2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
28 #include <linux/platform_data/edma.h>
30 #include "dmaengine.h"
34 * This will go away when the private EDMA API is folded
35 * into this driver and the platform device(s) are
36 * instantiated in the arch code. We can only get away
37 * with this simplification because DA8XX may not be built
38 * in the same kernel image with other DaVinci parts. This
39 * avoids having to sprinkle dmaengine driver platform devices
40 * and data throughout all the existing board files.
42 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
48 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
51 * Max of 20 segments per channel to conserve PaRAM slots
52 * Also note that MAX_NR_SG should be atleast the no.of periods
53 * that are required for ASoC, otherwise DMA prep calls will
54 * fail. Today davinci-pcm is the only user of this driver and
55 * requires atleast 17 slots, so we setup the default to 20.
58 #define EDMA_MAX_SLOTS MAX_NR_SG
59 #define EDMA_DESCRIPTORS 16
64 struct edmacc_param param
;
68 struct virt_dma_desc vdesc
;
69 struct list_head node
;
70 enum dma_transfer_direction direction
;
74 struct edma_chan
*echan
;
78 * The following 4 elements are used for residue accounting.
80 * - processed_stat: the number of SG elements we have traversed
81 * so far to cover accounting. This is updated directly to processed
82 * during edma_callback and is always <= processed, because processed
83 * refers to the number of pending transfer (programmed to EDMA
84 * controller), where as processed_stat tracks number of transfers
85 * accounted for so far.
87 * - residue: The amount of bytes we have left to transfer for this desc
89 * - residue_stat: The residue in bytes of data we have covered
90 * so far for accounting. This is updated directly to residue
91 * during callbacks to keep it current.
93 * - sg_len: Tracks the length of the current intermediate transfer,
94 * this is required to update the residue during intermediate transfer
95 * completion callback.
102 struct edma_pset pset
[0];
108 struct virt_dma_chan vchan
;
109 struct list_head node
;
110 struct edma_desc
*edesc
;
114 int slot
[EDMA_MAX_SLOTS
];
116 struct dma_slave_config cfg
;
121 struct dma_device dma_slave
;
122 struct edma_chan slave_chans
[EDMA_CHANS
];
127 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
129 return container_of(d
, struct edma_cc
, dma_slave
);
132 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
134 return container_of(c
, struct edma_chan
, vchan
.chan
);
137 static inline struct edma_desc
138 *to_edma_desc(struct dma_async_tx_descriptor
*tx
)
140 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
143 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
145 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
148 /* Dispatch a queued descriptor to the controller (caller holds lock) */
149 static void edma_execute(struct edma_chan
*echan
)
151 struct virt_dma_desc
*vdesc
;
152 struct edma_desc
*edesc
;
153 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
154 int i
, j
, left
, nslots
;
156 /* If either we processed all psets or we're still not started */
158 echan
->edesc
->pset_nr
== echan
->edesc
->processed
) {
160 vdesc
= vchan_next_desc(&echan
->vchan
);
165 list_del(&vdesc
->node
);
166 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
169 edesc
= echan
->edesc
;
171 /* Find out how many left */
172 left
= edesc
->pset_nr
- edesc
->processed
;
173 nslots
= min(MAX_NR_SG
, left
);
176 /* Write descriptor PaRAM set(s) */
177 for (i
= 0; i
< nslots
; i
++) {
178 j
= i
+ edesc
->processed
;
179 edma_write_slot(echan
->slot
[i
], &edesc
->pset
[j
].param
);
180 edesc
->sg_len
+= edesc
->pset
[j
].len
;
181 dev_vdbg(echan
->vchan
.chan
.device
->dev
,
193 j
, echan
->ch_num
, echan
->slot
[i
],
194 edesc
->pset
[j
].param
.opt
,
195 edesc
->pset
[j
].param
.src
,
196 edesc
->pset
[j
].param
.dst
,
197 edesc
->pset
[j
].param
.a_b_cnt
,
198 edesc
->pset
[j
].param
.ccnt
,
199 edesc
->pset
[j
].param
.src_dst_bidx
,
200 edesc
->pset
