media: pci: fix several typos
[linux/fpc-iii.git] / mm / huge_memory.c
blobfaf357eaf0cee5aa6ea0d9c562a24bde2d1bbd15
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 if (vma_is_anonymous(vma))
68 return __transparent_hugepage_enabled(vma);
69 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
70 return __transparent_hugepage_enabled(vma);
72 return false;
75 static struct page *get_huge_zero_page(void)
77 struct page *zero_page;
78 retry:
79 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
80 return READ_ONCE(huge_zero_page);
82 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
83 HPAGE_PMD_ORDER);
84 if (!zero_page) {
85 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
86 return NULL;
88 count_vm_event(THP_ZERO_PAGE_ALLOC);
89 preempt_disable();
90 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
91 preempt_enable();
92 __free_pages(zero_page, compound_order(zero_page));
93 goto retry;
96 /* We take additional reference here. It will be put back by shrinker */
97 atomic_set(&huge_zero_refcount, 2);
98 preempt_enable();
99 return READ_ONCE(huge_zero_page);
102 static void put_huge_zero_page(void)
105 * Counter should never go to zero here. Only shrinker can put
106 * last reference.
108 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
111 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
114 return READ_ONCE(huge_zero_page);
116 if (!get_huge_zero_page())
117 return NULL;
119 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 put_huge_zero_page();
122 return READ_ONCE(huge_zero_page);
125 void mm_put_huge_zero_page(struct mm_struct *mm)
127 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 put_huge_zero_page();
131 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
132 struct shrink_control *sc)
134 /* we can free zero page only if last reference remains */
135 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
138 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
139 struct shrink_control *sc)
141 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
142 struct page *zero_page = xchg(&huge_zero_page, NULL);
143 BUG_ON(zero_page == NULL);
144 __free_pages(zero_page, compound_order(zero_page));
145 return HPAGE_PMD_NR;
148 return 0;
151 static struct shrinker huge_zero_page_shrinker = {
152 .count_objects = shrink_huge_zero_page_count,
153 .scan_objects = shrink_huge_zero_page_scan,
154 .seeks = DEFAULT_SEEKS,
157 #ifdef CONFIG_SYSFS
158 static ssize_t enabled_show(struct kobject *kobj,
159 struct kobj_attribute *attr, char *buf)
161 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
162 return sprintf(buf, "[always] madvise never\n");
163 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
164 return sprintf(buf, "always [madvise] never\n");
165 else
166 return sprintf(buf, "always madvise [never]\n");
169 static ssize_t enabled_store(struct kobject *kobj,
170 struct kobj_attribute *attr,
171 const char *buf, size_t count)
173 ssize_t ret = count;
175 if (!memcmp("always", buf,
176 min(sizeof("always")-1, count))) {
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
179 } else if (!memcmp("madvise", buf,
180 min(sizeof("madvise")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("never", buf,
184 min(sizeof("never")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else
188 ret = -EINVAL;
190 if (ret > 0) {
191 int err = start_stop_khugepaged();
192 if (err)
193 ret = err;
195 return ret;
197 static struct kobj_attribute enabled_attr =
198 __ATTR(enabled, 0644, enabled_show, enabled_store);
200 ssize_t single_hugepage_flag_show(struct kobject *kobj,
201 struct kobj_attribute *attr, char *buf,
202 enum transparent_hugepage_flag flag)
204 return sprintf(buf, "%d\n",
205 !!test_bit(flag, &transparent_hugepage_flags));
208 ssize_t single_hugepage_flag_store(struct kobject *kobj,
209 struct kobj_attribute *attr,
210 const char *buf, size_t count,
211 enum transparent_hugepage_flag flag)
213 unsigned long value;
214 int ret;
216 ret = kstrtoul(buf, 10, &value);
217 if (ret < 0)
218 return ret;
219 if (value > 1)
220 return -EINVAL;
222 if (value)
223 set_bit(flag, &transparent_hugepage_flags);
224 else
225 clear_bit(flag, &transparent_hugepage_flags);
227 return count;
230 static ssize_t defrag_show(struct kobject *kobj,
231 struct kobj_attribute *attr, char *buf)
233 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
234 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
241 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 static ssize_t defrag_store(struct kobject *kobj,
245 struct kobj_attribute *attr,
246 const char *buf, size_t count)
248 if (!memcmp("always", buf,
249 min(sizeof("always")-1, count))) {
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
253 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 } else if (!memcmp("defer+madvise", buf,
255 min(sizeof("defer+madvise")-1, count))) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (!memcmp("defer", buf,
261 min(sizeof("defer")-1, count))) {
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 } else
279 return -EINVAL;
281 return count;
283 static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
286 static ssize_t use_zero_page_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
289 return single_hugepage_flag_show(kobj, attr, buf,
290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 static ssize_t use_zero_page_store(struct kobject *kobj,
293 struct kobj_attribute *attr, const char *buf, size_t count)
295 return single_hugepage_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298 static struct kobj_attribute use_zero_page_attr =
299 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
304 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306 static struct kobj_attribute hpage_pmd_size_attr =
307 __ATTR_RO(hpage_pmd_size);
309 #ifdef CONFIG_DEBUG_VM
310 static ssize_t debug_cow_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
313 return single_hugepage_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316 static ssize_t debug_cow_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
320 return single_hugepage_flag_store(kobj, attr, buf, count,
321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323 static struct kobj_attribute debug_cow_attr =
324 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325 #endif /* CONFIG_DEBUG_VM */
327 static struct attribute *hugepage_attr[] = {
328 &enabled_attr.attr,
329 &defrag_attr.attr,
330 &use_zero_page_attr.attr,
331 &hpage_pmd_size_attr.attr,
332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 &shmem_enabled_attr.attr,
334 #endif
335 #ifdef CONFIG_DEBUG_VM
336 &debug_cow_attr.attr,
337 #endif
338 NULL,
341 static const struct attribute_group hugepage_attr_group = {
342 .attrs = hugepage_attr,
345 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 int err;
349 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 if (unlikely(!*hugepage_kobj)) {
351 pr_err("failed to create transparent hugepage kobject\n");
352 return -ENOMEM;
355 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
356 if (err) {
357 pr_err("failed to register transparent hugepage group\n");
358 goto delete_obj;
361 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
362 if (err) {
363 pr_err("failed to register transparent hugepage group\n");
364 goto remove_hp_group;
367 return 0;
369 remove_hp_group:
370 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371 delete_obj:
372 kobject_put(*hugepage_kobj);
373 return err;
376 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 kobject_put(hugepage_kobj);
382 #else
383 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 return 0;
388 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
391 #endif /* CONFIG_SYSFS */
393 static int __init hugepage_init(void)
395 int err;
396 struct kobject *hugepage_kobj;
398 if (!has_transparent_hugepage()) {
399 transparent_hugepage_flags = 0;
400 return -EINVAL;
404 * hugepages can't be allocated by the buddy allocator
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 * we use page->mapping and page->index in second tail page
409 * as list_head: assuming THP order >= 2
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413 err = hugepage_init_sysfs(&hugepage_kobj);
414 if (err)
415 goto err_sysfs;
417 err = khugepaged_init();
418 if (err)
419 goto err_slab;
421 err = register_shrinker(&huge_zero_page_shrinker);
422 if (err)
423 goto err_hzp_shrinker;
424 err = register_shrinker(&deferred_split_shrinker);
425 if (err)
426 goto err_split_shrinker;
429 * By default disable transparent hugepages on smaller systems,
430 * where the extra memory used could hurt more than TLB overhead
431 * is likely to save. The admin can still enable it through /sys.
433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
434 transparent_hugepage_flags = 0;
435 return 0;
438 err = start_stop_khugepaged();
439 if (err)
440 goto err_khugepaged;
442 return 0;
443 err_khugepaged:
444 unregister_shrinker(&deferred_split_shrinker);
445 err_split_shrinker:
446 unregister_shrinker(&huge_zero_page_shrinker);
447 err_hzp_shrinker:
448 khugepaged_destroy();
449 err_slab:
450 hugepage_exit_sysfs(hugepage_kobj);
451 err_sysfs:
452 return err;
454 subsys_initcall(hugepage_init);
456 static int __init setup_transparent_hugepage(char *str)
458 int ret = 0;
459 if (!str)
460 goto out;
461 if (!strcmp(str, "always")) {
462 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 } else if (!strcmp(str, "madvise")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 } else if (!strcmp(str, "never")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 &transparent_hugepage_flags);
476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 &transparent_hugepage_flags);
478 ret = 1;
480 out:
481 if (!ret)
482 pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 return ret;
485 __setup("transparent_hugepage=", setup_transparent_hugepage);
487 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489 if (likely(vma->vm_flags & VM_WRITE))
490 pmd = pmd_mkwrite(pmd);
491 return pmd;
494 static inline struct list_head *page_deferred_list(struct page *page)
496 /* ->lru in the tail pages is occupied by compound_head. */
497 return &page[2].deferred_list;
500 void prep_transhuge_page(struct page *page)
503 * we use page->mapping and page->indexlru in second tail page
504 * as list_head: assuming THP order >= 2
507 INIT_LIST_HEAD(page_deferred_list(page));
508 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
511 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
512 loff_t off, unsigned long flags, unsigned long size)
514 unsigned long addr;
515 loff_t off_end = off + len;
516 loff_t off_align = round_up(off, size);
517 unsigned long len_pad;
519 if (off_end <= off_align || (off_end - off_align) < size)
520 return 0;
522 len_pad = len + size;
523 if (len_pad < len || (off + len_pad) < off)
524 return 0;
526 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
527 off >> PAGE_SHIFT, flags);
528 if (IS_ERR_VALUE(addr))
529 return 0;
531 addr += (off - addr) & (size - 1);
532 return addr;
535 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
536 unsigned long len, unsigned long pgoff, unsigned long flags)
538 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540 if (addr)
541 goto out;
542 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
543 goto out;
545 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
546 if (addr)
547 return addr;
549 out:
550 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
555 struct page *page, gfp_t gfp)
557 struct vm_area_struct *vma = vmf->vma;
558 struct mem_cgroup *memcg;
559 pgtable_t pgtable;
560 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
561 vm_fault_t ret = 0;
563 VM_BUG_ON_PAGE(!PageCompound(page), page);
565 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
566 put_page(page);
567 count_vm_event(THP_FAULT_FALLBACK);
568 return VM_FAULT_FALLBACK;
571 pgtable = pte_alloc_one(vma->vm_mm);
572 if (unlikely(!pgtable)) {
573 ret = VM_FAULT_OOM;
574 goto release;
577 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 * The memory barrier inside __SetPageUptodate makes sure that
580 * clear_huge_page writes become visible before the set_pmd_at()
581 * write.
