2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 if (vma_is_anonymous(vma
))
68 return __transparent_hugepage_enabled(vma
);
69 if (vma_is_shmem(vma
) && shmem_huge_enabled(vma
))
70 return __transparent_hugepage_enabled(vma
);
75 static struct page
*get_huge_zero_page(void)
77 struct page
*zero_page
;
79 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
80 return READ_ONCE(huge_zero_page
);
82 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
85 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
88 count_vm_event(THP_ZERO_PAGE_ALLOC
);
90 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
92 __free_pages(zero_page
, compound_order(zero_page
));
96 /* We take additional reference here. It will be put back by shrinker */
97 atomic_set(&huge_zero_refcount
, 2);
99 return READ_ONCE(huge_zero_page
);
102 static void put_huge_zero_page(void)
105 * Counter should never go to zero here. Only shrinker can put
108 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
111 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
113 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
114 return READ_ONCE(huge_zero_page
);
116 if (!get_huge_zero_page())
119 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
120 put_huge_zero_page();
122 return READ_ONCE(huge_zero_page
);
125 void mm_put_huge_zero_page(struct mm_struct
*mm
)
127 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
128 put_huge_zero_page();
131 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
132 struct shrink_control
*sc
)
134 /* we can free zero page only if last reference remains */
135 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
138 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
139 struct shrink_control
*sc
)
141 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
142 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
143 BUG_ON(zero_page
== NULL
);
144 __free_pages(zero_page
, compound_order(zero_page
));
151 static struct shrinker huge_zero_page_shrinker
= {
152 .count_objects
= shrink_huge_zero_page_count
,
153 .scan_objects
= shrink_huge_zero_page_scan
,
154 .seeks
= DEFAULT_SEEKS
,
158 static ssize_t
enabled_show(struct kobject
*kobj
,
159 struct kobj_attribute
*attr
, char *buf
)
161 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
162 return sprintf(buf
, "[always] madvise never\n");
163 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
164 return sprintf(buf
, "always [madvise] never\n");
166 return sprintf(buf
, "always madvise [never]\n");
169 static ssize_t
enabled_store(struct kobject
*kobj
,
170 struct kobj_attribute
*attr
,
171 const char *buf
, size_t count
)
175 if (!memcmp("always", buf
,
176 min(sizeof("always")-1, count
))) {
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
178 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
179 } else if (!memcmp("madvise", buf
,
180 min(sizeof("madvise")-1, count
))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
183 } else if (!memcmp("never", buf
,
184 min(sizeof("never")-1, count
))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
191 int err
= start_stop_khugepaged();
197 static struct kobj_attribute enabled_attr
=
198 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
200 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
201 struct kobj_attribute
*attr
, char *buf
,
202 enum transparent_hugepage_flag flag
)
204 return sprintf(buf
, "%d\n",
205 !!test_bit(flag
, &transparent_hugepage_flags
));
208 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
209 struct kobj_attribute
*attr
,
210 const char *buf
, size_t count
,
211 enum transparent_hugepage_flag flag
)
216 ret
= kstrtoul(buf
, 10, &value
);
223 set_bit(flag
, &transparent_hugepage_flags
);
225 clear_bit(flag
, &transparent_hugepage_flags
);
230 static ssize_t
defrag_show(struct kobject
*kobj
,
231 struct kobj_attribute
*attr
, char *buf
)
233 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
234 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
241 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
244 static ssize_t
defrag_store(struct kobject
*kobj
,
245 struct kobj_attribute
*attr
,
246 const char *buf
, size_t count
)
248 if (!memcmp("always", buf
,
249 min(sizeof("always")-1, count
))) {
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
253 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
254 } else if (!memcmp("defer+madvise", buf
,
255 min(sizeof("defer+madvise")-1, count
))) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (!memcmp("defer", buf
,
261 min(sizeof("defer")-1, count
))) {
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
265 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
266 } else if (!memcmp("madvise", buf
,
267 min(sizeof("madvise")-1, count
))) {
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
271 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
272 } else if (!memcmp("never", buf
,
273 min(sizeof("never")-1, count
))) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
283 static struct kobj_attribute defrag_attr
=
284 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
286 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
287 struct kobj_attribute
*attr
, char *buf
)
289 return single_hugepage_flag_show(kobj
, attr
, buf
,
290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
292 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
293 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
295 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
298 static struct kobj_attribute use_zero_page_attr
=
299 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
301 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
302 struct kobj_attribute
*attr
, char *buf
)
304 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
306 static struct kobj_attribute hpage_pmd_size_attr
=
307 __ATTR_RO(hpage_pmd_size
);
309 #ifdef CONFIG_DEBUG_VM
310 static ssize_t
debug_cow_show(struct kobject
*kobj
,
311 struct kobj_attribute
*attr
, char *buf
)
313 return single_hugepage_flag_show(kobj
, attr
, buf
,
314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
316 static ssize_t
debug_cow_store(struct kobject
*kobj
,
317 struct kobj_attribute
*attr
,
318 const char *buf
, size_t count
)
320 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
323 static struct kobj_attribute debug_cow_attr
=
324 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
325 #endif /* CONFIG_DEBUG_VM */
327 static struct attribute
*hugepage_attr
[] = {
330 &use_zero_page_attr
.attr
,
331 &hpage_pmd_size_attr
.attr
,
332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 &shmem_enabled_attr
.attr
,
335 #ifdef CONFIG_DEBUG_VM
336 &debug_cow_attr
.attr
,
341 static const struct attribute_group hugepage_attr_group
= {
342 .attrs
= hugepage_attr
,
345 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
349 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
350 if (unlikely(!*hugepage_kobj
)) {
351 pr_err("failed to create transparent hugepage kobject\n");
355 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
357 pr_err("failed to register transparent hugepage group\n");
361 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
363 pr_err("failed to register transparent hugepage group\n");
364 goto remove_hp_group
;
370 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
372 kobject_put(*hugepage_kobj
);
376 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
378 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
379 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
380 kobject_put(hugepage_kobj
);
383 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
388 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
391 #endif /* CONFIG_SYSFS */
393 static int __init
hugepage_init(void)
396 struct kobject
*hugepage_kobj
;
398 if (!has_transparent_hugepage()) {
399 transparent_hugepage_flags
= 0;
404 * hugepages can't be allocated by the buddy allocator
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
408 * we use page->mapping and page->index in second tail page
409 * as list_head: assuming THP order >= 2
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
413 err
= hugepage_init_sysfs(&hugepage_kobj
);
417 err
= khugepaged_init();
421 err
= register_shrinker(&huge_zero_page_shrinker
);
423 goto err_hzp_shrinker
;
424 err
= register_shrinker(&deferred_split_shrinker
);
426 goto err_split_shrinker
;
429 * By default disable transparent hugepages on smaller systems,
430 * where the extra memory used could hurt more than TLB overhead
431 * is likely to save. The admin can still enable it through /sys.
