4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr
;
90 EXPORT_SYMBOL(max_mapnr
);
93 EXPORT_SYMBOL(mem_map
);
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 EXPORT_SYMBOL(high_memory
);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly
=
113 #ifdef CONFIG_COMPAT_BRK
119 static int __init
disable_randmaps(char *s
)
121 randomize_va_space
= 0;
124 __setup("norandmaps", disable_randmaps
);
126 unsigned long zero_pfn __read_mostly
;
127 EXPORT_SYMBOL(zero_pfn
);
129 unsigned long highest_memmap_pfn __read_mostly
;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init
init_zero_pfn(void)
136 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
139 core_initcall(init_zero_pfn
);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct
*mm
)
148 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
149 if (current
->rss_stat
.count
[i
]) {
150 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
151 current
->rss_stat
.count
[i
] = 0;
154 current
->rss_stat
.events
= 0;
157 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
159 struct task_struct
*task
= current
;
161 if (likely(task
->mm
== mm
))
162 task
->rss_stat
.count
[member
] += val
;
164 add_mm_counter(mm
, member
, val
);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct
*task
)
173 if (unlikely(task
!= current
))
175 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
176 sync_mm_rss(task
->mm
);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct
*task
)
187 #endif /* SPLIT_RSS_COUNTING */
190 * Note: this doesn't free the actual pages themselves. That
191 * has been handled earlier when unmapping all the memory regions.
193 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
196 pgtable_t token
= pmd_pgtable(*pmd
);
198 pte_free_tlb(tlb
, token
, addr
);
199 mm_dec_nr_ptes(tlb
->mm
);
202 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
203 unsigned long addr
, unsigned long end
,
204 unsigned long floor
, unsigned long ceiling
)
211 pmd
= pmd_offset(pud
, addr
);
213 next
= pmd_addr_end(addr
, end
);
214 if (pmd_none_or_clear_bad(pmd
))
216 free_pte_range(tlb
, pmd
, addr
);
217 } while (pmd
++, addr
= next
, addr
!= end
);
227 if (end
- 1 > ceiling
- 1)
230 pmd
= pmd_offset(pud
, start
);
232 pmd_free_tlb(tlb
, pmd
, start
);
233 mm_dec_nr_pmds(tlb
->mm
);
236 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
237 unsigned long addr
, unsigned long end
,
238 unsigned long floor
, unsigned long ceiling
)
245 pud
= pud_offset(p4d
, addr
);
247 next
= pud_addr_end(addr
, end
);
248 if (pud_none_or_clear_bad(pud
))
250 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
251 } while (pud
++, addr
= next
, addr
!= end
);
261 if (end
- 1 > ceiling
- 1)
264 pud
= pud_offset(p4d
, start
);
266 pud_free_tlb(tlb
, pud
, start
);
267 mm_dec_nr_puds(tlb
->mm
);
270 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
271 unsigned long addr
, unsigned long end
,
272 unsigned long floor
, unsigned long ceiling
)
279 p4d
= p4d_offset(pgd
, addr
);
281 next
= p4d_addr_end(addr
, end
);
282 if (p4d_none_or_clear_bad(p4d
))
284 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
285 } while (p4d
++, addr
= next
, addr
!= end
);
291 ceiling
&= PGDIR_MASK
;
295 if (end
- 1 > ceiling
- 1)
298 p4d
= p4d_offset(pgd
, start
);
300 p4d_free_tlb(tlb
, p4d
, start
);
304 * This function frees user-level page tables of a process.
306 void free_pgd_range(struct mmu_gather
*tlb
,
307 unsigned long addr
, unsigned long end
,
308 unsigned long floor
, unsigned long ceiling
)
314 * The next few lines have given us lots of grief...
316 * Why are we testing PMD* at this top level? Because often
317 * there will be no work to do at all, and we'd prefer not to
318 * go all the way down to the bottom just to discover that.
320 * Why all these "- 1"s? Because 0 represents both the bottom
321 * of the address space and the top of it (using -1 for the
322 * top wouldn't help much: the masks would do the wrong thing).
323 * The rule is that addr 0 and floor 0 refer to the bottom of
324 * the address space, but end 0 and ceiling 0 refer to the top
325 * Comparisons need to use "end - 1" and "ceiling - 1" (though
326 * that end 0 case should be mythical).
328 * Wherever addr is brought up or ceiling brought down, we must
329 * be careful to reject "the opposite 0" before it confuses the
330 * subsequent tests. But what about where end is brought down
331 * by PMD_SIZE below? no, end can't go down to 0 there.
333 * Whereas we round start (addr) and ceiling down, by different
334 * masks at different levels, in order to test whether a table
335 * now has no other vmas using it, so can be freed, we don't
336 * bother to round floor or end up - the tests don't need that.
350 if (end
- 1 > ceiling
- 1)
355 * We add page table cache pages with PAGE_SIZE,
356 * (see pte_free_tlb()), flush the tlb if we need
358 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
359 pgd
= pgd_offset(tlb
->mm
, addr
);
361 next
= pgd_addr_end(addr
, end
);
362 if (pgd_none_or_clear_bad(pgd
))
364 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
365 } while (pgd
++, addr
= next
, addr
!= end
);
368 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
369 unsigned long floor
, unsigned long ceiling
)
372 struct vm_area_struct
*next
= vma
->vm_next
;
373 unsigned long addr
= vma
->vm_start
;
376 * Hide vma from rmap and truncate_pagecache before freeing
379 unlink_anon_vmas(vma
);
380 unlink_file_vma(vma
);
382 if (is_vm_hugetlb_page(vma
)) {
383 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
384 floor
, next
? next
->vm_start
: ceiling
);
387 * Optimization: gather nearby vmas into one call down
389 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
390 && !is_vm_hugetlb_page(next
)) {
393 unlink_anon_vmas(vma
);
394 unlink_file_vma(vma
);
396 free_pgd_range(tlb
, addr
, vma
->vm_end
,
397 floor
, next
? next
->vm_start
: ceiling
);
403 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
406 pgtable_t
new = pte_alloc_one(mm
);
411 * Ensure all pte setup (eg. pte page lock and page clearing) are
412 * visible before the pte is made visible to other CPUs by being
413 * put into page tables.
415 * The other side of the story is the pointer chasing in the page
416 * table walking code (when walking the page table without locking;
417 * ie. most of the time). Fortunately, these data accesses consist
418 * of a chain of data-dependent loads, meaning most CPUs (alpha
419 * being the notable exception) will already guarantee loads are
420 * seen in-order. See the alpha page table accessors for the
421 * smp_read_barrier_depends() barriers in page table walking code.
423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425 ptl
= pmd_lock(mm
, pmd
);
426 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
428 pmd_populate(mm
, pmd
, new);
437 int __pte_alloc_kernel(pmd_t
*pmd
)
439 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
443 smp_wmb(); /* See comment in __pte_alloc */
445 spin_lock(&init_mm
.page_table_lock
);
446 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
447 pmd_populate_kernel(&init_mm
, pmd
, new);
450 spin_unlock(&init_mm
.page_table_lock
);
452 pte_free_kernel(&init_mm
, new);
456 static inline void init_rss_vec(int *rss
)
458 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
461 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
465 if (current
->mm
== mm
)
467 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
469 add_mm_counter(mm
, i
, rss
[i
]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
480 pte_t pte
, struct page
*page
)
482 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
483 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
484 pud_t
*pud
= pud_offset(p4d
, addr
);
485 pmd_t
*pmd
= pmd_offset(pud
, addr
);
486 struct address_space
*mapping
;
488 static unsigned long resume
;
489 static unsigned long nr_shown
;
490 static unsigned long nr_unshown
;
493 * Allow a burst of 60 reports, then keep quiet for that minute;
494 * or allow a steady drip of one report per second.
496 if (nr_shown
== 60) {
497 if (time_before(jiffies
, resume
)) {
502 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
509 resume
= jiffies
+ 60 * HZ
;
511 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
512 index
= linear_page_index(vma
, addr
);
514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
518 dump_page(page
, "bad pte");
519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
523 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
524 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
525 mapping
? mapping
->a_ops
->readpage
: NULL
);
527 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
531 * vm_normal_page -- This function gets the "struct page" associated with a pte.
533 * "Special" mappings do not wish to be associated with a "struct page" (either
534 * it doesn't exist, or it exists but they don't want to touch it). In this
535 * case, NULL is returned here. "Normal" mappings do have a struct page.
537 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538 * pte bit, in which case this function is trivial. Secondly, an architecture
539 * may not have a spare pte bit, which requires a more complicated scheme,
542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543 * special mapping (even if there are underlying and valid "struct pages").
544 * COWed pages of a VM_PFNMAP are always normal.
546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549 * mapping will always honor the rule
551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 * And for normal mappings this is false.
555 * This restricts such mappings to be a linear translation from virtual address
556 * to pfn. To get around this restriction, we allow arbitrary mappings so long
557 * as the vma is not a COW mapping; in that case, we know that all ptes are
558 * special (because none can have been COWed).
561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564 * page" backing, however the difference is that _all_ pages with a struct
565 * page (that is, those where pfn_valid is true) are refcounted and considered
566 * normal pages by the VM. The disadvantage is that pages are refcounted
567 * (which can be slower and simply not an option for some PFNMAP users). The
568 * advantage is that we don't have to follow the strict linearity rule of
569 * PFNMAP mappings in order to support COWable mappings.
572 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
573 pte_t pte
, bool with_public_device
)
575 unsigned long pfn
= pte_pfn(pte
);
577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
578 if (likely(!pte_special(pte
)))
580 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
581 return vma
->vm_ops
->find_special_page(vma
, addr
);
582 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
584 if (is_zero_pfn(pfn
))
588 * Device public pages are special pages (they are ZONE_DEVICE
589 * pages but different from persistent memory). They behave
590 * allmost like normal pages. The difference is that they are
591 * not on the lru and thus should never be involve with any-
592 * thing that involve lru manipulation (mlock, numa balancing,
595 * This is why we still want to return NULL for such page from
596 * vm_normal_page() so that we do not have to special case all
597 * call site of vm_normal_page().
599 if (likely(pfn
<= highest_memmap_pfn
)) {
600 struct page
*page
= pfn_to_page(pfn
);
602 if (is_device_public_page(page
)) {
603 if (with_public_device
)
612 print_bad_pte(vma
, addr
, pte
, NULL
);
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
618 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
619 if (vma
->vm_flags
& VM_MIXEDMAP
) {
625 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
626 if (pfn
== vma
->vm_pgoff
+ off
)
628 if (!is_cow_mapping(vma
->vm_flags
))
633 if (is_zero_pfn(pfn
))
637 if (unlikely(pfn
> highest_memmap_pfn
)) {
638 print_bad_pte(vma
, addr
, pte
, NULL
);
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
647 return pfn_to_page(pfn
);
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
654 unsigned long pfn
= pmd_pfn(pmd
);
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
661 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
662 if (vma
->vm_flags
& VM_MIXEDMAP
) {
668 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
669 if (pfn
== vma
->vm_pgoff
+ off
)
671 if (!is_cow_mapping(vma
->vm_flags
))
678 if (is_zero_pfn(pfn
))
680 if (unlikely(pfn
> highest_memmap_pfn
))
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
688 return pfn_to_page(pfn
);
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
698 static inline unsigned long
699 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
700 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
701 unsigned long addr
, int *rss
)
703 unsigned long vm_flags
= vma
->vm_flags
;
704 pte_t pte
= *src_pte
;
707 /* pte contains position in swap or file, so copy. */
708 if (unlikely(!pte_present(pte
))) {
709 swp_entry_t entry
= pte_to_swp_entry(pte
);
711 if (likely(!non_swap_entry(entry
))) {
712 if (swap_duplicate(entry
) < 0)
715 /* make sure dst_mm is on swapoff's mmlist. */
716 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
717 spin_lock(&mmlist_lock
);
718 if (list_empty(&dst_mm
->mmlist
))
719 list_add(&dst_mm
->mmlist
,
721 spin_unlock(&mmlist_lock
);
724 } else if (is_migration_entry(entry
)) {
725 page
= migration_entry_to_page(entry
);
727 rss
[mm_counter(page
)]++;
729 if (is_write_migration_entry(entry
) &&
730 is_cow_mapping(vm_flags
)) {
732 * COW mappings require pages in both
733 * parent and child to be set to read.
