1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
44 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static const struct extent_io_ops btree_extent_io_ops
;
54 static void end_workqueue_fn(struct btrfs_work
*work
);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
57 struct btrfs_fs_info
*fs_info
);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
60 struct extent_io_tree
*dirty_pages
,
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
63 struct extent_io_tree
*pinned_extents
);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
65 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
72 struct btrfs_end_io_wq
{
76 struct btrfs_fs_info
*info
;
78 enum btrfs_wq_endio_type metadata
;
79 struct btrfs_work work
;
82 static struct kmem_cache
*btrfs_end_io_wq_cache
;
84 int __init
btrfs_end_io_wq_init(void)
86 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq
),
91 if (!btrfs_end_io_wq_cache
)
96 void __cold
btrfs_end_io_wq_exit(void)
98 kmem_cache_destroy(btrfs_end_io_wq_cache
);
101 static void btrfs_free_csum_hash(struct btrfs_fs_info
*fs_info
)
103 if (fs_info
->csum_shash
)
104 crypto_free_shash(fs_info
->csum_shash
);
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
112 struct async_submit_bio
{
115 extent_submit_bio_start_t
*submit_bio_start
;
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
122 struct btrfs_work work
;
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
154 static struct btrfs_lockdep_keyset
{
155 u64 id
; /* root objectid */
156 const char *name_stem
; /* lock name stem */
157 char names
[BTRFS_MAX_LEVEL
+ 1][20];
158 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
159 } btrfs_lockdep_keysets
[] = {
160 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
161 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
162 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
163 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
164 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
165 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
166 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
167 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
168 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
169 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
170 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
171 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
172 { .id
= 0, .name_stem
= "tree" },
175 void __init
btrfs_init_lockdep(void)
179 /* initialize lockdep class names */
180 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
181 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
183 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
184 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
185 "btrfs-%s-%02d", ks
->name_stem
, j
);
189 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
192 struct btrfs_lockdep_keyset
*ks
;
194 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
198 if (ks
->id
== objectid
)
201 lockdep_set_class_and_name(&eb
->lock
,
202 &ks
->keys
[level
], ks
->names
[level
]);
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
211 struct extent_map
*btree_get_extent(struct btrfs_inode
*inode
,
212 struct page
*page
, size_t pg_offset
,
215 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
216 struct extent_map
*em
;
219 read_lock(&em_tree
->lock
);
220 em
= lookup_extent_mapping(em_tree
, start
, len
);
222 read_unlock(&em_tree
->lock
);
225 read_unlock(&em_tree
->lock
);
227 em
= alloc_extent_map();
229 em
= ERR_PTR(-ENOMEM
);
234 em
->block_len
= (u64
)-1;
237 write_lock(&em_tree
->lock
);
238 ret
= add_extent_mapping(em_tree
, em
, 0);
239 if (ret
== -EEXIST
) {
241 em
= lookup_extent_mapping(em_tree
, start
, len
);
248 write_unlock(&em_tree
->lock
);
255 * Compute the csum of a btree block and store the result to provided buffer.
257 static void csum_tree_block(struct extent_buffer
*buf
, u8
*result
)
259 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
260 const int num_pages
= fs_info
->nodesize
>> PAGE_SHIFT
;
261 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
265 shash
->tfm
= fs_info
->csum_shash
;
266 crypto_shash_init(shash
);
267 kaddr
= page_address(buf
->pages
[0]);
268 crypto_shash_update(shash
, kaddr
+ BTRFS_CSUM_SIZE
,
269 PAGE_SIZE
- BTRFS_CSUM_SIZE
);
271 for (i
= 1; i
< num_pages
; i
++) {
272 kaddr
= page_address(buf
->pages
[i
]);
273 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
275 memset(result
, 0, BTRFS_CSUM_SIZE
);
276 crypto_shash_final(shash
, result
);
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
285 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
286 struct extent_buffer
*eb
, u64 parent_transid
,
289 struct extent_state
*cached_state
= NULL
;
291 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
293 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
300 btrfs_tree_read_lock(eb
);
301 btrfs_set_lock_blocking_read(eb
);
304 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
306 if (extent_buffer_uptodate(eb
) &&
307 btrfs_header_generation(eb
) == parent_transid
) {
311 btrfs_err_rl(eb
->fs_info
,
312 "parent transid verify failed on %llu wanted %llu found %llu",
314 parent_transid
, btrfs_header_generation(eb
));
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
325 if (!extent_buffer_under_io(eb
))
326 clear_extent_buffer_uptodate(eb
);
328 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
331 btrfs_tree_read_unlock_blocking(eb
);
335 static bool btrfs_supported_super_csum(u16 csum_type
)
338 case BTRFS_CSUM_TYPE_CRC32
:
339 case BTRFS_CSUM_TYPE_XXHASH
:
340 case BTRFS_CSUM_TYPE_SHA256
:
341 case BTRFS_CSUM_TYPE_BLAKE2
:
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
352 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
355 struct btrfs_super_block
*disk_sb
=
356 (struct btrfs_super_block
*)raw_disk_sb
;
357 char result
[BTRFS_CSUM_SIZE
];
358 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
360 shash
->tfm
= fs_info
->csum_shash
;
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
367 crypto_shash_digest(shash
, raw_disk_sb
+ BTRFS_CSUM_SIZE
,
368 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
, result
);
370 if (memcmp(disk_sb
->csum
, result
, btrfs_super_csum_size(disk_sb
)))
376 int btrfs_verify_level_key(struct extent_buffer
*eb
, int level
,
377 struct btrfs_key
*first_key
, u64 parent_transid
)
379 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
381 struct btrfs_key found_key
;
384 found_level
= btrfs_header_level(eb
);
385 if (found_level
!= level
) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
387 KERN_ERR
"BTRFS: tree level check failed\n");
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb
->start
, level
, found_level
);
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
403 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb
) == 0) {
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
416 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
418 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
419 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
423 KERN_ERR
"BTRFS: tree first key check failed\n");
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb
->start
, parent_transid
, first_key
->objectid
,
427 first_key
->type
, first_key
->offset
,
428 found_key
.objectid
, found_key
.type
,
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
442 static int btree_read_extent_buffer_pages(struct extent_buffer
*eb
,
443 u64 parent_transid
, int level
,
444 struct btrfs_key
*first_key
)
446 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
447 struct extent_io_tree
*io_tree
;
452 int failed_mirror
= 0;
454 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
456 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
457 ret
= read_extent_buffer_pages(eb
, WAIT_COMPLETE
, mirror_num
);
459 if (verify_parent_transid(io_tree
, eb
,
462 else if (btrfs_verify_level_key(eb
, level
,
463 first_key
, parent_transid
))
469 num_copies
= btrfs_num_copies(fs_info
,
474 if (!failed_mirror
) {
476 failed_mirror
= eb
->read_mirror
;
480 if (mirror_num
== failed_mirror
)
483 if (mirror_num
> num_copies
)
487 if (failed
&& !ret
&& failed_mirror
)
488 btrfs_repair_eb_io_failure(eb
, failed_mirror
);
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
498 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
500 u64 start
= page_offset(page
);
502 u8 result
[BTRFS_CSUM_SIZE
];
503 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
504 struct extent_buffer
*eb
;
507 eb
= (struct extent_buffer
*)page
->private;
508 if (page
!= eb
->pages
[0])
511 found_start
= btrfs_header_bytenr(eb
);
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
516 if (WARN_ON(found_start
!= start
))
