net: ptp: do not reimplement PTP/BPF classifier
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob5642ccceca7c5544ba6e2aad62b0f00b0870a2c1
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
36 struct data_queue *queue = entry->queue;
37 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
38 struct sk_buff *skb;
39 struct skb_frame_desc *skbdesc;
40 unsigned int frame_size;
41 unsigned int head_size = 0;
42 unsigned int tail_size = 0;
45 * The frame size includes descriptor size, because the
46 * hardware directly receive the frame into the skbuffer.
48 frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
51 * The payload should be aligned to a 4-byte boundary,
52 * this means we need at least 3 bytes for moving the frame
53 * into the correct offset.
55 head_size = 4;
58 * For IV/EIV/ICV assembly we must make sure there is
59 * at least 8 bytes bytes available in headroom for IV/EIV
60 * and 8 bytes for ICV data as tailroon.
62 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
63 head_size += 8;
64 tail_size += 8;
68 * Allocate skbuffer.
70 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
71 if (!skb)
72 return NULL;
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
78 skb_reserve(skb, head_size);
79 skb_put(skb, frame_size);
82 * Populate skbdesc.
84 skbdesc = get_skb_frame_desc(skb);
85 memset(skbdesc, 0, sizeof(*skbdesc));
86 skbdesc->entry = entry;
88 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
89 dma_addr_t skb_dma;
91 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
92 DMA_FROM_DEVICE);
93 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
94 dev_kfree_skb_any(skb);
95 return NULL;
98 skbdesc->skb_dma = skb_dma;
99 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
102 return skb;
105 int rt2x00queue_map_txskb(struct queue_entry *entry)
107 struct device *dev = entry->queue->rt2x00dev->dev;
108 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
110 skbdesc->skb_dma =
111 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
113 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
114 return -ENOMEM;
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
117 return 0;
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
121 void rt2x00queue_unmap_skb(struct queue_entry *entry)
123 struct device *dev = entry->queue->rt2x00dev->dev;
124 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
126 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
127 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
128 DMA_FROM_DEVICE);
129 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
132 DMA_TO_DEVICE);
133 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
136 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
138 void rt2x00queue_free_skb(struct queue_entry *entry)
140 if (!entry->skb)
141 return;
143 rt2x00queue_unmap_skb(entry);
144 dev_kfree_skb_any(entry->skb);
145 entry->skb = NULL;
148 void rt2x00queue_align_frame(struct sk_buff *skb)
150 unsigned int frame_length = skb->len;
151 unsigned int align = ALIGN_SIZE(skb, 0);
153 if (!align)
154 return;
156 skb_push(skb, align);
157 memmove(skb->data, skb->data + align, frame_length);
158 skb_trim(skb, frame_length);
161 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
163 unsigned int payload_length = skb->len - header_length;
164 unsigned int header_align = ALIGN_SIZE(skb, 0);
165 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
166 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
169 * Adjust the header alignment if the payload needs to be moved more
170 * than the header.
172 if (payload_align > header_align)
173 header_align += 4;
175 /* There is nothing to do if no alignment is needed */
176 if (!header_align)
177 return;
179 /* Reserve the amount of space needed in front of the frame */
180 skb_push(skb, header_align);
183 * Move the header.
185 memmove(skb->data, skb->data + header_align, header_length);
187 /* Move the payload, if present and if required */
188 if (payload_length && payload_align)
189 memmove(skb->data + header_length + l2pad,
190 skb->data + header_length + l2pad + payload_align,
191 payload_length);
193 /* Trim the skb to the correct size */
194 skb_trim(skb, header_length + l2pad + payload_length);
197 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
200 * L2 padding is only present if the skb contains more than just the
201 * IEEE 802.11 header.
203 unsigned int l2pad = (skb->len > header_length) ?
204 L2PAD_SIZE(header_length) : 0;
206 if (!l2pad)
207 return;
209 memmove(skb->data + l2pad, skb->data, header_length);
210 skb_pull(skb, l2pad);
213 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
214 struct sk_buff *skb,
215 struct txentry_desc *txdesc)
217 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
218 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
219 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
220 u16 seqno;
222 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
223 return;
225 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
227 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
229 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
230 * seqno on retransmited data (non-QOS) frames. To workaround
231 * the problem let's generate seqno in software if QOS is
232 * disabled.