735 make_migration_entry_read(&entry
);
736 pte
= swp_entry_to_pte(entry
);
737 if (pte_swp_soft_dirty(*src_pte
))
738 pte
= pte_swp_mksoft_dirty(pte
);
739 set_pte_at(src_mm
, addr
, src_pte
, pte
);
741 } else if (is_device_private_entry(entry
)) {
742 page
= device_private_entry_to_page(entry
);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
754 rss
[mm_counter(page
)]++;
755 page_dup_rmap(page
, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry
) &&
765 is_cow_mapping(vm_flags
)) {
766 make_device_private_entry_read(&entry
);
767 pte
= swp_entry_to_pte(entry
);
768 set_pte_at(src_mm
, addr
, src_pte
, pte
);
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
779 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
780 pte
= pte_wrprotect(pte
);
784 * If it's a shared mapping, mark it clean in
787 if (vm_flags
& VM_SHARED
)
788 pte
= pte_mkclean(pte
);
789 pte
= pte_mkold(pte
);
791 page
= vm_normal_page(vma
, addr
, pte
);
794 page_dup_rmap(page
, false);
795 rss
[mm_counter(page
)]++;
796 } else if (pte_devmap(pte
)) {
797 page
= pte_page(pte
);
800 * Cache coherent device memory behave like regular page and
801 * not like persistent memory page. For more informations see
802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 if (is_device_public_page(page
)) {
806 page_dup_rmap(page
, false);
807 rss
[mm_counter(page
)]++;
812 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
816 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
817 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
818 unsigned long addr
, unsigned long end
)
820 pte_t
*orig_src_pte
, *orig_dst_pte
;
821 pte_t
*src_pte
, *dst_pte
;
822 spinlock_t
*src_ptl
, *dst_ptl
;
824 int rss
[NR_MM_COUNTERS
];
825 swp_entry_t entry
= (swp_entry_t
){0};
830 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
833 src_pte
= pte_offset_map(src_pmd
, addr
);
834 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
835 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
836 orig_src_pte
= src_pte
;
837 orig_dst_pte
= dst_pte
;
838 arch_enter_lazy_mmu_mode();
842 * We are holding two locks at this point - either of them
843 * could generate latencies in another task on another CPU.
845 if (progress
>= 32) {
847 if (need_resched() ||
848 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
851 if (pte_none(*src_pte
)) {
855 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
860 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
862 arch_leave_lazy_mmu_mode();
863 spin_unlock(src_ptl
);
864 pte_unmap(orig_src_pte
);
865 add_mm_rss_vec(dst_mm
, rss
);
866 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
870 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
879 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
880 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
881 unsigned long addr
, unsigned long end
)
883 pmd_t
*src_pmd
, *dst_pmd
;
886 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
889 src_pmd
= pmd_offset(src_pud
, addr
);
891 next
= pmd_addr_end(addr
, end
);
892 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
893 || pmd_devmap(*src_pmd
)) {
895 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
896 err
= copy_huge_pmd(dst_mm
, src_mm
,
897 dst_pmd
, src_pmd
, addr
, vma
);
904 if (pmd_none_or_clear_bad(src_pmd
))
906 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
909 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
913 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
914 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
915 unsigned long addr
, unsigned long end
)
917 pud_t
*src_pud
, *dst_pud
;
920 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
923 src_pud
= pud_offset(src_p4d
, addr
);
925 next
= pud_addr_end(addr
, end
);
926 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
929 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
930 err
= copy_huge_pud(dst_mm
, src_mm
,
931 dst_pud
, src_pud
, addr
, vma
);
938 if (pud_none_or_clear_bad(src_pud
))
940 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
943 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
947 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
948 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
949 unsigned long addr
, unsigned long end
)
951 p4d_t
*src_p4d
, *dst_p4d
;
954 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
957 src_p4d
= p4d_offset(src_pgd
, addr
);
959 next
= p4d_addr_end(addr
, end
);
960 if (p4d_none_or_clear_bad(src_p4d
))
962 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
965 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
969 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
970 struct vm_area_struct
*vma
)
972 pgd_t
*src_pgd
, *dst_pgd
;
974 unsigned long addr
= vma
->vm_start
;
975 unsigned long end
= vma
->vm_end
;
976 struct mmu_notifier_range range
;
981 * Don't copy ptes where a page fault will fill them correctly.
982 * Fork becomes much lighter when there are big shared or private
983 * readonly mappings. The tradeoff is that copy_page_range is more
984 * efficient than faulting.
986 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
990 if (is_vm_hugetlb_page(vma
))
991 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
993 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
995 * We do not free on error cases below as remove_vma
996 * gets called on error from higher level routine
998 ret
= track_pfn_copy(vma
);
1004 * We need to invalidate the secondary MMU mappings only when
1005 * there could be a permission downgrade on the ptes of the
1006 * parent mm. And a permission downgrade will only happen if
1007 * is_cow_mapping() returns true.
1009 is_cow
= is_cow_mapping(vma
->vm_flags
);
1012 mmu_notifier_range_init(&range
, src_mm
, addr
, end
);
1013 mmu_notifier_invalidate_range_start(&range
);
1017 dst_pgd
= pgd_offset(dst_mm
, addr
);
1018 src_pgd
= pgd_offset(src_mm
, addr
);
1020 next
= pgd_addr_end(addr
, end
);
1021 if (pgd_none_or_clear_bad(src_pgd
))
1023 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1024 vma
, addr
, next
))) {
1028 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1031 mmu_notifier_invalidate_range_end(&range
);
1035 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1036 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1037 unsigned long addr
, unsigned long end
,
1038 struct zap_details
*details
)
1040 struct mm_struct
*mm
= tlb
->mm
;
1041 int force_flush
= 0;
1042 int rss
[NR_MM_COUNTERS
];
1048 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1051 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1053 flush_tlb_batched_pending(mm
);
1054 arch_enter_lazy_mmu_mode();
1057 if (pte_none(ptent
))
1060 if (pte_present(ptent
)) {
1063 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1064 if (unlikely(details
) && page
) {
1066 * unmap_shared_mapping_pages() wants to
1067 * invalidate cache without truncating:
1068 * unmap shared but keep private pages.
1070 if (details
->check_mapping
&&
1071 details
->check_mapping
!= page_rmapping(page
))
1074 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1076 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1077 if (unlikely(!page
))
1080 if (!PageAnon(page
)) {
1081 if (pte_dirty(ptent
)) {
1083 set_page_dirty(page
);
1085 if (pte_young(ptent
) &&
1086 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1087 mark_page_accessed(page
);
1089 rss
[mm_counter(page
)]--;
1090 page_remove_rmap(page
, false);
1091 if (unlikely(page_mapcount(page
) < 0))
1092 print_bad_pte(vma
, addr
, ptent
, page
);
1093 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1101 entry
= pte_to_swp_entry(ptent
);
1102 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1103 struct page
*page
= device_private_entry_to_page(entry
);
1105 if (unlikely(details
&& details
->check_mapping
)) {
1107 * unmap_shared_mapping_pages() wants to
1108 * invalidate cache without truncating:
1109 * unmap shared but keep private pages.
1111 if (details
->check_mapping
!=
1112 page_rmapping(page
))
1116 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1117 rss
[mm_counter(page
)]--;
1118 page_remove_rmap(page
, false);
1123 /* If details->check_mapping, we leave swap entries. */
1124 if (unlikely(details
))
1127 entry
= pte_to_swp_entry(ptent
);
1128 if (!non_swap_entry(entry
))
1130 else if (is_migration_entry(entry
)) {
1133 page
= migration_entry_to_page(entry
);
1134 rss
[mm_counter(page
)]--;
1136 if (unlikely(!free_swap_and_cache(entry
)))
1137 print_bad_pte(vma
, addr
, ptent
, NULL
);
1138 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1139 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1141 add_mm_rss_vec(mm
, rss
);
1142 arch_leave_lazy_mmu_mode();
1144 /* Do the actual TLB flush before dropping ptl */
1146 tlb_flush_mmu_tlbonly(tlb
);
1147 pte_unmap_unlock(start_pte
, ptl
);
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1157 tlb_flush_mmu_free(tlb
);
1165 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1166 struct vm_area_struct
*vma
, pud_t
*pud
,
1167 unsigned long addr
, unsigned long end
,
1168 struct zap_details
*details
)
1173 pmd
= pmd_offset(pud
, addr
);
1175 next
= pmd_addr_end(addr
, end
);
1176 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1177 if (next
- addr
!= HPAGE_PMD_SIZE
)
1178 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1179 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1184 * Here there can be other concurrent MADV_DONTNEED or
1185 * trans huge page faults running, and if the pmd is
1186 * none or trans huge it can change under us. This is
1187 * because MADV_DONTNEED holds the mmap_sem in read
1190 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1192 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1195 } while (pmd
++, addr
= next
, addr
!= end
);
1200 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1201 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1202 unsigned long addr
, unsigned long end
,
1203 struct zap_details
*details
)
1208 pud
= pud_offset(p4d
, addr
);
1210 next
= pud_addr_end(addr
, end
);
1211 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1212 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1213 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1214 split_huge_pud(vma
, pud
, addr
);
1215 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1219 if (pud_none_or_clear_bad(pud
))
1221 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1224 } while (pud
++, addr
= next
, addr
!= end
);
1229 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1230 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1231 unsigned long addr
, unsigned long end
,
1232 struct zap_details
*details
)
1237 p4d
= p4d_offset(pgd
, addr
);
1239 next
= p4d_addr_end(addr
, end
);
1240 if (p4d_none_or_clear_bad(p4d
))
1242 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1243 } while (p4d
++, addr
= next
, addr
!= end
);
1248 void unmap_page_range(struct mmu_gather
*tlb
,
1249 struct vm_area_struct
*vma
,
1250 unsigned long addr
, unsigned long end
,
1251 struct zap_details
*details
)
1256 BUG_ON(addr
>= end
);
1257 tlb_start_vma(tlb
, vma
);
1258 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1260 next
= pgd_addr_end(addr
, end
);
1261 if (pgd_none_or_clear_bad(pgd
))
1263 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1264 } while (pgd
++, addr
= next
, addr
!= end
);
1265 tlb_end_vma(tlb
, vma
);
1269 static void unmap_single_vma(struct mmu_gather
*tlb
,
1270 struct vm_area_struct
*vma
, unsigned long start_addr
,
1271 unsigned long end_addr
,
1272 struct zap_details
*details
)
1274 unsigned long start
= max(vma
->vm_start
, start_addr
);
1277 if (start
>= vma
->vm_end
)
1279 end
= min(vma
->vm_end
, end_addr
);
1280 if (end
<= vma
->vm_start
)
1284 uprobe_munmap(vma
, start
, end
);
1286 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1287 untrack_pfn(vma
, 0, 0);
1290 if (unlikely(is_vm_hugetlb_page(vma
))) {
1292 * It is undesirable to test vma->vm_file as it
1293 * should be non-null for valid hugetlb area.
1294 * However, vm_file will be NULL in the error
1295 * cleanup path of mmap_region. When
1296 * hugetlbfs ->mmap method fails,
1297 * mmap_region() nullifies vma->vm_file
1298 * before calling this function to clean up.