583 __SetPageUptodate(page);
585 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
586 if (unlikely(!pmd_none(*vmf->pmd))) {
587 goto unlock_release;
588 } else {
589 pmd_t entry;
591 ret = check_stable_address_space(vma->vm_mm);
592 if (ret)
593 goto unlock_release;
595 /* Deliver the page fault to userland */
596 if (userfaultfd_missing(vma)) {
597 vm_fault_t ret2;
599 spin_unlock(vmf->ptl);
600 mem_cgroup_cancel_charge(page, memcg, true);
601 put_page(page);
602 pte_free(vma->vm_mm, pgtable);
603 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
604 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
605 return ret2;
608 entry = mk_huge_pmd(page, vma->vm_page_prot);
609 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
610 page_add_new_anon_rmap(page, vma, haddr, true);
611 mem_cgroup_commit_charge(page, memcg, false, true);
612 lru_cache_add_active_or_unevictable(page, vma);
613 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
614 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
615 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
616 mm_inc_nr_ptes(vma->vm_mm);
617 spin_unlock(vmf->ptl);
618 count_vm_event(THP_FAULT_ALLOC);
621 return 0;
622 unlock_release:
623 spin_unlock(vmf->ptl);
624 release:
625 if (pgtable)
626 pte_free(vma->vm_mm, pgtable);
627 mem_cgroup_cancel_charge(page, memcg, true);
628 put_page(page);
629 return ret;
634 * always: directly stall for all thp allocations
635 * defer: wake kswapd and fail if not immediately available
636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637 * fail if not immediately available
638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
639 * available
640 * never: never stall for any thp allocation
642 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
644 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
646 /* Always do synchronous compaction */
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
648 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
650 /* Kick kcompactd and fail quickly */
651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
652 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
654 /* Synchronous compaction if madvised, otherwise kick kcompactd */
655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
656 return GFP_TRANSHUGE_LIGHT |
657 (vma_madvised ? __GFP_DIRECT_RECLAIM :
658 __GFP_KSWAPD_RECLAIM);
660 /* Only do synchronous compaction if madvised */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT |
663 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
665 return GFP_TRANSHUGE_LIGHT;
668 /* Caller must hold page table lock. */
669 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
671 struct page *zero_page)
673 pmd_t entry;
674 if (!pmd_none(*pmd))
675 return false;
676 entry = mk_pmd(zero_page, vma->vm_page_prot);
677 entry = pmd_mkhuge(entry);
678 if (pgtable)
679 pgtable_trans_huge_deposit(mm, pmd, pgtable);
680 set_pmd_at(mm, haddr, pmd, entry);
681 mm_inc_nr_ptes(mm);
682 return true;
685 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
687 struct vm_area_struct *vma = vmf->vma;
688 gfp_t gfp;
689 struct page *page;
690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
693 return VM_FAULT_FALLBACK;
694 if (unlikely(anon_vma_prepare(vma)))
695 return VM_FAULT_OOM;
696 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
697 return VM_FAULT_OOM;
698 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
699 !mm_forbids_zeropage(vma->vm_mm) &&
700 transparent_hugepage_use_zero_page()) {
701 pgtable_t pgtable;
702 struct page *zero_page;
703 bool set;
704 vm_fault_t ret;
705 pgtable = pte_alloc_one(vma->vm_mm);
706 if (unlikely(!pgtable))
707 return VM_FAULT_OOM;
708 zero_page = mm_get_huge_zero_page(vma->vm_mm);
709 if (unlikely(!zero_page)) {
710 pte_free(vma->vm_mm, pgtable);
711 count_vm_event(THP_FAULT_FALLBACK);
712 return VM_FAULT_FALLBACK;
714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
715 ret = 0;
716 set = false;
717 if (pmd_none(*vmf->pmd)) {
718 ret = check_stable_address_space(vma->vm_mm);
719 if (ret) {
720 spin_unlock(vmf->ptl);
721 } else if (userfaultfd_missing(vma)) {
722 spin_unlock(vmf->ptl);
723 ret = handle_userfault(vmf, VM_UFFD_MISSING);
724 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 } else {
726 set_huge_zero_page(pgtable, vma->vm_mm, vma,
727 haddr, vmf->pmd, zero_page);
728 spin_unlock(vmf->ptl);
729 set = true;
731 } else
732 spin_unlock(vmf->ptl);
733 if (!set)
734 pte_free(vma->vm_mm, pgtable);
735 return ret;
737 gfp = alloc_hugepage_direct_gfpmask(vma);
738 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
739 if (unlikely(!page)) {
740 count_vm_event(THP_FAULT_FALLBACK);
741 return VM_FAULT_FALLBACK;
743 prep_transhuge_page(page);
744 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
747 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 pgtable_t pgtable)
751 struct mm_struct *mm = vma->vm_mm;
752 pmd_t entry;
753 spinlock_t *ptl;
755 ptl = pmd_lock(mm, pmd);
756 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
757 if (pfn_t_devmap(pfn))
758 entry = pmd_mkdevmap(entry);
759 if (write) {
760 entry = pmd_mkyoung(pmd_mkdirty(entry));
761 entry = maybe_pmd_mkwrite(entry, vma);
764 if (pgtable) {
765 pgtable_trans_huge_deposit(mm, pmd, pgtable);
766 mm_inc_nr_ptes(mm);
769 set_pmd_at(mm, addr, pmd, entry);
770 update_mmu_cache_pmd(vma, addr, pmd);
771 spin_unlock(ptl);
774 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
775 pmd_t *pmd, pfn_t pfn, bool write)
777 pgprot_t pgprot = vma->vm_page_prot;
778 pgtable_t pgtable = NULL;
780 * If we had pmd_special, we could avoid all these restrictions,
781 * but we need to be consistent with PTEs and architectures that
782 * can't support a 'special' bit.
784 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
785 !pfn_t_devmap(pfn));
786 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
787 (VM_PFNMAP|VM_MIXEDMAP));
788 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
790 if (addr < vma->vm_start || addr >= vma->vm_end)
791 return VM_FAULT_SIGBUS;
793 if (arch_needs_pgtable_deposit()) {
794 pgtable = pte_alloc_one(vma->vm_mm);
795 if (!pgtable)
796 return VM_FAULT_OOM;
799 track_pfn_insert(vma, &pgprot, pfn);
801 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
802 return VM_FAULT_NOPAGE;
804 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
806 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
807 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
809 if (likely(vma->vm_flags & VM_WRITE))
810 pud = pud_mkwrite(pud);
811 return pud;
814 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
815 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
817 struct mm_struct *mm = vma->vm_mm;
818 pud_t entry;
819 spinlock_t *ptl;
821 ptl = pud_lock(mm, pud);
822 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
823 if (pfn_t_devmap(pfn))
824 entry = pud_mkdevmap(entry);
825 if (write) {
826 entry = pud_mkyoung(pud_mkdirty(entry));
827 entry = maybe_pud_mkwrite(entry, vma);
829 set_pud_at(mm, addr, pud, entry);
830 update_mmu_cache_pud(vma, addr, pud);
831 spin_unlock(ptl);
834 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
835 pud_t *pud, pfn_t pfn, bool write)
837 pgprot_t pgprot = vma->vm_page_prot;
839 * If we had pud_special, we could avoid all these restrictions,
840 * but we need to be consistent with PTEs and architectures that
841 * can't support a 'special' bit.
843 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 !pfn_t_devmap(pfn));
845 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 (VM_PFNMAP|VM_MIXEDMAP));
847 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
849 if (addr < vma->vm_start || addr >= vma->vm_end)
850 return VM_FAULT_SIGBUS;
852 track_pfn_insert(vma, &pgprot, pfn);
854 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
855 return VM_FAULT_NOPAGE;
857 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
858 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
860 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
861 pmd_t *pmd, int flags)
863 pmd_t _pmd;
865 _pmd = pmd_mkyoung(*pmd);
866 if (flags & FOLL_WRITE)
867 _pmd = pmd_mkdirty(_pmd);
868 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
869 pmd, _pmd, flags & FOLL_WRITE))
870 update_mmu_cache_pmd(vma, addr, pmd);
873 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
874 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
876 unsigned long pfn = pmd_pfn(*pmd);
877 struct mm_struct *mm = vma->vm_mm;
878 struct page *page;
880 assert_spin_locked(pmd_lockptr(mm, pmd));
883 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 * not be in this function with `flags & FOLL_COW` set.
886 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
888 if (flags & FOLL_WRITE && !pmd_write(*pmd))
889 return NULL;
891 if (pmd_present(*pmd) && pmd_devmap(*pmd))
892 /* pass */;
893 else
894 return NULL;
896 if (flags & FOLL_TOUCH)
897 touch_pmd(vma, addr, pmd, flags);
900 * device mapped pages can only be returned if the
901 * caller will manage the page reference count.