234 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
235 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
236 else
237 /* H/W will generate sequence number */
238 return;
242 * The hardware is not able to insert a sequence number. Assign a
243 * software generated one here.
245 * This is wrong because beacons are not getting sequence
246 * numbers assigned properly.
248 * A secondary problem exists for drivers that cannot toggle
249 * sequence counting per-frame, since those will override the
250 * sequence counter given by mac80211.
252 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
253 seqno = atomic_add_return(0x10, &intf->seqno);
254 else
255 seqno = atomic_read(&intf->seqno);
257 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
258 hdr->seq_ctrl |= cpu_to_le16(seqno);
261 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
262 struct sk_buff *skb,
263 struct txentry_desc *txdesc,
264 const struct rt2x00_rate *hwrate)
266 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
267 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
268 unsigned int data_length;
269 unsigned int duration;
270 unsigned int residual;
273 * Determine with what IFS priority this frame should be send.
274 * Set ifs to IFS_SIFS when the this is not the first fragment,
275 * or this fragment came after RTS/CTS.
277 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
278 txdesc->u.plcp.ifs = IFS_BACKOFF;
279 else
280 txdesc->u.plcp.ifs = IFS_SIFS;
282 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
283 data_length = skb->len + 4;
284 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
287 * PLCP setup
288 * Length calculation depends on OFDM/CCK rate.
290 txdesc->u.plcp.signal = hwrate->plcp;
291 txdesc->u.plcp.service = 0x04;
293 if (hwrate->flags & DEV_RATE_OFDM) {
294 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
295 txdesc->u.plcp.length_low = data_length & 0x3f;
296 } else {
298 * Convert length to microseconds.
300 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
301 duration = GET_DURATION(data_length, hwrate->bitrate);
303 if (residual != 0) {
304 duration++;
307 * Check if we need to set the Length Extension
309 if (hwrate->bitrate == 110 && residual <= 30)
310 txdesc->u.plcp.service |= 0x80;
313 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
314 txdesc->u.plcp.length_low = duration & 0xff;
317 * When preamble is enabled we should set the
318 * preamble bit for the signal.
320 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
321 txdesc->u.plcp.signal |= 0x08;
325 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
326 struct sk_buff *skb,
327 struct txentry_desc *txdesc,
328 struct ieee80211_sta *sta,
329 const struct rt2x00_rate *hwrate)
331 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
332 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
334 struct rt2x00_sta *sta_priv = NULL;
336 if (sta) {
337 txdesc->u.ht.mpdu_density =
338 sta->ht_cap.ampdu_density;
340 sta_priv = sta_to_rt2x00_sta(sta);
341 txdesc->u.ht.wcid = sta_priv->wcid;
345 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
346 * mcs rate to be used
348 if (txrate->flags & IEEE80211_TX_RC_MCS) {
349 txdesc->u.ht.mcs = txrate->idx;
352 * MIMO PS should be set to 1 for STA's using dynamic SM PS
353 * when using more then one tx stream (>MCS7).
355 if (sta && txdesc->u.ht.mcs > 7 &&
356 sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
357 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
358 } else {
359 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
360 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
361 txdesc->u.ht.mcs |= 0x08;
364 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
365 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
366 txdesc->u.ht.txop = TXOP_SIFS;
367 else
368 txdesc->u.ht.txop = TXOP_BACKOFF;
370 /* Left zero on all other settings. */
371 return;
374 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
377 * Only one STBC stream is supported for now.
379 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
380 txdesc->u.ht.stbc = 1;
383 * This frame is eligible for an AMPDU, however, don't aggregate
384 * frames that are intended to probe a specific tx rate.
386 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
387 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
388 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
391 * Set 40Mhz mode if necessary (for legacy rates this will
392 * duplicate the frame to both channels).
394 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
395 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
396 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
397 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
398 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
401 * Determine IFS values
402 * - Use TXOP_BACKOFF for management frames except beacons
403 * - Use TXOP_SIFS for fragment bursts
404 * - Use TXOP_HTTXOP for everything else
406 * Note: rt2800 devices won't use CTS protection (if used)
407 * for frames not transmitted with TXOP_HTTXOP
409 if (ieee80211_is_mgmt(hdr->frame_control) &&
410 !ieee80211_is_beacon(hdr->frame_control))
411 txdesc->u.ht.txop = TXOP_BACKOFF;
412 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
413 txdesc->u.ht.txop = TXOP_SIFS;
414 else
415 txdesc->u.ht.txop = TXOP_HTTXOP;
418 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
419 struct sk_buff *skb,
420 struct txentry_desc *txdesc,
421 struct ieee80211_sta *sta)
423 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
425 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
426 struct ieee80211_rate *rate;
427 const struct rt2x00_rate *hwrate = NULL;
429 memset(txdesc, 0, sizeof(*txdesc));
432 * Header and frame information.