1299 * Since no pte has actually been setup, it is
1300 * safe to do nothing in this case.
1303 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1304 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1305 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1308 unmap_page_range(tlb
, vma
, start
, end
, details
);
1313 * unmap_vmas - unmap a range of memory covered by a list of vma's
1314 * @tlb: address of the caller's struct mmu_gather
1315 * @vma: the starting vma
1316 * @start_addr: virtual address at which to start unmapping
1317 * @end_addr: virtual address at which to end unmapping
1319 * Unmap all pages in the vma list.
1321 * Only addresses between `start' and `end' will be unmapped.
1323 * The VMA list must be sorted in ascending virtual address order.
1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326 * range after unmap_vmas() returns. So the only responsibility here is to
1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328 * drops the lock and schedules.
1330 void unmap_vmas(struct mmu_gather
*tlb
,
1331 struct vm_area_struct
*vma
, unsigned long start_addr
,
1332 unsigned long end_addr
)
1334 struct mmu_notifier_range range
;
1336 mmu_notifier_range_init(&range
, vma
->vm_mm
, start_addr
, end_addr
);
1337 mmu_notifier_invalidate_range_start(&range
);
1338 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1339 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1340 mmu_notifier_invalidate_range_end(&range
);
1344 * zap_page_range - remove user pages in a given range
1345 * @vma: vm_area_struct holding the applicable pages
1346 * @start: starting address of pages to zap
1347 * @size: number of bytes to zap
1349 * Caller must protect the VMA list
1351 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1354 struct mmu_notifier_range range
;
1355 struct mmu_gather tlb
;
1358 mmu_notifier_range_init(&range
, vma
->vm_mm
, start
, start
+ size
);
1359 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1360 update_hiwater_rss(vma
->vm_mm
);
1361 mmu_notifier_invalidate_range_start(&range
);
1362 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1363 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1364 mmu_notifier_invalidate_range_end(&range
);
1365 tlb_finish_mmu(&tlb
, start
, range
.end
);
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
1373 * @details: details of shared cache invalidation
1375 * The range must fit into one VMA.
1377 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1378 unsigned long size
, struct zap_details
*details
)
1380 struct mmu_notifier_range range
;
1381 struct mmu_gather tlb
;
1384 mmu_notifier_range_init(&range
, vma
->vm_mm
, address
, address
+ size
);
1385 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1386 update_hiwater_rss(vma
->vm_mm
);
1387 mmu_notifier_invalidate_range_start(&range
);
1388 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1389 mmu_notifier_invalidate_range_end(&range
);
1390 tlb_finish_mmu(&tlb
, address
, range
.end
);
1394 * zap_vma_ptes - remove ptes mapping the vma
1395 * @vma: vm_area_struct holding ptes to be zapped
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 * The entire address range must be fully contained within the vma.
1404 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1407 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1408 !(vma
->vm_flags
& VM_PFNMAP
))
1411 zap_page_range_single(vma
, address
, size
, NULL
);
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1415 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1423 pgd
= pgd_offset(mm
, addr
);
1424 p4d
= p4d_alloc(mm
, pgd
, addr
);
1427 pud
= pud_alloc(mm
, p4d
, addr
);
1430 pmd
= pmd_alloc(mm
, pud
, addr
);
1434 VM_BUG_ON(pmd_trans_huge(*pmd
));
1435 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1439 * This is the old fallback for page remapping.
1441 * For historical reasons, it only allows reserved pages. Only
1442 * old drivers should use this, and they needed to mark their
1443 * pages reserved for the old functions anyway.
1445 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1446 struct page
*page
, pgprot_t prot
)
1448 struct mm_struct
*mm
= vma
->vm_mm
;
1457 flush_dcache_page(page
);
1458 pte
= get_locked_pte(mm
, addr
, &ptl
);
1462 if (!pte_none(*pte
))
1465 /* Ok, finally just insert the thing.. */
1467 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1468 page_add_file_rmap(page
, false);
1469 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1472 pte_unmap_unlock(pte
, ptl
);
1475 pte_unmap_unlock(pte
, ptl
);
1481 * vm_insert_page - insert single page into user vma
1482 * @vma: user vma to map to
1483 * @addr: target user address of this page
1484 * @page: source kernel page
1486 * This allows drivers to insert individual pages they've allocated
1489 * The page has to be a nice clean _individual_ kernel allocation.
1490 * If you allocate a compound page, you need to have marked it as
1491 * such (__GFP_COMP), or manually just split the page up yourself
1492 * (see split_page()).
1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495 * took an arbitrary page protection parameter. This doesn't allow
1496 * that. Your vma protection will have to be set up correctly, which
1497 * means that if you want a shared writable mapping, you'd better
1498 * ask for a shared writable mapping!
1500 * The page does not need to be reserved.
1502 * Usually this function is called from f_op->mmap() handler
1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505 * function from other places, for example from page-fault handler.
1507 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1510 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1512 if (!page_count(page
))
1514 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1515 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1516 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1517 vma
->vm_flags
|= VM_MIXEDMAP
;
1519 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1521 EXPORT_SYMBOL(vm_insert_page
);
1523 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1524 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1526 struct mm_struct
*mm
= vma
->vm_mm
;
1530 pte
= get_locked_pte(mm
, addr
, &ptl
);
1532 return VM_FAULT_OOM
;
1533 if (!pte_none(*pte
)) {
1536 * For read faults on private mappings the PFN passed
1537 * in may not match the PFN we have mapped if the
1538 * mapped PFN is a writeable COW page. In the mkwrite
1539 * case we are creating a writable PTE for a shared
1540 * mapping and we expect the PFNs to match. If they
1541 * don't match, we are likely racing with block
1542 * allocation and mapping invalidation so just skip the
1545 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1546 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1555 /* Ok, finally just insert the thing.. */
1556 if (pfn_t_devmap(pfn
))
1557 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1559 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1563 entry
= pte_mkyoung(entry
);
1564 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1567 set_pte_at(mm
, addr
, pte
, entry
);
1568 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1571 pte_unmap_unlock(pte
, ptl
);
1572 return VM_FAULT_NOPAGE
;
1576 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1577 * @vma: user vma to map to
1578 * @addr: target user address of this page
1579 * @pfn: source kernel pfn
1580 * @pgprot: pgprot flags for the inserted page
1582 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1583 * to override pgprot on a per-page basis.
1585 * This only makes sense for IO mappings, and it makes no sense for
1586 * COW mappings. In general, using multiple vmas is preferable;
1587 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1590 * Context: Process context. May allocate using %GFP_KERNEL.
1591 * Return: vm_fault_t value.
1593 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1594 unsigned long pfn
, pgprot_t pgprot
)
1597 * Technically, architectures with pte_special can avoid all these
1598 * restrictions (same for remap_pfn_range). However we would like
1599 * consistency in testing and feature parity among all, so we should
1600 * try to keep these invariants in place for everybody.
1602 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1603 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1604 (VM_PFNMAP
|VM_MIXEDMAP
));
1605 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1606 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1608 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1609 return VM_FAULT_SIGBUS
;
1611 if (!pfn_modify_allowed(pfn
, pgprot
))
1612 return VM_FAULT_SIGBUS
;
1614 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1616 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1619 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1622 * vmf_insert_pfn - insert single pfn into user vma
1623 * @vma: user vma to map to
1624 * @addr: target user address of this page
1625 * @pfn: source kernel pfn
1627 * Similar to vm_insert_page, this allows drivers to insert individual pages
1628 * they've allocated into a user vma. Same comments apply.
1630 * This function should only be called from a vm_ops->fault handler, and
1631 * in that case the handler should return the result of this function.
1633 * vma cannot be a COW mapping.
1635 * As this is called only for pages that do not currently exist, we
1636 * do not need to flush old virtual caches or the TLB.
1638 * Context: Process context. May allocate using %GFP_KERNEL.
1639 * Return: vm_fault_t value.
1641 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1644 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1646 EXPORT_SYMBOL(vmf_insert_pfn
);
1648 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1650 /* these checks mirror the abort conditions in vm_normal_page */
1651 if (vma
->vm_flags
& VM_MIXEDMAP
)
1653 if (pfn_t_devmap(pfn
))
1655 if (pfn_t_special(pfn
))
1657 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1662 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1663 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
1665 pgprot_t pgprot
= vma
->vm_page_prot
;
1668 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1670 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1671 return VM_FAULT_SIGBUS
;
1673 track_pfn_insert(vma
, &pgprot
, pfn
);
1675 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1676 return VM_FAULT_SIGBUS
;
1679 * If we don't have pte special, then we have to use the pfn_valid()
1680 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1681 * refcount the page if pfn_valid is true (hence insert_page rather
1682 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1683 * without pte special, it would there be refcounted as a normal page.
1685 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1686 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1690 * At this point we are committed to insert_page()
1691 * regardless of whether the caller specified flags that
1692 * result in pfn_t_has_page() == false.
1694 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1695 err
= insert_page(vma
, addr
, page
, pgprot
);
1697 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1701 return VM_FAULT_OOM
;
1702 if (err
< 0 && err
!= -EBUSY
)
1703 return VM_FAULT_SIGBUS
;
1705 return VM_FAULT_NOPAGE
;
1708 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1711 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1713 EXPORT_SYMBOL(vmf_insert_mixed
);
1716 * If the insertion of PTE failed because someone else already added a
1717 * different entry in the mean time, we treat that as success as we assume
1718 * the same entry was actually inserted.
1720 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1721 unsigned long addr
, pfn_t pfn
)
1723 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1725 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1728 * maps a range of physical memory into the requested pages. the old
1729 * mappings are removed. any references to nonexistent pages results
1730 * in null mappings (currently treated as "copy-on-access")
1732 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1733 unsigned long addr
, unsigned long end
,
1734 unsigned long pfn
, pgprot_t prot
)
1740 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1743 arch_enter_lazy_mmu_mode();
1745 BUG_ON(!pte_none(*pte
));
1746 if (!pfn_modify_allowed(pfn
, prot
)) {
1750 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1752 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1753 arch_leave_lazy_mmu_mode();
1754 pte_unmap_unlock(pte
- 1, ptl
);
1758 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1759 unsigned long addr
, unsigned long end
,
1760 unsigned long pfn
, pgprot_t prot
)
1766 pfn
-= addr
>> PAGE_SHIFT
;
1767 pmd
= pmd_alloc(mm
, pud
, addr
);
1770 VM_BUG_ON(pmd_trans_huge(*pmd
));
1772 next
= pmd_addr_end(addr
, end
);
1773 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1774 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1777 } while (pmd
++, addr
= next
, addr
!= end
);
1781 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1782 unsigned long addr
, unsigned long end
,
1783 unsigned long pfn
, pgprot_t prot
)
1789 pfn
-= addr
>> PAGE_SHIFT
;
1790 pud
= pud_alloc(mm
, p4d
, addr
);
1794 next
= pud_addr_end(addr
, end
);
1795 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1796 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1799 } while (pud
++, addr
= next
, addr
!= end
);
1803 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1804 unsigned long addr
, unsigned long end
,
1805 unsigned long pfn
, pgprot_t prot
)
1811 pfn
-= addr
>> PAGE_SHIFT
;
1812 p4d
= p4d_alloc(mm
, pgd
, addr
);
1816 next
= p4d_addr_end(addr
, end
);
1817 err
= remap_pud_range(mm
, p4d
, addr
, next
,
1818 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1821 } while (p4d
++, addr
= next
, addr
!= end
);
1826 * remap_pfn_range - remap kernel memory to userspace
1827 * @vma: user vma to map to
1828 * @addr: target user address to start at
1829 * @pfn: physical address of kernel memory
1830 * @size: size of map area
1831 * @prot: page protection flags for this mapping
1833 * Note: this is only safe if the mm semaphore is held when called.
