clear_entry(entry
);
814 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
817 * Driver initialization handlers.
819 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
821 .flags
= DEV_RATE_CCK
,
825 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
828 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
832 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
835 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
839 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
842 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
846 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
849 .flags
= DEV_RATE_OFDM
,
853 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
856 .flags
= DEV_RATE_OFDM
,
860 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
863 .flags
= DEV_RATE_OFDM
,
867 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
870 .flags
= DEV_RATE_OFDM
,
874 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
877 .flags
= DEV_RATE_OFDM
,
881 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
884 .flags
= DEV_RATE_OFDM
,
888 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
891 .flags
= DEV_RATE_OFDM
,
895 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
898 .flags
= DEV_RATE_OFDM
,
902 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
906 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
907 const int channel
, const int tx_power
,
910 /* XXX: this assumption about the band is wrong for 802.11j */
911 entry
->band
= channel
<= 14 ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
912 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
914 entry
->hw_value
= value
;
915 entry
->max_power
= tx_power
;
916 entry
->max_antenna_gain
= 0xff;
919 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
920 const u16 index
, const struct rt2x00_rate
*rate
)
923 entry
->bitrate
= rate
->bitrate
;
924 entry
->hw_value
= index
;
925 entry
->hw_value_short
= index
;
927 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
928 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
931 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
932 struct hw_mode_spec
*spec
)
934 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
935 struct ieee80211_channel
*channels
;
936 struct ieee80211_rate
*rates
;
937 unsigned int num_rates
;
941 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
943 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
946 channels
= kcalloc(spec
->num_channels
, sizeof(*channels
), GFP_KERNEL
);
950 rates
= kcalloc(num_rates
, sizeof(*rates
), GFP_KERNEL
);
952 goto exit_free_channels
;
955 * Initialize Rate list.
957 for (i
= 0; i
< num_rates
; i
++)
958 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
961 * Initialize Channel list.
963 for (i
= 0; i
< spec
->num_channels
; i
++) {
964 rt2x00lib_channel(&channels
[i
],
965 spec
->channels
[i
].channel
,
966 spec
->channels_info
[i
].max_power
, i
);
970 * Intitialize 802.11b, 802.11g
974 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
975 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
976 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
977 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
978 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
979 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
980 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
981 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].ht_cap
,
982 &spec
->ht
, sizeof(spec
->ht
));
986 * Intitialize 802.11a
988 * Channels: OFDM, UNII, HiperLAN2.
990 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
991 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
992 spec
->num_channels
- 14;
993 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
995 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
996 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
997 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
998 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
999 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].ht_cap
,
1000 &spec
->ht
, sizeof(spec
->ht
));
1007 rt2x00_err(rt2x00dev
, "Allocation ieee80211 modes failed\n");
1011 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
1013 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
1014 ieee80211_unregister_hw(rt2x00dev
->hw
);
1016 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
1017 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
1018 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
1019 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
1020 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
1023 kfree(rt2x00dev
->spec
.channels_info
);
1026 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
1028 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
1031 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
1035 * Initialize HW modes.
1037 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
1042 * Initialize HW fields.
1044 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
1047 * Initialize extra TX headroom required.
1049 rt2x00dev
->hw
->extra_tx_headroom
=
1050 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
1051 rt2x00dev
->extra_tx_headroom
);
1054 * Take TX headroom required for alignment into account.
1056 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
1057 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
1058 else if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
1059 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
1062 * Tell mac80211 about the size of our private STA structure.
1064 rt2x00dev
->hw
->sta_data_size
= sizeof(struct rt2x00_sta
);
1067 * Allocate tx status FIFO for driver use.
1069 if (test_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
)) {
1071 * Allocate the txstatus fifo. In the worst case the tx
1072 * status fifo has to hold the tx status of all entries
1073 * in all tx queues. Hence, calculate the kfifo size as
1074 * tx_queues * entry_num and round up to the nearest
1078 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
1079 rt2x00dev
->tx
->limit
*
1082 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
1089 * Initialize tasklets if used by the driver. Tasklets are
1090 * disabled until the interrupts are turned on. The driver
1091 * has to handle that.
1093 #define RT2X00_TASKLET_INIT(taskletname) \
1094 if (rt2x00dev->ops->lib->taskletname) { \
1095 tasklet_init(&rt2x00dev->taskletname, \
1096 rt2x00dev->ops->lib->taskletname, \
1097 (unsigned long)rt2x00dev); \
1100 RT2X00_TASKLET_INIT(txstatus_tasklet
);
1101 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
1102 RT2X00_TASKLET_INIT(tbtt_tasklet
);
1103 RT2X00_TASKLET_INIT(rxdone_tasklet
);
1104 RT2X00_TASKLET_INIT(autowake_tasklet
);
1106 #undef RT2X00_TASKLET_INIT
1111 status
= ieee80211_register_hw(rt2x00dev
->hw
);
1115 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
1121 * Initialization/uninitialization handlers.