903 if (!(flags & FOLL_GET))
904 return ERR_PTR(-EEXIST);
906 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
907 *pgmap = get_dev_pagemap(pfn, *pgmap);
908 if (!*pgmap)
909 return ERR_PTR(-EFAULT);
910 page = pfn_to_page(pfn);
911 get_page(page);
913 return page;
916 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
918 struct vm_area_struct *vma)
920 spinlock_t *dst_ptl, *src_ptl;
921 struct page *src_page;
922 pmd_t pmd;
923 pgtable_t pgtable = NULL;
924 int ret = -ENOMEM;
926 /* Skip if can be re-fill on fault */
927 if (!vma_is_anonymous(vma))
928 return 0;
930 pgtable = pte_alloc_one(dst_mm);
931 if (unlikely(!pgtable))
932 goto out;
934 dst_ptl = pmd_lock(dst_mm, dst_pmd);
935 src_ptl = pmd_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 ret = -EAGAIN;
939 pmd = *src_pmd;
941 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 if (unlikely(is_swap_pmd(pmd))) {
943 swp_entry_t entry = pmd_to_swp_entry(pmd);
945 VM_BUG_ON(!is_pmd_migration_entry(pmd));
946 if (is_write_migration_entry(entry)) {
947 make_migration_entry_read(&entry);
948 pmd = swp_entry_to_pmd(entry);
949 if (pmd_swp_soft_dirty(*src_pmd))
950 pmd = pmd_swp_mksoft_dirty(pmd);
951 set_pmd_at(src_mm, addr, src_pmd, pmd);
953 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
954 mm_inc_nr_ptes(dst_mm);
955 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
956 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
957 ret = 0;
958 goto out_unlock;
960 #endif
962 if (unlikely(!pmd_trans_huge(pmd))) {
963 pte_free(dst_mm, pgtable);
964 goto out_unlock;
967 * When page table lock is held, the huge zero pmd should not be
968 * under splitting since we don't split the page itself, only pmd to
969 * a page table.
971 if (is_huge_zero_pmd(pmd)) {
972 struct page *zero_page;
974 * get_huge_zero_page() will never allocate a new page here,
975 * since we already have a zero page to copy. It just takes a
976 * reference.
978 zero_page = mm_get_huge_zero_page(dst_mm);
979 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
980 zero_page);
981 ret = 0;
982 goto out_unlock;
985 src_page = pmd_page(pmd);
986 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
987 get_page(src_page);
988 page_dup_rmap(src_page, true);
989 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
990 mm_inc_nr_ptes(dst_mm);
991 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
993 pmdp_set_wrprotect(src_mm, addr, src_pmd);
994 pmd = pmd_mkold(pmd_wrprotect(pmd));
995 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
997 ret = 0;
998 out_unlock:
999 spin_unlock(src_ptl);
1000 spin_unlock(dst_ptl);
1001 out:
1002 return ret;
1005 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1007 pud_t *pud, int flags)
1009 pud_t _pud;
1011 _pud = pud_mkyoung(*pud);
1012 if (flags & FOLL_WRITE)
1013 _pud = pud_mkdirty(_pud);
1014 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1015 pud, _pud, flags & FOLL_WRITE))
1016 update_mmu_cache_pud(vma, addr, pud);
1019 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1020 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1022 unsigned long pfn = pud_pfn(*pud);
1023 struct mm_struct *mm = vma->vm_mm;
1024 struct page *page;
1026 assert_spin_locked(pud_lockptr(mm, pud));
1028 if (flags & FOLL_WRITE && !pud_write(*pud))
1029 return NULL;
1031 if (pud_present(*pud) && pud_devmap(*pud))
1032 /* pass */;
1033 else
1034 return NULL;
1036 if (flags & FOLL_TOUCH)
1037 touch_pud(vma, addr, pud, flags);
1040 * device mapped pages can only be returned if the
1041 * caller will manage the page reference count.
1043 if (!(flags & FOLL_GET))
1044 return ERR_PTR(-EEXIST);
1046 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1047 *pgmap = get_dev_pagemap(pfn, *pgmap);
1048 if (!*pgmap)
1049 return ERR_PTR(-EFAULT);
1050 page = pfn_to_page(pfn);
1051 get_page(page);
1053 return page;
1056 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 struct vm_area_struct *vma)
1060 spinlock_t *dst_ptl, *src_ptl;
1061 pud_t pud;
1062 int ret;
1064 dst_ptl = pud_lock(dst_mm, dst_pud);
1065 src_ptl = pud_lockptr(src_mm, src_pud);
1066 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1068 ret = -EAGAIN;
1069 pud = *src_pud;
1070 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 goto out_unlock;
1074 * When page table lock is held, the huge zero pud should not be
1075 * under splitting since we don't split the page itself, only pud to
1076 * a page table.
1078 if (is_huge_zero_pud(pud)) {
1079 /* No huge zero pud yet */
1082 pudp_set_wrprotect(src_mm, addr, src_pud);
1083 pud = pud_mkold(pud_wrprotect(pud));
1084 set_pud_at(dst_mm, addr, dst_pud, pud);
1086 ret = 0;
1087 out_unlock:
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 return ret;
1093 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1095 pud_t entry;
1096 unsigned long haddr;
1097 bool write = vmf->flags & FAULT_FLAG_WRITE;
1099 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 goto unlock;
1103 entry = pud_mkyoung(orig_pud);
1104 if (write)
1105 entry = pud_mkdirty(entry);
1106 haddr = vmf->address & HPAGE_PUD_MASK;
1107 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1110 unlock:
1111 spin_unlock(vmf->ptl);
1113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1115 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1117 pmd_t entry;
1118 unsigned long haddr;
1119 bool write = vmf->flags & FAULT_FLAG_WRITE;
1121 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1123 goto unlock;
1125 entry = pmd_mkyoung(orig_pmd);
1126 if (write)
1127 entry = pmd_mkdirty(entry);
1128 haddr = vmf->address & HPAGE_PMD_MASK;
1129 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1130 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1132 unlock:
1133 spin_unlock(vmf->ptl);
1136 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1137 pmd_t orig_pmd, struct page *page)
1139 struct vm_area_struct *vma = vmf->vma;
1140 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1141 struct mem_cgroup *memcg;
1142 pgtable_t pgtable;
1143 pmd_t _pmd;
1144 int i;
1145 vm_fault_t ret = 0;
1146 struct page **pages;
1147 struct mmu_notifier_range range;
1149 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1150 GFP_KERNEL);
1151 if (unlikely(!pages)) {
1152 ret |= VM_FAULT_OOM;
1153 goto out;
1156 for (i = 0; i < HPAGE_PMD_NR; i++) {
1157 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1158 vmf->address, page_to_nid(page));
1159 if (unlikely(!pages[i] ||
1160 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1161 GFP_KERNEL, &memcg, false))) {
1162 if (pages[i])
1163 put_page(pages[i]);
1164 while (--i >= 0) {
1165 memcg = (void *)page_private(pages[i]);
1166 set_page_private(pages[i], 0);
1167 mem_cgroup_cancel_charge(pages[i], memcg,
1168 false);
1169 put_page(pages[i]);
1171 kfree(pages);
1172 ret |= VM_FAULT_OOM;
1173 goto out;
1175 set_page_private(pages[i], (unsigned long)memcg);
1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 copy_user_highpage(pages[i], page + i,
1180 haddr + PAGE_SIZE * i, vma);
1181 __SetPageUptodate(pages[i]);
1182 cond_resched();
1185 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1186 haddr + HPAGE_PMD_SIZE);
1187 mmu_notifier_invalidate_range_start(&range);
1189 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1190 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1191 goto out_free_pages;
1192 VM_BUG_ON_PAGE(!PageHead(page), page);
1195 * Leave pmd empty until pte is filled note we must notify here as
1196 * concurrent CPU thread might write to new page before the call to
1197 * mmu_notifier_invalidate_range_end() happens which can lead to a
1198 * device seeing memory write in different order than CPU.
1200 * See Documentation/vm/mmu_notifier.rst
1202 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1204 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1205 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1207 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1208 pte_t entry;
1209 entry = mk_pte(pages[i], vma->vm_page_prot);
1210 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1211 memcg = (void *)page_private(pages[i]);
1212 set_page_private(pages[i], 0);
1213 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1214 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1215 lru_cache_add_active_or_unevictable(pages[i], vma);
1216 vmf->pte = pte_offset_map(&_pmd, haddr);
1217 VM_BUG_ON(!pte_none(*vmf->pte));
1218 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1219 pte_unmap(vmf->pte);
1221 kfree(pages);
1223 smp_wmb(); /* make pte visible before pmd */
1224 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1225 page_remove_rmap(page, true);
1226 spin_unlock(vmf->ptl);
1229 * No need to double call mmu_notifier->invalidate_range() callback as
1230 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 mmu_notifier_invalidate_range_only_end(&range);
1234 ret |= VM_FAULT_WRITE;
1235 put_page(page);
1237 out:
1238 return ret;
1240 out_free_pages:
1241 spin_unlock(vmf->ptl);
1242 mmu_notifier_invalidate_range_end(&range);
1243 for (i = 0; i < HPAGE_PMD_NR; i++) {
1244 memcg = (void *)page_private(pages[i]);
1245 set_page_private(pages[i], 0);
1246 mem_cgroup_cancel_charge(pages[i], memcg, false);
1247 put_page(pages[i]);
1249 kfree(pages);
1250 goto out;
1253 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1255 struct vm_area_struct *vma = vmf->vma;
1256 struct page *page = NULL, *new_page;
1257 struct mem_cgroup *memcg;
1258 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1259 struct mmu_notifier_range range;
1260 gfp_t huge_gfp; /* for allocation and charge */
1261 vm_fault_t ret = 0;
1263 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1264 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1265 if (is_huge_zero_pmd(orig_pmd))
1266 goto alloc;
1267 spin_lock(vmf->ptl);
1268 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 goto out_unlock;
1271 page = pmd_page(orig_pmd);
1272 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1274 * We can only reuse the page if nobody else maps the huge page or it's
1275 * part.