1835 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1836 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1840 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1841 struct mm_struct
*mm
= vma
->vm_mm
;
1842 unsigned long remap_pfn
= pfn
;
1846 * Physically remapped pages are special. Tell the
1847 * rest of the world about it:
1848 * VM_IO tells people not to look at these pages
1849 * (accesses can have side effects).
1850 * VM_PFNMAP tells the core MM that the base pages are just
1851 * raw PFN mappings, and do not have a "struct page" associated
1854 * Disable vma merging and expanding with mremap().
1856 * Omit vma from core dump, even when VM_IO turned off.
1858 * There's a horrible special case to handle copy-on-write
1859 * behaviour that some programs depend on. We mark the "original"
1860 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1861 * See vm_normal_page() for details.
1863 if (is_cow_mapping(vma
->vm_flags
)) {
1864 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1866 vma
->vm_pgoff
= pfn
;
1869 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1873 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1875 BUG_ON(addr
>= end
);
1876 pfn
-= addr
>> PAGE_SHIFT
;
1877 pgd
= pgd_offset(mm
, addr
);
1878 flush_cache_range(vma
, addr
, end
);
1880 next
= pgd_addr_end(addr
, end
);
1881 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1882 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1885 } while (pgd
++, addr
= next
, addr
!= end
);
1888 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1892 EXPORT_SYMBOL(remap_pfn_range
);
1895 * vm_iomap_memory - remap memory to userspace
1896 * @vma: user vma to map to
1897 * @start: start of area
1898 * @len: size of area
1900 * This is a simplified io_remap_pfn_range() for common driver use. The
1901 * driver just needs to give us the physical memory range to be mapped,
1902 * we'll figure out the rest from the vma information.
1904 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1905 * whatever write-combining details or similar.
1907 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1909 unsigned long vm_len
, pfn
, pages
;
1911 /* Check that the physical memory area passed in looks valid */
1912 if (start
+ len
< start
)
1915 * You *really* shouldn't map things that aren't page-aligned,
1916 * but we've historically allowed it because IO memory might
1917 * just have smaller alignment.
1919 len
+= start
& ~PAGE_MASK
;
1920 pfn
= start
>> PAGE_SHIFT
;
1921 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1922 if (pfn
+ pages
< pfn
)
1925 /* We start the mapping 'vm_pgoff' pages into the area */
1926 if (vma
->vm_pgoff
> pages
)
1928 pfn
+= vma
->vm_pgoff
;
1929 pages
-= vma
->vm_pgoff
;
1931 /* Can we fit all of the mapping? */
1932 vm_len
= vma
->vm_end
- vma
->vm_start
;
1933 if (vm_len
>> PAGE_SHIFT
> pages
)
1936 /* Ok, let it rip */
1937 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1939 EXPORT_SYMBOL(vm_iomap_memory
);
1941 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1942 unsigned long addr
, unsigned long end
,
1943 pte_fn_t fn
, void *data
)
1948 spinlock_t
*uninitialized_var(ptl
);
1950 pte
= (mm
== &init_mm
) ?
1951 pte_alloc_kernel(pmd
, addr
) :
1952 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1956 BUG_ON(pmd_huge(*pmd
));
1958 arch_enter_lazy_mmu_mode();
1960 token
= pmd_pgtable(*pmd
);
1963 err
= fn(pte
++, token
, addr
, data
);
1966 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1968 arch_leave_lazy_mmu_mode();
1971 pte_unmap_unlock(pte
-1, ptl
);
1975 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1976 unsigned long addr
, unsigned long end
,
1977 pte_fn_t fn
, void *data
)
1983 BUG_ON(pud_huge(*pud
));
1985 pmd
= pmd_alloc(mm
, pud
, addr
);
1989 next
= pmd_addr_end(addr
, end
);
1990 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1993 } while (pmd
++, addr
= next
, addr
!= end
);
1997 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1998 unsigned long addr
, unsigned long end
,
1999 pte_fn_t fn
, void *data
)
2005 pud
= pud_alloc(mm
, p4d
, addr
);
2009 next
= pud_addr_end(addr
, end
);
2010 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2013 } while (pud
++, addr
= next
, addr
!= end
);
2017 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2018 unsigned long addr
, unsigned long end
,
2019 pte_fn_t fn
, void *data
)
2025 p4d
= p4d_alloc(mm
, pgd
, addr
);
2029 next
= p4d_addr_end(addr
, end
);
2030 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2033 } while (p4d
++, addr
= next
, addr
!= end
);
2038 * Scan a region of virtual memory, filling in page tables as necessary
2039 * and calling a provided function on each leaf page table.
2041 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2042 unsigned long size
, pte_fn_t fn
, void *data
)
2046 unsigned long end
= addr
+ size
;
2049 if (WARN_ON(addr
>= end
))
2052 pgd
= pgd_offset(mm
, addr
);
2054 next
= pgd_addr_end(addr
, end
);
2055 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2058 } while (pgd
++, addr
= next
, addr
!= end
);
2062 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2065 * handle_pte_fault chooses page fault handler according to an entry which was
2066 * read non-atomically. Before making any commitment, on those architectures
2067 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2068 * parts, do_swap_page must check under lock before unmapping the pte and
2069 * proceeding (but do_wp_page is only called after already making such a check;
2070 * and do_anonymous_page can safely check later on).
2072 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2073 pte_t
*page_table
, pte_t orig_pte
)
2076 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2077 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2078 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2080 same
= pte_same(*page_table
, orig_pte
);
2084 pte_unmap(page_table
);
2088 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2090 debug_dma_assert_idle(src
);
2093 * If the source page was a PFN mapping, we don't have
2094 * a "struct page" for it. We do a best-effort copy by
2095 * just copying from the original user address. If that
2096 * fails, we just zero-fill it. Live with it.
2098 if (unlikely(!src
)) {
2099 void *kaddr
= kmap_atomic(dst
);
2100 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2103 * This really shouldn't fail, because the page is there
2104 * in the page tables. But it might just be unreadable,
2105 * in which case we just give up and fill the result with
2108 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2110 kunmap_atomic(kaddr
);
2111 flush_dcache_page(dst
);
2113 copy_user_highpage(dst
, src
, va
, vma
);
2116 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2118 struct file
*vm_file
= vma
->vm_file
;
2121 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2124 * Special mappings (e.g. VDSO) do not have any file so fake
2125 * a default GFP_KERNEL for them.
2131 * Notify the address space that the page is about to become writable so that
2132 * it can prohibit this or wait for the page to get into an appropriate state.
2134 * We do this without the lock held, so that it can sleep if it needs to.
2136 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2139 struct page
*page
= vmf
->page
;
2140 unsigned int old_flags
= vmf
->flags
;
2142 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2144 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2145 /* Restore original flags so that caller is not surprised */
2146 vmf
->flags
= old_flags
;
2147 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2149 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2151 if (!page
->mapping
) {
2153 return 0; /* retry */
2155 ret
|= VM_FAULT_LOCKED
;
2157 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2162 * Handle dirtying of a page in shared file mapping on a write fault.
2164 * The function expects the page to be locked and unlocks it.
2166 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2169 struct address_space
*mapping
;
2171 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2173 dirtied
= set_page_dirty(page
);
2174 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2176 * Take a local copy of the address_space - page.mapping may be zeroed
2177 * by truncate after unlock_page(). The address_space itself remains
2178 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2179 * release semantics to prevent the compiler from undoing this copying.
2181 mapping
= page_rmapping(page
);
2184 if ((dirtied
|| page_mkwrite
) && mapping
) {
2186 * Some device drivers do not set page.mapping
2187 * but still dirty their pages
2189 balance_dirty_pages_ratelimited(mapping
);
2193 file_update_time(vma
->vm_file
);
2197 * Handle write page faults for pages that can be reused in the current vma
2199 * This can happen either due to the mapping being with the VM_SHARED flag,
2200 * or due to us being the last reference standing to the page. In either
2201 * case, all we need to do here is to mark the page as writable and update
2202 * any related book-keeping.
2204 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2205 __releases(vmf
->ptl
)
2207 struct vm_area_struct
*vma
= vmf
->vma
;
2208 struct page
*page
= vmf
->page
;
2211 * Clear the pages cpupid information as the existing
2212 * information potentially belongs to a now completely
2213 * unrelated process.
2216 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2218 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2219 entry
= pte_mkyoung(vmf
->orig_pte
);
2220 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2221 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2222 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2223 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2227 * Handle the case of a page which we actually need to copy to a new page.
2229 * Called with mmap_sem locked and the old page referenced, but
2230 * without the ptl held.
2232 * High level logic flow:
2234 * - Allocate a page, copy the content of the old page to the new one.
2235 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2236 * - Take the PTL. If the pte changed, bail out and release the allocated page
2237 * - If the pte is still the way we remember it, update the page table and all
2238 * relevant references. This includes dropping the reference the page-table
2239 * held to the old page, as well as updating the rmap.
2240 * - In any case, unlock the PTL and drop the reference we took to the old page.
2242 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2244 struct vm_area_struct
*vma
= vmf
->vma
;
2245 struct mm_struct
*mm
= vma
->vm_mm
;
2246 struct page
*old_page
= vmf
->page
;
2247 struct page
*new_page
= NULL
;
2249 int page_copied
= 0;
2250 struct mem_cgroup
*memcg
;
2251 struct mmu_notifier_range range
;
2253 if (unlikely(anon_vma_prepare(vma
)))
2256 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2257 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2262 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2266 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2269 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2272 __SetPageUptodate(new_page
);
2274 mmu_notifier_range_init(&range
, mm
, vmf
->address
& PAGE_MASK
,
2275 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2276 mmu_notifier_invalidate_range_start(&range
);
2279 * Re-check the pte - we dropped the lock
2281 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2282 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2284 if (!PageAnon(old_page
)) {
2285 dec_mm_counter_fast(mm
,
2286 mm_counter_file(old_page
));
2287 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2290 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2292 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2293 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2294 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2296 * Clear the pte entry and flush it first, before updating the
2297 * pte with the new entry. This will avoid a race condition
2298 * seen in the presence of one thread doing SMC and another
2301 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2302 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2303 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2304 lru_cache_add_active_or_unevictable(new_page
, vma
);
2306 * We call the notify macro here because, when using secondary
2307 * mmu page tables (such as kvm shadow page tables), we want the
2308 * new page to be mapped directly into the secondary page table.
2310 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2311 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2314 * Only after switching the pte to the new page may
2315 * we remove the mapcount here. Otherwise another
2316 * process may come and find the rmap count decremented
2317 * before the pte is switched to the new page, and
2318 * "reuse" the old page writing into it while our pte
2319 * here still points into it and can be read by other
2322 * The critical issue is to order this
2323 * page_remove_rmap with the ptp_clear_flush above.
2324 * Those stores are ordered by (if nothing else,)
2325 * the barrier present in the atomic_add_negative
2326 * in page_remove_rmap.
2328 * Then the TLB flush in ptep_clear_flush ensures that
2329 * no process can access the old page before the
2330 * decremented mapcount is visible. And the old page
2331 * cannot be reused until after the decremented
2332 * mapcount is visible. So transitively, TLBs to
2333 * old page will be flushed before it can be reused.
2335 page_remove_rmap(old_page
, false);
2338 /* Free the old page.. */
2339 new_page
= old_page
;
2342 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2348 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2350 * No need to double call mmu_notifier->invalidate_range() callback as
2351 * the above ptep_clear_flush_notify() did already call it.
2353 mmu_notifier_invalidate_range_only_end(&range
);
2356 * Don't let another task, with possibly unlocked vma,
2357 * keep the mlocked page.