433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
434 transparent_hugepage_flags
= 0;
438 err
= start_stop_khugepaged();
444 unregister_shrinker(&deferred_split_shrinker
);
446 unregister_shrinker(&huge_zero_page_shrinker
);
448 khugepaged_destroy();
450 hugepage_exit_sysfs(hugepage_kobj
);
454 subsys_initcall(hugepage_init
);
456 static int __init
setup_transparent_hugepage(char *str
)
461 if (!strcmp(str
, "always")) {
462 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
463 &transparent_hugepage_flags
);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
465 &transparent_hugepage_flags
);
467 } else if (!strcmp(str
, "madvise")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
469 &transparent_hugepage_flags
);
470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
471 &transparent_hugepage_flags
);
473 } else if (!strcmp(str
, "never")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
475 &transparent_hugepage_flags
);
476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
477 &transparent_hugepage_flags
);
482 pr_warn("transparent_hugepage= cannot parse, ignored\n");
485 __setup("transparent_hugepage=", setup_transparent_hugepage
);
487 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
489 if (likely(vma
->vm_flags
& VM_WRITE
))
490 pmd
= pmd_mkwrite(pmd
);
494 static inline struct list_head
*page_deferred_list(struct page
*page
)
496 /* ->lru in the tail pages is occupied by compound_head. */
497 return &page
[2].deferred_list
;
500 void prep_transhuge_page(struct page
*page
)
503 * we use page->mapping and page->indexlru in second tail page
504 * as list_head: assuming THP order >= 2
507 INIT_LIST_HEAD(page_deferred_list(page
));
508 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
511 unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
512 loff_t off
, unsigned long flags
, unsigned long size
)
515 loff_t off_end
= off
+ len
;
516 loff_t off_align
= round_up(off
, size
);
517 unsigned long len_pad
;
519 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
522 len_pad
= len
+ size
;
523 if (len_pad
< len
|| (off
+ len_pad
) < off
)
526 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
527 off
>> PAGE_SHIFT
, flags
);
528 if (IS_ERR_VALUE(addr
))
531 addr
+= (off
- addr
) & (size
- 1);
535 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
536 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
538 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
542 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
545 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
550 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
552 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
554 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
555 struct page
*page
, gfp_t gfp
)
557 struct vm_area_struct
*vma
= vmf
->vma
;
558 struct mem_cgroup
*memcg
;
560 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
563 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
565 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
567 count_vm_event(THP_FAULT_FALLBACK
);
568 return VM_FAULT_FALLBACK
;
571 pgtable
= pte_alloc_one(vma
->vm_mm
);
572 if (unlikely(!pgtable
)) {
577 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
579 * The memory barrier inside __SetPageUptodate makes sure that
580 * clear_huge_page writes become visible before the set_pmd_at()
583 __SetPageUptodate(page
);
585 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
586 if (unlikely(!pmd_none(*vmf
->pmd
))) {
591 ret
= check_stable_address_space(vma
->vm_mm
);
595 /* Deliver the page fault to userland */
596 if (userfaultfd_missing(vma
)) {
599 spin_unlock(vmf
->ptl
);
600 mem_cgroup_cancel_charge(page
, memcg
, true);
602 pte_free(vma
->vm_mm
, pgtable
);
603 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
604 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
608 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
609 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
610 page_add_new_anon_rmap(page
, vma
, haddr
, true);
611 mem_cgroup_commit_charge(page
, memcg
, false, true);
612 lru_cache_add_active_or_unevictable(page
, vma
);
613 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
614 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
615 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
616 mm_inc_nr_ptes(vma
->vm_mm
);
617 spin_unlock(vmf
->ptl
);
618 count_vm_event(THP_FAULT_ALLOC
);
623 spin_unlock(vmf
->ptl
);
626 pte_free(vma
->vm_mm
, pgtable
);
627 mem_cgroup_cancel_charge(page
, memcg
, true);
634 * always: directly stall for all thp allocations
635 * defer: wake kswapd and fail if not immediately available
636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637 * fail if not immediately available
638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
640 * never: never stall for any thp allocation
642 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
644 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
646 /* Always do synchronous compaction */
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
648 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
650 /* Kick kcompactd and fail quickly */
651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
652 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
654 /* Synchronous compaction if madvised, otherwise kick kcompactd */
655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
656 return GFP_TRANSHUGE_LIGHT
|
657 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
658 __GFP_KSWAPD_RECLAIM
);
660 /* Only do synchronous compaction if madvised */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
662 return GFP_TRANSHUGE_LIGHT
|
663 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
665 return GFP_TRANSHUGE_LIGHT
;
668 /* Caller must hold page table lock. */
669 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
670 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
671 struct page
*zero_page
)
676 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
677 entry
= pmd_mkhuge(entry
);
679 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
680 set_pmd_at(mm
, haddr
, pmd
, entry
);
685 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
687 struct vm_area_struct
*vma
= vmf
->vma
;
690 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
692 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
693 return VM_FAULT_FALLBACK
;
694 if (unlikely(anon_vma_prepare(vma
)))
696 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
698 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
699 !mm_forbids_zeropage(vma
->vm_mm
) &&
700 transparent_hugepage_use_zero_page()) {
702 struct page
*zero_page
;
705 pgtable
= pte_alloc_one(vma
->vm_mm
);
706 if (unlikely(!pgtable
))
708 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
709 if (unlikely(!zero_page
)) {
710 pte_free(vma
->vm_mm
, pgtable
);
711 count_vm_event(THP_FAULT_FALLBACK
);
712 return VM_FAULT_FALLBACK
;
714 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
717 if (pmd_none(*vmf
->pmd
)) {
718 ret
= check_stable_address_space(vma
->vm_mm
);
720 spin_unlock(vmf
->ptl
);
721 } else if (userfaultfd_missing(vma
)) {
722 spin_unlock(vmf
->ptl
);
723 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
724 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
726 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
727 haddr
, vmf
->pmd
, zero_page
);
728 spin_unlock(vmf
->ptl
);
732 spin_unlock(vmf
->ptl
);
734 pte_free(vma
->vm_mm
, pgtable
);
737 gfp
= alloc_hugepage_direct_gfpmask(vma
);
738 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
739 if (unlikely(!page
)) {
740 count_vm_event(THP_FAULT_FALLBACK
);
741 return VM_FAULT_FALLBACK
;
743 prep_transhuge_page(page
);
744 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
747 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
748 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
751 struct mm_struct
*mm
= vma
->vm_mm
;
755 ptl
= pmd_lock(mm
, pmd
);
756 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
757 if (pfn_t_devmap(pfn
))
758 entry
= pmd_mkdevmap(entry
);
760 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
761 entry
= maybe_pmd_mkwrite(entry
, vma
);
765 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
769 set_pmd_at(mm
, addr
, pmd
, entry
);
770 update_mmu_cache_pmd(vma
, addr
, pmd
);
774 vm_fault_t
vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
775 pmd_t
*pmd
, pfn_t pfn
, bool write
)
777 pgprot_t pgprot
= vma
->vm_page_prot
;
778 pgtable_t pgtable
= NULL
;
780 * If we had pmd_special, we could avoid all these restrictions,
781 * but we need to be consistent with PTEs and architectures that
782 * can't support a 'special' bit.
784 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
786 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
787 (VM_PFNMAP
|VM_MIXEDMAP
));
788 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
790 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
791 return VM_FAULT_SIGBUS
;
793 if (arch_needs_pgtable_deposit()) {
794 pgtable
= pte_alloc_one(vma
->vm_mm
);
799 track_pfn_insert(vma
, &pgprot
, pfn
);
801 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
, pgtable
);
802 return VM_FAULT_NOPAGE
;
804 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
806 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
807 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
809 if (likely(vma
->vm_flags
& VM_WRITE
))
810 pud
= pud_mkwrite(pud
);
814 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
815 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
817 struct mm_struct
*mm
= vma
->vm_mm
;
821 ptl
= pud_lock(mm
, pud
);
822 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
823 if (pfn_t_devmap(pfn
))
824 entry
= pud_mkdevmap(entry
);
826 entry
= pud_mkyoung(pud_mkdirty(entry
));
827 entry
= maybe_pud_mkwrite(entry
, vma
);
829 set_pud_at(mm
, addr
, pud
, entry
);
830 update_mmu_cache_pud(vma
, addr
, pud
);
834 vm_fault_t
vmf_insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
835 pud_t
*pud
, pfn_t pfn
, bool write
)
837 pgprot_t pgprot
= vma
->vm_page_prot
;
839 * If we had pud_special, we could avoid all these restrictions,
840 * but we need to be consistent with PTEs and architectures that
841 * can't support a 'special' bit.