1123 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1125 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1129 * Unregister extra components.
1131 rt2x00rfkill_unregister(rt2x00dev
);
1134 * Allow the HW to uninitialize.
1136 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
1139 * Free allocated queue entries.
1141 rt2x00queue_uninitialize(rt2x00dev
);
1144 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
1148 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1152 * Allocate all queue entries.
1154 status
= rt2x00queue_initialize(rt2x00dev
);
1159 * Initialize the device.
1161 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1163 rt2x00queue_uninitialize(rt2x00dev
);
1167 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1172 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1176 if (test_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1180 * If this is the first interface which is added,
1181 * we should load the firmware now.
1183 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1188 * Initialize the device.
1190 retval
= rt2x00lib_initialize(rt2x00dev
);
1194 rt2x00dev
->intf_ap_count
= 0;
1195 rt2x00dev
->intf_sta_count
= 0;
1196 rt2x00dev
->intf_associated
= 0;
1198 /* Enable the radio */
1199 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1203 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1208 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1210 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1214 * Perhaps we can add something smarter here,
1215 * but for now just disabling the radio should do.
1217 rt2x00lib_disable_radio(rt2x00dev
);
1219 rt2x00dev
->intf_ap_count
= 0;
1220 rt2x00dev
->intf_sta_count
= 0;
1221 rt2x00dev
->intf_associated
= 0;
1224 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev
*rt2x00dev
)
1226 struct ieee80211_iface_limit
*if_limit
;
1227 struct ieee80211_iface_combination
*if_combination
;
1229 if (rt2x00dev
->ops
->max_ap_intf
< 2)
1233 * Build up AP interface limits structure.
1235 if_limit
= &rt2x00dev
->if_limits_ap
;
1236 if_limit
->max
= rt2x00dev
->ops
->max_ap_intf
;
1237 if_limit
->types
= BIT(NL80211_IFTYPE_AP
);
1238 #ifdef CONFIG_MAC80211_MESH
1239 if_limit
->types
|= BIT(NL80211_IFTYPE_MESH_POINT
);
1243 * Build up AP interface combinations structure.
1245 if_combination
= &rt2x00dev
->if_combinations
[IF_COMB_AP
];
1246 if_combination
->limits
= if_limit
;
1247 if_combination
->n_limits
= 1;
1248 if_combination
->max_interfaces
= if_limit
->max
;
1249 if_combination
->num_different_channels
= 1;
1252 * Finally, specify the possible combinations to mac80211.
1254 rt2x00dev
->hw
->wiphy
->iface_combinations
= rt2x00dev
->if_combinations
;
1255 rt2x00dev
->hw
->wiphy
->n_iface_combinations
= 1;
1258 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev
*rt2x00dev
)
1260 if (WARN_ON(!rt2x00dev
->tx
))
1263 if (rt2x00_is_usb(rt2x00dev
))
1264 return rt2x00dev
->tx
[0].winfo_size
+ rt2x00dev
->tx
[0].desc_size
;
1266 return rt2x00dev
->tx
[0].winfo_size
;
1270 * driver allocation handlers.
1272 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1274 int retval
= -ENOMEM
;
1277 * Set possible interface combinations.
1279 rt2x00lib_set_if_combinations(rt2x00dev
);
1282 * Allocate the driver data memory, if necessary.
1284 if (rt2x00dev
->ops
->drv_data_size
> 0) {
1285 rt2x00dev
->drv_data
= kzalloc(rt2x00dev
->ops
->drv_data_size
,
1287 if (!rt2x00dev
->drv_data
) {
1293 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1294 mutex_init(&rt2x00dev
->csr_mutex
);
1295 INIT_LIST_HEAD(&rt2x00dev
->bar_list
);
1296 spin_lock_init(&rt2x00dev
->bar_list_lock
);
1298 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1301 * Make room for rt2x00_intf inside the per-interface
1302 * structure ieee80211_vif.
1304 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1307 * rt2x00 devices can only use the last n bits of the MAC address
1308 * for virtual interfaces.
1310 rt2x00dev
->hw
->wiphy
->addr_mask
[ETH_ALEN
- 1] =
1311 (rt2x00dev
->ops
->max_ap_intf
- 1);
1316 rt2x00dev
->workqueue
=
1317 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev
->hw
->wiphy
));
1318 if (!rt2x00dev
->workqueue
) {
1323 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1324 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1325 INIT_WORK(&rt2x00dev
->sleep_work
, rt2x00lib_sleep
);
1328 * Let the driver probe the device to detect the capabilities.