518 if (WARN_ON(!PageUptodate(page
)))
521 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fs_devices
->metadata_uuid
,
522 offsetof(struct btrfs_header
, fsid
),
523 BTRFS_FSID_SIZE
) == 0);
525 csum_tree_block(eb
, result
);
527 if (btrfs_header_level(eb
))
528 ret
= btrfs_check_node(eb
);
530 ret
= btrfs_check_leaf_full(eb
);
533 btrfs_print_tree(eb
, 0);
535 "block=%llu write time tree block corruption detected",
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
540 write_extent_buffer(eb
, result
, 0, csum_size
);
545 static int check_tree_block_fsid(struct extent_buffer
*eb
)
547 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
548 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
549 u8 fsid
[BTRFS_FSID_SIZE
];
552 read_extent_buffer(eb
, fsid
, offsetof(struct btrfs_header
, fsid
),
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
562 if (fs_devices
== fs_info
->fs_devices
&&
563 btrfs_fs_incompat(fs_info
, METADATA_UUID
))
564 metadata_uuid
= fs_devices
->metadata_uuid
;
566 metadata_uuid
= fs_devices
->fsid
;
568 if (!memcmp(fsid
, metadata_uuid
, BTRFS_FSID_SIZE
)) {
572 fs_devices
= fs_devices
->seed
;
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
578 u64 phy_offset
, struct page
*page
,
579 u64 start
, u64 end
, int mirror
)
583 struct extent_buffer
*eb
;
584 struct btrfs_fs_info
*fs_info
;
587 u8 result
[BTRFS_CSUM_SIZE
];
593 eb
= (struct extent_buffer
*)page
->private;
594 fs_info
= eb
->fs_info
;
595 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
600 atomic_inc(&eb
->refs
);
602 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
606 eb
->read_mirror
= mirror
;
607 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
612 found_start
= btrfs_header_bytenr(eb
);
613 if (found_start
!= eb
->start
) {
614 btrfs_err_rl(fs_info
, "bad tree block start, want %llu have %llu",
615 eb
->start
, found_start
);
619 if (check_tree_block_fsid(eb
)) {
620 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
625 found_level
= btrfs_header_level(eb
);
626 if (found_level
>= BTRFS_MAX_LEVEL
) {
627 btrfs_err(fs_info
, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb
), eb
->start
);
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
636 csum_tree_block(eb
, result
);
638 if (memcmp_extent_buffer(eb
, result
, 0, csum_size
)) {
642 memcpy(&found
, result
, csum_size
);
644 read_extent_buffer(eb
, &val
, 0, csum_size
);
645 btrfs_warn_rl(fs_info
,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info
->sb
->s_id
, eb
->start
,
648 val
, found
, btrfs_header_level(eb
));
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
658 if (found_level
== 0 && btrfs_check_leaf_full(eb
)) {
659 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
663 if (found_level
> 0 && btrfs_check_node(eb
))
667 set_extent_buffer_uptodate(eb
);
670 "block=%llu read time tree block corruption detected",
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
675 btree_readahead_hook(eb
, ret
);
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
683 atomic_inc(&eb
->io_pages
);
684 clear_extent_buffer_uptodate(eb
);
686 free_extent_buffer(eb
);
691 static void end_workqueue_bio(struct bio
*bio
)
693 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
694 struct btrfs_fs_info
*fs_info
;
695 struct btrfs_workqueue
*wq
;
697 fs_info
= end_io_wq
->info
;
698 end_io_wq
->status
= bio
->bi_status
;
700 if (bio_op(bio
) == REQ_OP_WRITE
) {
701 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
702 wq
= fs_info
->endio_meta_write_workers
;
703 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
704 wq
= fs_info
->endio_freespace_worker
;
705 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
706 wq
= fs_info
->endio_raid56_workers
;
708 wq
= fs_info
->endio_write_workers
;
710 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
711 wq
= fs_info
->endio_raid56_workers
;
712 else if (end_io_wq
->metadata
)
713 wq
= fs_info
->endio_meta_workers
;
715 wq
= fs_info
->endio_workers
;
718 btrfs_init_work(&end_io_wq
->work
, end_workqueue_fn
, NULL
, NULL
);
719 btrfs_queue_work(wq
, &end_io_wq
->work
);
722 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
723 enum btrfs_wq_endio_type metadata
)
725 struct btrfs_end_io_wq
*end_io_wq
;
727 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
729 return BLK_STS_RESOURCE
;
731 end_io_wq
->private = bio
->bi_private
;
732 end_io_wq
->end_io
= bio
->bi_end_io
;
733 end_io_wq
->info
= info
;
734 end_io_wq
->status
= 0;
735 end_io_wq
->bio
= bio
;
736 end_io_wq
->metadata
= metadata
;
738 bio
->bi_private
= end_io_wq
;
739 bio
->bi_end_io
= end_workqueue_bio
;
743 static void run_one_async_start(struct btrfs_work
*work
)
745 struct async_submit_bio
*async
;
748 async
= container_of(work
, struct async_submit_bio
, work
);
749 ret
= async
->submit_bio_start(async
->private_data
, async
->bio
,
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
763 static void run_one_async_done(struct btrfs_work
*work
)
765 struct async_submit_bio
*async
;
769 async
= container_of(work
, struct async_submit_bio
, work
);
770 inode
= async
->private_data
;
772 /* If an error occurred we just want to clean up the bio and move on */
774 async
->bio
->bi_status
= async
->status
;
775 bio_endio(async
->bio
);
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
784 async
->bio
->bi_opf
|= REQ_CGROUP_PUNT
;
785 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), async
->bio
, async
->mirror_num
);
787 async
->bio
->bi_status
= ret
;
788 bio_endio(async
->bio
);
792 static void run_one_async_free(struct btrfs_work
*work
)
794 struct async_submit_bio
*async
;
796 async
= container_of(work
, struct async_submit_bio
, work
);
800 blk_status_t
btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
801 int mirror_num
, unsigned long bio_flags
,
802 u64 bio_offset
, void *private_data
,
803 extent_submit_bio_start_t
*submit_bio_start
)
805 struct async_submit_bio
*async
;
807 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
809 return BLK_STS_RESOURCE
;
811 async
->private_data
= private_data
;
813 async
->mirror_num
= mirror_num
;
814 async
->submit_bio_start
= submit_bio_start
;
816 btrfs_init_work(&async
->work
, run_one_async_start
, run_one_async_done
,
819 async
->bio_offset
= bio_offset
;
823 if (op_is_sync(bio
->bi_opf
))
824 btrfs_set_work_high_priority(&async
->work
);
826 btrfs_queue_work(fs_info
->workers
, &async
->work
);
830 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
832 struct bio_vec
*bvec
;
833 struct btrfs_root
*root
;
835 struct bvec_iter_all iter_all
;
837 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
838 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
839 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
840 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
845 return errno_to_blk_status(ret
);
848 static blk_status_t
btree_submit_bio_start(void *private_data
, struct bio
*bio
,
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
855 return btree_csum_one_bio(bio
);
858 static int check_async_write(struct btrfs_fs_info
*fs_info
,
859 struct btrfs_inode
*bi
)
861 if (atomic_read(&bi
->sync_writers
))
863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
))
868 static blk_status_t
btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
870 unsigned long bio_flags
)
872 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
873 int async
= check_async_write(fs_info
, BTRFS_I(inode
));
876 if (bio_op(bio
) != REQ_OP_WRITE
) {
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
881 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
882 BTRFS_WQ_ENDIO_METADATA
);
885 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
887 ret
= btree_csum_one_bio(bio
);
890 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
896 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, 0,
897 0, inode
, btree_submit_bio_start
);
905 bio
->bi_status
= ret
;
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space
*mapping
,
912 struct page
*newpage
, struct page
*page
,
913 enum migrate_mode mode
)
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
925 if (page_has_private(page
) &&
926 !try_to_release_page(page
, GFP_KERNEL
))
928 return migrate_page(mapping
, newpage
, page
, mode
);
933 static int btree_writepages(struct address_space
*mapping
,
934 struct writeback_control
*wbc
)
936 struct btrfs_fs_info
*fs_info
;
939 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
941 if (wbc
->for_kupdate
)
944 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
945 /* this is a bit racy, but that's ok */
946 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
947 BTRFS_DIRTY_METADATA_THRESH
,
948 fs_info
->dirty_metadata_batch
);
952 return btree_write_cache_pages(mapping