843 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
845 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
846 (VM_PFNMAP
|VM_MIXEDMAP
));
847 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
849 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
850 return VM_FAULT_SIGBUS
;
852 track_pfn_insert(vma
, &pgprot
, pfn
);
854 insert_pfn_pud(vma
, addr
, pud
, pfn
, pgprot
, write
);
855 return VM_FAULT_NOPAGE
;
857 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
858 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
860 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
861 pmd_t
*pmd
, int flags
)
865 _pmd
= pmd_mkyoung(*pmd
);
866 if (flags
& FOLL_WRITE
)
867 _pmd
= pmd_mkdirty(_pmd
);
868 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
869 pmd
, _pmd
, flags
& FOLL_WRITE
))
870 update_mmu_cache_pmd(vma
, addr
, pmd
);
873 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
874 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
876 unsigned long pfn
= pmd_pfn(*pmd
);
877 struct mm_struct
*mm
= vma
->vm_mm
;
880 assert_spin_locked(pmd_lockptr(mm
, pmd
));
883 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 * not be in this function with `flags & FOLL_COW` set.
886 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
888 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
891 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
896 if (flags
& FOLL_TOUCH
)
897 touch_pmd(vma
, addr
, pmd
, flags
);
900 * device mapped pages can only be returned if the
901 * caller will manage the page reference count.
903 if (!(flags
& FOLL_GET
))
904 return ERR_PTR(-EEXIST
);
906 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
907 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
909 return ERR_PTR(-EFAULT
);
910 page
= pfn_to_page(pfn
);
916 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
917 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
918 struct vm_area_struct
*vma
)
920 spinlock_t
*dst_ptl
, *src_ptl
;
921 struct page
*src_page
;
923 pgtable_t pgtable
= NULL
;
926 /* Skip if can be re-fill on fault */
927 if (!vma_is_anonymous(vma
))
930 pgtable
= pte_alloc_one(dst_mm
);
931 if (unlikely(!pgtable
))
934 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
935 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
936 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
941 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 if (unlikely(is_swap_pmd(pmd
))) {
943 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
945 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
946 if (is_write_migration_entry(entry
)) {
947 make_migration_entry_read(&entry
);
948 pmd
= swp_entry_to_pmd(entry
);
949 if (pmd_swp_soft_dirty(*src_pmd
))
950 pmd
= pmd_swp_mksoft_dirty(pmd
);
951 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
953 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
954 mm_inc_nr_ptes(dst_mm
);
955 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
956 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
962 if (unlikely(!pmd_trans_huge(pmd
))) {
963 pte_free(dst_mm
, pgtable
);
967 * When page table lock is held, the huge zero pmd should not be
968 * under splitting since we don't split the page itself, only pmd to
971 if (is_huge_zero_pmd(pmd
)) {
972 struct page
*zero_page
;
974 * get_huge_zero_page() will never allocate a new page here,
975 * since we already have a zero page to copy. It just takes a
978 zero_page
= mm_get_huge_zero_page(dst_mm
);
979 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
985 src_page
= pmd_page(pmd
);
986 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
988 page_dup_rmap(src_page
, true);
989 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
990 mm_inc_nr_ptes(dst_mm
);
991 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
993 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
994 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
995 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
999 spin_unlock(src_ptl
);
1000 spin_unlock(dst_ptl
);
1005 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1007 pud_t
*pud
, int flags
)
1011 _pud
= pud_mkyoung(*pud
);
1012 if (flags
& FOLL_WRITE
)
1013 _pud
= pud_mkdirty(_pud
);
1014 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1015 pud
, _pud
, flags
& FOLL_WRITE
))
1016 update_mmu_cache_pud(vma
, addr
, pud
);
1019 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1020 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1022 unsigned long pfn
= pud_pfn(*pud
);
1023 struct mm_struct
*mm
= vma
->vm_mm
;
1026 assert_spin_locked(pud_lockptr(mm
, pud
));
1028 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1031 if (pud_present(*pud
) && pud_devmap(*pud
))
1036 if (flags
& FOLL_TOUCH
)
1037 touch_pud(vma
, addr
, pud
, flags
);
1040 * device mapped pages can only be returned if the
1041 * caller will manage the page reference count.
1043 if (!(flags
& FOLL_GET
))
1044 return ERR_PTR(-EEXIST
);
1046 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1047 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1049 return ERR_PTR(-EFAULT
);
1050 page
= pfn_to_page(pfn
);
1056 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1057 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1058 struct vm_area_struct
*vma
)
1060 spinlock_t
*dst_ptl
, *src_ptl
;
1064 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1065 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1066 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1070 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1074 * When page table lock is held, the huge zero pud should not be
1075 * under splitting since we don't split the page itself, only pud to
1078 if (is_huge_zero_pud(pud
)) {
1079 /* No huge zero pud yet */
1082 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1083 pud
= pud_mkold(pud_wrprotect(pud
));
1084 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1088 spin_unlock(src_ptl
);
1089 spin_unlock(dst_ptl
);
1093 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1096 unsigned long haddr
;
1097 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1099 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1100 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1103 entry
= pud_mkyoung(orig_pud
);
1105 entry
= pud_mkdirty(entry
);
1106 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1107 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1108 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1111 spin_unlock(vmf
->ptl
);
1113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1115 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1118 unsigned long haddr
;
1119 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1121 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1122 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1125 entry
= pmd_mkyoung(orig_pmd
);
1127 entry
= pmd_mkdirty(entry
);
1128 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1129 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1130 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1133 spin_unlock(vmf
->ptl
);
1136 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1137 pmd_t orig_pmd
, struct page
*page
)
1139 struct vm_area_struct
*vma
= vmf
->vma
;
1140 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1141 struct mem_cgroup
*memcg
;
1146 struct page
**pages
;
1147 struct mmu_notifier_range range
;
1149 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1151 if (unlikely(!pages
)) {
1152 ret
|= VM_FAULT_OOM
;
1156 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1157 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1158 vmf
->address
, page_to_nid(page
));
1159 if (unlikely(!pages
[i
] ||
1160 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1161 GFP_KERNEL
, &memcg
, false))) {
1165 memcg
= (void *)page_private(pages
[i
]);
1166 set_page_private(pages
[i
], 0);
1167 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1172 ret
|= VM_FAULT_OOM
;
1175 set_page_private(pages
[i
], (unsigned long)memcg
);
1178 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1179 copy_user_highpage(pages
[i
], page
+ i
,
1180 haddr
+ PAGE_SIZE
* i
, vma
);
1181 __SetPageUptodate(pages
[i
]);
1185 mmu_notifier_range_init(&range
, vma
->vm_mm
, haddr
,
1186 haddr
+ HPAGE_PMD_SIZE
);
1187 mmu_notifier_invalidate_range_start(&range
);
1189 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1190 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1191 goto out_free_pages
;
1192 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1195 * Leave pmd empty until pte is filled note we must notify here as
1196 * concurrent CPU thread might write to new page before the call to
1197 * mmu_notifier_invalidate_range_end() happens which can lead to a
1198 * device seeing memory write in different order than CPU.