1277 if (!trylock_page(page)) {
1278 get_page(page);
1279 spin_unlock(vmf->ptl);
1280 lock_page(page);
1281 spin_lock(vmf->ptl);
1282 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1283 unlock_page(page);
1284 put_page(page);
1285 goto out_unlock;
1287 put_page(page);
1289 if (reuse_swap_page(page, NULL)) {
1290 pmd_t entry;
1291 entry = pmd_mkyoung(orig_pmd);
1292 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1293 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1294 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1295 ret |= VM_FAULT_WRITE;
1296 unlock_page(page);
1297 goto out_unlock;
1299 unlock_page(page);
1300 get_page(page);
1301 spin_unlock(vmf->ptl);
1302 alloc:
1303 if (__transparent_hugepage_enabled(vma) &&
1304 !transparent_hugepage_debug_cow()) {
1305 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1306 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1307 } else
1308 new_page = NULL;
1310 if (likely(new_page)) {
1311 prep_transhuge_page(new_page);
1312 } else {
1313 if (!page) {
1314 split_huge_pmd(vma, vmf->pmd, vmf->address);
1315 ret |= VM_FAULT_FALLBACK;
1316 } else {
1317 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1318 if (ret & VM_FAULT_OOM) {
1319 split_huge_pmd(vma, vmf->pmd, vmf->address);
1320 ret |= VM_FAULT_FALLBACK;
1322 put_page(page);
1324 count_vm_event(THP_FAULT_FALLBACK);
1325 goto out;
1328 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1329 huge_gfp, &memcg, true))) {
1330 put_page(new_page);
1331 split_huge_pmd(vma, vmf->pmd, vmf->address);
1332 if (page)
1333 put_page(page);
1334 ret |= VM_FAULT_FALLBACK;
1335 count_vm_event(THP_FAULT_FALLBACK);
1336 goto out;
1339 count_vm_event(THP_FAULT_ALLOC);
1341 if (!page)
1342 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1343 else
1344 copy_user_huge_page(new_page, page, vmf->address,
1345 vma, HPAGE_PMD_NR);
1346 __SetPageUptodate(new_page);
1348 mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1349 haddr + HPAGE_PMD_SIZE);
1350 mmu_notifier_invalidate_range_start(&range);
1352 spin_lock(vmf->ptl);
1353 if (page)
1354 put_page(page);
1355 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1356 spin_unlock(vmf->ptl);
1357 mem_cgroup_cancel_charge(new_page, memcg, true);
1358 put_page(new_page);
1359 goto out_mn;
1360 } else {
1361 pmd_t entry;
1362 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1363 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1364 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1365 page_add_new_anon_rmap(new_page, vma, haddr, true);
1366 mem_cgroup_commit_charge(new_page, memcg, false, true);
1367 lru_cache_add_active_or_unevictable(new_page, vma);
1368 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1369 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1370 if (!page) {
1371 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1372 } else {
1373 VM_BUG_ON_PAGE(!PageHead(page), page);
1374 page_remove_rmap(page, true);
1375 put_page(page);
1377 ret |= VM_FAULT_WRITE;
1379 spin_unlock(vmf->ptl);
1380 out_mn:
1382 * No need to double call mmu_notifier->invalidate_range() callback as
1383 * the above pmdp_huge_clear_flush_notify() did already call it.
1385 mmu_notifier_invalidate_range_only_end(&range);
1386 out:
1387 return ret;
1388 out_unlock:
1389 spin_unlock(vmf->ptl);
1390 return ret;
1394 * FOLL_FORCE can write to even unwritable pmd's, but only
1395 * after we've gone through a COW cycle and they are dirty.
1397 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1399 return pmd_write(pmd) ||
1400 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1403 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1404 unsigned long addr,
1405 pmd_t *pmd,
1406 unsigned int flags)
1408 struct mm_struct *mm = vma->vm_mm;
1409 struct page *page = NULL;
1411 assert_spin_locked(pmd_lockptr(mm, pmd));
1413 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1414 goto out;
1416 /* Avoid dumping huge zero page */
1417 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1418 return ERR_PTR(-EFAULT);
1420 /* Full NUMA hinting faults to serialise migration in fault paths */
1421 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1422 goto out;
1424 page = pmd_page(*pmd);
1425 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1426 if (flags & FOLL_TOUCH)
1427 touch_pmd(vma, addr, pmd, flags);
1428 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 * For anon THP:
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
1443 * For file THP:
1445 * We can expect PageDoubleMap() to be stable under page lock:
1446 * for file pages we set it in page_add_file_rmap(), which
1447 * requires page to be locked.
1450 if (PageAnon(page) && compound_mapcount(page) != 1)
1451 goto skip_mlock;
1452 if (PageDoubleMap(page) || !page->mapping)
1453 goto skip_mlock;
1454 if (!trylock_page(page))
1455 goto skip_mlock;
1456 lru_add_drain();
1457 if (page->mapping && !PageDoubleMap(page))
1458 mlock_vma_page(page);
1459 unlock_page(page);
1461 skip_mlock:
1462 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1464 if (flags & FOLL_GET)
1465 get_page(page);
1467 out:
1468 return page;
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1474 struct vm_area_struct *vma = vmf->vma;
1475 struct anon_vma *anon_vma = NULL;
1476 struct page *page;
1477 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1478 int page_nid = -1, this_nid = numa_node_id();
1479 int target_nid, last_cpupid = -1;
1480 bool page_locked;
1481 bool migrated = false;
1482 bool was_writable;
1483 int flags = 0;
1485 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1486 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1487 goto out_unlock;
1490 * If there are potential migrations, wait for completion and retry
1491 * without disrupting NUMA hinting information. Do not relock and
1492 * check_same as the page may no longer be mapped.
1494 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1495 page = pmd_page(*vmf->pmd);
1496 if (!get_page_unless_zero(page))
1497 goto out_unlock;
1498 spin_unlock(vmf->ptl);
1499 put_and_wait_on_page_locked(page);
1500 goto out;
1503 page = pmd_page(pmd);
1504 BUG_ON(is_huge_zero_page(page));
1505 page_nid = page_to_nid(page);
1506 last_cpupid = page_cpupid_last(page);
1507 count_vm_numa_event(NUMA_HINT_FAULTS);
1508 if (page_nid == this_nid) {
1509 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1510 flags |= TNF_FAULT_LOCAL;
1513 /* See similar comment in do_numa_page for explanation */
1514 if (!pmd_savedwrite(pmd))
1515 flags |= TNF_NO_GROUP;
1518 * Acquire the page lock to serialise THP migrations but avoid dropping
1519 * page_table_lock if at all possible
1521 page_locked = trylock_page(page);
1522 target_nid = mpol_misplaced(page, vma, haddr);
1523 if (target_nid == -1) {
1524 /* If the page was locked, there are no parallel migrations */
1525 if (page_locked)
1526 goto clear_pmdnuma;
1529 /* Migration could have started since the pmd_trans_migrating check */
1530 if (!page_locked) {
1531 page_nid = -1;
1532 if (!get_page_unless_zero(page))
1533 goto out_unlock;
1534 spin_unlock(vmf->ptl);
1535 put_and_wait_on_page_locked(page);
1536 goto out;
1540 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1541 * to serialises splits
1543 get_page(page);
1544 spin_unlock(vmf->ptl);
1545 anon_vma = page_lock_anon_vma_read(page);
1547 /* Confirm the PMD did not change while page_table_lock was released */
1548 spin_lock(vmf->ptl);
1549 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1550 unlock_page(page);
1551 put_page(page);
1552 page_nid = -1;
1553 goto out_unlock;
1556 /* Bail if we fail to protect against THP splits for any reason */
1557 if (unlikely(!anon_vma)) {
1558 put_page(page);
1559 page_nid = -1;
1560 goto clear_pmdnuma;
1564 * Since we took the NUMA fault, we must have observed the !accessible
1565 * bit. Make sure all other CPUs agree with that, to avoid them
1566 * modifying the page we're about to migrate.
1568 * Must be done under PTL such that we'll observe the relevant
1569 * inc_tlb_flush_pending().
1571 * We are not sure a pending tlb flush here is for a huge page
1572 * mapping or not. Hence use the tlb range variant
1574 if (mm_tlb_flush_pending(vma->vm_mm)) {
1575 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1577 * change_huge_pmd() released the pmd lock before
1578 * invalidating the secondary MMUs sharing the primary
1579 * MMU pagetables (with ->invalidate_range()). The
1580 * mmu_notifier_invalidate_range_end() (which
1581 * internally calls ->invalidate_range()) in
1582 * change_pmd_range() will run after us, so we can't
1583 * rely on it here and we need an explicit invalidate.
1585 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1586 haddr + HPAGE_PMD_SIZE);
1590 * Migrate the THP to the requested node, returns with page unlocked
1591 * and access rights restored.
1593 spin_unlock(vmf->ptl);
1595 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1596 vmf->pmd, pmd, vmf->address, page, target_nid);
1597 if (migrated) {
1598 flags |= TNF_MIGRATED;
1599 page_nid = target_nid;
1600 } else
1601 flags |= TNF_MIGRATE_FAIL;
1603 goto out;
1604 clear_pmdnuma:
1605 BUG_ON(!PageLocked(page));
1606 was_writable = pmd_savedwrite(pmd);
1607 pmd = pmd_modify(pmd, vma->vm_page_prot);
1608 pmd = pmd_mkyoung(pmd);
1609 if (was_writable)
1610 pmd = pmd_mkwrite(pmd);
1611 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1612 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1613 unlock_page(page);
1614 out_unlock:
1615 spin_unlock(vmf->ptl);
1617 out:
1618 if (anon_vma)
1619 page_unlock_anon_vma_read(anon_vma);
1621 if (page_nid != -1)
1622 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1623 flags);
1625 return 0;
1629 * Return true if we do MADV_FREE successfully on entire pmd page.