434 txdesc->length = skb->len;
435 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
438 * Check whether this frame is to be acked.
440 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
441 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
444 * Check if this is a RTS/CTS frame
446 if (ieee80211_is_rts(hdr->frame_control) ||
447 ieee80211_is_cts(hdr->frame_control)) {
448 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
449 if (ieee80211_is_rts(hdr->frame_control))
450 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
451 else
452 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
453 if (tx_info->control.rts_cts_rate_idx >= 0)
454 rate =
455 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
459 * Determine retry information.
461 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
462 if (txdesc->retry_limit >= rt2x00dev->long_retry)
463 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
466 * Check if more fragments are pending
468 if (ieee80211_has_morefrags(hdr->frame_control)) {
469 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
470 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
474 * Check if more frames (!= fragments) are pending
476 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
477 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
480 * Beacons and probe responses require the tsf timestamp
481 * to be inserted into the frame.
483 if (ieee80211_is_beacon(hdr->frame_control) ||
484 ieee80211_is_probe_resp(hdr->frame_control))
485 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
487 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
488 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
489 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
492 * Determine rate modulation.
494 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
495 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
496 else if (txrate->flags & IEEE80211_TX_RC_MCS)
497 txdesc->rate_mode = RATE_MODE_HT_MIX;
498 else {
499 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
500 hwrate = rt2x00_get_rate(rate->hw_value);
501 if (hwrate->flags & DEV_RATE_OFDM)
502 txdesc->rate_mode = RATE_MODE_OFDM;
503 else
504 txdesc->rate_mode = RATE_MODE_CCK;
508 * Apply TX descriptor handling by components
510 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
511 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
513 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
514 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
515 sta, hwrate);
516 else
517 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
518 hwrate);
521 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
522 struct txentry_desc *txdesc)
524 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
527 * This should not happen, we already checked the entry
528 * was ours. When the hardware disagrees there has been
529 * a queue corruption!
531 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
532 rt2x00dev->ops->lib->get_entry_state(entry))) {
533 rt2x00_err(rt2x00dev,
534 "Corrupt queue %d, accessing entry which is not ours\n"
535 "Please file bug report to %s\n",
536 entry->queue->qid, DRV_PROJECT);
537 return -EINVAL;
541 * Add the requested extra tx headroom in front of the skb.
543 skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
544 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
547 * Call the driver's write_tx_data function, if it exists.
549 if (rt2x00dev->ops->lib->write_tx_data)
550 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
553 * Map the skb to DMA.
555 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags) &&
556 rt2x00queue_map_txskb(entry))
557 return -ENOMEM;
559 return 0;
562 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
563 struct txentry_desc *txdesc)
565 struct data_queue *queue = entry->queue;
567 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
570 * All processing on the frame has been completed, this means
571 * it is now ready to be dumped to userspace through debugfs.
573 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
576 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
577 struct txentry_desc *txdesc)
580 * Check if we need to kick the queue, there are however a few rules
581 * 1) Don't kick unless this is the last in frame in a burst.
582 * When the burst flag is set, this frame is always followed
583 * by another frame which in some way are related to eachother.
584 * This is true for fragments, RTS or CTS-to-self frames.
585 * 2) Rule 1 can be broken when the available entries
586 * in the queue are less then a certain threshold.
588 if (rt2x00queue_threshold(queue) ||
589 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
590 queue->rt2x00dev->ops->lib->kick_queue(queue);
593 static void rt2x00queue_bar_check(struct queue_entry *entry)
595 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
596 struct ieee80211_bar *bar = (void *) (entry->skb->data +
597 rt2x00dev->extra_tx_headroom);
598 struct rt2x00_bar_list_entry *bar_entry;
600 if (likely(!ieee80211_is_back_req(bar->frame_control)))
601 return;
603 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
606 * If the alloc fails we still send the BAR out but just don't track
607 * it in our bar list. And as a result we will report it to mac80211
608 * back as failed.