1200 * See Documentation/vm/mmu_notifier.rst
1202 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1204 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1205 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1207 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1209 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1210 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1211 memcg
= (void *)page_private(pages
[i
]);
1212 set_page_private(pages
[i
], 0);
1213 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1214 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1215 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1216 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1217 VM_BUG_ON(!pte_none(*vmf
->pte
));
1218 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1219 pte_unmap(vmf
->pte
);
1223 smp_wmb(); /* make pte visible before pmd */
1224 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1225 page_remove_rmap(page
, true);
1226 spin_unlock(vmf
->ptl
);
1229 * No need to double call mmu_notifier->invalidate_range() callback as
1230 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 mmu_notifier_invalidate_range_only_end(&range
);
1234 ret
|= VM_FAULT_WRITE
;
1241 spin_unlock(vmf
->ptl
);
1242 mmu_notifier_invalidate_range_end(&range
);
1243 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1244 memcg
= (void *)page_private(pages
[i
]);
1245 set_page_private(pages
[i
], 0);
1246 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1253 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1255 struct vm_area_struct
*vma
= vmf
->vma
;
1256 struct page
*page
= NULL
, *new_page
;
1257 struct mem_cgroup
*memcg
;
1258 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1259 struct mmu_notifier_range range
;
1260 gfp_t huge_gfp
; /* for allocation and charge */
1263 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1264 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1265 if (is_huge_zero_pmd(orig_pmd
))
1267 spin_lock(vmf
->ptl
);
1268 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1271 page
= pmd_page(orig_pmd
);
1272 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1274 * We can only reuse the page if nobody else maps the huge page or it's
1277 if (!trylock_page(page
)) {
1279 spin_unlock(vmf
->ptl
);
1281 spin_lock(vmf
->ptl
);
1282 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1289 if (reuse_swap_page(page
, NULL
)) {
1291 entry
= pmd_mkyoung(orig_pmd
);
1292 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1293 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1294 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1295 ret
|= VM_FAULT_WRITE
;
1301 spin_unlock(vmf
->ptl
);
1303 if (__transparent_hugepage_enabled(vma
) &&
1304 !transparent_hugepage_debug_cow()) {
1305 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1306 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1310 if (likely(new_page
)) {
1311 prep_transhuge_page(new_page
);
1314 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1315 ret
|= VM_FAULT_FALLBACK
;
1317 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1318 if (ret
& VM_FAULT_OOM
) {
1319 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1320 ret
|= VM_FAULT_FALLBACK
;
1324 count_vm_event(THP_FAULT_FALLBACK
);
1328 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1329 huge_gfp
, &memcg
, true))) {
1331 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1334 ret
|= VM_FAULT_FALLBACK
;
1335 count_vm_event(THP_FAULT_FALLBACK
);
1339 count_vm_event(THP_FAULT_ALLOC
);
1342 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1344 copy_user_huge_page(new_page
, page
, vmf
->address
,
1346 __SetPageUptodate(new_page
);
1348 mmu_notifier_range_init(&range
, vma
->vm_mm
, haddr
,
1349 haddr
+ HPAGE_PMD_SIZE
);
1350 mmu_notifier_invalidate_range_start(&range
);
1352 spin_lock(vmf
->ptl
);
1355 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1356 spin_unlock(vmf
->ptl
);
1357 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1362 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1363 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1364 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1365 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1366 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1367 lru_cache_add_active_or_unevictable(new_page
, vma
);
1368 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1369 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1371 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1373 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1374 page_remove_rmap(page
, true);
1377 ret
|= VM_FAULT_WRITE
;
1379 spin_unlock(vmf
->ptl
);
1382 * No need to double call mmu_notifier->invalidate_range() callback as
1383 * the above pmdp_huge_clear_flush_notify() did already call it.
1385 mmu_notifier_invalidate_range_only_end(&range
);
1389 spin_unlock(vmf
->ptl
);
1394 * FOLL_FORCE can write to even unwritable pmd's, but only
1395 * after we've gone through a COW cycle and they are dirty.
1397 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1399 return pmd_write(pmd
) ||
1400 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1403 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1408 struct mm_struct
*mm
= vma
->vm_mm
;
1409 struct page
*page
= NULL
;
1411 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1413 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1416 /* Avoid dumping huge zero page */
1417 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1418 return ERR_PTR(-EFAULT
);
1420 /* Full NUMA hinting faults to serialise migration in fault paths */
1421 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1424 page
= pmd_page(*pmd
);
1425 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1426 if (flags
& FOLL_TOUCH
)
1427 touch_pmd(vma
, addr
, pmd
, flags
);
1428 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1430 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 * leaking mlocked pages into non-VM_LOCKED VMAs.
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
1445 * We can expect PageDoubleMap() to be stable under page lock:
1446 * for file pages we set it in page_add_file_rmap(), which
1447 * requires page to be locked.
1450 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1452 if (PageDoubleMap(page
) || !page
->mapping
)
1454 if (!trylock_page(page
))
1457 if (page
->mapping
&& !PageDoubleMap(page
))
1458 mlock_vma_page(page
);
1462 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1463 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1464 if (flags
& FOLL_GET
)
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1474 struct vm_area_struct
*vma
= vmf
->vma
;
1475 struct anon_vma
*anon_vma
= NULL
;
1477 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1478 int page_nid
= -1, this_nid
= numa_node_id();
1479 int target_nid
, last_cpupid
= -1;
1481 bool migrated
= false;
1485 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1486 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1490 * If there are potential migrations, wait for completion and retry
1491 * without disrupting NUMA hinting information. Do not relock and
1492 * check_same as the page may no longer be mapped.
1494 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1495 page
= pmd_page(*vmf
->pmd
);
1496 if (!get_page_unless_zero(page
))
1498 spin_unlock(vmf
->ptl
);
1499 put_and_wait_on_page_locked(page
);
1503 page
= pmd_page(pmd
);
1504 BUG_ON(is_huge_zero_page(page
));
1505 page_nid
= page_to_nid(page
);
1506 last_cpupid
= page_cpupid_last(page
);
1507 count_vm_numa_event(NUMA_HINT_FAULTS
);
1508 if (page_nid
== this_nid
) {
1509 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1510 flags
|= TNF_FAULT_LOCAL
;
1513 /* See similar comment in do_numa_page for explanation */
1514 if (!pmd_savedwrite(pmd
))
1515 flags
|= TNF_NO_GROUP
;
1518 * Acquire the page lock to serialise THP migrations but avoid dropping
1519 * page_table_lock if at all possible
1521 page_locked
= trylock_page(page
);
1522 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1523 if (target_nid
== -1) {
1524 /* If the page was locked, there are no parallel migrations */
1529 /* Migration could have started since the pmd_trans_migrating check */
1532 if (!get_page_unless_zero(page
))
1534 spin_unlock(vmf
->ptl
);
1535 put_and_wait_on_page_locked(page
);
1540 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1541 * to serialises splits
1544 spin_unlock(vmf
->ptl
);
1545 anon_vma
= page_lock_anon_vma_read(page
);
1547 /* Confirm the PMD did not change while page_table_lock was released */
1548 spin_lock(vmf
->ptl
);
1549 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1556 /* Bail if we fail to protect against THP splits for any reason */
1557 if (unlikely(!anon_vma
)) {
1564 * Since we took the NUMA fault, we must have observed the !accessible
1565 * bit. Make sure all other CPUs agree with that, to avoid them
1566 * modifying the page we're about to migrate.
1568 * Must be done under PTL such that we'll observe the relevant
1569 * inc_tlb_flush_pending().
1571 * We are not sure a pending tlb flush here is for a huge page
1572 * mapping or not. Hence use the tlb range variant
1574 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1575 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1577 * change_huge_pmd() released the pmd lock before
1578 * invalidating the secondary MMUs sharing the primary
1579 * MMU pagetables (with ->invalidate_range()). The
1580 * mmu_notifier_invalidate_range_end() (which
1581 * internally calls ->invalidate_range()) in
1582 * change_pmd_range() will run after us, so we can't
1583 * rely on it here and we need an explicit invalidate.
1585 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1586 haddr
+ HPAGE_PMD_SIZE
);
1590 * Migrate the THP to the requested node, returns with page unlocked
1591 * and access rights restored.