, wbc
);
955 static int btree_readpage(struct file
*file
, struct page
*page
)
957 return extent_read_full_page(page
, btree_get_extent
, 0);
960 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
962 if (PageWriteback(page
) || PageDirty(page
))
965 return try_release_extent_buffer(page
);
968 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
971 struct extent_io_tree
*tree
;
972 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
973 extent_invalidatepage(tree
, page
, offset
);
974 btree_releasepage(page
, GFP_NOFS
);
975 if (PagePrivate(page
)) {
976 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page
));
979 detach_page_private(page
);
983 static int btree_set_page_dirty(struct page
*page
)
986 struct extent_buffer
*eb
;
988 BUG_ON(!PagePrivate(page
));
989 eb
= (struct extent_buffer
*)page
->private;
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
992 BUG_ON(!atomic_read(&eb
->refs
));
993 btrfs_assert_tree_locked(eb
);
995 return __set_page_dirty_nobuffers(page
);
998 static const struct address_space_operations btree_aops
= {
999 .readpage
= btree_readpage
,
1000 .writepages
= btree_writepages
,
1001 .releasepage
= btree_releasepage
,
1002 .invalidatepage
= btree_invalidatepage
,
1003 #ifdef CONFIG_MIGRATION
1004 .migratepage
= btree_migratepage
,
1006 .set_page_dirty
= btree_set_page_dirty
,
1009 void readahead_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
1011 struct extent_buffer
*buf
= NULL
;
1014 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1018 ret
= read_extent_buffer_pages(buf
, WAIT_NONE
, 0);
1020 free_extent_buffer_stale(buf
);
1022 free_extent_buffer(buf
);
1025 struct extent_buffer
*btrfs_find_create_tree_block(
1026 struct btrfs_fs_info
*fs_info
,
1029 if (btrfs_is_testing(fs_info
))
1030 return alloc_test_extent_buffer(fs_info
, bytenr
);
1031 return alloc_extent_buffer(fs_info
, bytenr
);
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1042 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1043 u64 parent_transid
, int level
,
1044 struct btrfs_key
*first_key
)
1046 struct extent_buffer
*buf
= NULL
;
1049 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
1053 ret
= btree_read_extent_buffer_pages(buf
, parent_transid
,
1056 free_extent_buffer_stale(buf
);
1057 return ERR_PTR(ret
);
1063 void btrfs_clean_tree_block(struct extent_buffer
*buf
)
1065 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
1066 if (btrfs_header_generation(buf
) ==
1067 fs_info
->running_transaction
->transid
) {
1068 btrfs_assert_tree_locked(buf
);
1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1071 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1073 fs_info
->dirty_metadata_batch
);
1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 btrfs_set_lock_blocking_write(buf
);
1076 clear_extent_buffer_dirty(buf
);
1081 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1084 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1085 root
->fs_info
= fs_info
;
1087 root
->commit_root
= NULL
;
1089 root
->orphan_cleanup_state
= 0;
1091 root
->last_trans
= 0;
1092 root
->highest_objectid
= 0;
1093 root
->nr_delalloc_inodes
= 0;
1094 root
->nr_ordered_extents
= 0;
1095 root
->inode_tree
= RB_ROOT
;
1096 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1097 root
->block_rsv
= NULL
;
1099 INIT_LIST_HEAD(&root
->dirty_list
);
1100 INIT_LIST_HEAD(&root
->root_list
);
1101 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1102 INIT_LIST_HEAD(&root
->delalloc_root
);
1103 INIT_LIST_HEAD(&root
->ordered_extents
);
1104 INIT_LIST_HEAD(&root
->ordered_root
);
1105 INIT_LIST_HEAD(&root
->reloc_dirty_list
);
1106 INIT_LIST_HEAD(&root
->logged_list
[0]);
1107 INIT_LIST_HEAD(&root
->logged_list
[1]);
1108 spin_lock_init(&root
->inode_lock
);
1109 spin_lock_init(&root
->delalloc_lock
);
1110 spin_lock_init(&root
->ordered_extent_lock
);
1111 spin_lock_init(&root
->accounting_lock
);
1112 spin_lock_init(&root
->log_extents_lock
[0]);
1113 spin_lock_init(&root
->log_extents_lock
[1]);
1114 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1115 mutex_init(&root
->objectid_mutex
);
1116 mutex_init(&root
->log_mutex
);
1117 mutex_init(&root
->ordered_extent_mutex
);
1118 mutex_init(&root
->delalloc_mutex
);
1119 init_waitqueue_head(&root
->log_writer_wait
);
1120 init_waitqueue_head(&root
->log_commit_wait
[0]);
1121 init_waitqueue_head(&root
->log_commit_wait
[1]);
1122 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1123 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1124 atomic_set(&root
->log_commit
[0], 0);
1125 atomic_set(&root
->log_commit
[1], 0);
1126 atomic_set(&root
->log_writers
, 0);
1127 atomic_set(&root
->log_batch
, 0);
1128 refcount_set(&root
->refs
, 1);
1129 atomic_set(&root
->snapshot_force_cow
, 0);
1130 atomic_set(&root
->nr_swapfiles
, 0);
1131 root
->log_transid
= 0;
1132 root
->log_transid_committed
= -1;
1133 root
->last_log_commit
= 0;
1135 extent_io_tree_init(fs_info
, &root
->dirty_log_pages
,
1136 IO_TREE_ROOT_DIRTY_LOG_PAGES
, NULL
);
1137 extent_io_tree_init(fs_info
, &root
->log_csum_range
,
1138 IO_TREE_LOG_CSUM_RANGE
, NULL
);
1141 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1142 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1143 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1145 root
->defrag_trans_start
= fs_info
->generation
;
1147 root
->defrag_trans_start
= 0;
1148 root
->root_key
.objectid
= objectid
;
1151 spin_lock_init(&root
->root_item_lock
);
1152 btrfs_qgroup_init_swapped_blocks(&root
->swapped_blocks
);
1153 #ifdef CONFIG_BTRFS_DEBUG
1154 INIT_LIST_HEAD(&root
->leak_list
);
1155 spin_lock(&fs_info
->fs_roots_radix_lock
);
1156 list_add_tail(&root
->leak_list
, &fs_info
->allocated_roots
);
1157 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1161 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1162 u64 objectid
, gfp_t flags
)
1164 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1166 __setup_root(root
, fs_info
, objectid
);
1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1171 /* Should only be used by the testing infrastructure */
1172 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1174 struct btrfs_root
*root
;
1177 return ERR_PTR(-EINVAL
);
1179 root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
, GFP_KERNEL
);
1181 return ERR_PTR(-ENOMEM
);
1183 /* We don't use the stripesize in selftest, set it as sectorsize */
1184 root
->alloc_bytenr
= 0;
1190 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1194 struct extent_buffer
*leaf
;
1195 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1196 struct btrfs_root
*root
;
1197 struct btrfs_key key
;
1198 unsigned int nofs_flag
;
1202 * We're holding a transaction handle, so use a NOFS memory allocation
1203 * context to avoid deadlock if reclaim happens.
1205 nofs_flag
= memalloc_nofs_save();
1206 root
= btrfs_alloc_root(fs_info
, objectid
, GFP_KERNEL
);
1207 memalloc_nofs_restore(nofs_flag
);
1209 return ERR_PTR(-ENOMEM
);
1211 root
->root_key
.objectid
= objectid
;
1212 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1213 root
->root_key
.offset
= 0;
1215 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1217 ret
= PTR_ERR(leaf
);
1223 btrfs_mark_buffer_dirty(leaf
);
1225 root
->commit_root
= btrfs_root_node(root
);
1226 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1228 root
->root_item
.flags
= 0;
1229 root
->root_item
.byte_limit
= 0;
1230 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1231 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1232 btrfs_set_root_level(&root
->root_item
, 0);
1233 btrfs_set_root_refs(&root
->root_item
, 1);
1234 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1235 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1236 btrfs_set_root_dirid(&root
->root_item
, 0);
1237 if (is_fstree(objectid
))
1238 generate_random_guid(root
->root_item
.uuid
);
1240 export_guid(root
->root_item
.uuid
, &guid_null
);
1241 root
->root_item
.drop_level
= 0;
1243 key
.objectid
= objectid
;
1244 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1246 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1250 btrfs_tree_unlock(leaf
);
1256 btrfs_tree_unlock(leaf
);
1257 btrfs_put_root(root
);
1259 return ERR_PTR(ret
);
1262 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1263 struct btrfs_fs_info
*fs_info
)
1265 struct btrfs_root
*root
;
1266 struct extent_buffer
*leaf
;
1268 root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
, GFP_NOFS
);
1270 return ERR_PTR(-ENOMEM
);
1272 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1273 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1274 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1277 * DON'T set SHAREABLE bit for log trees.