[j
].param
.src_dst_cidx
,
201 edesc
->pset
[j
].param
.link_bcntrld
);
202 /* Link to the previous slot if not the last set */
203 if (i
!= (nslots
- 1))
204 edma_link(echan
->slot
[i
], echan
->slot
[i
+1]);
207 edesc
->processed
+= nslots
;
210 * If this is either the last set in a set of SG-list transactions
211 * then setup a link to the dummy slot, this results in all future
212 * events being absorbed and that's OK because we're done
214 if (edesc
->processed
== edesc
->pset_nr
) {
216 edma_link(echan
->slot
[nslots
-1], echan
->slot
[1]);
218 edma_link(echan
->slot
[nslots
-1],
219 echan
->ecc
->dummy_slot
);
222 if (edesc
->processed
<= MAX_NR_SG
) {
223 dev_dbg(dev
, "first transfer starting on channel %d\n",
225 edma_start(echan
->ch_num
);
227 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
228 echan
->ch_num
, edesc
->processed
);
229 edma_resume(echan
->ch_num
);
233 * This happens due to setup times between intermediate transfers
234 * in long SG lists which have to be broken up into transfers of
238 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
239 edma_clean_channel(echan
->ch_num
);
240 edma_stop(echan
->ch_num
);
241 edma_start(echan
->ch_num
);
242 edma_trigger_channel(echan
->ch_num
);
247 static int edma_terminate_all(struct edma_chan
*echan
)
252 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
255 * Stop DMA activity: we assume the callback will not be called
256 * after edma_dma() returns (even if it does, it will see
257 * echan->edesc is NULL and exit.)
260 int cyclic
= echan
->edesc
->cyclic
;
262 edma_stop(echan
->ch_num
);
263 /* Move the cyclic channel back to default queue */
265 edma_assign_channel_eventq(echan
->ch_num
,
269 vchan_get_all_descriptors(&echan
->vchan
, &head
);
270 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
271 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
276 static int edma_slave_config(struct edma_chan
*echan
,
277 struct dma_slave_config
*cfg
)
279 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
280 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
283 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
288 static int edma_dma_pause(struct edma_chan
*echan
)
290 /* Pause/Resume only allowed with cyclic mode */
291 if (!echan
->edesc
|| !echan
->edesc
->cyclic
)
294 edma_pause(echan
->ch_num
);
298 static int edma_dma_resume(struct edma_chan
*echan
)
300 /* Pause/Resume only allowed with cyclic mode */
301 if (!echan
->edesc
->cyclic
)
304 edma_resume(echan
->ch_num
);
308 static int edma_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
312 struct dma_slave_config
*config
;
313 struct edma_chan
*echan
= to_edma_chan(chan
);
316 case DMA_TERMINATE_ALL
:
317 edma_terminate_all(echan
);
319 case DMA_SLAVE_CONFIG
:
320 config
= (struct dma_slave_config
*)arg
;
321 ret
= edma_slave_config(echan
, config
);
324 ret
= edma_dma_pause(echan
);
328 ret
= edma_dma_resume(echan
);
339 * A PaRAM set configuration abstraction used by other modes
340 * @chan: Channel who's PaRAM set we're configuring
341 * @pset: PaRAM set to initialize and setup.
342 * @src_addr: Source address of the DMA
343 * @dst_addr: Destination address of the DMA
344 * @burst: In units of dev_width, how much to send
345 * @dev_width: How much is the dev_width
346 * @dma_length: Total length of the DMA transfer
347 * @direction: Direction of the transfer
349 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
350 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
351 enum dma_slave_buswidth dev_width
, unsigned int dma_length
,
352 enum dma_transfer_direction direction
)
354 struct edma_chan
*echan
= to_edma_chan(chan
);
355 struct device
*dev
= chan
->device
->dev
;
356 struct edmacc_param
*param
= &epset
->param
;
357 int acnt
, bcnt
, ccnt
, cidx
;
358 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
363 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
367 * If the maxburst is equal to the fifo width, use
368 * A-synced transfers. This allows for large contiguous
369 * buffer transfers using only one PaRAM set.