2359 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2360 lock_page(old_page
); /* LRU manipulation */
2361 if (PageMlocked(old_page
))
2362 munlock_vma_page(old_page
);
2363 unlock_page(old_page
);
2367 return page_copied
? VM_FAULT_WRITE
: 0;
2373 return VM_FAULT_OOM
;
2377 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2378 * writeable once the page is prepared
2380 * @vmf: structure describing the fault
2382 * This function handles all that is needed to finish a write page fault in a
2383 * shared mapping due to PTE being read-only once the mapped page is prepared.
2384 * It handles locking of PTE and modifying it. The function returns
2385 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2388 * The function expects the page to be locked or other protection against
2389 * concurrent faults / writeback (such as DAX radix tree locks).
2391 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2393 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2394 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2397 * We might have raced with another page fault while we released the
2398 * pte_offset_map_lock.
2400 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2401 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2402 return VM_FAULT_NOPAGE
;
2409 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2412 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2414 struct vm_area_struct
*vma
= vmf
->vma
;
2416 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2419 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2420 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2421 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2422 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2424 return finish_mkwrite_fault(vmf
);
2427 return VM_FAULT_WRITE
;
2430 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2431 __releases(vmf
->ptl
)
2433 struct vm_area_struct
*vma
= vmf
->vma
;
2435 get_page(vmf
->page
);
2437 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2440 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2441 tmp
= do_page_mkwrite(vmf
);
2442 if (unlikely(!tmp
|| (tmp
&
2443 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2444 put_page(vmf
->page
);
2447 tmp
= finish_mkwrite_fault(vmf
);
2448 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2449 unlock_page(vmf
->page
);
2450 put_page(vmf
->page
);
2455 lock_page(vmf
->page
);
2457 fault_dirty_shared_page(vma
, vmf
->page
);
2458 put_page(vmf
->page
);
2460 return VM_FAULT_WRITE
;
2464 * This routine handles present pages, when users try to write
2465 * to a shared page. It is done by copying the page to a new address
2466 * and decrementing the shared-page counter for the old page.
2468 * Note that this routine assumes that the protection checks have been
2469 * done by the caller (the low-level page fault routine in most cases).
2470 * Thus we can safely just mark it writable once we've done any necessary
2473 * We also mark the page dirty at this point even though the page will
2474 * change only once the write actually happens. This avoids a few races,
2475 * and potentially makes it more efficient.
2477 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2478 * but allow concurrent faults), with pte both mapped and locked.
2479 * We return with mmap_sem still held, but pte unmapped and unlocked.
2481 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2482 __releases(vmf
->ptl
)
2484 struct vm_area_struct
*vma
= vmf
->vma
;
2486 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2489 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2492 * We should not cow pages in a shared writeable mapping.
2493 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2495 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2496 (VM_WRITE
|VM_SHARED
))
2497 return wp_pfn_shared(vmf
);
2499 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2500 return wp_page_copy(vmf
);
2504 * Take out anonymous pages first, anonymous shared vmas are
2505 * not dirty accountable.
2507 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2508 int total_map_swapcount
;
2509 if (!trylock_page(vmf
->page
)) {
2510 get_page(vmf
->page
);
2511 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2512 lock_page(vmf
->page
);
2513 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2514 vmf
->address
, &vmf
->ptl
);
2515 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2516 unlock_page(vmf
->page
);
2517 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2518 put_page(vmf
->page
);
2521 put_page(vmf
->page
);
2523 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2524 if (total_map_swapcount
== 1) {
2526 * The page is all ours. Move it to
2527 * our anon_vma so the rmap code will
2528 * not search our parent or siblings.
2529 * Protected against the rmap code by
2532 page_move_anon_rmap(vmf
->page
, vma
);
2534 unlock_page(vmf
->page
);
2536 return VM_FAULT_WRITE
;
2538 unlock_page(vmf
->page
);
2539 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2540 (VM_WRITE
|VM_SHARED
))) {
2541 return wp_page_shared(vmf
);
2545 * Ok, we need to copy. Oh, well..
2547 get_page(vmf
->page
);
2549 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2550 return wp_page_copy(vmf
);
2553 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2554 unsigned long start_addr
, unsigned long end_addr
,
2555 struct zap_details
*details
)
2557 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2560 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2561 struct zap_details
*details
)
2563 struct vm_area_struct
*vma
;
2564 pgoff_t vba
, vea
, zba
, zea
;
2566 vma_interval_tree_foreach(vma
, root
,
2567 details
->first_index
, details
->last_index
) {
2569 vba
= vma
->vm_pgoff
;
2570 vea
= vba
+ vma_pages(vma
) - 1;
2571 zba
= details
->first_index
;
2574 zea
= details
->last_index
;
2578 unmap_mapping_range_vma(vma
,
2579 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2580 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2586 * unmap_mapping_pages() - Unmap pages from processes.
2587 * @mapping: The address space containing pages to be unmapped.
2588 * @start: Index of first page to be unmapped.
2589 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2590 * @even_cows: Whether to unmap even private COWed pages.
2592 * Unmap the pages in this address space from any userspace process which
2593 * has them mmaped. Generally, you want to remove COWed pages as well when
2594 * a file is being truncated, but not when invalidating pages from the page
2597 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2598 pgoff_t nr
, bool even_cows
)
2600 struct zap_details details
= { };
2602 details
.check_mapping
= even_cows
? NULL
: mapping
;
2603 details
.first_index
= start
;
2604 details
.last_index
= start
+ nr
- 1;
2605 if (details
.last_index
< details
.first_index
)
2606 details
.last_index
= ULONG_MAX
;
2608 i_mmap_lock_write(mapping
);
2609 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2610 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2611 i_mmap_unlock_write(mapping
);
2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2616 * address_space corresponding to the specified byte range in the underlying
2619 * @mapping: the address space containing mmaps to be unmapped.
2620 * @holebegin: byte in first page to unmap, relative to the start of
2621 * the underlying file. This will be rounded down to a PAGE_SIZE
2622 * boundary. Note that this is different from truncate_pagecache(), which
2623 * must keep the partial page. In contrast, we must get rid of
2625 * @holelen: size of prospective hole in bytes. This will be rounded
2626 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2628 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2629 * but 0 when invalidating pagecache, don't throw away private data.
2631 void unmap_mapping_range(struct address_space
*mapping
,
2632 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2634 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2635 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2637 /* Check for overflow. */
2638 if (sizeof(holelen
) > sizeof(hlen
)) {
2640 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2641 if (holeend
& ~(long long)ULONG_MAX
)
2642 hlen
= ULONG_MAX
- hba
+ 1;
2645 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2647 EXPORT_SYMBOL(unmap_mapping_range
);
2650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2651 * but allow concurrent faults), and pte mapped but not yet locked.
2652 * We return with pte unmapped and unlocked.
2654 * We return with the mmap_sem locked or unlocked in the same cases
2655 * as does filemap_fault().
2657 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2659 struct vm_area_struct
*vma
= vmf
->vma
;
2660 struct page
*page
= NULL
, *swapcache
;
2661 struct mem_cgroup
*memcg
;
2668 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2671 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2672 if (unlikely(non_swap_entry(entry
))) {
2673 if (is_migration_entry(entry
)) {
2674 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2676 } else if (is_device_private_entry(entry
)) {
2678 * For un-addressable device memory we call the pgmap
2679 * fault handler callback. The callback must migrate
2680 * the page back to some CPU accessible page.
2682 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2683 vmf
->flags
, vmf
->pmd
);
2684 } else if (is_hwpoison_entry(entry
)) {
2685 ret
= VM_FAULT_HWPOISON
;
2687 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2688 ret
= VM_FAULT_SIGBUS
;
2694 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2695 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2699 struct swap_info_struct
*si
= swp_swap_info(entry
);
2701 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2702 __swap_count(si
, entry
) == 1) {
2703 /* skip swapcache */
2704 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2707 __SetPageLocked(page
);
2708 __SetPageSwapBacked(page
);
2709 set_page_private(page
, entry
.val
);
2710 lru_cache_add_anon(page
);
2711 swap_readpage(page
, true);
2714 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2721 * Back out if somebody else faulted in this pte
2722 * while we released the pte lock.
2724 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2725 vmf
->address
, &vmf
->ptl
);
2726 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2728 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2732 /* Had to read the page from swap area: Major fault */
2733 ret
= VM_FAULT_MAJOR
;
2734 count_vm_event(PGMAJFAULT
);
2735 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2736 } else if (PageHWPoison(page
)) {
2738 * hwpoisoned dirty swapcache pages are kept for killing
2739 * owner processes (which may be unknown at hwpoison time)
2741 ret
= VM_FAULT_HWPOISON
;
2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2746 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2748 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2750 ret
|= VM_FAULT_RETRY
;
2755 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2756 * release the swapcache from under us. The page pin, and pte_same
2757 * test below, are not enough to exclude that. Even if it is still
2758 * swapcache, we need to check that the page's swap has not changed.
2760 if (unlikely((!PageSwapCache(page
) ||
2761 page_private(page
) != entry
.val
)) && swapcache
)
2764 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2765 if (unlikely(!page
)) {
2771 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
2778 * Back out if somebody else already faulted in this pte.
2780 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2782 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2785 if (unlikely(!PageUptodate(page
))) {
2786 ret
= VM_FAULT_SIGBUS
;
2791 * The page isn't present yet, go ahead with the fault.
2793 * Be careful about the sequence of operations here.
2794 * To get its accounting right, reuse_swap_page() must be called
2795 * while the page is counted on swap but not yet in mapcount i.e.
2796 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2797 * must be called after the swap_free(), or it will never succeed.
2800 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2801 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2802 pte
= mk_pte(page
, vma
->vm_page_prot
);
2803 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2804 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2805 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2806 ret
|= VM_FAULT_WRITE
;
2807 exclusive
= RMAP_EXCLUSIVE
;
2809 flush_icache_page(vma
, page
);
2810 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2811 pte
= pte_mksoft_dirty(pte
);
2812 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2813 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
2814 vmf
->orig_pte
= pte
;
2816 /* ksm created a completely new copy */
2817 if (unlikely(page
!= swapcache
&& swapcache
)) {
2818 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2819 mem_cgroup_commit_charge(page
, memcg
, false, false);
2820 lru_cache_add_active_or_unevictable(page
, vma
);
2822 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2823 mem_cgroup_commit_charge(page
, memcg
, true, false);
2824 activate_page(page
);
2828 if (mem_cgroup_swap_full(page
) ||
2829 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2830 try_to_free_swap(page
);
2832 if (page
!= swapcache
&& swapcache
) {
2834 * Hold the lock to avoid the swap entry to be reused
2835 * until we take the PT lock for the pte_same() check
2836 * (to avoid false positives from pte_same). For
2837 * further safety release the lock after the swap_free
2838 * so that the swap count won't change under a
2839 * parallel locked swapcache.
2841 unlock_page(swapcache
);
2842 put_page(swapcache
);
2845 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2846 ret
|= do_wp_page(vmf
);
2847 if (ret
& VM_FAULT_ERROR
)
2848 ret
&= VM_FAULT_ERROR
;
2852 /* No need to invalidate - it was non-present before */
2853 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2855 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2859 mem_cgroup_cancel_charge(page
, memcg
, false);
2860 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2865 if (page
!= swapcache
&& swapcache
) {
2866 unlock_page(swapcache
);
2867 put_page(swapcache
);
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2877 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
2879 struct vm_area_struct
*vma
= vmf
->vma
;
2880 struct mem_cgroup
*memcg
;
2885 /* File mapping without ->vm_ops ? */
2886 if (vma
->vm_flags
& VM_SHARED
)
2887 return VM_FAULT_SIGBUS
;
2890 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2891 * pte_offset_map() on pmds where a huge pmd might be created
2892 * from a different thread.