1279 * Log trees are not exposed to user space thus can't be snapshotted,
1280 * and they go away before a real commit is actually done.
1282 * They do store pointers to file data extents, and those reference
1283 * counts still get updated (along with back refs to the log tree).
1286 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1289 btrfs_put_root(root
);
1290 return ERR_CAST(leaf
);
1295 btrfs_mark_buffer_dirty(root
->node
);
1296 btrfs_tree_unlock(root
->node
);
1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1301 struct btrfs_fs_info
*fs_info
)
1303 struct btrfs_root
*log_root
;
1305 log_root
= alloc_log_tree(trans
, fs_info
);
1306 if (IS_ERR(log_root
))
1307 return PTR_ERR(log_root
);
1308 WARN_ON(fs_info
->log_root_tree
);
1309 fs_info
->log_root_tree
= log_root
;
1313 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1314 struct btrfs_root
*root
)
1316 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1317 struct btrfs_root
*log_root
;
1318 struct btrfs_inode_item
*inode_item
;
1320 log_root
= alloc_log_tree(trans
, fs_info
);
1321 if (IS_ERR(log_root
))
1322 return PTR_ERR(log_root
);
1324 log_root
->last_trans
= trans
->transid
;
1325 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1327 inode_item
= &log_root
->root_item
.inode
;
1328 btrfs_set_stack_inode_generation(inode_item
, 1);
1329 btrfs_set_stack_inode_size(inode_item
, 3);
1330 btrfs_set_stack_inode_nlink(inode_item
, 1);
1331 btrfs_set_stack_inode_nbytes(inode_item
,
1333 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1335 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1337 WARN_ON(root
->log_root
);
1338 root
->log_root
= log_root
;
1339 root
->log_transid
= 0;
1340 root
->log_transid_committed
= -1;
1341 root
->last_log_commit
= 0;
1345 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1346 struct btrfs_key
*key
)
1348 struct btrfs_root
*root
;
1349 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1350 struct btrfs_path
*path
;
1355 path
= btrfs_alloc_path();
1357 return ERR_PTR(-ENOMEM
);
1359 root
= btrfs_alloc_root(fs_info
, key
->objectid
, GFP_NOFS
);
1365 ret
= btrfs_find_root(tree_root
, key
, path
,
1366 &root
->root_item
, &root
->root_key
);
1373 generation
= btrfs_root_generation(&root
->root_item
);
1374 level
= btrfs_root_level(&root
->root_item
);
1375 root
->node
= read_tree_block(fs_info
,
1376 btrfs_root_bytenr(&root
->root_item
),
1377 generation
, level
, NULL
);
1378 if (IS_ERR(root
->node
)) {
1379 ret
= PTR_ERR(root
->node
);
1382 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1386 root
->commit_root
= btrfs_root_node(root
);
1388 btrfs_free_path(path
);
1392 btrfs_put_root(root
);
1394 root
= ERR_PTR(ret
);
1398 static int btrfs_init_fs_root(struct btrfs_root
*root
)
1401 unsigned int nofs_flag
;
1403 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1404 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1406 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1412 * We might be called under a transaction (e.g. indirect backref
1413 * resolution) which could deadlock if it triggers memory reclaim
1415 nofs_flag
= memalloc_nofs_save();
1416 ret
= btrfs_drew_lock_init(&root
->snapshot_lock
);
1417 memalloc_nofs_restore(nofs_flag
);
1421 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
&&
1422 root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1423 set_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
);
1424 btrfs_check_and_init_root_item(&root
->root_item
);
1427 btrfs_init_free_ino_ctl(root
);
1428 spin_lock_init(&root
->ino_cache_lock
);
1429 init_waitqueue_head(&root
->ino_cache_wait
);
1431 ret
= get_anon_bdev(&root
->anon_dev
);
1435 mutex_lock(&root
->objectid_mutex
);
1436 ret
= btrfs_find_highest_objectid(root
,
1437 &root
->highest_objectid
);
1439 mutex_unlock(&root
->objectid_mutex
);
1443 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1445 mutex_unlock(&root
->objectid_mutex
);
1449 /* The caller is responsible to call btrfs_free_fs_root */
1453 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1456 struct btrfs_root
*root
;
1458 spin_lock(&fs_info
->fs_roots_radix_lock
);
1459 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1460 (unsigned long)root_id
);
1462 root
= btrfs_grab_root(root
);
1463 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1467 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1468 struct btrfs_root
*root
)
1472 ret
= radix_tree_preload(GFP_NOFS
);
1476 spin_lock(&fs_info
->fs_roots_radix_lock
);
1477 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1478 (unsigned long)root
->root_key
.objectid
,
1481 btrfs_grab_root(root
);
1482 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1484 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1485 radix_tree_preload_end();
1490 void btrfs_check_leaked_roots(struct btrfs_fs_info
*fs_info
)
1492 #ifdef CONFIG_BTRFS_DEBUG
1493 struct btrfs_root
*root
;
1495 while (!list_empty(&fs_info
->allocated_roots
)) {
1496 root
= list_first_entry(&fs_info
->allocated_roots
,
1497 struct btrfs_root
, leak_list
);
1498 btrfs_err(fs_info
, "leaked root %llu-%llu refcount %d",
1499 root
->root_key
.objectid
, root
->root_key
.offset
,
1500 refcount_read(&root
->refs
));
1501 while (refcount_read(&root
->refs
) > 1)
1502 btrfs_put_root(root
);
1503 btrfs_put_root(root
);
1508 void btrfs_free_fs_info(struct btrfs_fs_info
*fs_info
)
1510 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
1511 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
1512 percpu_counter_destroy(&fs_info
->dio_bytes
);
1513 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
1514 btrfs_free_csum_hash(fs_info
);
1515 btrfs_free_stripe_hash_table(fs_info
);
1516 btrfs_free_ref_cache(fs_info
);
1517 kfree(fs_info
->balance_ctl
);
1518 kfree(fs_info
->delayed_root
);
1519 btrfs_put_root(fs_info
->extent_root
);
1520 btrfs_put_root(fs_info
->tree_root
);
1521 btrfs_put_root(fs_info
->chunk_root
);
1522 btrfs_put_root(fs_info
->dev_root
);
1523 btrfs_put_root(fs_info
->csum_root
);
1524 btrfs_put_root(fs_info
->quota_root
);
1525 btrfs_put_root(fs_info
->uuid_root
);
1526 btrfs_put_root(fs_info
->free_space_root
);
1527 btrfs_put_root(fs_info
->fs_root
);
1528 btrfs_put_root(fs_info
->data_reloc_root
);
1529 btrfs_check_leaked_roots(fs_info
);
1530 btrfs_extent_buffer_leak_debug_check(fs_info
);
1531 kfree(fs_info
->super_copy
);
1532 kfree(fs_info
->super_for_commit
);
1537 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1538 u64 objectid
, bool check_ref
)
1540 struct btrfs_root
*root
;
1541 struct btrfs_path
*path
;
1542 struct btrfs_key key
;
1545 if (objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1546 return btrfs_grab_root(fs_info
->tree_root
);
1547 if (objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1548 return btrfs_grab_root(fs_info
->extent_root
);
1549 if (objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1550 return btrfs_grab_root(fs_info
->chunk_root
);
1551 if (objectid
== BTRFS_DEV_TREE_OBJECTID
)
1552 return btrfs_grab_root(fs_info
->dev_root
);
1553 if (objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1554 return btrfs_grab_root(fs_info
->csum_root
);
1555 if (objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1556 return btrfs_grab_root(fs_info
->quota_root
) ?
1557 fs_info
->quota_root
: ERR_PTR(-ENOENT
);
1558 if (objectid
== BTRFS_UUID_TREE_OBJECTID
)
1559 return btrfs_grab_root(fs_info
->uuid_root
) ?