1630 * Otherwise, return false.
1632 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1633 pmd_t *pmd, unsigned long addr, unsigned long next)
1635 spinlock_t *ptl;
1636 pmd_t orig_pmd;
1637 struct page *page;
1638 struct mm_struct *mm = tlb->mm;
1639 bool ret = false;
1641 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1643 ptl = pmd_trans_huge_lock(pmd, vma);
1644 if (!ptl)
1645 goto out_unlocked;
1647 orig_pmd = *pmd;
1648 if (is_huge_zero_pmd(orig_pmd))
1649 goto out;
1651 if (unlikely(!pmd_present(orig_pmd))) {
1652 VM_BUG_ON(thp_migration_supported() &&
1653 !is_pmd_migration_entry(orig_pmd));
1654 goto out;
1657 page = pmd_page(orig_pmd);
1659 * If other processes are mapping this page, we couldn't discard
1660 * the page unless they all do MADV_FREE so let's skip the page.
1662 if (page_mapcount(page) != 1)
1663 goto out;
1665 if (!trylock_page(page))
1666 goto out;
1669 * If user want to discard part-pages of THP, split it so MADV_FREE
1670 * will deactivate only them.
1672 if (next - addr != HPAGE_PMD_SIZE) {
1673 get_page(page);
1674 spin_unlock(ptl);
1675 split_huge_page(page);
1676 unlock_page(page);
1677 put_page(page);
1678 goto out_unlocked;
1681 if (PageDirty(page))
1682 ClearPageDirty(page);
1683 unlock_page(page);
1685 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1686 pmdp_invalidate(vma, addr, pmd);
1687 orig_pmd = pmd_mkold(orig_pmd);
1688 orig_pmd = pmd_mkclean(orig_pmd);
1690 set_pmd_at(mm, addr, pmd, orig_pmd);
1691 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1694 mark_page_lazyfree(page);
1695 ret = true;
1696 out:
1697 spin_unlock(ptl);
1698 out_unlocked:
1699 return ret;
1702 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1704 pgtable_t pgtable;
1706 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1707 pte_free(mm, pgtable);
1708 mm_dec_nr_ptes(mm);
1711 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1712 pmd_t *pmd, unsigned long addr)
1714 pmd_t orig_pmd;
1715 spinlock_t *ptl;
1717 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1719 ptl = __pmd_trans_huge_lock(pmd, vma);
1720 if (!ptl)
1721 return 0;
1723 * For architectures like ppc64 we look at deposited pgtable
1724 * when calling pmdp_huge_get_and_clear. So do the
1725 * pgtable_trans_huge_withdraw after finishing pmdp related
1726 * operations.
1728 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1729 tlb->fullmm);
1730 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1731 if (vma_is_dax(vma)) {
1732 if (arch_needs_pgtable_deposit())
1733 zap_deposited_table(tlb->mm, pmd);
1734 spin_unlock(ptl);
1735 if (is_huge_zero_pmd(orig_pmd))
1736 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1737 } else if (is_huge_zero_pmd(orig_pmd)) {
1738 zap_deposited_table(tlb->mm, pmd);
1739 spin_unlock(ptl);
1740 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1741 } else {
1742 struct page *page = NULL;
1743 int flush_needed = 1;
1745 if (pmd_present(orig_pmd)) {
1746 page = pmd_page(orig_pmd);
1747 page_remove_rmap(page, true);
1748 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1749 VM_BUG_ON_PAGE(!PageHead(page), page);
1750 } else if (thp_migration_supported()) {
1751 swp_entry_t entry;
1753 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1754 entry = pmd_to_swp_entry(orig_pmd);
1755 page = pfn_to_page(swp_offset(entry));
1756 flush_needed = 0;
1757 } else
1758 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1760 if (PageAnon(page)) {
1761 zap_deposited_table(tlb->mm, pmd);
1762 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1763 } else {
1764 if (arch_needs_pgtable_deposit())
1765 zap_deposited_table(tlb->mm, pmd);
1766 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1769 spin_unlock(ptl);
1770 if (flush_needed)
1771 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1773 return 1;
1776 #ifndef pmd_move_must_withdraw
1777 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1778 spinlock_t *old_pmd_ptl,
1779 struct vm_area_struct *vma)
1782 * With split pmd lock we also need to move preallocated
1783 * PTE page table if new_pmd is on different PMD page table.
1785 * We also don't deposit and withdraw tables for file pages.
1787 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1789 #endif
1791 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1793 #ifdef CONFIG_MEM_SOFT_DIRTY
1794 if (unlikely(is_pmd_migration_entry(pmd)))
1795 pmd = pmd_swp_mksoft_dirty(pmd);
1796 else if (pmd_present(pmd))
1797 pmd = pmd_mksoft_dirty(pmd);
1798 #endif
1799 return pmd;
1802 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1803 unsigned long new_addr, unsigned long old_end,
1804 pmd_t *old_pmd, pmd_t *new_pmd)
1806 spinlock_t *old_ptl, *new_ptl;
1807 pmd_t pmd;
1808 struct mm_struct *mm = vma->vm_mm;
1809 bool force_flush = false;
1811 if ((old_addr & ~HPAGE_PMD_MASK) ||
1812 (new_addr & ~HPAGE_PMD_MASK) ||
1813 old_end - old_addr < HPAGE_PMD_SIZE)
1814 return false;
1817 * The destination pmd shouldn't be established, free_pgtables()
1818 * should have release it.
1820 if (WARN_ON(!pmd_none(*new_pmd))) {
1821 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1822 return false;
1826 * We don't have to worry about the ordering of src and dst
1827 * ptlocks because exclusive mmap_sem prevents deadlock.
1829 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1830 if (old_ptl) {
1831 new_ptl = pmd_lockptr(mm, new_pmd);
1832 if (new_ptl != old_ptl)
1833 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1834 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1835 if (pmd_present(pmd))
1836 force_flush = true;
1837 VM_BUG_ON(!pmd_none(*new_pmd));
1839 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1840 pgtable_t pgtable;
1841 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1842 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1844 pmd = move_soft_dirty_pmd(pmd);
1845 set_pmd_at(mm, new_addr, new_pmd, pmd);
1846 if (force_flush)
1847 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1848 if (new_ptl != old_ptl)
1849 spin_unlock(new_ptl);
1850 spin_unlock(old_ptl);
1851 return true;
1853 return false;
1857 * Returns
1858 * - 0 if PMD could not be locked
1859 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1860 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1862 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1863 unsigned long addr, pgprot_t newprot, int prot_numa)
1865 struct mm_struct *mm = vma->vm_mm;
1866 spinlock_t *ptl;
1867 pmd_t entry;
1868 bool preserve_write;
1869 int ret;
1871 ptl = __pmd_trans_huge_lock(pmd, vma);
1872 if (!ptl)
1873 return 0;
1875 preserve_write = prot_numa && pmd_write(*pmd);
1876 ret = 1;
1878 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1879 if (is_swap_pmd(*pmd)) {
1880 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1882 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1883 if (is_write_migration_entry(entry)) {
1884 pmd_t newpmd;
1886 * A protection check is difficult so
1887 * just be safe and disable write
1889 make_migration_entry_read(&entry);
1890 newpmd = swp_entry_to_pmd(entry);
1891 if (pmd_swp_soft_dirty(*pmd))
1892 newpmd = pmd_swp_mksoft_dirty(newpmd);
1893 set_pmd_at(mm, addr, pmd, newpmd);
1895 goto unlock;
1897 #endif
1900 * Avoid trapping faults against the zero page. The read-only
1901 * data is likely to be read-cached on the local CPU and
1902 * local/remote hits to the zero page are not interesting.
1904 if (prot_numa && is_huge_zero_pmd(*pmd))
1905 goto unlock;
1907 if (prot_numa && pmd_protnone(*pmd))
1908 goto unlock;
1911 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1912 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1913 * which is also under down_read(mmap_sem):
1915 * CPU0: CPU1:
1916 * change_huge_pmd(prot_numa=1)
1917 * pmdp_huge_get_and_clear_notify()
1918 * madvise_dontneed()
1919 * zap_pmd_range()
1920 * pmd_trans_huge(*pmd) == 0 (without ptl)
1921 * // skip the pmd
1922 * set_pmd_at();
1923 * // pmd is re-established
1925 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1926 * which may break userspace.
1928 * pmdp_invalidate() is required to make sure we don't miss
1929 * dirty/young flags set by hardware.
1931 entry = pmdp_invalidate(vma, addr, pmd);
1933 entry = pmd_modify(entry, newprot);
1934 if (preserve_write)
1935 entry = pmd_mk_savedwrite(entry);
1936 ret = HPAGE_PMD_NR;
1937 set_pmd_at(mm, addr, pmd, entry);
1938 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1939 unlock:
1940 spin_unlock(ptl);
1941 return ret;
1945 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1947 * Note that if it returns page table lock pointer, this routine returns without
1948 * unlocking page table lock. So callers must unlock it.
1950 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1952 spinlock_t *ptl;
1953 ptl = pmd_lock(vma->vm_mm, pmd);
1954 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1955 pmd_devmap(*pmd)))
1956 return ptl;
1957 spin_unlock(ptl);
1958 return NULL;
1962 * Returns true if a given pud maps a thp, false otherwise.
1964 * Note that if it returns true, this routine returns without unlocking page
1965 * table lock. So callers must unlock it.