1593 spin_unlock(vmf
->ptl
);
1595 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1596 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1598 flags
|= TNF_MIGRATED
;
1599 page_nid
= target_nid
;
1601 flags
|= TNF_MIGRATE_FAIL
;
1605 BUG_ON(!PageLocked(page
));
1606 was_writable
= pmd_savedwrite(pmd
);
1607 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1608 pmd
= pmd_mkyoung(pmd
);
1610 pmd
= pmd_mkwrite(pmd
);
1611 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1612 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1615 spin_unlock(vmf
->ptl
);
1619 page_unlock_anon_vma_read(anon_vma
);
1622 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1629 * Return true if we do MADV_FREE successfully on entire pmd page.
1630 * Otherwise, return false.
1632 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1633 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1638 struct mm_struct
*mm
= tlb
->mm
;
1641 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1643 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1648 if (is_huge_zero_pmd(orig_pmd
))
1651 if (unlikely(!pmd_present(orig_pmd
))) {
1652 VM_BUG_ON(thp_migration_supported() &&
1653 !is_pmd_migration_entry(orig_pmd
));
1657 page
= pmd_page(orig_pmd
);
1659 * If other processes are mapping this page, we couldn't discard
1660 * the page unless they all do MADV_FREE so let's skip the page.
1662 if (page_mapcount(page
) != 1)
1665 if (!trylock_page(page
))
1669 * If user want to discard part-pages of THP, split it so MADV_FREE
1670 * will deactivate only them.
1672 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1675 split_huge_page(page
);
1681 if (PageDirty(page
))
1682 ClearPageDirty(page
);
1685 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1686 pmdp_invalidate(vma
, addr
, pmd
);
1687 orig_pmd
= pmd_mkold(orig_pmd
);
1688 orig_pmd
= pmd_mkclean(orig_pmd
);
1690 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1691 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1694 mark_page_lazyfree(page
);
1702 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1706 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1707 pte_free(mm
, pgtable
);
1711 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1712 pmd_t
*pmd
, unsigned long addr
)
1717 tlb_remove_check_page_size_change(tlb
, HPAGE_PMD_SIZE
);
1719 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1723 * For architectures like ppc64 we look at deposited pgtable
1724 * when calling pmdp_huge_get_and_clear. So do the
1725 * pgtable_trans_huge_withdraw after finishing pmdp related
1728 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1730 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1731 if (vma_is_dax(vma
)) {
1732 if (arch_needs_pgtable_deposit())
1733 zap_deposited_table(tlb
->mm
, pmd
);
1735 if (is_huge_zero_pmd(orig_pmd
))
1736 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1737 } else if (is_huge_zero_pmd(orig_pmd
)) {
1738 zap_deposited_table(tlb
->mm
, pmd
);
1740 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1742 struct page
*page
= NULL
;
1743 int flush_needed
= 1;
1745 if (pmd_present(orig_pmd
)) {
1746 page
= pmd_page(orig_pmd
);
1747 page_remove_rmap(page
, true);
1748 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1749 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1750 } else if (thp_migration_supported()) {
1753 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1754 entry
= pmd_to_swp_entry(orig_pmd
);
1755 page
= pfn_to_page(swp_offset(entry
));
1758 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1760 if (PageAnon(page
)) {
1761 zap_deposited_table(tlb
->mm
, pmd
);
1762 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1764 if (arch_needs_pgtable_deposit())
1765 zap_deposited_table(tlb
->mm
, pmd
);
1766 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1771 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1776 #ifndef pmd_move_must_withdraw
1777 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1778 spinlock_t
*old_pmd_ptl
,
1779 struct vm_area_struct
*vma
)
1782 * With split pmd lock we also need to move preallocated
1783 * PTE page table if new_pmd is on different PMD page table.
1785 * We also don't deposit and withdraw tables for file pages.
1787 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1791 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1793 #ifdef CONFIG_MEM_SOFT_DIRTY
1794 if (unlikely(is_pmd_migration_entry(pmd
)))
1795 pmd
= pmd_swp_mksoft_dirty(pmd
);
1796 else if (pmd_present(pmd
))
1797 pmd
= pmd_mksoft_dirty(pmd
);
1802 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1803 unsigned long new_addr
, unsigned long old_end
,
1804 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1806 spinlock_t
*old_ptl
, *new_ptl
;
1808 struct mm_struct
*mm
= vma
->vm_mm
;
1809 bool force_flush
= false;
1811 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1812 (new_addr
& ~HPAGE_PMD_MASK
) ||
1813 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1817 * The destination pmd shouldn't be established, free_pgtables()
1818 * should have release it.
1820 if (WARN_ON(!pmd_none(*new_pmd
))) {
1821 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1826 * We don't have to worry about the ordering of src and dst
1827 * ptlocks because exclusive mmap_sem prevents deadlock.
1829 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1831 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1832 if (new_ptl
!= old_ptl
)
1833 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1834 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1835 if (pmd_present(pmd
))
1837 VM_BUG_ON(!pmd_none(*new_pmd
));
1839 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1841 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1842 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1844 pmd
= move_soft_dirty_pmd(pmd
);
1845 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1847 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1848 if (new_ptl
!= old_ptl
)
1849 spin_unlock(new_ptl
);
1850 spin_unlock(old_ptl
);
1858 * - 0 if PMD could not be locked
1859 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1860 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1862 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1863 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1865 struct mm_struct
*mm
= vma
->vm_mm
;
1868 bool preserve_write
;
1871 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1875 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1878 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1879 if (is_swap_pmd(*pmd
)) {
1880 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1882 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1883 if (is_write_migration_entry(entry
)) {
1886 * A protection check is difficult so
1887 * just be safe and disable write
1889 make_migration_entry_read(&entry
);
1890 newpmd
= swp_entry_to_pmd(entry
);
1891 if (pmd_swp_soft_dirty(*pmd
))
1892 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1893 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1900 * Avoid trapping faults against the zero page. The read-only
1901 * data is likely to be read-cached on the local CPU and
1902 * local/remote hits to the zero page are not interesting.
1904 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1907 if (prot_numa
&& pmd_protnone(*pmd
))
1911 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1912 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1913 * which is also under down_read(mmap_sem):
1916 * change_huge_pmd(prot_numa=1)
1917 * pmdp_huge_get_and_clear_notify()
1918 * madvise_dontneed()
1920 * pmd_trans_huge(*pmd) == 0 (without ptl)
1923 * // pmd is re-established
1925 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1926 * which may break userspace.
1928 * pmdp_invalidate() is required to make sure we don't miss
1929 * dirty/young flags set by hardware.
1931 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1933 entry
= pmd_modify(entry
, newprot
);
1935 entry
= pmd_mk_savedwrite(entry
);
1937 set_pmd_at(mm
, addr
, pmd
, entry
);
1938 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1945 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1947 * Note that if it returns page table lock pointer, this routine returns without
1948 * unlocking page table lock. So callers must unlock it.
1950 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1953 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1954 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
1962 * Returns true if a given pud maps a thp, false otherwise.
1964 * Note that if it returns true, this routine returns without unlocking page
1965 * table lock. So callers must unlock it.
1967 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
1971 ptl
= pud_lock(vma
->vm_mm
, pud
);
1972 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
1978 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1979 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1980 pud_t
*pud
, unsigned long addr
)
1985 ptl
= __pud_trans_huge_lock(pud
, vma
);
1989 * For architectures like ppc64 we look at deposited pgtable
1990 * when calling pudp_huge_get_and_clear. So do the
1991 * pgtable_trans_huge_withdraw after finishing pudp related
1994 orig_pud
= pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
,
1996 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
1997 if (vma_is_dax(vma
)) {
1999 /* No zero page support yet */
2001 /* No support for anonymous PUD pages yet */
2007 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2008 unsigned long haddr
)
2010 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2011 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2012 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2013 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2015 count_vm_event(THP_SPLIT_PUD
);
2017 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2020 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2021 unsigned long address
)
2024 struct mmu_notifier_range range
;
2026 mmu_notifier_range_init(&range
, vma
->vm_mm
, address
& HPAGE_PUD_MASK
,
2027 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2028 mmu_notifier_invalidate_range_start(&range
);
2029 ptl
= pud_lock(vma
->vm_mm
, pud
);
2030 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2032 __split_huge_pud_locked(vma
, pud
, range
.start
);
2037 * No need to double call mmu_notifier->invalidate_range() callback as
2038 * the above pudp_huge_clear_flush_notify() did already call it.