1560 fs_info
->uuid_root
: ERR_PTR(-ENOENT
);
1561 if (objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1562 return btrfs_grab_root(fs_info
->free_space_root
) ?
1563 fs_info
->free_space_root
: ERR_PTR(-ENOENT
);
1565 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1567 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1568 btrfs_put_root(root
);
1569 return ERR_PTR(-ENOENT
);
1574 key
.objectid
= objectid
;
1575 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1576 key
.offset
= (u64
)-1;
1577 root
= btrfs_read_tree_root(fs_info
->tree_root
, &key
);
1581 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1586 ret
= btrfs_init_fs_root(root
);
1590 path
= btrfs_alloc_path();
1595 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1596 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1597 key
.offset
= objectid
;
1599 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1600 btrfs_free_path(path
);
1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1606 ret
= btrfs_insert_fs_root(fs_info
, root
);
1608 btrfs_put_root(root
);
1615 btrfs_put_root(root
);
1616 return ERR_PTR(ret
);
1619 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1621 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1623 struct btrfs_device
*device
;
1624 struct backing_dev_info
*bdi
;
1627 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1630 bdi
= device
->bdev
->bd_bdi
;
1631 if (bdi_congested(bdi
, bdi_bits
)) {
1641 * called by the kthread helper functions to finally call the bio end_io
1642 * functions. This is where read checksum verification actually happens
1644 static void end_workqueue_fn(struct btrfs_work
*work
)
1647 struct btrfs_end_io_wq
*end_io_wq
;
1649 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1650 bio
= end_io_wq
->bio
;
1652 bio
->bi_status
= end_io_wq
->status
;
1653 bio
->bi_private
= end_io_wq
->private;
1654 bio
->bi_end_io
= end_io_wq
->end_io
;
1656 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1659 static int cleaner_kthread(void *arg
)
1661 struct btrfs_root
*root
= arg
;
1662 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1668 set_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1670 /* Make the cleaner go to sleep early. */
1671 if (btrfs_need_cleaner_sleep(fs_info
))
1675 * Do not do anything if we might cause open_ctree() to block
1676 * before we have finished mounting the filesystem.
1678 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1681 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1685 * Avoid the problem that we change the status of the fs
1686 * during the above check and trylock.
1688 if (btrfs_need_cleaner_sleep(fs_info
)) {
1689 mutex_unlock(&fs_info
->cleaner_mutex
);
1693 btrfs_run_delayed_iputs(fs_info
);
1695 again
= btrfs_clean_one_deleted_snapshot(root
);
1696 mutex_unlock(&fs_info
->cleaner_mutex
);
1699 * The defragger has dealt with the R/O remount and umount,
1700 * needn't do anything special here.
1702 btrfs_run_defrag_inodes(fs_info
);
1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 * with relocation (btrfs_relocate_chunk) and relocation
1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 * unused block groups.
1712 btrfs_delete_unused_bgs(fs_info
);
1714 clear_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1715 if (kthread_should_park())
1717 if (kthread_should_stop())
1720 set_current_state(TASK_INTERRUPTIBLE
);
1722 __set_current_state(TASK_RUNNING
);
1727 static int transaction_kthread(void *arg
)
1729 struct btrfs_root
*root
= arg
;
1730 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1731 struct btrfs_trans_handle
*trans
;
1732 struct btrfs_transaction
*cur
;
1735 unsigned long delay
;
1739 cannot_commit
= false;
1740 delay
= HZ
* fs_info
->commit_interval
;
1741 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1743 spin_lock(&fs_info
->trans_lock
);
1744 cur
= fs_info
->running_transaction
;
1746 spin_unlock(&fs_info
->trans_lock
);
1750 now
= ktime_get_seconds();
1751 if (cur
->state
< TRANS_STATE_COMMIT_START
&&
1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
) &&
1753 (now
< cur
->start_time
||
1754 now
- cur
->start_time
< fs_info
->commit_interval
)) {
1755 spin_unlock(&fs_info
->trans_lock
);
1759 transid
= cur
->transid
;
1760 spin_unlock(&fs_info
->trans_lock
);
1762 /* If the file system is aborted, this will always fail. */
1763 trans
= btrfs_attach_transaction(root
);
1764 if (IS_ERR(trans
)) {
1765 if (PTR_ERR(trans
) != -ENOENT
)
1766 cannot_commit
= true;
1769 if (transid
== trans
->transid
) {
1770 btrfs_commit_transaction(trans
);
1772 btrfs_end_transaction(trans
);
1775 wake_up_process(fs_info
->cleaner_kthread
);
1776 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1779 &fs_info
->fs_state
)))
1780 btrfs_cleanup_transaction(fs_info
);
1781 if (!kthread_should_stop() &&
1782 (!btrfs_transaction_blocked(fs_info
) ||
1784 schedule_timeout_interruptible(delay
);
1785 } while (!kthread_should_stop());
1790 * This will find the highest generation in the array of root backups. The
1791 * index of the highest array is returned, or -EINVAL if we can't find
1794 * We check to make sure the array is valid by comparing the
1795 * generation of the latest root in the array with the generation
1796 * in the super block. If they don't match we pitch it.
1798 static int find_newest_super_backup(struct btrfs_fs_info
*info
)
1800 const u64 newest_gen
= btrfs_super_generation(info
->super_copy
);
1802 struct btrfs_root_backup
*root_backup
;
1805 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1806 root_backup
= info
->super_copy
->super_roots
+ i
;
1807 cur
= btrfs_backup_tree_root_gen(root_backup
);
1808 if (cur
== newest_gen
)
1816 * copy all the root pointers into the super backup array.
1817 * this will bump the backup pointer by one when it is
1820 static void backup_super_roots(struct btrfs_fs_info
*info
)
1822 const int next_backup
= info
->backup_root_index
;
1823 struct btrfs_root_backup
*root_backup
;
1825 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1828 * make sure all of our padding and empty slots get zero filled
1829 * regardless of which ones we use today
1831 memset(root_backup
, 0, sizeof(*root_backup
));
1833 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1835 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1836 btrfs_set_backup_tree_root_gen(root_backup
,
1837 btrfs_header_generation(info
->tree_root
->node
));
1839 btrfs_set_backup_tree_root_level(root_backup
,
1840 btrfs_header_level(info
->tree_root
->node
));
1842 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1843 btrfs_set_backup_chunk_root_gen(root_backup
,
1844 btrfs_header_generation(info
->chunk_root
->node
));
1845 btrfs_set_backup_chunk_root_level(root_backup
,
1846 btrfs_header_level(info
->chunk_root
->node
));
1848 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1849 btrfs_set_backup_extent_root_gen(root_backup
,
1850 btrfs_header_generation(info
->extent_root
->node
));
1851 btrfs_set_backup_extent_root_level(root_backup
,
1852 btrfs_header_level(info
->extent_root
->node
));
1855 * we might commit during log recovery, which happens before we set
1856 * the fs_root. Make sure it is valid before we fill it in.
1858 if (info
->fs_root
&& info
->fs_root
->node
) {
1859 btrfs_set_backup_fs_root(root_backup
,
1860 info
->fs_root
->node
->start
);
1861 btrfs_set_backup_fs_root_gen(root_backup
,
1862 btrfs_header_generation(info
->fs_root
->node
));
1863 btrfs_set_backup_fs_root_level(root_backup
,
1864 btrfs_header_level(info
->fs_root
->node
));
1867 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1868 btrfs_set_backup_dev_root_gen(root_backup
,
1869 btrfs_header_generation(info
->dev_root
->node
));
1870 btrfs_set_backup_dev_root_level(root_backup
,
1871 btrfs_header_level(info
->dev_root
->node
));
1873 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1874 btrfs_set_backup_csum_root_gen(root_backup
,
1875 btrfs_header_generation(info
->csum_root
->node
));
1876 btrfs_set_backup_csum_root_level(root_backup
,
1877 btrfs_header_level(info
->csum_root
->node
));
1879 btrfs_set_backup_total_bytes(root_backup
,
1880 btrfs_super_total_bytes(info
->super_copy
));
1881 btrfs_set_backup_bytes_used(root_backup
,
1882 btrfs_super_bytes_used(info
->super_copy
));
1883 btrfs_set_backup_num_devices(root_backup
,
1884 btrfs_super_num_devices(info
->super_copy
));
1887 * if we don't copy this out to the super_copy, it won't get remembered
1888 * for the next commit
1890 memcpy(&info
->super_copy
->super_roots
,
1891 &info
->super_for_commit
->super_roots
,
1892 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1896 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1899 * fs_info - filesystem whose backup roots need to be read
1900 * priority - priority of backup root required
1902 * Returns backup root index on success and -EINVAL otherwise.