2894 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2895 * parallel threads are excluded by other means.
2897 * Here we only have down_read(mmap_sem).
2899 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
2900 return VM_FAULT_OOM
;
2902 /* See the comment in pte_alloc_one_map() */
2903 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2906 /* Use the zero-page for reads */
2907 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2908 !mm_forbids_zeropage(vma
->vm_mm
)) {
2909 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2910 vma
->vm_page_prot
));
2911 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2912 vmf
->address
, &vmf
->ptl
);
2913 if (!pte_none(*vmf
->pte
))
2915 ret
= check_stable_address_space(vma
->vm_mm
);
2918 /* Deliver the page fault to userland, check inside PT lock */
2919 if (userfaultfd_missing(vma
)) {
2920 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2921 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2926 /* Allocate our own private page. */
2927 if (unlikely(anon_vma_prepare(vma
)))
2929 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2933 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
2938 * The memory barrier inside __SetPageUptodate makes sure that
2939 * preceeding stores to the page contents become visible before
2940 * the set_pte_at() write.
2942 __SetPageUptodate(page
);
2944 entry
= mk_pte(page
, vma
->vm_page_prot
);
2945 if (vma
->vm_flags
& VM_WRITE
)
2946 entry
= pte_mkwrite(pte_mkdirty(entry
));
2948 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2950 if (!pte_none(*vmf
->pte
))
2953 ret
= check_stable_address_space(vma
->vm_mm
);
2957 /* Deliver the page fault to userland, check inside PT lock */
2958 if (userfaultfd_missing(vma
)) {
2959 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2960 mem_cgroup_cancel_charge(page
, memcg
, false);
2962 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2965 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2966 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2967 mem_cgroup_commit_charge(page
, memcg
, false, false);
2968 lru_cache_add_active_or_unevictable(page
, vma
);
2970 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2972 /* No need to invalidate - it was non-present before */
2973 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2975 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2978 mem_cgroup_cancel_charge(page
, memcg
, false);
2984 return VM_FAULT_OOM
;
2988 * The mmap_sem must have been held on entry, and may have been
2989 * released depending on flags and vma->vm_ops->fault() return value.
2990 * See filemap_fault() and __lock_page_retry().
2992 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
2994 struct vm_area_struct
*vma
= vmf
->vma
;
2998 * Preallocate pte before we take page_lock because this might lead to
2999 * deadlocks for memcg reclaim which waits for pages under writeback:
3001 * SetPageWriteback(A)
3007 * wait_on_page_writeback(A)
3008 * SetPageWriteback(B)
3010 * # flush A, B to clear the writeback
3012 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3013 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3014 if (!vmf
->prealloc_pte
)
3015 return VM_FAULT_OOM
;
3016 smp_wmb(); /* See comment in __pte_alloc() */
3019 ret
= vma
->vm_ops
->fault(vmf
);
3020 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3021 VM_FAULT_DONE_COW
)))
3024 if (unlikely(PageHWPoison(vmf
->page
))) {
3025 if (ret
& VM_FAULT_LOCKED
)
3026 unlock_page(vmf
->page
);
3027 put_page(vmf
->page
);
3029 return VM_FAULT_HWPOISON
;
3032 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3033 lock_page(vmf
->page
);
3035 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3041 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3042 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3043 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3044 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3046 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3048 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3051 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3053 struct vm_area_struct
*vma
= vmf
->vma
;
3055 if (!pmd_none(*vmf
->pmd
))
3057 if (vmf
->prealloc_pte
) {
3058 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3059 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3060 spin_unlock(vmf
->ptl
);
3064 mm_inc_nr_ptes(vma
->vm_mm
);
3065 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3066 spin_unlock(vmf
->ptl
);
3067 vmf
->prealloc_pte
= NULL
;
3068 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3069 return VM_FAULT_OOM
;
3073 * If a huge pmd materialized under us just retry later. Use
3074 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3075 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3076 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3077 * running immediately after a huge pmd fault in a different thread of
3078 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3079 * All we have to ensure is that it is a regular pmd that we can walk
3080 * with pte_offset_map() and we can do that through an atomic read in
3081 * C, which is what pmd_trans_unstable() provides.
3083 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3084 return VM_FAULT_NOPAGE
;
3087 * At this point we know that our vmf->pmd points to a page of ptes
3088 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3089 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3090 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3091 * be valid and we will re-check to make sure the vmf->pte isn't
3092 * pte_none() under vmf->ptl protection when we return to
3095 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3100 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3102 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3103 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3104 unsigned long haddr
)
3106 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3107 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3109 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3114 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3116 struct vm_area_struct
*vma
= vmf
->vma
;
3118 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3120 * We are going to consume the prealloc table,
3121 * count that as nr_ptes.
3123 mm_inc_nr_ptes(vma
->vm_mm
);
3124 vmf
->prealloc_pte
= NULL
;
3127 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3129 struct vm_area_struct
*vma
= vmf
->vma
;
3130 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3131 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3136 if (!transhuge_vma_suitable(vma
, haddr
))
3137 return VM_FAULT_FALLBACK
;
3139 ret
= VM_FAULT_FALLBACK
;
3140 page
= compound_head(page
);
3143 * Archs like ppc64 need additonal space to store information
3144 * related to pte entry. Use the preallocated table for that.
3146 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3147 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3148 if (!vmf
->prealloc_pte
)
3149 return VM_FAULT_OOM
;
3150 smp_wmb(); /* See comment in __pte_alloc() */
3153 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3154 if (unlikely(!pmd_none(*vmf
->pmd
)))
3157 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3158 flush_icache_page(vma
, page
+ i
);
3160 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3162 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3164 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3165 page_add_file_rmap(page
, true);
3167 * deposit and withdraw with pmd lock held
3169 if (arch_needs_pgtable_deposit())
3170 deposit_prealloc_pte(vmf
);
3172 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3174 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3176 /* fault is handled */
3178 count_vm_event(THP_FILE_MAPPED
);
3180 spin_unlock(vmf
->ptl
);
3184 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3192 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3193 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3195 * @vmf: fault environment
3196 * @memcg: memcg to charge page (only for private mappings)
3197 * @page: page to map
3199 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3202 * Target users are page handler itself and implementations of
3203 * vm_ops->map_pages.
3205 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3208 struct vm_area_struct
*vma
= vmf
->vma
;
3209 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3213 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3214 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3216 VM_BUG_ON_PAGE(memcg
, page
);
3218 ret
= do_set_pmd(vmf
, page
);
3219 if (ret
!= VM_FAULT_FALLBACK
)
3224 ret
= pte_alloc_one_map(vmf
);
3229 /* Re-check under ptl */
3230 if (unlikely(!pte_none(*vmf
->pte
)))
3231 return VM_FAULT_NOPAGE
;
3233 flush_icache_page(vma
, page
);
3234 entry
= mk_pte(page
, vma
->vm_page_prot
);
3236 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3237 /* copy-on-write page */
3238 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3239 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3240 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3241 mem_cgroup_commit_charge(page
, memcg
, false, false);
3242 lru_cache_add_active_or_unevictable(page
, vma
);
3244 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3245 page_add_file_rmap(page
, false);
3247 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3249 /* no need to invalidate: a not-present page won't be cached */
3250 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3257 * finish_fault - finish page fault once we have prepared the page to fault
3259 * @vmf: structure describing the fault
3261 * This function handles all that is needed to finish a page fault once the
3262 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3263 * given page, adds reverse page mapping, handles memcg charges and LRU
3264 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3267 * The function expects the page to be locked and on success it consumes a
3268 * reference of a page being mapped (for the PTE which maps it).
3270 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3275 /* Did we COW the page? */
3276 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3277 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3278 page
= vmf
->cow_page
;
3283 * check even for read faults because we might have lost our CoWed
3286 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3287 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3289 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3291 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3295 static unsigned long fault_around_bytes __read_mostly
=
3296 rounddown_pow_of_two(65536);
3298 #ifdef CONFIG_DEBUG_FS
3299 static int fault_around_bytes_get(void *data
, u64
*val
)
3301 *val
= fault_around_bytes
;
3306 * fault_around_bytes must be rounded down to the nearest page order as it's
3307 * what do_fault_around() expects to see.
3309 static int fault_around_bytes_set(void *data
, u64 val
)
3311 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3313 if (val
> PAGE_SIZE
)
3314 fault_around_bytes
= rounddown_pow_of_two(val
);
3316 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3319 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3320 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3322 static int __init
fault_around_debugfs(void)
3326 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3327 &fault_around_bytes_fops
);
3329 pr_warn("Failed to create fault_around_bytes in debugfs");
3332 late_initcall(fault_around_debugfs
);
3336 * do_fault_around() tries to map few pages around the fault address. The hope
3337 * is that the pages will be needed soon and this will lower the number of
3340 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3341 * not ready to be mapped: not up-to-date, locked, etc.
3343 * This function is called with the page table lock taken. In the split ptlock
3344 * case the page table lock only protects only those entries which belong to
3345 * the page table corresponding to the fault address.
3347 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3350 * fault_around_bytes defines how many bytes we'll try to map.
3351 * do_fault_around() expects it to be set to a power of two less than or equal
3354 * The virtual address of the area that we map is naturally aligned to
3355 * fault_around_bytes rounded down to the machine page size
3356 * (and therefore to page order). This way it's easier to guarantee
3357 * that we don't cross page table boundaries.
3359 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3361 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3362 pgoff_t start_pgoff
= vmf
->pgoff
;
3367 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3368 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3370 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3371 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3375 * end_pgoff is either the end of the page table, the end of
3376 * the vma or nr_pages from start_pgoff, depending what is nearest.
3378 end_pgoff
= start_pgoff
-
3379 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3381 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3382 start_pgoff
+ nr_pages
- 1);
3384 if (pmd_none(*vmf
->pmd
)) {
3385 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3386 if (!vmf
->prealloc_pte
)
3388 smp_wmb(); /* See comment in __pte_alloc() */
3391 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3393 /* Huge page is mapped? Page fault is solved */
3394 if (pmd_trans_huge(*vmf
->pmd
)) {
3395 ret
= VM_FAULT_NOPAGE
;
3399 /* ->map_pages() haven't done anything useful. Cold page cache? */
3403 /* check if the page fault is solved */
3404 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3405 if (!pte_none(*vmf
->pte
))
3406 ret
= VM_FAULT_NOPAGE
;
3407 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3409 vmf
->address
= address
;
3414 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3416 struct vm_area_struct
*vma
= vmf
->vma
;
3420 * Let's call ->map_pages() first and use ->fault() as fallback
3421 * if page by the offset is not ready to be mapped (cold cache or
3424 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3425 ret
= do_fault_around(vmf
);
3430 ret
= __do_fault(vmf
);
3431 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3434 ret
|= finish_fault(vmf
);
3435 unlock_page(vmf
->page
);
3436 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3437 put_page(vmf
->page
);
3441 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3443 struct vm_area_struct
*vma
= vmf
->vma
;
3446 if (unlikely(anon_vma_prepare(vma
)))
3447 return VM_FAULT_OOM
;
3449 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3451 return VM_FAULT_OOM
;
3453 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3454 &vmf
->memcg
, false)) {
3455 put_page(vmf
->cow_page
);
3456 return VM_FAULT_OOM
;
3459 ret
= __do_fault(vmf
);
3460 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3462 if (ret
& VM_FAULT_DONE_COW
)
3465 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3466 __SetPageUptodate(vmf
->cow_page
);
3468 ret
|= finish_fault(vmf
);
3469 unlock_page(vmf
->page
);
3470 put_page(vmf
->page
);
3471 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3475 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3476 put_page(vmf
->cow_page
);
3480 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3482 struct vm_area_struct
*vma
= vmf
->vma
;
3483 vm_fault_t ret
, tmp
;
3485 ret
= __do_fault(vmf
);
3486 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3490 * Check if the backing address space wants to know that the page is
3491 * about to become writable
3493 if (vma
->vm_ops
->page_mkwrite
) {
3494 unlock_page(vmf
->page
);
3495 tmp
= do_page_mkwrite(vmf
);
3496 if (unlikely(!tmp
||
3497 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3498 put_page(vmf
->page
);
3503 ret
|= finish_fault(vmf
);
3504 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3506 unlock_page(vmf
->page
);
3507 put_page(vmf
->page
);
3511 fault_dirty_shared_page(vma
, vmf
->page
);
3516 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3517 * but allow concurrent faults).