1967 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1969 spinlock_t *ptl;
1971 ptl = pud_lock(vma->vm_mm, pud);
1972 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1973 return ptl;
1974 spin_unlock(ptl);
1975 return NULL;
1978 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1979 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1980 pud_t *pud, unsigned long addr)
1982 pud_t orig_pud;
1983 spinlock_t *ptl;
1985 ptl = __pud_trans_huge_lock(pud, vma);
1986 if (!ptl)
1987 return 0;
1989 * For architectures like ppc64 we look at deposited pgtable
1990 * when calling pudp_huge_get_and_clear. So do the
1991 * pgtable_trans_huge_withdraw after finishing pudp related
1992 * operations.
1994 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1995 tlb->fullmm);
1996 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1997 if (vma_is_dax(vma)) {
1998 spin_unlock(ptl);
1999 /* No zero page support yet */
2000 } else {
2001 /* No support for anonymous PUD pages yet */
2002 BUG();
2004 return 1;
2007 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2008 unsigned long haddr)
2010 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2011 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2012 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2013 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2015 count_vm_event(THP_SPLIT_PUD);
2017 pudp_huge_clear_flush_notify(vma, haddr, pud);
2020 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2021 unsigned long address)
2023 spinlock_t *ptl;
2024 struct mmu_notifier_range range;
2026 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2027 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028 mmu_notifier_invalidate_range_start(&range);
2029 ptl = pud_lock(vma->vm_mm, pud);
2030 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031 goto out;
2032 __split_huge_pud_locked(vma, pud, range.start);
2034 out:
2035 spin_unlock(ptl);
2037 * No need to double call mmu_notifier->invalidate_range() callback as
2038 * the above pudp_huge_clear_flush_notify() did already call it.
2040 mmu_notifier_invalidate_range_only_end(&range);
2042 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2044 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045 unsigned long haddr, pmd_t *pmd)
2047 struct mm_struct *mm = vma->vm_mm;
2048 pgtable_t pgtable;
2049 pmd_t _pmd;
2050 int i;
2053 * Leave pmd empty until pte is filled note that it is fine to delay
2054 * notification until mmu_notifier_invalidate_range_end() as we are
2055 * replacing a zero pmd write protected page with a zero pte write
2056 * protected page.
2058 * See Documentation/vm/mmu_notifier.rst
2060 pmdp_huge_clear_flush(vma, haddr, pmd);
2062 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063 pmd_populate(mm, &_pmd, pgtable);
2065 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066 pte_t *pte, entry;
2067 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068 entry = pte_mkspecial(entry);
2069 pte = pte_offset_map(&_pmd, haddr);
2070 VM_BUG_ON(!pte_none(*pte));
2071 set_pte_at(mm, haddr, pte, entry);
2072 pte_unmap(pte);
2074 smp_wmb(); /* make pte visible before pmd */
2075 pmd_populate(mm, pmd, pgtable);
2078 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079 unsigned long haddr, bool freeze)
2081 struct mm_struct *mm = vma->vm_mm;
2082 struct page *page;
2083 pgtable_t pgtable;
2084 pmd_t old_pmd, _pmd;
2085 bool young, write, soft_dirty, pmd_migration = false;
2086 unsigned long addr;
2087 int i;
2089 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2090 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2091 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2092 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2093 && !pmd_devmap(*pmd));
2095 count_vm_event(THP_SPLIT_PMD);
2097 if (!vma_is_anonymous(vma)) {
2098 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100 * We are going to unmap this huge page. So
2101 * just go ahead and zap it
2103 if (arch_needs_pgtable_deposit())
2104 zap_deposited_table(mm, pmd);
2105 if (vma_is_dax(vma))
2106 return;
2107 page = pmd_page(_pmd);
2108 if (!PageDirty(page) && pmd_dirty(_pmd))
2109 set_page_dirty(page);
2110 if (!PageReferenced(page) && pmd_young(_pmd))
2111 SetPageReferenced(page);
2112 page_remove_rmap(page, true);
2113 put_page(page);
2114 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2115 return;
2116 } else if (is_huge_zero_pmd(*pmd)) {
2118 * FIXME: Do we want to invalidate secondary mmu by calling
2119 * mmu_notifier_invalidate_range() see comments below inside
2120 * __split_huge_pmd() ?
2122 * We are going from a zero huge page write protected to zero
2123 * small page also write protected so it does not seems useful
2124 * to invalidate secondary mmu at this time.
2126 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2130 * Up to this point the pmd is present and huge and userland has the
2131 * whole access to the hugepage during the split (which happens in
2132 * place). If we overwrite the pmd with the not-huge version pointing
2133 * to the pte here (which of course we could if all CPUs were bug
2134 * free), userland could trigger a small page size TLB miss on the
2135 * small sized TLB while the hugepage TLB entry is still established in
2136 * the huge TLB. Some CPU doesn't like that.
2137 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2138 * 383 on page 93. Intel should be safe but is also warns that it's
2139 * only safe if the permission and cache attributes of the two entries
2140 * loaded in the two TLB is identical (which should be the case here).
2141 * But it is generally safer to never allow small and huge TLB entries
2142 * for the same virtual address to be loaded simultaneously. So instead
2143 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2144 * current pmd notpresent (atomically because here the pmd_trans_huge
2145 * must remain set at all times on the pmd until the split is complete
2146 * for this pmd), then we flush the SMP TLB and finally we write the
2147 * non-huge version of the pmd entry with pmd_populate.
2149 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151 pmd_migration = is_pmd_migration_entry(old_pmd);
2152 if (unlikely(pmd_migration)) {
2153 swp_entry_t entry;
2155 entry = pmd_to_swp_entry(old_pmd);
2156 page = pfn_to_page(swp_offset(entry));
2157 write = is_write_migration_entry(entry);
2158 young = false;
2159 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2160 } else {
2161 page = pmd_page(old_pmd);
2162 if (pmd_dirty(old_pmd))
2163 SetPageDirty(page);
2164 write = pmd_write(old_pmd);
2165 young = pmd_young(old_pmd);
2166 soft_dirty = pmd_soft_dirty(old_pmd);
2168 VM_BUG_ON_PAGE(!page_count(page), page);
2169 page_ref_add(page, HPAGE_PMD_NR - 1);
2172 * Withdraw the table only after we mark the pmd entry invalid.
2173 * This's critical for some architectures (Power).
2175 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2176 pmd_populate(mm, &_pmd, pgtable);
2178 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2179 pte_t entry, *pte;
2181 * Note that NUMA hinting access restrictions are not
2182 * transferred to avoid any possibility of altering
2183 * permissions across VMAs.
2185 if (freeze || pmd_migration) {
2186 swp_entry_t swp_entry;
2187 swp_entry = make_migration_entry(page + i, write);
2188 entry = swp_entry_to_pte(swp_entry);
2189 if (soft_dirty)
2190 entry = pte_swp_mksoft_dirty(entry);
2191 } else {
2192 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2193 entry = maybe_mkwrite(entry, vma);
2194 if (!write)
2195 entry = pte_wrprotect(entry);
2196 if (!young)
2197 entry = pte_mkold(entry);
2198 if (soft_dirty)
2199 entry = pte_mksoft_dirty(entry);
2201 pte = pte_offset_map(&_pmd, addr);
2202 BUG_ON(!pte_none(*pte));
2203 set_pte_at(mm, addr, pte, entry);
2204 atomic_inc(&page[i]._mapcount);
2205 pte_unmap(pte);
2209 * Set PG_double_map before dropping compound_mapcount to avoid
2210 * false-negative page_mapped().
2212 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2213 for (i = 0; i < HPAGE_PMD_NR; i++)
2214 atomic_inc(&page[i]._mapcount);
2217 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2218 /* Last compound_mapcount is gone. */
2219 __dec_node_page_state(page, NR_ANON_THPS);
2220 if (TestClearPageDoubleMap(page)) {
2221 /* No need in mapcount reference anymore */
2222 for (i = 0; i < HPAGE_PMD_NR; i++)
2223 atomic_dec(&page[i]._mapcount);
2227 smp_wmb(); /* make pte visible before pmd */
2228 pmd_populate(mm, pmd, pgtable);
2230 if (freeze) {
2231 for (i = 0; i < HPAGE_PMD_NR; i++) {
2232 page_remove_rmap(page + i, false);
2233 put_page(page + i);
2238 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2239 unsigned long address, bool freeze, struct page *page)
2241 spinlock_t *ptl;
2242 struct mmu_notifier_range range;
2244 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2245 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2246 mmu_notifier_invalidate_range_start(&range);
2247 ptl = pmd_lock(vma->vm_mm, pmd);
2250 * If caller asks to setup a migration entries, we need a page to check
2251 * pmd against. Otherwise we can end up replacing wrong page.
2253 VM_BUG_ON(freeze && !page);
2254 if (page && page != pmd_page(*pmd))
2255 goto out;
2257 if (pmd_trans_huge(*pmd)) {
2258 page = pmd_page(*pmd);
2259 if (PageMlocked(page))
2260 clear_page_mlock(page);
2261 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2262 goto out;
2263 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2264 out:
2265 spin_unlock(ptl);
2267 * No need to double call mmu_notifier->invalidate_range() callback.
2268 * They are 3 cases to consider inside __split_huge_pmd_locked():
2269 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2270 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2271 * fault will trigger a flush_notify before pointing to a new page
2272 * (it is fine if the secondary mmu keeps pointing to the old zero
2273 * page in the meantime)
2274 * 3) Split a huge pmd into pte pointing to the same page. No need
2275 * to invalidate secondary tlb entry they are all still valid.