1904 static int read_backup_root(struct btrfs_fs_info
*fs_info
, u8 priority
)
1906 int backup_index
= find_newest_super_backup(fs_info
);
1907 struct btrfs_super_block
*super
= fs_info
->super_copy
;
1908 struct btrfs_root_backup
*root_backup
;
1910 if (priority
< BTRFS_NUM_BACKUP_ROOTS
&& backup_index
>= 0) {
1912 return backup_index
;
1914 backup_index
= backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- priority
;
1915 backup_index
%= BTRFS_NUM_BACKUP_ROOTS
;
1920 root_backup
= super
->super_roots
+ backup_index
;
1922 btrfs_set_super_generation(super
,
1923 btrfs_backup_tree_root_gen(root_backup
));
1924 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1925 btrfs_set_super_root_level(super
,
1926 btrfs_backup_tree_root_level(root_backup
));
1927 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1930 * Fixme: the total bytes and num_devices need to match or we should
1933 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1934 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1936 return backup_index
;
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1942 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1943 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1944 btrfs_destroy_workqueue(fs_info
->workers
);
1945 btrfs_destroy_workqueue(fs_info
->endio_workers
);
1946 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
1947 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
1948 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1949 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1950 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1951 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1952 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
1953 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1954 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1955 if (fs_info
->discard_ctl
.discard_workers
)
1956 destroy_workqueue(fs_info
->discard_ctl
.discard_workers
);
1958 * Now that all other work queues are destroyed, we can safely destroy
1959 * the queues used for metadata I/O, since tasks from those other work
1960 * queues can do metadata I/O operations.
1962 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
1963 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
1966 static void free_root_extent_buffers(struct btrfs_root
*root
)
1969 free_extent_buffer(root
->node
);
1970 free_extent_buffer(root
->commit_root
);
1972 root
->commit_root
= NULL
;
1976 /* helper to cleanup tree roots */
1977 static void free_root_pointers(struct btrfs_fs_info
*info
, bool free_chunk_root
)
1979 free_root_extent_buffers(info
->tree_root
);
1981 free_root_extent_buffers(info
->dev_root
);
1982 free_root_extent_buffers(info
->extent_root
);
1983 free_root_extent_buffers(info
->csum_root
);
1984 free_root_extent_buffers(info
->quota_root
);
1985 free_root_extent_buffers(info
->uuid_root
);
1986 free_root_extent_buffers(info
->fs_root
);
1987 free_root_extent_buffers(info
->data_reloc_root
);
1988 if (free_chunk_root
)
1989 free_root_extent_buffers(info
->chunk_root
);
1990 free_root_extent_buffers(info
->free_space_root
);
1993 void btrfs_put_root(struct btrfs_root
*root
)
1998 if (refcount_dec_and_test(&root
->refs
)) {
1999 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2000 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
));
2002 free_anon_bdev(root
->anon_dev
);
2003 btrfs_drew_lock_destroy(&root
->snapshot_lock
);
2004 free_extent_buffer(root
->node
);
2005 free_extent_buffer(root
->commit_root
);
2006 kfree(root
->free_ino_ctl
);
2007 kfree(root
->free_ino_pinned
);
2008 #ifdef CONFIG_BTRFS_DEBUG
2009 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
2010 list_del_init(&root
->leak_list
);
2011 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
2017 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2020 struct btrfs_root
*gang
[8];
2023 while (!list_empty(&fs_info
->dead_roots
)) {
2024 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2025 struct btrfs_root
, root_list
);
2026 list_del(&gang
[0]->root_list
);
2028 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
))
2029 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2030 btrfs_put_root(gang
[0]);
2034 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2039 for (i
= 0; i
< ret
; i
++)
2040 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2044 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2046 mutex_init(&fs_info
->scrub_lock
);
2047 atomic_set(&fs_info
->scrubs_running
, 0);
2048 atomic_set(&fs_info
->scrub_pause_req
, 0);
2049 atomic_set(&fs_info
->scrubs_paused
, 0);
2050 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2051 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2052 refcount_set(&fs_info
->scrub_workers_refcnt
, 0);
2055 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2057 spin_lock_init(&fs_info
->balance_lock
);
2058 mutex_init(&fs_info
->balance_mutex
);
2059 atomic_set(&fs_info
->balance_pause_req
, 0);
2060 atomic_set(&fs_info
->balance_cancel_req
, 0);
2061 fs_info
->balance_ctl
= NULL
;
2062 init_waitqueue_head(&fs_info
->balance_wait_q
);
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2067 struct inode
*inode
= fs_info
->btree_inode
;
2069 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2070 set_nlink(inode
, 1);
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2076 inode
->i_size
= OFFSET_MAX
;
2077 inode
->i_mapping
->a_ops
= &btree_aops
;
2079 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2080 extent_io_tree_init(fs_info
, &BTRFS_I(inode
)->io_tree
,
2081 IO_TREE_INODE_IO
, inode
);
2082 BTRFS_I(inode
)->io_tree
.track_uptodate
= false;
2083 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2085 BTRFS_I(inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2087 BTRFS_I(inode
)->root
= btrfs_grab_root(fs_info
->tree_root
);
2088 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2089 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2090 btrfs_insert_inode_hash(inode
);
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2095 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2096 init_rwsem(&fs_info
->dev_replace
.rwsem
);
2097 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
2100 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2102 spin_lock_init(&fs_info
->qgroup_lock
);
2103 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2104 fs_info
->qgroup_tree
= RB_ROOT
;
2105 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2106 fs_info
->qgroup_seq
= 1;
2107 fs_info
->qgroup_ulist
= NULL
;
2108 fs_info
->qgroup_rescan_running
= false;
2109 mutex_init(&fs_info
->qgroup_rescan_lock
);
2112 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2113 struct btrfs_fs_devices
*fs_devices
)
2115 u32 max_active
= fs_info
->thread_pool_size
;
2116 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2119 btrfs_alloc_workqueue(fs_info
, "worker",
2120 flags
| WQ_HIGHPRI
, max_active
, 16);
2122 fs_info
->delalloc_workers
=
2123 btrfs_alloc_workqueue(fs_info
, "delalloc",
2124 flags
, max_active
, 2);
2126 fs_info
->flush_workers
=
2127 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2128 flags
, max_active
, 0);
2130 fs_info
->caching_workers
=
2131 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2133 fs_info
->fixup_workers
=
2134 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2137 * endios are largely parallel and should have a very
2140 fs_info
->endio_workers
=
2141 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2142 fs_info
->endio_meta_workers
=
2143 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2145 fs_info
->endio_meta_write_workers
=
2146 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2148 fs_info
->endio_raid56_workers
=
2149 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2151 fs_info
->rmw_workers
=
2152 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2153 fs_info
->endio_write_workers
=
2154 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2156 fs_info
->endio_freespace_worker
=
2157 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2159 fs_info
->delayed_workers
=
2160 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2162 fs_info
->readahead_workers
=
2163 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2165 fs_info
->qgroup_rescan_workers
=
2166 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2167 fs_info
->discard_ctl
.discard_workers
=
2168 alloc_workqueue("btrfs_discard", WQ_UNBOUND
| WQ_FREEZABLE
, 1);
2170 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2171 fs_info
->flush_workers
&&
2172 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2173 fs_info
->endio_meta_write_workers
&&
2174 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2175 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2176 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2177 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2178 fs_info
->qgroup_rescan_workers
&&
2179 fs_info
->discard_ctl
.discard_workers
)) {
2186 static int btrfs_init_csum_hash(struct btrfs_fs_info
*fs_info
, u16 csum_type
)
2188 struct crypto_shash
*csum_shash