3518 * The mmap_sem may have been released depending on flags and our
3519 * return value. See filemap_fault() and __lock_page_or_retry().
3521 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3523 struct vm_area_struct
*vma
= vmf
->vma
;
3527 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3529 if (!vma
->vm_ops
->fault
) {
3531 * If we find a migration pmd entry or a none pmd entry, which
3532 * should never happen, return SIGBUS
3534 if (unlikely(!pmd_present(*vmf
->pmd
)))
3535 ret
= VM_FAULT_SIGBUS
;
3537 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3542 * Make sure this is not a temporary clearing of pte
3543 * by holding ptl and checking again. A R/M/W update
3544 * of pte involves: take ptl, clearing the pte so that
3545 * we don't have concurrent modification by hardware
3546 * followed by an update.
3548 if (unlikely(pte_none(*vmf
->pte
)))
3549 ret
= VM_FAULT_SIGBUS
;
3551 ret
= VM_FAULT_NOPAGE
;
3553 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3555 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3556 ret
= do_read_fault(vmf
);
3557 else if (!(vma
->vm_flags
& VM_SHARED
))
3558 ret
= do_cow_fault(vmf
);
3560 ret
= do_shared_fault(vmf
);
3562 /* preallocated pagetable is unused: free it */
3563 if (vmf
->prealloc_pte
) {
3564 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3565 vmf
->prealloc_pte
= NULL
;
3570 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3571 unsigned long addr
, int page_nid
,
3576 count_vm_numa_event(NUMA_HINT_FAULTS
);
3577 if (page_nid
== numa_node_id()) {
3578 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3579 *flags
|= TNF_FAULT_LOCAL
;
3582 return mpol_misplaced(page
, vma
, addr
);
3585 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3587 struct vm_area_struct
*vma
= vmf
->vma
;
3588 struct page
*page
= NULL
;
3592 bool migrated
= false;
3594 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3598 * The "pte" at this point cannot be used safely without
3599 * validation through pte_unmap_same(). It's of NUMA type but
3600 * the pfn may be screwed if the read is non atomic.
3602 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3603 spin_lock(vmf
->ptl
);
3604 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3605 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3610 * Make it present again, Depending on how arch implementes non
3611 * accessible ptes, some can allow access by kernel mode.
3613 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3614 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3615 pte
= pte_mkyoung(pte
);
3617 pte
= pte_mkwrite(pte
);
3618 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3619 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3621 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3623 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3627 /* TODO: handle PTE-mapped THP */
3628 if (PageCompound(page
)) {
3629 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3634 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3635 * much anyway since they can be in shared cache state. This misses
3636 * the case where a mapping is writable but the process never writes
3637 * to it but pte_write gets cleared during protection updates and
3638 * pte_dirty has unpredictable behaviour between PTE scan updates,
3639 * background writeback, dirty balancing and application behaviour.
3641 if (!pte_write(pte
))
3642 flags
|= TNF_NO_GROUP
;
3645 * Flag if the page is shared between multiple address spaces. This
3646 * is later used when determining whether to group tasks together
3648 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3649 flags
|= TNF_SHARED
;
3651 last_cpupid
= page_cpupid_last(page
);
3652 page_nid
= page_to_nid(page
);
3653 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3655 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3656 if (target_nid
== -1) {
3661 /* Migrate to the requested node */
3662 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3664 page_nid
= target_nid
;
3665 flags
|= TNF_MIGRATED
;
3667 flags
|= TNF_MIGRATE_FAIL
;
3671 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3675 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3677 if (vma_is_anonymous(vmf
->vma
))
3678 return do_huge_pmd_anonymous_page(vmf
);
3679 if (vmf
->vma
->vm_ops
->huge_fault
)
3680 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3681 return VM_FAULT_FALLBACK
;
3684 /* `inline' is required to avoid gcc 4.1.2 build error */
3685 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3687 if (vma_is_anonymous(vmf
->vma
))
3688 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3689 if (vmf
->vma
->vm_ops
->huge_fault
)
3690 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3692 /* COW handled on pte level: split pmd */
3693 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3694 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3696 return VM_FAULT_FALLBACK
;
3699 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3701 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3704 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 /* No support for anonymous transparent PUD pages yet */
3708 if (vma_is_anonymous(vmf
->vma
))
3709 return VM_FAULT_FALLBACK
;
3710 if (vmf
->vma
->vm_ops
->huge_fault
)
3711 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713 return VM_FAULT_FALLBACK
;
3716 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719 /* No support for anonymous transparent PUD pages yet */
3720 if (vma_is_anonymous(vmf
->vma
))
3721 return VM_FAULT_FALLBACK
;
3722 if (vmf
->vma
->vm_ops
->huge_fault
)
3723 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725 return VM_FAULT_FALLBACK
;
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures). The early dirtying is also good on the i386.
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738 * concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our return value.
3741 * See filemap_fault() and __lock_page_or_retry().
3743 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
3747 if (unlikely(pmd_none(*vmf
->pmd
))) {
3749 * Leave __pte_alloc() until later: because vm_ops->fault may
3750 * want to allocate huge page, and if we expose page table
3751 * for an instant, it will be difficult to retract from
3752 * concurrent faults and from rmap lookups.
3756 /* See comment in pte_alloc_one_map() */
3757 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3760 * A regular pmd is established and it can't morph into a huge
3761 * pmd from under us anymore at this point because we hold the
3762 * mmap_sem read mode and khugepaged takes it in write mode.
3763 * So now it's safe to run pte_offset_map().
3765 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3766 vmf
->orig_pte
= *vmf
->pte
;
3769 * some architectures can have larger ptes than wordsize,
3770 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3772 * accesses. The code below just needs a consistent view
3773 * for the ifs and we later double check anyway with the
3774 * ptl lock held. So here a barrier will do.
3777 if (pte_none(vmf
->orig_pte
)) {
3778 pte_unmap(vmf
->pte
);
3784 if (vma_is_anonymous(vmf
->vma
))
3785 return do_anonymous_page(vmf
);
3787 return do_fault(vmf
);
3790 if (!pte_present(vmf
->orig_pte
))
3791 return do_swap_page(vmf
);
3793 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3794 return do_numa_page(vmf
);
3796 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3797 spin_lock(vmf
->ptl
);
3798 entry
= vmf
->orig_pte
;
3799 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3801 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3802 if (!pte_write(entry
))
3803 return do_wp_page(vmf
);
3804 entry
= pte_mkdirty(entry
);
3806 entry
= pte_mkyoung(entry
);
3807 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3808 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3809 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3812 * This is needed only for protection faults but the arch code
3813 * is not yet telling us if this is a protection fault or not.
3814 * This still avoids useless tlb flushes for .text page faults
3817 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3818 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3821 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3826 * By the time we get here, we already hold the mm semaphore
3828 * The mmap_sem may have been released depending on flags and our
3829 * return value. See filemap_fault() and __lock_page_or_retry().
3831 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
3832 unsigned long address
, unsigned int flags
)
3834 struct vm_fault vmf
= {
3836 .address
= address
& PAGE_MASK
,
3838 .pgoff
= linear_page_index(vma
, address
),
3839 .gfp_mask
= __get_fault_gfp_mask(vma
),
3841 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3842 struct mm_struct
*mm
= vma
->vm_mm
;
3847 pgd
= pgd_offset(mm
, address
);
3848 p4d
= p4d_alloc(mm
, pgd
, address
);
3850 return VM_FAULT_OOM
;
3852 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
3854 return VM_FAULT_OOM
;
3855 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
3856 ret
= create_huge_pud(&vmf
);
3857 if (!(ret
& VM_FAULT_FALLBACK
))
3860 pud_t orig_pud
= *vmf
.pud
;
3863 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3865 /* NUMA case for anonymous PUDs would go here */
3867 if (dirty
&& !pud_write(orig_pud
)) {
3868 ret
= wp_huge_pud(&vmf
, orig_pud
);
3869 if (!(ret
& VM_FAULT_FALLBACK
))
3872 huge_pud_set_accessed(&vmf
, orig_pud
);
3878 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3880 return VM_FAULT_OOM
;
3881 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
3882 ret
= create_huge_pmd(&vmf
);
3883 if (!(ret
& VM_FAULT_FALLBACK
))
3886 pmd_t orig_pmd
= *vmf
.pmd
;
3889 if (unlikely(is_swap_pmd(orig_pmd
))) {
3890 VM_BUG_ON(thp_migration_supported() &&
3891 !is_pmd_migration_entry(orig_pmd
));
3892 if (is_pmd_migration_entry(orig_pmd
))
3893 pmd_migration_entry_wait(mm
, vmf
.pmd
);
3896 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3897 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3898 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3900 if (dirty
&& !pmd_write(orig_pmd
)) {
3901 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3902 if (!(ret
& VM_FAULT_FALLBACK
))
3905 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3911 return handle_pte_fault(&vmf
);
3915 * By the time we get here, we already hold the mm semaphore
3917 * The mmap_sem may have been released depending on flags and our
3918 * return value. See filemap_fault() and __lock_page_or_retry().
3920 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3925 __set_current_state(TASK_RUNNING
);
3927 count_vm_event(PGFAULT
);
3928 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
3930 /* do counter updates before entering really critical section. */
3931 check_sync_rss_stat(current
);
3933 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3934 flags
& FAULT_FLAG_INSTRUCTION
,
3935 flags
& FAULT_FLAG_REMOTE
))
3936 return VM_FAULT_SIGSEGV
;
3939 * Enable the memcg OOM handling for faults triggered in user
3940 * space. Kernel faults are handled more gracefully.
3942 if (flags
& FAULT_FLAG_USER
)
3943 mem_cgroup_enter_user_fault();
3945 if (unlikely(is_vm_hugetlb_page(vma
)))
3946 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3948 ret
= __handle_mm_fault(vma
, address
, flags
);
3950 if (flags
& FAULT_FLAG_USER
) {
3951 mem_cgroup_exit_user_fault();
3953 * The task may have entered a memcg OOM situation but
3954 * if the allocation error was handled gracefully (no
3955 * VM_FAULT_OOM), there is no need to kill anything.
3956 * Just clean up the OOM state peacefully.
3958 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3959 mem_cgroup_oom_synchronize(false);
3964 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3966 #ifndef __PAGETABLE_P4D_FOLDED
3968 * Allocate p4d page table.
3969 * We've already handled the fast-path in-line.
3971 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3973 p4d_t
*new = p4d_alloc_one(mm
, address
);
3977 smp_wmb(); /* See comment in __pte_alloc */
3979 spin_lock(&mm
->page_table_lock
);
3980 if (pgd_present(*pgd
)) /* Another has populated it */
3983 pgd_populate(mm
, pgd
, new);
3984 spin_unlock(&mm
->page_table_lock
);
3987 #endif /* __PAGETABLE_P4D_FOLDED */
3989 #ifndef __PAGETABLE_PUD_FOLDED
3991 * Allocate page upper directory.
3992 * We've already handled the fast-path in-line.