610 if (!bar_entry)
611 return;
613 bar_entry->entry = entry;
614 bar_entry->block_acked = 0;
617 * Copy the relevant parts of the 802.11 BAR into out check list
618 * such that we can use RCU for less-overhead in the RX path since
619 * sending BARs and processing the according BlockAck should be
620 * the exception.
622 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
623 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
624 bar_entry->control = bar->control;
625 bar_entry->start_seq_num = bar->start_seq_num;
628 * Insert BAR into our BAR check list.
630 spin_lock_bh(&rt2x00dev->bar_list_lock);
631 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
632 spin_unlock_bh(&rt2x00dev->bar_list_lock);
635 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
636 struct ieee80211_sta *sta, bool local)
638 struct ieee80211_tx_info *tx_info;
639 struct queue_entry *entry;
640 struct txentry_desc txdesc;
641 struct skb_frame_desc *skbdesc;
642 u8 rate_idx, rate_flags;
643 int ret = 0;
646 * Copy all TX descriptor information into txdesc,
647 * after that we are free to use the skb->cb array
648 * for our information.
650 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
653 * All information is retrieved from the skb->cb array,
654 * now we should claim ownership of the driver part of that
655 * array, preserving the bitrate index and flags.
657 tx_info = IEEE80211_SKB_CB(skb);
658 rate_idx = tx_info->control.rates[0].idx;
659 rate_flags = tx_info->control.rates[0].flags;
660 skbdesc = get_skb_frame_desc(skb);
661 memset(skbdesc, 0, sizeof(*skbdesc));
662 skbdesc->tx_rate_idx = rate_idx;
663 skbdesc->tx_rate_flags = rate_flags;
665 if (local)
666 skbdesc->flags |= SKBDESC_NOT_MAC80211;
669 * When hardware encryption is supported, and this frame
670 * is to be encrypted, we should strip the IV/EIV data from
671 * the frame so we can provide it to the driver separately.
673 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
674 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
675 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
676 rt2x00crypto_tx_copy_iv(skb, &txdesc);
677 else
678 rt2x00crypto_tx_remove_iv(skb, &txdesc);
682 * When DMA allocation is required we should guarantee to the
683 * driver that the DMA is aligned to a 4-byte boundary.
684 * However some drivers require L2 padding to pad the payload
685 * rather then the header. This could be a requirement for
686 * PCI and USB devices, while header alignment only is valid
687 * for PCI devices.
689 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
690 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
691 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
692 rt2x00queue_align_frame(skb);
695 * That function must be called with bh disabled.
697 spin_lock(&queue->tx_lock);
699 if (unlikely(rt2x00queue_full(queue))) {
700 rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
701 queue->qid);
702 ret = -ENOBUFS;
703 goto out;
706 entry = rt2x00queue_get_entry(queue, Q_INDEX);
708 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
709 &entry->flags))) {
710 rt2x00_err(queue->rt2x00dev,
711 "Arrived at non-free entry in the non-full queue %d\n"
712 "Please file bug report to %s\n",
713 queue->qid, DRV_PROJECT);
714 ret = -EINVAL;
715 goto out;
718 skbdesc->entry = entry;
719 entry->skb = skb;
722 * It could be possible that the queue was corrupted and this
723 * call failed. Since we always return NETDEV_TX_OK to mac80211,
724 * this frame will simply be dropped.
726 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
727 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
728 entry->skb = NULL;
729 ret = -EIO;
730 goto out;
734 * Put BlockAckReqs into our check list for driver BA processing.
736 rt2x00queue_bar_check(entry);
738 set_bit(ENTRY_DATA_PENDING, &entry->flags);
740 rt2x00queue_index_inc(entry, Q_INDEX);
741 rt2x00queue_write_tx_descriptor(entry, &txdesc);
742 rt2x00queue_kick_tx_queue(queue, &txdesc);
744 out:
745 spin_unlock(&queue->tx_lock);
746 return ret;
749 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
750 struct ieee80211_vif *vif)
752 struct rt2x00_intf *intf = vif_to_intf(vif);
754 if (unlikely(!intf->beacon))
755 return -ENOBUFS;
757 mutex_lock(&intf->beacon_skb_mutex);
760 * Clean up the beacon skb.