;
2189 const char *csum_driver
= btrfs_super_csum_driver(csum_type
);
2191 csum_shash
= crypto_alloc_shash(csum_driver
, 0, 0);
2193 if (IS_ERR(csum_shash
)) {
2194 btrfs_err(fs_info
, "error allocating %s hash for checksum",
2196 return PTR_ERR(csum_shash
);
2199 fs_info
->csum_shash
= csum_shash
;
2204 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2205 struct btrfs_fs_devices
*fs_devices
)
2208 struct btrfs_root
*log_tree_root
;
2209 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2210 u64 bytenr
= btrfs_super_log_root(disk_super
);
2211 int level
= btrfs_super_log_root_level(disk_super
);
2213 if (fs_devices
->rw_devices
== 0) {
2214 btrfs_warn(fs_info
, "log replay required on RO media");
2218 log_tree_root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
,
2223 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2224 fs_info
->generation
+ 1,
2226 if (IS_ERR(log_tree_root
->node
)) {
2227 btrfs_warn(fs_info
, "failed to read log tree");
2228 ret
= PTR_ERR(log_tree_root
->node
);
2229 log_tree_root
->node
= NULL
;
2230 btrfs_put_root(log_tree_root
);
2232 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2233 btrfs_err(fs_info
, "failed to read log tree");
2234 btrfs_put_root(log_tree_root
);
2237 /* returns with log_tree_root freed on success */
2238 ret
= btrfs_recover_log_trees(log_tree_root
);
2240 btrfs_handle_fs_error(fs_info
, ret
,
2241 "Failed to recover log tree");
2242 btrfs_put_root(log_tree_root
);
2246 if (sb_rdonly(fs_info
->sb
)) {
2247 ret
= btrfs_commit_super(fs_info
);
2255 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2257 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2258 struct btrfs_root
*root
;
2259 struct btrfs_key location
;
2262 BUG_ON(!fs_info
->tree_root
);
2264 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2265 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2266 location
.offset
= 0;
2268 root
= btrfs_read_tree_root(tree_root
, &location
);
2270 ret
= PTR_ERR(root
);
2273 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2274 fs_info
->extent_root
= root
;
2276 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2277 root
= btrfs_read_tree_root(tree_root
, &location
);
2279 ret
= PTR_ERR(root
);
2282 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2283 fs_info
->dev_root
= root
;
2284 btrfs_init_devices_late(fs_info
);
2286 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2287 root
= btrfs_read_tree_root(tree_root
, &location
);
2289 ret
= PTR_ERR(root
);
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2293 fs_info
->csum_root
= root
;
2296 * This tree can share blocks with some other fs tree during relocation
2297 * and we need a proper setup by btrfs_get_fs_root
2299 root
= btrfs_get_fs_root(tree_root
->fs_info
,
2300 BTRFS_DATA_RELOC_TREE_OBJECTID
, true);
2302 ret
= PTR_ERR(root
);
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2306 fs_info
->data_reloc_root
= root
;
2308 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2309 root
= btrfs_read_tree_root(tree_root
, &location
);
2310 if (!IS_ERR(root
)) {
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2312 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2313 fs_info
->quota_root
= root
;
2316 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2317 root
= btrfs_read_tree_root(tree_root
, &location
);
2319 ret
= PTR_ERR(root
);
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2324 fs_info
->uuid_root
= root
;
2327 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2328 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2329 root
= btrfs_read_tree_root(tree_root
, &location
);
2331 ret
= PTR_ERR(root
);
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2335 fs_info
->free_space_root
= root
;
2340 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2341 location
.objectid
, ret
);
2346 * Real super block validation
2347 * NOTE: super csum type and incompat features will not be checked here.
2349 * @sb: super block to check
2350 * @mirror_num: the super block number to check its bytenr:
2351 * 0 the primary (1st) sb
2352 * 1, 2 2nd and 3rd backup copy
2353 * -1 skip bytenr check
2355 static int validate_super(struct btrfs_fs_info
*fs_info
,
2356 struct btrfs_super_block
*sb
, int mirror_num
)
2358 u64 nodesize
= btrfs_super_nodesize(sb
);
2359 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2362 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2363 btrfs_err(fs_info
, "no valid FS found");
2366 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2367 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2368 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2371 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2372 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2373 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2376 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2377 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2378 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2381 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2382 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2383 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2388 * Check sectorsize and nodesize first, other check will need it.
2389 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2391 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2392 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2393 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2396 /* Only PAGE SIZE is supported yet */
2397 if (sectorsize
!= PAGE_SIZE
) {
2399 "sectorsize %llu not supported yet, only support %lu",
2400 sectorsize
, PAGE_SIZE
);
2403 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2404 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2405 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2408 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2409 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2410 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2414 /* Root alignment check */
2415 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2416 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2417 btrfs_super_root(sb
));
2420 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2421 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2422 btrfs_super_chunk_root(sb
));
2425 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2426 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2427 btrfs_super_log_root(sb
));
2431 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
,
2432 BTRFS_FSID_SIZE
) != 0) {
2434 "dev_item UUID does not match metadata fsid: %pU != %pU",
2435 fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
);
2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2443 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2444 btrfs_err(fs_info
, "bytes_used is too small %llu",
2445 btrfs_super_bytes_used(sb
));
2448 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2449 btrfs_err(fs_info
, "invalid stripesize %u",
2450 btrfs_super_stripesize(sb
));
2453 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2454 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2455 btrfs_super_num_devices(sb
));
2456 if (btrfs_super_num_devices(sb
) == 0) {
2457 btrfs_err(fs_info
, "number of devices is 0");
2461 if (mirror_num
>= 0 &&
2462 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2463 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2464 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2469 * Obvious sys_chunk_array corruptions, it must hold at least one key
2472 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2473 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2474 btrfs_super_sys_array_size(sb
),
2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2478 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2479 + sizeof(struct btrfs_chunk
)) {
2480 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2481 btrfs_super_sys_array_size(sb
),
2482 sizeof(struct btrfs_disk_key
)
2483 + sizeof(struct btrfs_chunk
));
2488 * The generation is a global counter, we'll trust it more than the others
2489 * but it's still possible that it's the one that's wrong.
2491 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2493 "suspicious: generation < chunk_root_generation: %llu < %llu",
2494 btrfs_super_generation(sb
),
2495 btrfs_super_chunk_root_generation(sb
));
2496 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2497 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2499 "suspicious: generation < cache_generation: %llu < %llu",
2500 btrfs_super_generation(sb
),
2501 btrfs_super_cache_generation(sb
));
2507 * Validation of super block at mount time.
2508 * Some checks already done early at mount time, like csum type and incompat
2509 * flags will be skipped.
2511 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2513 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2517 * Validation of super block at write time.
2518 * Some checks like bytenr check will be skipped as their values will be
2520 * Extra checks like csum type and incompat flags will be done here.