2276 * any further changes to individual pte will notify. So no need
2277 * to call mmu_notifier->invalidate_range()
2279 mmu_notifier_invalidate_range_only_end(&range);
2282 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2283 bool freeze, struct page *page)
2285 pgd_t *pgd;
2286 p4d_t *p4d;
2287 pud_t *pud;
2288 pmd_t *pmd;
2290 pgd = pgd_offset(vma->vm_mm, address);
2291 if (!pgd_present(*pgd))
2292 return;
2294 p4d = p4d_offset(pgd, address);
2295 if (!p4d_present(*p4d))
2296 return;
2298 pud = pud_offset(p4d, address);
2299 if (!pud_present(*pud))
2300 return;
2302 pmd = pmd_offset(pud, address);
2304 __split_huge_pmd(vma, pmd, address, freeze, page);
2307 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2308 unsigned long start,
2309 unsigned long end,
2310 long adjust_next)
2313 * If the new start address isn't hpage aligned and it could
2314 * previously contain an hugepage: check if we need to split
2315 * an huge pmd.
2317 if (start & ~HPAGE_PMD_MASK &&
2318 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2319 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2320 split_huge_pmd_address(vma, start, false, NULL);
2323 * If the new end address isn't hpage aligned and it could
2324 * previously contain an hugepage: check if we need to split
2325 * an huge pmd.
2327 if (end & ~HPAGE_PMD_MASK &&
2328 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2329 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2330 split_huge_pmd_address(vma, end, false, NULL);
2333 * If we're also updating the vma->vm_next->vm_start, if the new
2334 * vm_next->vm_start isn't page aligned and it could previously
2335 * contain an hugepage: check if we need to split an huge pmd.
2337 if (adjust_next > 0) {
2338 struct vm_area_struct *next = vma->vm_next;
2339 unsigned long nstart = next->vm_start;
2340 nstart += adjust_next << PAGE_SHIFT;
2341 if (nstart & ~HPAGE_PMD_MASK &&
2342 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2343 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2344 split_huge_pmd_address(next, nstart, false, NULL);
2348 static void unmap_page(struct page *page)
2350 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2351 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2352 bool unmap_success;
2354 VM_BUG_ON_PAGE(!PageHead(page), page);
2356 if (PageAnon(page))
2357 ttu_flags |= TTU_SPLIT_FREEZE;
2359 unmap_success = try_to_unmap(page, ttu_flags);
2360 VM_BUG_ON_PAGE(!unmap_success, page);
2363 static void remap_page(struct page *page)
2365 int i;
2366 if (PageTransHuge(page)) {
2367 remove_migration_ptes(page, page, true);
2368 } else {
2369 for (i = 0; i < HPAGE_PMD_NR; i++)
2370 remove_migration_ptes(page + i, page + i, true);
2374 static void __split_huge_page_tail(struct page *head, int tail,
2375 struct lruvec *lruvec, struct list_head *list)
2377 struct page *page_tail = head + tail;
2379 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2382 * Clone page flags before unfreezing refcount.
2384 * After successful get_page_unless_zero() might follow flags change,
2385 * for exmaple lock_page() which set PG_waiters.
2387 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2388 page_tail->flags |= (head->flags &
2389 ((1L << PG_referenced) |
2390 (1L << PG_swapbacked) |
2391 (1L << PG_swapcache) |
2392 (1L << PG_mlocked) |
2393 (1L << PG_uptodate) |
2394 (1L << PG_active) |
2395 (1L << PG_workingset) |
2396 (1L << PG_locked) |
2397 (1L << PG_unevictable) |
2398 (1L << PG_dirty)));
2400 /* ->mapping in first tail page is compound_mapcount */
2401 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2402 page_tail);
2403 page_tail->mapping = head->mapping;
2404 page_tail->index = head->index + tail;
2406 /* Page flags must be visible before we make the page non-compound. */
2407 smp_wmb();
2410 * Clear PageTail before unfreezing page refcount.
2412 * After successful get_page_unless_zero() might follow put_page()
2413 * which needs correct compound_head().
2415 clear_compound_head(page_tail);
2417 /* Finally unfreeze refcount. Additional reference from page cache. */
2418 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2419 PageSwapCache(head)));
2421 if (page_is_young(head))
2422 set_page_young(page_tail);
2423 if (page_is_idle(head))
2424 set_page_idle(page_tail);
2426 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2429 * always add to the tail because some iterators expect new
2430 * pages to show after the currently processed elements - e.g.
2431 * migrate_pages
2433 lru_add_page_tail(head, page_tail, lruvec, list);
2436 static void __split_huge_page(struct page *page, struct list_head *list,
2437 pgoff_t end, unsigned long flags)
2439 struct page *head = compound_head(page);
2440 struct zone *zone = page_zone(head);
2441 struct lruvec *lruvec;
2442 int i;
2444 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2446 /* complete memcg works before add pages to LRU */
2447 mem_cgroup_split_huge_fixup(head);
2449 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2450 __split_huge_page_tail(head, i, lruvec, list);
2451 /* Some pages can be beyond i_size: drop them from page cache */
2452 if (head[i].index >= end) {
2453 ClearPageDirty(head + i);
2454 __delete_from_page_cache(head + i, NULL);
2455 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2456 shmem_uncharge(head->mapping->host, 1);
2457 put_page(head + i);
2461 ClearPageCompound(head);
2462 /* See comment in __split_huge_page_tail() */
2463 if (PageAnon(head)) {
2464 /* Additional pin to swap cache */
2465 if (PageSwapCache(head))
2466 page_ref_add(head, 2);
2467 else
2468 page_ref_inc(head);
2469 } else {
2470 /* Additional pin to page cache */
2471 page_ref_add(head, 2);
2472 xa_unlock(&head->mapping->i_pages);
2475 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2477 remap_page(head);
2479 for (i = 0; i < HPAGE_PMD_NR; i++) {
2480 struct page *subpage = head + i;
2481 if (subpage == page)
2482 continue;
2483 unlock_page(subpage);
2486 * Subpages may be freed if there wasn't any mapping
2487 * like if add_to_swap() is running on a lru page that
2488 * had its mapping zapped. And freeing these pages
2489 * requires taking the lru_lock so we do the put_page
2490 * of the tail pages after the split is complete.
2492 put_page(subpage);
2496 int total_mapcount(struct page *page)
2498 int i, compound, ret;
2500 VM_BUG_ON_PAGE(PageTail(page), page);
2502 if (likely(!PageCompound(page)))
2503 return atomic_read(&page->_mapcount) + 1;
2505 compound = compound_mapcount(page);
2506 if (PageHuge(page))
2507 return compound;
2508 ret = compound;
2509 for (i = 0; i < HPAGE_PMD_NR; i++)
2510 ret += atomic_read(&page[i]._mapcount) + 1;
2511 /* File pages has compound_mapcount included in _mapcount */
2512 if (!PageAnon(page))
2513 return ret - compound * HPAGE_PMD_NR;
2514 if (PageDoubleMap(page))
2515 ret -= HPAGE_PMD_NR;
2516 return ret;
2520 * This calculates accurately how many mappings a transparent hugepage
2521 * has (unlike page_mapcount() which isn't fully accurate). This full
2522 * accuracy is primarily needed to know if copy-on-write faults can
2523 * reuse the page and change the mapping to read-write instead of
2524 * copying them. At the same time this returns the total_mapcount too.
2526 * The function returns the highest mapcount any one of the subpages
2527 * has. If the return value is one, even if different processes are
2528 * mapping different subpages of the transparent hugepage, they can
2529 * all reuse it, because each process is reusing a different subpage.
2531 * The total_mapcount is instead counting all virtual mappings of the
2532 * subpages. If the total_mapcount is equal to "one", it tells the
2533 * caller all mappings belong to the same "mm" and in turn the
2534 * anon_vma of the transparent hugepage can become the vma->anon_vma
2535 * local one as no other process may be mapping any of the subpages.
2537 * It would be more accurate to replace page_mapcount() with
2538 * page_trans_huge_mapcount(), however we only use
2539 * page_trans_huge_mapcount() in the copy-on-write faults where we
2540 * need full accuracy to avoid breaking page pinning, because
2541 * page_trans_huge_mapcount() is slower than page_mapcount().
2543 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2545 int i, ret, _total_mapcount, mapcount;
2547 /* hugetlbfs shouldn't call it */
2548 VM_BUG_ON_PAGE(PageHuge(page), page);
2550 if (likely(!PageTransCompound(page))) {
2551 mapcount = atomic_read(&page->_mapcount) + 1;
2552 if (total_mapcount)
2553 *total_mapcount = mapcount;
2554 return mapcount;
2557 page = compound_head(page);
2559 _total_mapcount = ret = 0;
2560 for (i = 0; i < HPAGE_PMD_NR; i++) {
2561 mapcount = atomic_read(&page[i]._mapcount) + 1;
2562 ret = max(ret, mapcount);
2563 _total_mapcount += mapcount;
2565 if (PageDoubleMap(page)) {
2566 ret -= 1;
2567 _total_mapcount -= HPAGE_PMD_NR;
2569 mapcount = compound_mapcount(page);
2570 ret += mapcount;
2571 _total_mapcount += mapcount;
2572 if (total_mapcount)
2573 *total_mapcount = _total_mapcount;
2574 return ret;
2577 /* Racy check whether the huge page can be split */
2578 bool can_split_huge_page(struct page *page, int *pextra_pins)
2580 int extra_pins;
2582 /* Additional pins from page cache */
2583 if (PageAnon(page))
2584 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2585 else
2586 extra_pins = HPAGE_PMD_NR;
2587 if (pextra_pins)
2588 *pextra_pins = extra_pins;
2589 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2593 * This function splits huge page into normal pages. @page can point to any
2594 * subpage of huge page to split. Split doesn't change the position of @page.
2596 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597 * The huge page must be locked.
2599 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601 * Both head page and tail pages will inherit mapping, flags, and so on from
2602 * the hugepage.