373 * For the A-sync case, bcnt and ccnt are the remainder
374 * and quotient respectively of the division of:
375 * (dma_length / acnt) by (SZ_64K -1). This is so
376 * that in case bcnt over flows, we have ccnt to use.
377 * Note: In A-sync tranfer only, bcntrld is used, but it
378 * only applies for sg_dma_len(sg) >= SZ_64K.
379 * In this case, the best way adopted is- bccnt for the
380 * first frame will be the remainder below. Then for
381 * every successive frame, bcnt will be SZ_64K-1. This
382 * is assured as bcntrld = 0xffff in end of function.
385 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
386 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
388 * If bcnt is non-zero, we have a remainder and hence an
389 * extra frame to transfer, so increment ccnt.
398 * If maxburst is greater than the fifo address_width,
399 * use AB-synced transfers where A count is the fifo
400 * address_width and B count is the maxburst. In this
401 * case, we are limited to transfers of C count frames
402 * of (address_width * maxburst) where C count is limited
403 * to SZ_64K-1. This places an upper bound on the length
404 * of an SG segment that can be handled.
408 ccnt
= dma_length
/ (acnt
* bcnt
);
409 if (ccnt
> (SZ_64K
- 1)) {
410 dev_err(dev
, "Exceeded max SG segment size\n");
416 epset
->len
= dma_length
;
418 if (direction
== DMA_MEM_TO_DEV
) {
423 epset
->addr
= src_addr
;
424 } else if (direction
== DMA_DEV_TO_MEM
) {
429 epset
->addr
= dst_addr
;
430 } else if (direction
== DMA_MEM_TO_MEM
) {
436 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
440 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
441 /* Configure A or AB synchronized transfers */
443 param
->opt
|= SYNCDIM
;
445 param
->src
= src_addr
;
446 param
->dst
= dst_addr
;
448 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
449 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
451 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
454 * Only time when (bcntrld) auto reload is required is for
455 * A-sync case, and in this case, a requirement of reload value
456 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
457 * and then later will be populated by edma_execute.
459 param
->link_bcntrld
= 0xffffffff;
463 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
464 struct dma_chan
*chan
, struct scatterlist
*sgl
,
465 unsigned int sg_len
, enum dma_transfer_direction direction
,
466 unsigned long tx_flags
, void *context
)
468 struct edma_chan
*echan
= to_edma_chan(chan
);
469 struct device
*dev
= chan
->device
->dev
;
470 struct edma_desc
*edesc
;
471 dma_addr_t src_addr
= 0, dst_addr
= 0;
472 enum dma_slave_buswidth dev_width
;
474 struct scatterlist
*sg
;
477 if (unlikely(!echan
|| !sgl
|| !sg_len
))
480 if (direction
== DMA_DEV_TO_MEM
) {
481 src_addr
= echan
->cfg
.src_addr
;
482 dev_width
= echan
->cfg
.src_addr_width
;
483 burst
= echan
->cfg
.src_maxburst
;
484 } else if (direction
== DMA_MEM_TO_DEV
) {
485 dst_addr
= echan
->cfg
.dst_addr
;
486 dev_width
= echan
->cfg
.dst_addr_width
;
487 burst
= echan
->cfg
.dst_maxburst
;
489 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
493 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
494 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
498 edesc
= kzalloc(sizeof(*edesc
) + sg_len
*
499 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
501 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
505 edesc
->pset_nr
= sg_len
;
507 edesc
->direction
= direction
;
508 edesc
->echan
= echan
;
510 /* Allocate a PaRAM slot, if needed */
511 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
513 for (i
= 0; i
< nslots
; i
++) {
514 if (echan
->slot
[i
] < 0) {
516 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
518 if (echan
->slot
[i
] < 0) {
520 dev_err(dev
, "%s: Failed to allocate slot\n",
527 /* Configure PaRAM sets for each SG */
528 for_each_sg(sgl
, sg
, sg_len
, i
) {
529 /* Get address for each SG */
530 if (direction
== DMA_DEV_TO_MEM
)
531 dst_addr
= sg_dma_address(sg
);
533 src_addr
= sg_dma_address(sg
);
535 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
536 dst_addr
, burst
, dev_width
,
537 sg_dma_len(sg
), direction
);
544 edesc
->residue
+= sg_dma_len(sg
);
546 /* If this is the last in a current SG set of transactions,
547 enable interrupts so that next set is processed */
548 if (!((i
+1) % MAX_NR_SG
))
549 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
551 /* If this is the last set, enable completion interrupt flag */
553 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
555 edesc
->residue_stat
= edesc
->residue
;
557 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
560 struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
561 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
562 size_t len
, unsigned long tx_flags
)
565 struct edma_desc
*edesc
;
566 struct device
*dev
= chan
->device
->dev
;
567 struct edma_chan
*echan
= to_edma_chan(chan
);
569 if (unlikely(!echan
|| !len
))
572 edesc
= kzalloc(sizeof(*edesc
) + sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
574 dev_dbg(dev
, "Failed to allocate a descriptor\n");
580 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
581 DMA_SLAVE_BUSWIDTH_4_BYTES
, len
, DMA_MEM_TO_MEM
);
588 * Enable intermediate transfer chaining to re-trigger channel
589 * on completion of every TR, and enable transfer-completion
590 * interrupt on completion of the whole transfer.