762 rt2x00queue_free_skb(intf->beacon);
765 * Clear beacon (single bssid devices don't need to clear the beacon
766 * since the beacon queue will get stopped anyway).
768 if (rt2x00dev->ops->lib->clear_beacon)
769 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
771 mutex_unlock(&intf->beacon_skb_mutex);
773 return 0;
776 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
777 struct ieee80211_vif *vif)
779 struct rt2x00_intf *intf = vif_to_intf(vif);
780 struct skb_frame_desc *skbdesc;
781 struct txentry_desc txdesc;
783 if (unlikely(!intf->beacon))
784 return -ENOBUFS;
787 * Clean up the beacon skb.
789 rt2x00queue_free_skb(intf->beacon);
791 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
792 if (!intf->beacon->skb)
793 return -ENOMEM;
796 * Copy all TX descriptor information into txdesc,
797 * after that we are free to use the skb->cb array
798 * for our information.
800 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
803 * Fill in skb descriptor
805 skbdesc = get_skb_frame_desc(intf->beacon->skb);
806 memset(skbdesc, 0, sizeof(*skbdesc));
807 skbdesc->entry = intf->beacon;
810 * Send beacon to hardware.
812 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
814 return 0;
818 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
819 struct ieee80211_vif *vif)
821 struct rt2x00_intf *intf = vif_to_intf(vif);
822 int ret;
824 mutex_lock(&intf->beacon_skb_mutex);
825 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
826 mutex_unlock(&intf->beacon_skb_mutex);
828 return ret;
831 bool rt2x00queue_for_each_entry(struct data_queue *queue,
832 enum queue_index start,
833 enum queue_index end,
834 void *data,
835 bool (*fn)(struct queue_entry *entry,
836 void *data))
838 unsigned long irqflags;
839 unsigned int index_start;
840 unsigned int index_end;
841 unsigned int i;
843 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
844 rt2x00_err(queue->rt2x00dev,
845 "Entry requested from invalid index range (%d - %d)\n",
846 start, end);
847 return true;
851 * Only protect the range we are going to loop over,
852 * if during our loop a extra entry is set to pending
853 * it should not be kicked during this run, since it
854 * is part of another TX operation.
856 spin_lock_irqsave(&queue->index_lock, irqflags);
857 index_start = queue->index[start];
858 index_end = queue->index[end];
859 spin_unlock_irqrestore(&queue->index_lock, irqflags);
862 * Start from the TX done pointer, this guarantees that we will
863 * send out all frames in the correct order.
865 if (index_start < index_end) {
866 for (i = index_start; i < index_end; i++) {
867 if (fn(&queue->entries[i], data))
868 return true;
870 } else {
871 for (i = index_start; i < queue->limit; i++) {
872 if (fn(&queue->entries[i], data))
873 return true;
876 for (i = 0; i < index_end; i++) {
877 if (fn(&queue->entries[i], data))
878 return true;
882 return false;
884 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
886 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
887 enum queue_index index)
889 struct queue_entry *entry;
890 unsigned long irqflags;
892 if (unlikely(index >= Q_INDEX_MAX)) {
893 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
894 index);
895 return NULL;
898 spin_lock_irqsave(&queue->index_lock, irqflags);
900 entry = &queue->entries[queue->index[index]];
902 spin_unlock_irqrestore(&queue->index_lock, irqflags);
904 return entry;
906 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
908 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
910 struct data_queue *queue = entry->queue;
911 unsigned long irqflags;
913 if (unlikely(index >= Q_INDEX_MAX)) {
914 rt2x00_err(queue->rt2x00dev,
915 "Index change on invalid index type (%d)\n", index);
916 return;
919 spin_lock_irqsave(&queue->index_lock, irqflags);
921 queue->index[index]++;
922 if (queue->index[index] >= queue->limit)
923 queue->index[index] = 0;
925 entry->last_action = jiffies;
927 if (index == Q_INDEX) {
928 queue->length++;
929 } else if (index == Q_INDEX_DONE) {
930 queue->length--;
931 queue->count++;
934 spin_unlock_irqrestore(&queue->index_lock, irqflags);
937 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
939 switch (queue->qid) {
940 case QID_AC_VO:
941 case QID_AC_VI:
942 case QID_AC_BE:
943 case QID_AC_BK:
945 * For TX queues, we have to disable the queue
946 * inside mac80211.