2604 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605 * they are not mapped.
2607 * Returns 0 if the hugepage is split successfully.
2608 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2609 * us.
2611 int split_huge_page_to_list(struct page *page, struct list_head *list)
2613 struct page *head = compound_head(page);
2614 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2615 struct anon_vma *anon_vma = NULL;
2616 struct address_space *mapping = NULL;
2617 int count, mapcount, extra_pins, ret;
2618 bool mlocked;
2619 unsigned long flags;
2620 pgoff_t end;
2622 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2623 VM_BUG_ON_PAGE(!PageLocked(page), page);
2624 VM_BUG_ON_PAGE(!PageCompound(page), page);
2626 if (PageWriteback(page))
2627 return -EBUSY;
2629 if (PageAnon(head)) {
2631 * The caller does not necessarily hold an mmap_sem that would
2632 * prevent the anon_vma disappearing so we first we take a
2633 * reference to it and then lock the anon_vma for write. This
2634 * is similar to page_lock_anon_vma_read except the write lock
2635 * is taken to serialise against parallel split or collapse
2636 * operations.
2638 anon_vma = page_get_anon_vma(head);
2639 if (!anon_vma) {
2640 ret = -EBUSY;
2641 goto out;
2643 end = -1;
2644 mapping = NULL;
2645 anon_vma_lock_write(anon_vma);
2646 } else {
2647 mapping = head->mapping;
2649 /* Truncated ? */
2650 if (!mapping) {
2651 ret = -EBUSY;
2652 goto out;
2655 anon_vma = NULL;
2656 i_mmap_lock_read(mapping);
2659 *__split_huge_page() may need to trim off pages beyond EOF:
2660 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2661 * which cannot be nested inside the page tree lock. So note
2662 * end now: i_size itself may be changed at any moment, but
2663 * head page lock is good enough to serialize the trimming.
2665 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2669 * Racy check if we can split the page, before unmap_page() will
2670 * split PMDs
2672 if (!can_split_huge_page(head, &extra_pins)) {
2673 ret = -EBUSY;
2674 goto out_unlock;
2677 mlocked = PageMlocked(page);
2678 unmap_page(head);
2679 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2681 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2682 if (mlocked)
2683 lru_add_drain();
2685 /* prevent PageLRU to go away from under us, and freeze lru stats */
2686 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2688 if (mapping) {
2689 XA_STATE(xas, &mapping->i_pages, page_index(head));
2692 * Check if the head page is present in page cache.
2693 * We assume all tail are present too, if head is there.
2695 xa_lock(&mapping->i_pages);
2696 if (xas_load(&xas) != head)
2697 goto fail;
2700 /* Prevent deferred_split_scan() touching ->_refcount */
2701 spin_lock(&pgdata->split_queue_lock);
2702 count = page_count(head);
2703 mapcount = total_mapcount(head);
2704 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2705 if (!list_empty(page_deferred_list(head))) {
2706 pgdata->split_queue_len--;
2707 list_del(page_deferred_list(head));
2709 if (mapping)
2710 __dec_node_page_state(page, NR_SHMEM_THPS);
2711 spin_unlock(&pgdata->split_queue_lock);
2712 __split_huge_page(page, list, end, flags);
2713 if (PageSwapCache(head)) {
2714 swp_entry_t entry = { .val = page_private(head) };
2716 ret = split_swap_cluster(entry);
2717 } else
2718 ret = 0;
2719 } else {
2720 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2721 pr_alert("total_mapcount: %u, page_count(): %u\n",
2722 mapcount, count);
2723 if (PageTail(page))
2724 dump_page(head, NULL);
2725 dump_page(page, "total_mapcount(head) > 0");
2726 BUG();
2728 spin_unlock(&pgdata->split_queue_lock);
2729 fail: if (mapping)
2730 xa_unlock(&mapping->i_pages);
2731 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2732 remap_page(head);
2733 ret = -EBUSY;
2736 out_unlock:
2737 if (anon_vma) {
2738 anon_vma_unlock_write(anon_vma);
2739 put_anon_vma(anon_vma);
2741 if (mapping)
2742 i_mmap_unlock_read(mapping);
2743 out:
2744 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2745 return ret;
2748 void free_transhuge_page(struct page *page)
2750 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2751 unsigned long flags;
2753 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2754 if (!list_empty(page_deferred_list(page))) {
2755 pgdata->split_queue_len--;
2756 list_del(page_deferred_list(page));
2758 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2759 free_compound_page(page);
2762 void deferred_split_huge_page(struct page *page)
2764 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2765 unsigned long flags;
2767 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2769 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2770 if (list_empty(page_deferred_list(page))) {
2771 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2772 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2773 pgdata->split_queue_len++;
2775 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2778 static unsigned long deferred_split_count(struct shrinker *shrink,
2779 struct shrink_control *sc)
2781 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2782 return READ_ONCE(pgdata->split_queue_len);
2785 static unsigned long deferred_split_scan(struct shrinker *shrink,
2786 struct shrink_control *sc)
2788 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2789 unsigned long flags;
2790 LIST_HEAD(list), *pos, *next;
2791 struct page *page;
2792 int split = 0;
2794 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2795 /* Take pin on all head pages to avoid freeing them under us */
2796 list_for_each_safe(pos, next, &pgdata->split_queue) {
2797 page = list_entry((void *)pos, struct page, mapping);
2798 page = compound_head(page);
2799 if (get_page_unless_zero(page)) {
2800 list_move(page_deferred_list(page), &list);
2801 } else {
2802 /* We lost race with put_compound_page() */
2803 list_del_init(page_deferred_list(page));
2804 pgdata->split_queue_len--;
2806 if (!--sc->nr_to_scan)
2807 break;
2809 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2811 list_for_each_safe(pos, next, &list) {
2812 page = list_entry((void *)pos, struct page, mapping);
2813 if (!trylock_page(page))
2814 goto next;
2815 /* split_huge_page() removes page from list on success */
2816 if (!split_huge_page(page))
2817 split++;
2818 unlock_page(page);
2819 next:
2820 put_page(page);
2823 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2824 list_splice_tail(&list, &pgdata->split_queue);
2825 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2828 * Stop shrinker if we didn't split any page, but the queue is empty.
2829 * This can happen if pages were freed under us.
2831 if (!split && list_empty(&pgdata->split_queue))
2832 return SHRINK_STOP;
2833 return split;
2836 static struct shrinker deferred_split_shrinker = {
2837 .count_objects = deferred_split_count,
2838 .scan_objects = deferred_split_scan,
2839 .seeks = DEFAULT_SEEKS,
2840 .flags = SHRINKER_NUMA_AWARE,
2843 #ifdef CONFIG_DEBUG_FS
2844 static int split_huge_pages_set(void *data, u64 val)
2846 struct zone *zone;
2847 struct page *page;
2848 unsigned long pfn, max_zone_pfn;
2849 unsigned long total = 0, split = 0;
2851 if (val != 1)
2852 return -EINVAL;
2854 for_each_populated_zone(zone) {
2855 max_zone_pfn = zone_end_pfn(zone);
2856 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2857 if (!pfn_valid(pfn))
2858 continue;
2860 page = pfn_to_page(pfn);
2861 if (!get_page_unless_zero(page))
2862 continue;
2864 if (zone != page_zone(page))
2865 goto next;
2867 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2868 goto next;
2870 total++;
2871 lock_page(page);
2872 if (!split_huge_page(page))
2873 split++;
2874 unlock_page(page);
2875 next:
2876 put_page(page);
2880 pr_info("%lu of %lu THP split\n", split, total);
2882 return 0;
2884 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2885 "%llu\n");
2887 static int __init split_huge_pages_debugfs(void)
2889 void *ret;
2891 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2892 &split_huge_pages_fops);
2893 if (!ret)
2894 pr_warn("Failed to create split_huge_pages in debugfs");
2895 return 0;
2897 late_initcall(split_huge_pages_debugfs);
2898 #endif
2900 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2901 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2902 struct page *page)
2904 struct vm_area_struct *vma = pvmw->vma;
2905 struct mm_struct *mm = vma->vm_mm;
2906 unsigned long address = pvmw->address;
2907 pmd_t pmdval;
2908 swp_entry_t entry;
2909 pmd_t pmdswp;
2911 if (!(pvmw->pmd && !pvmw->pte))
2912 return;
2914 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2915 pmdval = *pvmw->pmd;
2916 pmdp_invalidate(vma, address, pvmw->pmd);
2917 if (pmd_dirty(pmdval))
2918 set_page_dirty(page);
2919 entry = make_migration_entry(page, pmd_write(pmdval));
2920 pmdswp = swp_entry_to_pmd(entry);
2921 if (pmd_soft_dirty(pmdval))
2922 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2923 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2924 page_remove_rmap(page, true);
2925 put_page(page);
2928 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2930 struct vm_area_struct *vma = pvmw->vma;
2931 struct mm_struct *mm = vma->vm_mm;
2932 unsigned long address = pvmw->address;
2933 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2934 pmd_t pmde;
2935 swp_entry_t entry;
2937 if (!(pvmw->pmd && !pvmw->pte))
2938 return;
2940 entry = pmd_to_swp_entry(*pvmw->pmd);
2941 get_page(new);
2942 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2943 if (pmd_swp_soft_dirty(*pvmw->pmd))
2944 pmde = pmd_mksoft_dirty(pmde);
2945 if (is_write_migration_entry(entry))
2946 pmde = maybe_pmd_mkwrite(pmde, vma);
2948 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2949 if (PageAnon(new))
2950 page_add_anon_rmap(new, vma, mmun_start, true);
2951 else
2952 page_add_file_rmap(new, true);
2953 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2954 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2955 mlock_vma_page(new);
2956 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2958 #endif