592 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
593 edesc
->pset
[0].param
.opt
|= TCINTEN
;
595 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
598 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
599 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
600 size_t period_len
, enum dma_transfer_direction direction
,
601 unsigned long tx_flags
)
603 struct edma_chan
*echan
= to_edma_chan(chan
);
604 struct device
*dev
= chan
->device
->dev
;
605 struct edma_desc
*edesc
;
606 dma_addr_t src_addr
, dst_addr
;
607 enum dma_slave_buswidth dev_width
;
611 if (unlikely(!echan
|| !buf_len
|| !period_len
))
614 if (direction
== DMA_DEV_TO_MEM
) {
615 src_addr
= echan
->cfg
.src_addr
;
617 dev_width
= echan
->cfg
.src_addr_width
;
618 burst
= echan
->cfg
.src_maxburst
;
619 } else if (direction
== DMA_MEM_TO_DEV
) {
621 dst_addr
= echan
->cfg
.dst_addr
;
622 dev_width
= echan
->cfg
.dst_addr_width
;
623 burst
= echan
->cfg
.dst_maxburst
;
625 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
629 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
630 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
634 if (unlikely(buf_len
% period_len
)) {
635 dev_err(dev
, "Period should be multiple of Buffer length\n");
639 nslots
= (buf_len
/ period_len
) + 1;
642 * Cyclic DMA users such as audio cannot tolerate delays introduced
643 * by cases where the number of periods is more than the maximum
644 * number of SGs the EDMA driver can handle at a time. For DMA types
645 * such as Slave SGs, such delays are tolerable and synchronized,
646 * but the synchronization is difficult to achieve with Cyclic and
647 * cannot be guaranteed, so we error out early.