948 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
949 break;
950 default:
951 break;
954 void rt2x00queue_pause_queue(struct data_queue *queue)
956 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
957 !test_bit(QUEUE_STARTED, &queue->flags) ||
958 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
959 return;
961 rt2x00queue_pause_queue_nocheck(queue);
963 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
965 void rt2x00queue_unpause_queue(struct data_queue *queue)
967 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
968 !test_bit(QUEUE_STARTED, &queue->flags) ||
969 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
970 return;
972 switch (queue->qid) {
973 case QID_AC_VO:
974 case QID_AC_VI:
975 case QID_AC_BE:
976 case QID_AC_BK:
978 * For TX queues, we have to enable the queue
979 * inside mac80211.
981 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
982 break;
983 case QID_RX:
985 * For RX we need to kick the queue now in order to
986 * receive frames.
988 queue->rt2x00dev->ops->lib->kick_queue(queue);
989 default:
990 break;
993 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
995 void rt2x00queue_start_queue(struct data_queue *queue)
997 mutex_lock(&queue->status_lock);
999 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
1000 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
1001 mutex_unlock(&queue->status_lock);
1002 return;
1005 set_bit(QUEUE_PAUSED, &queue->flags);
1007 queue->rt2x00dev->ops->lib->start_queue(queue);
1009 rt2x00queue_unpause_queue(queue);
1011 mutex_unlock(&queue->status_lock);
1013 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
1015 void rt2x00queue_stop_queue(struct data_queue *queue)
1017 mutex_lock(&queue->status_lock);
1019 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
1020 mutex_unlock(&queue->status_lock);
1021 return;
1024 rt2x00queue_pause_queue_nocheck(queue);
1026 queue->rt2x00dev->ops->lib->stop_queue(queue);
1028 mutex_unlock(&queue->status_lock);
1030 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
1032 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
1034 bool tx_queue =
1035 (queue->qid == QID_AC_VO) ||
1036 (queue->qid == QID_AC_VI) ||
1037 (queue->qid == QID_AC_BE) ||
1038 (queue->qid == QID_AC_BK);
1042 * If we are not supposed to drop any pending
1043 * frames, this means we must force a start (=kick)
1044 * to the queue to make sure the hardware will
1045 * start transmitting.
1047 if (!drop && tx_queue)
1048 queue->rt2x00dev->ops->lib->kick_queue(queue);
1051 * Check if driver supports flushing, if that is the case we can
1052 * defer the flushing to the driver. Otherwise we must use the
1053 * alternative which just waits for the queue to become empty.
1055 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1056 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1059 * The queue flush has failed...
1061 if (unlikely(!rt2x00queue_empty(queue)))
1062 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1063 queue->qid);
1065 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1067 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1069 struct data_queue *queue;
1072 * rt2x00queue_start_queue will call ieee80211_wake_queue
1073 * for each queue after is has been properly initialized.
1075 tx_queue_for_each(rt2x00dev, queue)
1076 rt2x00queue_start_queue(queue);
1078 rt2x00queue_start_queue(rt2x00dev->rx);
1080 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1082 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1084 struct data_queue *queue;
1087 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1088 * as well, but we are completely shutting doing everything
1089 * now, so it is much safer to stop all TX queues at once,
1090 * and use rt2x00queue_stop_queue for cleaning up.
1092 ieee80211_stop_queues(rt2x00dev->hw);
1094 tx_queue_for_each(rt2x00dev, queue)
1095 rt2x00queue_stop_queue(queue);
1097 rt2x00queue_stop_queue(rt2x00dev->rx);
1099 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1101 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1103 struct data_queue *queue;
1105 tx_queue_for_each(rt2x00dev, queue)
1106 rt2x00queue_flush_queue(queue, drop);
1108 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1110 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1112 static void rt2x00queue_reset(struct data_queue *queue)
1114 unsigned long irqflags;
1115 unsigned int i;
1117 spin_lock_irqsave(&queue->index_lock, irqflags);
1119 queue->count = 0;
1120 queue->length = 0;
1122 for (i = 0; i < Q_INDEX_MAX; i++)
1123 queue->index[i] = 0;
1125 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1128 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1130 struct data_queue *queue;
1131 unsigned int i;
1133 queue_for_each(rt2x00dev, queue) {
1134 rt2x00queue_reset(queue);
1136 for (i = 0; i < queue->limit; i++)
1137 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1141 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1143 struct queue_entry *entries;
1144 unsigned int entry_size;
1145 unsigned int i;
1147 rt2x00queue_reset(queue);
1150 * Allocate all queue entries.