3994 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
3996 pud_t
*new = pud_alloc_one(mm
, address
);
4000 smp_wmb(); /* See comment in __pte_alloc */
4002 spin_lock(&mm
->page_table_lock
);
4003 #ifndef __ARCH_HAS_5LEVEL_HACK
4004 if (!p4d_present(*p4d
)) {
4006 p4d_populate(mm
, p4d
, new);
4007 } else /* Another has populated it */
4010 if (!pgd_present(*p4d
)) {
4012 pgd_populate(mm
, p4d
, new);
4013 } else /* Another has populated it */
4015 #endif /* __ARCH_HAS_5LEVEL_HACK */
4016 spin_unlock(&mm
->page_table_lock
);
4019 #endif /* __PAGETABLE_PUD_FOLDED */
4021 #ifndef __PAGETABLE_PMD_FOLDED
4023 * Allocate page middle directory.
4024 * We've already handled the fast-path in-line.
4026 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4029 pmd_t
*new = pmd_alloc_one(mm
, address
);
4033 smp_wmb(); /* See comment in __pte_alloc */
4035 ptl
= pud_lock(mm
, pud
);
4036 #ifndef __ARCH_HAS_4LEVEL_HACK
4037 if (!pud_present(*pud
)) {
4039 pud_populate(mm
, pud
, new);
4040 } else /* Another has populated it */
4043 if (!pgd_present(*pud
)) {
4045 pgd_populate(mm
, pud
, new);
4046 } else /* Another has populated it */
4048 #endif /* __ARCH_HAS_4LEVEL_HACK */
4052 #endif /* __PAGETABLE_PMD_FOLDED */
4054 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4055 struct mmu_notifier_range
*range
,
4056 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4064 pgd
= pgd_offset(mm
, address
);
4065 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4068 p4d
= p4d_offset(pgd
, address
);
4069 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4072 pud
= pud_offset(p4d
, address
);
4073 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4076 pmd
= pmd_offset(pud
, address
);
4077 VM_BUG_ON(pmd_trans_huge(*pmd
));
4079 if (pmd_huge(*pmd
)) {
4084 mmu_notifier_range_init(range
, mm
, address
& PMD_MASK
,
4085 (address
& PMD_MASK
) + PMD_SIZE
);
4086 mmu_notifier_invalidate_range_start(range
);
4088 *ptlp
= pmd_lock(mm
, pmd
);
4089 if (pmd_huge(*pmd
)) {
4095 mmu_notifier_invalidate_range_end(range
);
4098 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4102 mmu_notifier_range_init(range
, mm
, address
& PAGE_MASK
,
4103 (address
& PAGE_MASK
) + PAGE_SIZE
);
4104 mmu_notifier_invalidate_range_start(range
);
4106 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4107 if (!pte_present(*ptep
))
4112 pte_unmap_unlock(ptep
, *ptlp
);
4114 mmu_notifier_invalidate_range_end(range
);
4119 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4120 pte_t
**ptepp
, spinlock_t
**ptlp
)
4124 /* (void) is needed to make gcc happy */
4125 (void) __cond_lock(*ptlp
,
4126 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4127 ptepp
, NULL
, ptlp
)));
4131 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4132 struct mmu_notifier_range
*range
,
4133 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4137 /* (void) is needed to make gcc happy */
4138 (void) __cond_lock(*ptlp
,
4139 !(res
= __follow_pte_pmd(mm
, address
, range
,
4140 ptepp
, pmdpp
, ptlp
)));
4143 EXPORT_SYMBOL(follow_pte_pmd
);
4146 * follow_pfn - look up PFN at a user virtual address
4147 * @vma: memory mapping
4148 * @address: user virtual address
4149 * @pfn: location to store found PFN
4151 * Only IO mappings and raw PFN mappings are allowed.
4153 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4155 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4162 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4165 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4168 *pfn
= pte_pfn(*ptep
);
4169 pte_unmap_unlock(ptep
, ptl
);
4172 EXPORT_SYMBOL(follow_pfn
);
4174 #ifdef CONFIG_HAVE_IOREMAP_PROT
4175 int follow_phys(struct vm_area_struct
*vma
,
4176 unsigned long address
, unsigned int flags
,
4177 unsigned long *prot
, resource_size_t
*phys
)
4183 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4186 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4190 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4193 *prot
= pgprot_val(pte_pgprot(pte
));
4194 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4198 pte_unmap_unlock(ptep
, ptl
);
4203 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4204 void *buf
, int len
, int write
)
4206 resource_size_t phys_addr
;
4207 unsigned long prot
= 0;
4208 void __iomem
*maddr
;
4209 int offset
= addr
& (PAGE_SIZE
-1);
4211 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4214 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4219 memcpy_toio(maddr
+ offset
, buf
, len
);
4221 memcpy_fromio(buf
, maddr
+ offset
, len
);
4226 EXPORT_SYMBOL_GPL(generic_access_phys
);
4230 * Access another process' address space as given in mm. If non-NULL, use the
4231 * given task for page fault accounting.
4233 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4234 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4236 struct vm_area_struct
*vma
;
4237 void *old_buf
= buf
;
4238 int write
= gup_flags
& FOLL_WRITE
;
4240 down_read(&mm
->mmap_sem
);
4241 /* ignore errors, just check how much was successfully transferred */
4243 int bytes
, ret
, offset
;
4245 struct page
*page
= NULL
;
4247 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4248 gup_flags
, &page
, &vma
, NULL
);
4250 #ifndef CONFIG_HAVE_IOREMAP_PROT
4254 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4255 * we can access using slightly different code.
4257 vma
= find_vma(mm
, addr
);
4258 if (!vma
|| vma
->vm_start
> addr
)
4260 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4261 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4269 offset
= addr
& (PAGE_SIZE
-1);
4270 if (bytes
> PAGE_SIZE
-offset
)
4271 bytes
= PAGE_SIZE
-offset
;
4275 copy_to_user_page(vma
, page
, addr
,
4276 maddr
+ offset
, buf
, bytes
);
4277 set_page_dirty_lock(page
);
4279 copy_from_user_page(vma
, page
, addr
,
4280 buf
, maddr
+ offset
, bytes
);
4289 up_read(&mm
->mmap_sem
);
4291 return buf
- old_buf
;
4295 * access_remote_vm - access another process' address space
4296 * @mm: the mm_struct of the target address space
4297 * @addr: start address to access
4298 * @buf: source or destination buffer
4299 * @len: number of bytes to transfer
4300 * @gup_flags: flags modifying lookup behaviour
4302 * The caller must hold a reference on @mm.
4304 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4305 void *buf
, int len
, unsigned int gup_flags
)
4307 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4311 * Access another process' address space.
4312 * Source/target buffer must be kernel space,
4313 * Do not walk the page table directly, use get_user_pages
4315 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4316 void *buf
, int len
, unsigned int gup_flags
)
4318 struct mm_struct
*mm
;
4321 mm
= get_task_mm(tsk
);
4325 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4331 EXPORT_SYMBOL_GPL(access_process_vm
);
4334 * Print the name of a VMA.
4336 void print_vma_addr(char *prefix
, unsigned long ip
)
4338 struct mm_struct
*mm
= current
->mm
;
4339 struct vm_area_struct
*vma
;
4342 * we might be running from an atomic context so we cannot sleep
4344 if (!down_read_trylock(&mm
->mmap_sem
))
4347 vma
= find_vma(mm
, ip
);
4348 if (vma
&& vma
->vm_file
) {
4349 struct file
*f
= vma
->vm_file
;
4350 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4354 p
= file_path(f
, buf
, PAGE_SIZE
);
4357 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4359 vma
->vm_end
- vma
->vm_start
);
4360 free_page((unsigned long)buf
);
4363 up_read(&mm
->mmap_sem
);
4366 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4367 void __might_fault(const char *file
, int line
)
4370 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4371 * holding the mmap_sem, this is safe because kernel memory doesn't
4372 * get paged out, therefore we'll never actually fault, and the
4373 * below annotations will generate false positives.
4375 if (uaccess_kernel())
4377 if (pagefault_disabled())
4379 __might_sleep(file
, line
, 0);
4380 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4382 might_lock_read(¤t
->mm
->mmap_sem
);
4385 EXPORT_SYMBOL(__might_fault
);
4388 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4390 * Process all subpages of the specified huge page with the specified
4391 * operation. The target subpage will be processed last to keep its
4394 static inline void process_huge_page(
4395 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4396 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4400 unsigned long addr
= addr_hint
&
4401 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4403 /* Process target subpage last to keep its cache lines hot */
4405 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4406 if (2 * n
<= pages_per_huge_page
) {
4407 /* If target subpage in first half of huge page */
4410 /* Process subpages at the end of huge page */
4411 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4413 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4416 /* If target subpage in second half of huge page */
4417 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4418 l
= pages_per_huge_page
- n
;
4419 /* Process subpages at the begin of huge page */
4420 for (i
= 0; i
< base
; i
++) {
4422 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4426 * Process remaining subpages in left-right-left-right pattern
4427 * towards the target subpage
4429 for (i
= 0; i
< l
; i
++) {
4430 int left_idx
= base
+ i
;
4431 int right_idx
= base
+ 2 * l
- 1 - i
;
4434 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4436 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4440 static void clear_gigantic_page(struct page
*page
,
4442 unsigned int pages_per_huge_page
)
4445 struct page
*p
= page
;
4448 for (i
= 0; i
< pages_per_huge_page
;
4449 i
++, p
= mem_map_next(p
, page
, i
)) {
4451 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4455 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4457 struct page
*page
= arg
;
4459 clear_user_highpage(page
+ idx
, addr
);
4462 void clear_huge_page(struct page
*page
,
4463 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4465 unsigned long addr
= addr_hint
&
4466 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4468 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4469 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4473 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4476 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4478 struct vm_area_struct
*vma
,
4479 unsigned int pages_per_huge_page
)
4482 struct page
*dst_base
= dst
;
4483 struct page
*src_base
= src
;
4485 for (i
= 0; i
< pages_per_huge_page
; ) {
4487 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4490 dst
= mem_map_next(dst
, dst_base
, i
);
4491 src
= mem_map_next(src
, src_base
, i
);
4495 struct copy_subpage_arg
{
4498 struct vm_area_struct
*vma
;
4501 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4503 struct copy_subpage_arg
*copy_arg
= arg
;
4505 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4506 addr
, copy_arg
->vma
);
4509 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4510 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4511 unsigned int pages_per_huge_page
)
4513 unsigned long addr
= addr_hint
&
4514 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4515 struct copy_subpage_arg arg
= {
4521 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4522 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4523 pages_per_huge_page
);
4527 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4530 long copy_huge_page_from_user(struct page
*dst_page
,
4531 const void __user
*usr_src
,
4532 unsigned int pages_per_huge_page
,
4533 bool allow_pagefault
)
4535 void *src
= (void *)usr_src
;
4537 unsigned long i
, rc
= 0;
4538 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4540 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4541 if (allow_pagefault
)
4542 page_kaddr
= kmap(dst_page
+ i
);
4544 page_kaddr
= kmap_atomic(dst_page
+ i
);
4545 rc
= copy_from_user(page_kaddr
,
4546 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4548 if (allow_pagefault
)
4549 kunmap(dst_page
+ i
);
4551 kunmap_atomic(page_kaddr
);
4553 ret_val
-= (PAGE_SIZE
- rc
);
4561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4563 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4565 static struct kmem_cache
*page_ptl_cachep
;
4567 void __init
ptlock_cache_init(void)
4569 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4573 bool ptlock_alloc(struct page
*page
)
4577 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4584 void ptlock_free(struct page
*page
)
4586 kmem_cache_free(page_ptl_cachep
, page
->ptl
);