649 if (nslots
> MAX_NR_SG
)
652 edesc
= kzalloc(sizeof(*edesc
) + nslots
*
653 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
655 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
660 edesc
->pset_nr
= nslots
;
661 edesc
->residue
= edesc
->residue_stat
= buf_len
;
662 edesc
->direction
= direction
;
663 edesc
->echan
= echan
;
665 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
666 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
668 for (i
= 0; i
< nslots
; i
++) {
669 /* Allocate a PaRAM slot, if needed */
670 if (echan
->slot
[i
] < 0) {
672 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
674 if (echan
->slot
[i
] < 0) {
676 dev_err(dev
, "%s: Failed to allocate slot\n",
682 if (i
== nslots
- 1) {
683 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
684 sizeof(edesc
->pset
[0]));
688 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
689 dst_addr
, burst
, dev_width
, period_len
,
696 if (direction
== DMA_DEV_TO_MEM
)
697 dst_addr
+= period_len
;
699 src_addr
+= period_len
;
701 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
714 i
, echan
->ch_num
, echan
->slot
[i
],
715 edesc
->pset
[i
].param
.opt
,
716 edesc
->pset
[i
].param
.src
,
717 edesc
->pset
[i
].param
.dst
,
718 edesc
->pset
[i
].param
.a_b_cnt
,
719 edesc
->pset
[i
].param
.ccnt
,
720 edesc
->pset
[i
].param
.src_dst_bidx
,
721 edesc
->pset
[i
].param
.src_dst_cidx
,
722 edesc
->pset
[i
].param
.link_bcntrld
);
727 * Enable period interrupt only if it is requested
729 if (tx_flags
& DMA_PREP_INTERRUPT
)
730 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
733 /* Place the cyclic channel to highest priority queue */
734 edma_assign_channel_eventq(echan
->ch_num
, EVENTQ_0
);
736 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
739 static void edma_callback(unsigned ch_num
, u16 ch_status
, void *data
)
741 struct edma_chan
*echan
= data
;
742 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
743 struct edma_desc
*edesc
;
744 struct edmacc_param p
;
746 edesc
= echan
->edesc
;
748 /* Pause the channel for non-cyclic */
749 if (!edesc
|| (edesc
&& !edesc
->cyclic
))
750 edma_pause(echan
->ch_num
);
753 case EDMA_DMA_COMPLETE
:
754 spin_lock(&echan
->vchan
.lock
);
758 vchan_cyclic_callback(&edesc
->vdesc
);
759 } else if (edesc
->processed
== edesc
->pset_nr
) {
760 dev_dbg(dev
, "Transfer complete, stopping channel %d\n", ch_num
);
762 edma_stop(echan
->ch_num
);
763 vchan_cookie_complete(&edesc
->vdesc
);
766 dev_dbg(dev
, "Intermediate transfer complete on channel %d\n", ch_num
);
768 /* Update statistics for tx_status */
769 edesc
->residue
-= edesc
->sg_len
;
770 edesc
->residue_stat
= edesc
->residue
;
771 edesc
->processed_stat
= edesc
->processed
;
777 spin_unlock(&echan
->vchan
.lock
);
780 case EDMA_DMA_CC_ERROR
:
781 spin_lock(&echan
->vchan
.lock
);
783 edma_read_slot(EDMA_CHAN_SLOT(echan
->slot
[0]), &p
);
786 * Issue later based on missed flag which will be sure
788 * (1) we finished transmitting an intermediate slot and
789 * edma_execute is coming up.
790 * (2) or we finished current transfer and issue will
793 * Important note: issuing can be dangerous here and
794 * lead to some nasty recursion when we are in a NULL
795 * slot. So we avoid doing so and set the missed flag.
797 if (p
.a_b_cnt
== 0 && p
.ccnt
== 0) {
798 dev_dbg(dev
, "Error occurred, looks like slot is null, just setting miss\n");
802 * The slot is already programmed but the event got
803 * missed, so its safe to issue it here.
805 dev_dbg(dev
, "Error occurred but slot is non-null, TRIGGERING\n");
806 edma_clean_channel(echan
->ch_num
);
807 edma_stop(echan
->ch_num
);
808 edma_start(echan
->ch_num
);
809 edma_trigger_channel(echan
->ch_num
);
812 spin_unlock(&echan
->vchan
.lock
);
820 /* Alloc channel resources */
821 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
823 struct edma_chan
*echan
= to_edma_chan(chan
);
824 struct device
*dev
= chan
->device
->dev
;
829 a_ch_num
= edma_alloc_channel(echan
->ch_num
, edma_callback
,
830 chan
, EVENTQ_DEFAULT
);
837 if (a_ch_num
!= echan
->ch_num
) {
838 dev_err(dev
, "failed to allocate requested channel %u:%u\n",
839 EDMA_CTLR(echan
->ch_num
),
840 EDMA_CHAN_SLOT(echan
->ch_num
));
845 echan
->alloced
= true;
846 echan
->slot
[0] = echan
->ch_num
;
848 dev_dbg(dev
, "allocated channel %d for %u:%u\n", echan
->ch_num
,
849 EDMA_CTLR(echan
->ch_num
), EDMA_CHAN_SLOT(echan
->ch_num
));
854 edma_free_channel(a_ch_num
);
859 /* Free channel resources */
860 static void edma_free_chan_resources(struct dma_chan
*chan
)
862 struct edma_chan