1152 entry_size = sizeof(*entries) + queue->priv_size;
1153 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1154 if (!entries)
1155 return -ENOMEM;
1157 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1158 (((char *)(__base)) + ((__limit) * (__esize)) + \
1159 ((__index) * (__psize)))
1161 for (i = 0; i < queue->limit; i++) {
1162 entries[i].flags = 0;
1163 entries[i].queue = queue;
1164 entries[i].skb = NULL;
1165 entries[i].entry_idx = i;
1166 entries[i].priv_data =
1167 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1168 sizeof(*entries), queue->priv_size);
1171 #undef QUEUE_ENTRY_PRIV_OFFSET
1173 queue->entries = entries;
1175 return 0;
1178 static void rt2x00queue_free_skbs(struct data_queue *queue)
1180 unsigned int i;
1182 if (!queue->entries)
1183 return;
1185 for (i = 0; i < queue->limit; i++) {
1186 rt2x00queue_free_skb(&queue->entries[i]);
1190 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1192 unsigned int i;
1193 struct sk_buff *skb;
1195 for (i = 0; i < queue->limit; i++) {
1196 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1197 if (!skb)
1198 return -ENOMEM;
1199 queue->entries[i].skb = skb;
1202 return 0;
1205 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1207 struct data_queue *queue;
1208 int status;
1210 status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1211 if (status)
1212 goto exit;
1214 tx_queue_for_each(rt2x00dev, queue) {
1215 status = rt2x00queue_alloc_entries(queue);
1216 if (status)
1217 goto exit;
1220 status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1221 if (status)
1222 goto exit;
1224 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1225 status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1226 if (status)
1227 goto exit;
1230 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1231 if (status)
1232 goto exit;
1234 return 0;
1236 exit:
1237 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1239 rt2x00queue_uninitialize(rt2x00dev);
1241 return status;
1244 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1246 struct data_queue *queue;
1248 rt2x00queue_free_skbs(rt2x00dev->rx);
1250 queue_for_each(rt2x00dev, queue) {
1251 kfree(queue->entries);
1252 queue->entries = NULL;
1256 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1257 struct data_queue *queue, enum data_queue_qid qid)
1259 mutex_init(&queue->status_lock);
1260 spin_lock_init(&queue->tx_lock);
1261 spin_lock_init(&queue->index_lock);
1263 queue->rt2x00dev = rt2x00dev;
1264 queue->qid = qid;
1265 queue->txop = 0;
1266 queue->aifs = 2;
1267 queue->cw_min = 5;
1268 queue->cw_max = 10;
1270 rt2x00dev->ops->queue_init(queue);
1272 queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1275 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1277 struct data_queue *queue;
1278 enum data_queue_qid qid;
1279 unsigned int req_atim =
1280 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1283 * We need the following queues:
1284 * RX: 1
1285 * TX: ops->tx_queues
1286 * Beacon: 1
1287 * Atim: 1 (if required)
1289 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1291 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1292 if (!queue) {
1293 rt2x00_err(rt2x00dev, "Queue allocation failed\n");
1294 return -ENOMEM;
1298 * Initialize pointers
1300 rt2x00dev->rx = queue;
1301 rt2x00dev->tx = &queue[1];
1302 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1303 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1306 * Initialize queue parameters.
1307 * RX: qid = QID_RX
1308 * TX: qid = QID_AC_VO + index
1309 * TX: cw_min: 2^5 = 32.
1310 * TX: cw_max: 2^10 = 1024.
1311 * BCN: qid = QID_BEACON
1312 * ATIM: qid = QID_ATIM
1314 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1316 qid = QID_AC_VO;
1317 tx_queue_for_each(rt2x00dev, queue)
1318 rt2x00queue_init(rt2x00dev, queue, qid++);
1320 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1321 if (req_atim)
1322 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1324 return 0;
1327 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1329 kfree(rt2x00dev->rx);
1330 rt2x00dev->rx = NULL;
1331 rt2x00dev->tx = NULL;
1332 rt2x00dev->bcn = NULL;