2040 mmu_notifier_invalidate_range_only_end(&range
);
2042 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2044 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2045 unsigned long haddr
, pmd_t
*pmd
)
2047 struct mm_struct
*mm
= vma
->vm_mm
;
2053 * Leave pmd empty until pte is filled note that it is fine to delay
2054 * notification until mmu_notifier_invalidate_range_end() as we are
2055 * replacing a zero pmd write protected page with a zero pte write
2058 * See Documentation/vm/mmu_notifier.rst
2060 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2062 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2063 pmd_populate(mm
, &_pmd
, pgtable
);
2065 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2067 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2068 entry
= pte_mkspecial(entry
);
2069 pte
= pte_offset_map(&_pmd
, haddr
);
2070 VM_BUG_ON(!pte_none(*pte
));
2071 set_pte_at(mm
, haddr
, pte
, entry
);
2074 smp_wmb(); /* make pte visible before pmd */
2075 pmd_populate(mm
, pmd
, pgtable
);
2078 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2079 unsigned long haddr
, bool freeze
)
2081 struct mm_struct
*mm
= vma
->vm_mm
;
2084 pmd_t old_pmd
, _pmd
;
2085 bool young
, write
, soft_dirty
, pmd_migration
= false;
2089 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2090 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2091 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2092 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2093 && !pmd_devmap(*pmd
));
2095 count_vm_event(THP_SPLIT_PMD
);
2097 if (!vma_is_anonymous(vma
)) {
2098 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2100 * We are going to unmap this huge page. So
2101 * just go ahead and zap it
2103 if (arch_needs_pgtable_deposit())
2104 zap_deposited_table(mm
, pmd
);
2105 if (vma_is_dax(vma
))
2107 page
= pmd_page(_pmd
);
2108 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2109 set_page_dirty(page
);
2110 if (!PageReferenced(page
) && pmd_young(_pmd
))
2111 SetPageReferenced(page
);
2112 page_remove_rmap(page
, true);
2114 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2116 } else if (is_huge_zero_pmd(*pmd
)) {
2118 * FIXME: Do we want to invalidate secondary mmu by calling
2119 * mmu_notifier_invalidate_range() see comments below inside
2120 * __split_huge_pmd() ?
2122 * We are going from a zero huge page write protected to zero
2123 * small page also write protected so it does not seems useful
2124 * to invalidate secondary mmu at this time.
2126 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2130 * Up to this point the pmd is present and huge and userland has the
2131 * whole access to the hugepage during the split (which happens in
2132 * place). If we overwrite the pmd with the not-huge version pointing
2133 * to the pte here (which of course we could if all CPUs were bug
2134 * free), userland could trigger a small page size TLB miss on the
2135 * small sized TLB while the hugepage TLB entry is still established in
2136 * the huge TLB. Some CPU doesn't like that.
2137 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2138 * 383 on page 93. Intel should be safe but is also warns that it's
2139 * only safe if the permission and cache attributes of the two entries
2140 * loaded in the two TLB is identical (which should be the case here).
2141 * But it is generally safer to never allow small and huge TLB entries
2142 * for the same virtual address to be loaded simultaneously. So instead
2143 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2144 * current pmd notpresent (atomically because here the pmd_trans_huge
2145 * must remain set at all times on the pmd until the split is complete
2146 * for this pmd), then we flush the SMP TLB and finally we write the
2147 * non-huge version of the pmd entry with pmd_populate.
2149 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2151 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2152 if (unlikely(pmd_migration
)) {
2155 entry
= pmd_to_swp_entry(old_pmd
);
2156 page
= pfn_to_page(swp_offset(entry
));
2157 write
= is_write_migration_entry(entry
);
2159 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2161 page
= pmd_page(old_pmd
);
2162 if (pmd_dirty(old_pmd
))
2164 write
= pmd_write(old_pmd
);
2165 young
= pmd_young(old_pmd
);
2166 soft_dirty
= pmd_soft_dirty(old_pmd
);
2168 VM_BUG_ON_PAGE(!page_count(page
), page
);
2169 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2172 * Withdraw the table only after we mark the pmd entry invalid.
2173 * This's critical for some architectures (Power).
2175 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2176 pmd_populate(mm
, &_pmd
, pgtable
);
2178 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2181 * Note that NUMA hinting access restrictions are not
2182 * transferred to avoid any possibility of altering
2183 * permissions across VMAs.
2185 if (freeze
|| pmd_migration
) {
2186 swp_entry_t swp_entry
;
2187 swp_entry
= make_migration_entry(page
+ i
, write
);
2188 entry
= swp_entry_to_pte(swp_entry
);
2190 entry
= pte_swp_mksoft_dirty(entry
);
2192 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2193 entry
= maybe_mkwrite(entry
, vma
);
2195 entry
= pte_wrprotect(entry
);
2197 entry
= pte_mkold(entry
);
2199 entry
= pte_mksoft_dirty(entry
);
2201 pte
= pte_offset_map(&_pmd
, addr
);
2202 BUG_ON(!pte_none(*pte
));
2203 set_pte_at(mm
, addr
, pte
, entry
);
2204 atomic_inc(&page
[i
]._mapcount
);
2209 * Set PG_double_map before dropping compound_mapcount to avoid
2210 * false-negative page_mapped().
2212 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2213 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2214 atomic_inc(&page
[i
]._mapcount
);
2217 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2218 /* Last compound_mapcount is gone. */
2219 __dec_node_page_state(page
, NR_ANON_THPS
);
2220 if (TestClearPageDoubleMap(page
)) {
2221 /* No need in mapcount reference anymore */
2222 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2223 atomic_dec(&page
[i
]._mapcount
);
2227 smp_wmb(); /* make pte visible before pmd */
2228 pmd_populate(mm
, pmd
, pgtable
);
2231 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2232 page_remove_rmap(page
+ i
, false);
2238 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2239 unsigned long address
, bool freeze
, struct page
*page
)
2242 struct mmu_notifier_range range
;
2244 mmu_notifier_range_init(&range
, vma
->vm_mm
, address
& HPAGE_PMD_MASK
,
2245 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2246 mmu_notifier_invalidate_range_start(&range
);
2247 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2250 * If caller asks to setup a migration entries, we need a page to check
2251 * pmd against. Otherwise we can end up replacing wrong page.
2253 VM_BUG_ON(freeze
&& !page
);
2254 if (page
&& page
!= pmd_page(*pmd
))
2257 if (pmd_trans_huge(*pmd
)) {
2258 page
= pmd_page(*pmd
);
2259 if (PageMlocked(page
))
2260 clear_page_mlock(page
);
2261 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2263 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2267 * No need to double call mmu_notifier->invalidate_range() callback.
2268 * They are 3 cases to consider inside __split_huge_pmd_locked():
2269 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2270 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2271 * fault will trigger a flush_notify before pointing to a new page
2272 * (it is fine if the secondary mmu keeps pointing to the old zero
2273 * page in the meantime)
2274 * 3) Split a huge pmd into pte pointing to the same page. No need
2275 * to invalidate secondary tlb entry they are all still valid.