*echan
= to_edma_chan(chan
);
863 struct device
*dev
= chan
->device
->dev
;
866 /* Terminate transfers */
867 edma_stop(echan
->ch_num
);
869 vchan_free_chan_resources(&echan
->vchan
);
871 /* Free EDMA PaRAM slots */
872 for (i
= 1; i
< EDMA_MAX_SLOTS
; i
++) {
873 if (echan
->slot
[i
] >= 0) {
874 edma_free_slot(echan
->slot
[i
]);
879 /* Free EDMA channel */
880 if (echan
->alloced
) {
881 edma_free_channel(echan
->ch_num
);
882 echan
->alloced
= false;
885 dev_dbg(dev
, "freeing channel for %u\n", echan
->ch_num
);
888 /* Send pending descriptor to hardware */
889 static void edma_issue_pending(struct dma_chan
*chan
)
891 struct edma_chan
*echan
= to_edma_chan(chan
);
894 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
895 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
897 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
900 static u32
edma_residue(struct edma_desc
*edesc
)
902 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
903 struct edma_pset
*pset
= edesc
->pset
;
904 dma_addr_t done
, pos
;
908 * We always read the dst/src position from the first RamPar
909 * pset. That's the one which is active now.
911 pos
= edma_get_position(edesc
->echan
->slot
[0], dst
);
914 * Cyclic is simple. Just subtract pset[0].addr from pos.
916 * We never update edesc->residue in the cyclic case, so we
917 * can tell the remaining room to the end of the circular
921 done
= pos
- pset
->addr
;
922 edesc
->residue_stat
= edesc
->residue
- done
;
923 return edesc
->residue_stat
;
927 * For SG operation we catch up with the last processed
930 pset
+= edesc
->processed_stat
;
932 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
934 * If we are inside this pset address range, we know
935 * this is the active one. Get the current delta and
936 * stop walking the psets.
938 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
939 return edesc
->residue_stat
- (pos
- pset
->addr
);
941 /* Otherwise mark it done and update residue_stat. */
942 edesc
->processed_stat
++;
943 edesc
->residue_stat
-= pset
->len
;
945 return edesc
->residue_stat
;
948 /* Check request completion status */
949 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
951 struct dma_tx_state
*txstate
)
953 struct edma_chan
*echan
= to_edma_chan(chan
);
954 struct virt_dma_desc
*vdesc
;
958 ret
= dma_cookie_status(chan
, cookie
, txstate
);
959 if (ret
== DMA_COMPLETE
|| !txstate
)
962 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
963 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
964 txstate
->residue
= edma_residue(echan
->edesc
);
965 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
966 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
967 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
972 static void __init
edma_chan_init(struct edma_cc
*ecc
,
973 struct dma_device
*dma
,
974 struct edma_chan
*echans
)
978 for (i
= 0; i
< EDMA_CHANS
; i
++) {
979 struct edma_chan
*echan
= &echans
[i
];
980 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->ctlr
, i
);
982 echan
->vchan
.desc_free
= edma_desc_free
;
984 vchan_init(&echan
->vchan
, dma
);
986 INIT_LIST_HEAD(&echan
->node
);
987 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
992 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
993 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
994 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
995 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
997 static int edma_dma_device_slave_caps(struct dma_chan
*dchan
,
998 struct dma_slave_caps
*caps
)
1000 caps
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1001 caps
->dstn_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1002 caps
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1003 caps
->cmd_pause
= true;
1004 caps
->cmd_terminate
= true;
1005 caps
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1010 static void edma_dma_init(struct edma_cc
*ecc
, struct dma_device
*dma
,
1013 dma
->device_prep_slave_sg
= edma_prep_slave_sg
;
1014 dma
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
1015 dma
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1016 dma
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1017 dma
->device_free_chan_resources
= edma_free_chan_resources
;
1018 dma
->device_issue_pending
= edma_issue_pending
;
1019 dma
->device_tx_status
= edma_tx_status
;
1020 dma
->device_control
= edma_control
;
1021 dma
->device_slave_caps
= edma_dma_device_slave_caps
;
1025 * code using dma memcpy must make sure alignment of
1026 * length is at dma->copy_align boundary.