1330 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1332 rt2x00_err(rt2x00dev
, "Failed to allocate device\n");
1337 * Allocate queue array.
1339 retval
= rt2x00queue_allocate(rt2x00dev
);
1343 /* Cache TX headroom value */
1344 rt2x00dev
->extra_tx_headroom
= rt2x00dev_extra_tx_headroom(rt2x00dev
);
1347 * Determine which operating modes are supported, all modes
1348 * which require beaconing, depend on the availability of
1351 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1352 if (rt2x00dev
->bcn
->limit
> 0)
1353 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1354 BIT(NL80211_IFTYPE_ADHOC
) |
1355 BIT(NL80211_IFTYPE_AP
) |
1356 #ifdef CONFIG_MAC80211_MESH
1357 BIT(NL80211_IFTYPE_MESH_POINT
) |
1359 BIT(NL80211_IFTYPE_WDS
);
1361 rt2x00dev
->hw
->wiphy
->flags
|= WIPHY_FLAG_IBSS_RSN
;
1364 * Initialize ieee80211 structure.
1366 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1368 rt2x00_err(rt2x00dev
, "Failed to initialize hw\n");
1373 * Register extra components.
1375 rt2x00link_register(rt2x00dev
);
1376 rt2x00leds_register(rt2x00dev
);
1377 rt2x00debug_register(rt2x00dev
);
1378 rt2x00rfkill_register(rt2x00dev
);
1383 rt2x00lib_remove_dev(rt2x00dev
);
1387 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1389 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1391 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1396 rt2x00lib_disable_radio(rt2x00dev
);
1401 cancel_work_sync(&rt2x00dev
->intf_work
);
1402 cancel_delayed_work_sync(&rt2x00dev
->autowakeup_work
);
1403 cancel_work_sync(&rt2x00dev
->sleep_work
);
1404 if (rt2x00_is_usb(rt2x00dev
)) {
1405 hrtimer_cancel(&rt2x00dev
->txstatus_timer
);
1406 cancel_work_sync(&rt2x00dev
->rxdone_work
);
1407 cancel_work_sync(&rt2x00dev
->txdone_work
);
1409 if (rt2x00dev
->workqueue
)
1410 destroy_workqueue(rt2x00dev
->workqueue
);
1413 * Free the tx status fifo.
1415 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1418 * Kill the tx status tasklet.
1420 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1421 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1422 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1423 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1424 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1427 * Uninitialize device.
1429 rt2x00lib_uninitialize(rt2x00dev
);
1432 * Free extra components
1434 rt2x00debug_deregister(rt2x00dev
);
1435 rt2x00leds_unregister(rt2x00dev
);
1438 * Free ieee80211_hw memory.
1440 rt2x00lib_remove_hw(rt2x00dev
);
1443 * Free firmware image.
1445 rt2x00lib_free_firmware(rt2x00dev
);
1448 * Free queue structures.
1450 rt2x00queue_free(rt2x00dev
);
1453 * Free the driver data.
1455 if (rt2x00dev
->drv_data
)
1456 kfree(rt2x00dev
->drv_data
);
1458 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1461 * Device state handlers
1464 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1466 rt2x00_dbg(rt2x00dev
, "Going to sleep\n");
1469 * Prevent mac80211 from accessing driver while suspended.
1471 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1475 * Cleanup as much as possible.
1477 rt2x00lib_uninitialize(rt2x00dev
);
1480 * Suspend/disable extra components.
1482 rt2x00leds_suspend(rt2x00dev
);
1483 rt2x00debug_deregister(rt2x00dev
);
1486 * Set device mode to sleep for power management,
1487 * on some hardware this call seems to consistently fail.
1488 * From the specifications it is hard to tell why it fails,
1489 * and if this is a "bad thing".
1490 * Overall it is safe to just ignore the failure and
1491 * continue suspending. The only downside is that the
1492 * device will not be in optimal power save mode, but with
1493 * the radio and the other components already disabled the
1494 * device is as good as disabled.
1496 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1497 rt2x00_warn(rt2x00dev
, "Device failed to enter sleep state, continue suspending\n");
1501 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1503 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1505 rt2x00_dbg(rt2x00dev
, "Waking up\n");
1508 * Restore/enable extra components.
1510 rt2x00debug_register(rt2x00dev
);
1511 rt2x00leds_resume(rt2x00dev
);
1514 * We are ready again to receive requests from mac80211.
1516 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1520 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1521 #endif /* CONFIG_PM */
1524 * rt2x00lib module information.
1526 MODULE_AUTHOR(DRV_PROJECT
);
1527 MODULE_VERSION(DRV_VERSION
);
1528 MODULE_DESCRIPTION("rt2x00 library");
1529 MODULE_LICENSE("GPL");