2276 * any further changes to individual pte will notify. So no need
2277 * to call mmu_notifier->invalidate_range()
2279 mmu_notifier_invalidate_range_only_end(&range
);
2282 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2283 bool freeze
, struct page
*page
)
2290 pgd
= pgd_offset(vma
->vm_mm
, address
);
2291 if (!pgd_present(*pgd
))
2294 p4d
= p4d_offset(pgd
, address
);
2295 if (!p4d_present(*p4d
))
2298 pud
= pud_offset(p4d
, address
);
2299 if (!pud_present(*pud
))
2302 pmd
= pmd_offset(pud
, address
);
2304 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2307 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2308 unsigned long start
,
2313 * If the new start address isn't hpage aligned and it could
2314 * previously contain an hugepage: check if we need to split
2317 if (start
& ~HPAGE_PMD_MASK
&&
2318 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2319 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2320 split_huge_pmd_address(vma
, start
, false, NULL
);
2323 * If the new end address isn't hpage aligned and it could
2324 * previously contain an hugepage: check if we need to split
2327 if (end
& ~HPAGE_PMD_MASK
&&
2328 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2329 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2330 split_huge_pmd_address(vma
, end
, false, NULL
);
2333 * If we're also updating the vma->vm_next->vm_start, if the new
2334 * vm_next->vm_start isn't page aligned and it could previously
2335 * contain an hugepage: check if we need to split an huge pmd.
2337 if (adjust_next
> 0) {
2338 struct vm_area_struct
*next
= vma
->vm_next
;
2339 unsigned long nstart
= next
->vm_start
;
2340 nstart
+= adjust_next
<< PAGE_SHIFT
;
2341 if (nstart
& ~HPAGE_PMD_MASK
&&
2342 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2343 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2344 split_huge_pmd_address(next
, nstart
, false, NULL
);
2348 static void unmap_page(struct page
*page
)
2350 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2351 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2354 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2357 ttu_flags
|= TTU_SPLIT_FREEZE
;
2359 unmap_success
= try_to_unmap(page
, ttu_flags
);
2360 VM_BUG_ON_PAGE(!unmap_success
, page
);
2363 static void remap_page(struct page
*page
)
2366 if (PageTransHuge(page
)) {
2367 remove_migration_ptes(page
, page
, true);
2369 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2370 remove_migration_ptes(page
+ i
, page
+ i
, true);
2374 static void __split_huge_page_tail(struct page
*head
, int tail
,
2375 struct lruvec
*lruvec
, struct list_head
*list
)
2377 struct page
*page_tail
= head
+ tail
;
2379 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2382 * Clone page flags before unfreezing refcount.
2384 * After successful get_page_unless_zero() might follow flags change,
2385 * for exmaple lock_page() which set PG_waiters.
2387 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2388 page_tail
->flags
|= (head
->flags
&
2389 ((1L << PG_referenced
) |
2390 (1L << PG_swapbacked
) |
2391 (1L << PG_swapcache
) |
2392 (1L << PG_mlocked
) |
2393 (1L << PG_uptodate
) |
2395 (1L << PG_workingset
) |
2397 (1L << PG_unevictable
) |
2400 /* ->mapping in first tail page is compound_mapcount */
2401 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2403 page_tail
->mapping
= head
->mapping
;
2404 page_tail
->index
= head
->index
+ tail
;
2406 /* Page flags must be visible before we make the page non-compound. */
2410 * Clear PageTail before unfreezing page refcount.
2412 * After successful get_page_unless_zero() might follow put_page()
2413 * which needs correct compound_head().
2415 clear_compound_head(page_tail
);
2417 /* Finally unfreeze refcount. Additional reference from page cache. */
2418 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2419 PageSwapCache(head
)));
2421 if (page_is_young(head
))
2422 set_page_young(page_tail
);
2423 if (page_is_idle(head
))
2424 set_page_idle(page_tail
);
2426 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2429 * always add to the tail because some iterators expect new
2430 * pages to show after the currently processed elements - e.g.
2433 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2436 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2437 pgoff_t end
, unsigned long flags
)
2439 struct page
*head
= compound_head(page
);
2440 struct zone
*zone
= page_zone(head
);
2441 struct lruvec
*lruvec
;
2444 lruvec
= mem_cgroup_page_lruvec(head
, zone
->zone_pgdat
);
2446 /* complete memcg works before add pages to LRU */
2447 mem_cgroup_split_huge_fixup(head
);
2449 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2450 __split_huge_page_tail(head
, i
, lruvec
, list
);
2451 /* Some pages can be beyond i_size: drop them from page cache */
2452 if (head
[i
].index
>= end
) {
2453 ClearPageDirty(head
+ i
);
2454 __delete_from_page_cache(head
+ i
, NULL
);
2455 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2456 shmem_uncharge(head
->mapping
->host
, 1);
2461 ClearPageCompound(head
);
2462 /* See comment in __split_huge_page_tail() */
2463 if (PageAnon(head
)) {
2464 /* Additional pin to swap cache */
2465 if (PageSwapCache(head
))
2466 page_ref_add(head
, 2);
2470 /* Additional pin to page cache */
2471 page_ref_add(head
, 2);
2472 xa_unlock(&head
->mapping
->i_pages
);
2475 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2479 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2480 struct page
*subpage
= head
+ i
;
2481 if (subpage
== page
)
2483 unlock_page(subpage
);
2486 * Subpages may be freed if there wasn't any mapping
2487 * like if add_to_swap() is running on a lru page that
2488 * had its mapping zapped. And freeing these pages
2489 * requires taking the lru_lock so we do the put_page
2490 * of the tail pages after the split is complete.
2496 int total_mapcount(struct page
*page
)
2498 int i
, compound
, ret
;
2500 VM_BUG_ON_PAGE(PageTail(page
), page
);
2502 if (likely(!PageCompound(page
)))
2503 return atomic_read(&page
->_mapcount
) + 1;
2505 compound
= compound_mapcount(page
);
2509 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2510 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2511 /* File pages has compound_mapcount included in _mapcount */
2512 if (!PageAnon(page
))
2513 return ret
- compound
* HPAGE_PMD_NR
;
2514 if (PageDoubleMap(page
))
2515 ret
-= HPAGE_PMD_NR
;
2520 * This calculates accurately how many mappings a transparent hugepage
2521 * has (unlike page_mapcount() which isn't fully accurate). This full
2522 * accuracy is primarily needed to know if copy-on-write faults can
2523 * reuse the page and change the mapping to read-write instead of
2524 * copying them. At the same time this returns the total_mapcount too.
2526 * The function returns the highest mapcount any one of the subpages
2527 * has. If the return value is one, even if different processes are
2528 * mapping different subpages of the transparent hugepage, they can
2529 * all reuse it, because each process is reusing a different subpage.
2531 * The total_mapcount is instead counting all virtual mappings of the
2532 * subpages. If the total_mapcount is equal to "one", it tells the
2533 * caller all mappings belong to the same "mm" and in turn the
2534 * anon_vma of the transparent hugepage can become the vma->anon_vma
2535 * local one as no other process may be mapping any of the subpages.
2537 * It would be more accurate to replace page_mapcount() with
2538 * page_trans_huge_mapcount(), however we only use
2539 * page_trans_huge_mapcount() in the copy-on-write faults where we
2540 * need full accuracy to avoid breaking page pinning, because
2541 * page_trans_huge_mapcount() is slower than page_mapcount().
2543 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2545 int i
, ret
, _total_mapcount
, mapcount
;
2547 /* hugetlbfs shouldn't call it */
2548 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2550 if (likely(!PageTransCompound(page
))) {
2551 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2553 *total_mapcount
= mapcount
;
2557 page
= compound_head(page
);
2559 _total_mapcount
= ret
= 0;
2560 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2561 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2562 ret
= max(ret
, mapcount
);
2563 _total_mapcount
+= mapcount
;
2565 if (PageDoubleMap(page
)) {
2567 _total_mapcount
-= HPAGE_PMD_NR
;
2569 mapcount
= compound_mapcount(page
);
2571 _total_mapcount
+= mapcount
;
2573 *total_mapcount
= _total_mapcount
;
2577 /* Racy check whether the huge page can be split */
2578 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2582 /* Additional pins from page cache */
2584 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2586 extra_pins
= HPAGE_PMD_NR
;
2588 *pextra_pins
= extra_pins
;
2589 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2593 * This function splits huge page into normal pages. @page can point to any
2594 * subpage of huge page to split. Split doesn't change the position of @page.