1028 dma
->copy_align
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1030 INIT_LIST_HEAD(&dma
->channels
);
1033 static int edma_probe(struct platform_device
*pdev
)
1035 struct edma_cc
*ecc
;
1038 ret
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1042 ecc
= devm_kzalloc(&pdev
->dev
, sizeof(*ecc
), GFP_KERNEL
);
1044 dev_err(&pdev
->dev
, "Can't allocate controller\n");
1048 ecc
->ctlr
= pdev
->id
;
1049 ecc
->dummy_slot
= edma_alloc_slot(ecc
->ctlr
, EDMA_SLOT_ANY
);
1050 if (ecc
->dummy_slot
< 0) {
1051 dev_err(&pdev
->dev
, "Can't allocate PaRAM dummy slot\n");
1052 return ecc
->dummy_slot
;
1055 dma_cap_zero(ecc
->dma_slave
.cap_mask
);
1056 dma_cap_set(DMA_SLAVE
, ecc
->dma_slave
.cap_mask
);
1057 dma_cap_set(DMA_CYCLIC
, ecc
->dma_slave
.cap_mask
);
1058 dma_cap_set(DMA_MEMCPY
, ecc
->dma_slave
.cap_mask
);
1060 edma_dma_init(ecc
, &ecc
->dma_slave
, &pdev
->dev
);
1062 edma_chan_init(ecc
, &ecc
->dma_slave
, ecc
->slave_chans
);
1064 ret
= dma_async_device_register(&ecc
->dma_slave
);
1068 platform_set_drvdata(pdev
, ecc
);
1070 dev_info(&pdev
->dev
, "TI EDMA DMA engine driver\n");
1075 edma_free_slot(ecc
->dummy_slot
);
1079 static int edma_remove(struct platform_device
*pdev
)
1081 struct device
*dev
= &pdev
->dev
;
1082 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
1084 dma_async_device_unregister(&ecc
->dma_slave
);
1085 edma_free_slot(ecc
->dummy_slot
);
1090 static struct platform_driver edma_driver
= {
1091 .probe
= edma_probe
,
1092 .remove
= edma_remove
,
1094 .name
= "edma-dma-engine",
1095 .owner
= THIS_MODULE
,
1099 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
1101 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
1102 struct edma_chan
*echan
= to_edma_chan(chan
);
1103 unsigned ch_req
= *(unsigned *)param
;
1104 return ch_req
== echan
->ch_num
;
1108 EXPORT_SYMBOL(edma_filter_fn
);
1110 static struct platform_device
*pdev0
, *pdev1
;
1112 static const struct platform_device_info edma_dev_info0
= {
1113 .name
= "edma-dma-engine",
1115 .dma_mask
= DMA_BIT_MASK(32),
1118 static const struct platform_device_info edma_dev_info1
= {
1119 .name
= "edma-dma-engine",
1121 .dma_mask
= DMA_BIT_MASK(32),
1124 static int edma_init(void)
1126 int ret
= platform_driver_register(&edma_driver
);
1129 pdev0
= platform_device_register_full(&edma_dev_info0
);
1130 if (IS_ERR(pdev0
)) {
1131 platform_driver_unregister(&edma_driver
);
1132 ret
= PTR_ERR(pdev0
);
1137 if (!of_have_populated_dt() && EDMA_CTLRS
== 2) {
1138 pdev1
= platform_device_register_full(&edma_dev_info1
);
1139 if (IS_ERR(pdev1
)) {
1140 platform_driver_unregister(&edma_driver
);
1141 platform_device_unregister(pdev0
);
1142 ret
= PTR_ERR(pdev1
);
1149 subsys_initcall(edma_init
);
1151 static void __exit
edma_exit(void)
1153 platform_device_unregister(pdev0
);
1155 platform_device_unregister(pdev1
);
1156 platform_driver_unregister(&edma_driver
);
1158 module_exit(edma_exit
);
1160 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1161 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1162 MODULE_LICENSE("GPL v2");