2596 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597 * The huge page must be locked.
2599 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601 * Both head page and tail pages will inherit mapping, flags, and so on from
2604 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605 * they are not mapped.
2607 * Returns 0 if the hugepage is split successfully.
2608 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2611 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2613 struct page
*head
= compound_head(page
);
2614 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2615 struct anon_vma
*anon_vma
= NULL
;
2616 struct address_space
*mapping
= NULL
;
2617 int count
, mapcount
, extra_pins
, ret
;
2619 unsigned long flags
;
2622 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2623 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2624 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2626 if (PageWriteback(page
))
2629 if (PageAnon(head
)) {
2631 * The caller does not necessarily hold an mmap_sem that would
2632 * prevent the anon_vma disappearing so we first we take a
2633 * reference to it and then lock the anon_vma for write. This
2634 * is similar to page_lock_anon_vma_read except the write lock
2635 * is taken to serialise against parallel split or collapse
2638 anon_vma
= page_get_anon_vma(head
);
2645 anon_vma_lock_write(anon_vma
);
2647 mapping
= head
->mapping
;
2656 i_mmap_lock_read(mapping
);
2659 *__split_huge_page() may need to trim off pages beyond EOF:
2660 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2661 * which cannot be nested inside the page tree lock. So note
2662 * end now: i_size itself may be changed at any moment, but
2663 * head page lock is good enough to serialize the trimming.
2665 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2669 * Racy check if we can split the page, before unmap_page() will
2672 if (!can_split_huge_page(head
, &extra_pins
)) {
2677 mlocked
= PageMlocked(page
);
2679 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2681 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2685 /* prevent PageLRU to go away from under us, and freeze lru stats */
2686 spin_lock_irqsave(zone_lru_lock(page_zone(head
)), flags
);
2689 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2692 * Check if the head page is present in page cache.
2693 * We assume all tail are present too, if head is there.
2695 xa_lock(&mapping
->i_pages
);
2696 if (xas_load(&xas
) != head
)
2700 /* Prevent deferred_split_scan() touching ->_refcount */
2701 spin_lock(&pgdata
->split_queue_lock
);
2702 count
= page_count(head
);
2703 mapcount
= total_mapcount(head
);
2704 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2705 if (!list_empty(page_deferred_list(head
))) {
2706 pgdata
->split_queue_len
--;
2707 list_del(page_deferred_list(head
));
2710 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2711 spin_unlock(&pgdata
->split_queue_lock
);
2712 __split_huge_page(page
, list
, end
, flags
);
2713 if (PageSwapCache(head
)) {
2714 swp_entry_t entry
= { .val
= page_private(head
) };
2716 ret
= split_swap_cluster(entry
);
2720 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2721 pr_alert("total_mapcount: %u, page_count(): %u\n",
2724 dump_page(head
, NULL
);
2725 dump_page(page
, "total_mapcount(head) > 0");
2728 spin_unlock(&pgdata
->split_queue_lock
);
2730 xa_unlock(&mapping
->i_pages
);
2731 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2738 anon_vma_unlock_write(anon_vma
);
2739 put_anon_vma(anon_vma
);
2742 i_mmap_unlock_read(mapping
);
2744 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2748 void free_transhuge_page(struct page
*page
)
2750 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2751 unsigned long flags
;
2753 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2754 if (!list_empty(page_deferred_list(page
))) {
2755 pgdata
->split_queue_len
--;
2756 list_del(page_deferred_list(page
));
2758 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2759 free_compound_page(page
);
2762 void deferred_split_huge_page(struct page
*page
)
2764 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2765 unsigned long flags
;
2767 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2769 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2770 if (list_empty(page_deferred_list(page
))) {
2771 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2772 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2773 pgdata
->split_queue_len
++;
2775 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2778 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2779 struct shrink_control
*sc
)
2781 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2782 return READ_ONCE(pgdata
->split_queue_len
);
2785 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2786 struct shrink_control
*sc
)
2788 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2789 unsigned long flags
;
2790 LIST_HEAD(list
), *pos
, *next
;
2794 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2795 /* Take pin on all head pages to avoid freeing them under us */
2796 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2797 page
= list_entry((void *)pos
, struct page
, mapping
);
2798 page
= compound_head(page
);
2799 if (get_page_unless_zero(page
)) {
2800 list_move(page_deferred_list(page
), &list
);
2802 /* We lost race with put_compound_page() */
2803 list_del_init(page_deferred_list(page
));
2804 pgdata
->split_queue_len
--;
2806 if (!--sc
->nr_to_scan
)
2809 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2811 list_for_each_safe(pos
, next
, &list
) {
2812 page
= list_entry((void *)pos
, struct page
, mapping
);
2813 if (!trylock_page(page
))
2815 /* split_huge_page() removes page from list on success */
2816 if (!split_huge_page(page
))
2823 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2824 list_splice_tail(&list
, &pgdata
->split_queue
);
2825 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2828 * Stop shrinker if we didn't split any page, but the queue is empty.
2829 * This can happen if pages were freed under us.
2831 if (!split
&& list_empty(&pgdata
->split_queue
))
2836 static struct shrinker deferred_split_shrinker
= {
2837 .count_objects
= deferred_split_count
,
2838 .scan_objects
= deferred_split_scan
,
2839 .seeks
= DEFAULT_SEEKS
,
2840 .flags
= SHRINKER_NUMA_AWARE
,
2843 #ifdef CONFIG_DEBUG_FS
2844 static int split_huge_pages_set(void *data
, u64 val
)
2848 unsigned long pfn
, max_zone_pfn
;
2849 unsigned long total
= 0, split
= 0;
2854 for_each_populated_zone(zone
) {
2855 max_zone_pfn
= zone_end_pfn(zone
);
2856 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2857 if (!pfn_valid(pfn
))
2860 page
= pfn_to_page(pfn
);
2861 if (!get_page_unless_zero(page
))
2864 if (zone
!= page_zone(page
))
2867 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2872 if (!split_huge_page(page
))
2880 pr_info("%lu of %lu THP split\n", split
, total
);
2884 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2887 static int __init
split_huge_pages_debugfs(void)
2891 ret
= debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2892 &split_huge_pages_fops
);
2894 pr_warn("Failed to create split_huge_pages in debugfs");
2897 late_initcall(split_huge_pages_debugfs
);
2900 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2901 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2904 struct vm_area_struct
*vma
= pvmw
->vma
;
2905 struct mm_struct
*mm
= vma
->vm_mm
;
2906 unsigned long address
= pvmw
->address
;
2911 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2914 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2915 pmdval
= *pvmw
->pmd
;
2916 pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2917 if (pmd_dirty(pmdval
))
2918 set_page_dirty(page
);
2919 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2920 pmdswp
= swp_entry_to_pmd(entry
);
2921 if (pmd_soft_dirty(pmdval
))
2922 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2923 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2924 page_remove_rmap(page
, true);
2928 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2930 struct vm_area_struct
*vma
= pvmw
->vma
;
2931 struct mm_struct
*mm
= vma
->vm_mm
;
2932 unsigned long address
= pvmw
->address
;
2933 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2937 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2940 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
2942 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
2943 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
2944 pmde
= pmd_mksoft_dirty(pmde
);
2945 if (is_write_migration_entry(entry
))
2946 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
2948 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
2950 page_add_anon_rmap(new, vma
, mmun_start
, true);
2952 page_add_file_rmap(new, true);
2953 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
2954 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
2955 mlock_vma_page(new);
2956 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);