2522 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2523 struct btrfs_super_block
*sb
)
2527 ret
= validate_super(fs_info
, sb
, -1);
2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb
))) {
2532 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2533 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2536 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 btrfs_super_incompat_flags(sb
),
2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2547 "super block corruption detected before writing it to disk");
2551 static int __cold
init_tree_roots(struct btrfs_fs_info
*fs_info
)
2553 int backup_index
= find_newest_super_backup(fs_info
);
2554 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2555 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2556 bool handle_error
= false;
2560 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2565 if (!IS_ERR(tree_root
->node
))
2566 free_extent_buffer(tree_root
->node
);
2567 tree_root
->node
= NULL
;
2569 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
2572 free_root_pointers(fs_info
, 0);
2575 * Don't use the log in recovery mode, it won't be
2578 btrfs_set_super_log_root(sb
, 0);
2580 /* We can't trust the free space cache either */
2581 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2583 ret
= read_backup_root(fs_info
, i
);
2588 generation
= btrfs_super_generation(sb
);
2589 level
= btrfs_super_root_level(sb
);
2590 tree_root
->node
= read_tree_block(fs_info
, btrfs_super_root(sb
),
2591 generation
, level
, NULL
);
2592 if (IS_ERR(tree_root
->node
) ||
2593 !extent_buffer_uptodate(tree_root
->node
)) {
2594 handle_error
= true;
2596 if (IS_ERR(tree_root
->node
))
2597 ret
= PTR_ERR(tree_root
->node
);
2598 else if (!extent_buffer_uptodate(tree_root
->node
))
2601 btrfs_warn(fs_info
, "failed to read tree root");
2605 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2606 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2607 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2610 * No need to hold btrfs_root::objectid_mutex since the fs
2611 * hasn't been fully initialised and we are the only user
2613 ret
= btrfs_find_highest_objectid(tree_root
,
2614 &tree_root
->highest_objectid
);
2616 handle_error
= true;
2620 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2622 ret
= btrfs_read_roots(fs_info
);
2624 handle_error
= true;
2628 /* All successful */
2629 fs_info
->generation
= generation
;
2630 fs_info
->last_trans_committed
= generation
;
2632 /* Always begin writing backup roots after the one being used */
2633 if (backup_index
< 0) {
2634 fs_info
->backup_root_index
= 0;
2636 fs_info
->backup_root_index
= backup_index
+ 1;
2637 fs_info
->backup_root_index
%= BTRFS_NUM_BACKUP_ROOTS
;
2645 void btrfs_init_fs_info(struct btrfs_fs_info
*fs_info
)
2647 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2648 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2649 INIT_LIST_HEAD(&fs_info
->trans_list
);
2650 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2651 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2652 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2653 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2654 spin_lock_init(&fs_info
->delalloc_root_lock
);
2655 spin_lock_init(&fs_info
->trans_lock
);
2656 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2657 spin_lock_init(&fs_info
->delayed_iput_lock
);
2658 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2659 spin_lock_init(&fs_info
->super_lock
);
2660 spin_lock_init(&fs_info
->buffer_lock
);
2661 spin_lock_init(&fs_info
->unused_bgs_lock
);
2662 rwlock_init(&fs_info
->tree_mod_log_lock
);
2663 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2664 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2665 mutex_init(&fs_info
->reloc_mutex
);
2666 mutex_init(&fs_info
->delalloc_root_mutex
);
2667 seqlock_init(&fs_info
->profiles_lock
);
2669 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2670 INIT_LIST_HEAD(&fs_info
->space_info
);
2671 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2672 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2673 #ifdef CONFIG_BTRFS_DEBUG
2674 INIT_LIST_HEAD(&fs_info
->allocated_roots
);
2675 INIT_LIST_HEAD(&fs_info
->allocated_ebs
);
2676 spin_lock_init(&fs_info
->eb_leak_lock
);
2678 extent_map_tree_init(&fs_info
->mapping_tree
);
2679 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2680 BTRFS_BLOCK_RSV_GLOBAL
);
2681 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2682 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2683 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2684 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2685 BTRFS_BLOCK_RSV_DELOPS
);
2686 btrfs_init_block_rsv(&fs_info
->delayed_refs_rsv
,
2687 BTRFS_BLOCK_RSV_DELREFS
);
2689 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2690 atomic_set(&fs_info
->defrag_running
, 0);
2691 atomic_set(&fs_info
->reada_works_cnt
, 0);
2692 atomic_set(&fs_info
->nr_delayed_iputs
, 0);
2693 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2694 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2695 fs_info
->metadata_ratio
= 0;
2696 fs_info
->defrag_inodes
= RB_ROOT
;
2697 atomic64_set(&fs_info
->free_chunk_space
, 0);
2698 fs_info
->tree_mod_log
= RB_ROOT
;
2699 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2700 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2701 /* readahead state */
2702 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2703 spin_lock_init(&fs_info
->reada_lock
);
2704 btrfs_init_ref_verify(fs_info
);
2706 fs_info
->thread_pool_size
= min_t(unsigned long,
2707 num_online_cpus() + 2, 8);
2709 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2710 spin_lock_init(&fs_info
->ordered_root_lock
);
2712 btrfs_init_scrub(fs_info
);
2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2714 fs_info
->check_integrity_print_mask
= 0;
2716 btrfs_init_balance(fs_info
);
2717 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2719 spin_lock_init(&fs_info
->block_group_cache_lock
);
2720 fs_info
->block_group_cache_tree
= RB_ROOT
;
2721 fs_info
->first_logical_byte
= (u64
)-1;
2723 extent_io_tree_init(fs_info
, &fs_info
->excluded_extents
,
2724 IO_TREE_FS_EXCLUDED_EXTENTS
, NULL
);
2725 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2727 mutex_init(&fs_info
->ordered_operations_mutex
);
2728 mutex_init(&fs_info
->tree_log_mutex
);
2729 mutex_init(&fs_info
->chunk_mutex
);
2730 mutex_init(&fs_info
->transaction_kthread_mutex
);
2731 mutex_init(&fs_info
->cleaner_mutex
);
2732 mutex_init(&fs_info
->ro_block_group_mutex
);
2733 init_rwsem(&fs_info
->commit_root_sem
);
2734 init_rwsem(&fs_info
->cleanup_work_sem
);
2735 init_rwsem(&fs_info
->subvol_sem
);
2736 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2738 btrfs_init_dev_replace_locks(fs_info
);
2739 btrfs_init_qgroup(fs_info
);
2740 btrfs_discard_init(fs_info
);
2742 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2743 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2745 init_waitqueue_head(&fs_info
->transaction_throttle
);
2746 init_waitqueue_head(&fs_info
->transaction_wait
);
2747 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2748 init_waitqueue_head(&fs_info
->async_submit_wait
);
2749 init_waitqueue_head(&fs_info
->delayed_iputs_wait
);
2751 /* Usable values until the real ones are cached from the superblock */
2752 fs_info
->nodesize
= 4096;
2753 fs_info
->sectorsize
= 4096;
2754 fs_info
->stripesize
= 4096;
2756 spin_lock_init(&fs_info
->swapfile_pins_lock
);
2757 fs_info
->swapfile_pins
= RB_ROOT
;
2759 fs_info
->send_in_progress
= 0;
2762 static int init_mount_fs_info(struct btrfs_fs_info
*fs_info
, struct super_block
*sb
)
2767 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2768 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2770 ret
= percpu_counter_init(&fs_info
->dio_bytes
, 0, GFP_KERNEL
);
2774 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2778 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2779 (1 + ilog2(nr_cpu_ids
));
2781 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2785 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2790 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2792 if (!fs_info
->delayed_root
)
2794 btrfs_init_delayed_root(fs_info
->delayed_root
);
2796 return btrfs_alloc_stripe_hash_table(fs_info
);
2799 static int btrfs_uuid_rescan_kthread(void *data
)
2801 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
2805 * 1st step is to iterate through the existing UUID tree and
2806 * to delete all entries that contain outdated data.
2807 * 2nd step is to add all missing entries to the UUID tree.
2809 ret
= btrfs_uuid_tree_iterate(fs_info
);
2812 btrfs_warn(fs_info
, "iterating uuid_tree failed %d",
2814 up(&fs_info
->uuid_tree_rescan_sem
);
2817 return btrfs_uuid_scan_kthread(data
);
2820 static int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
2822 struct task_struct
*task
;
2824 down(&fs_info
->uuid_tree_rescan_sem
);
2825 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
2827 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2828 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
2829 up(&fs_info
->uuid_tree_rescan_sem
);
2830 return PTR_ERR(task
);
2836 int __cold
open_ctree(struct super_block
*sb
, struct btrfs_fs_devices
*fs_devices
,
2845 struct btrfs_super_block
*disk_super
;
2846 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2847 struct btrfs_root
*tree_root
;
2848 struct btrfs_root
*chunk_root
;
2851 int clear_free_space_tree
= 0;
2854 ret
= init_mount_fs_info(fs_info
, sb
);
2860 /* These need to be init'ed before we start creating inodes and such. */
2861 tree_root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
,
2863 fs_info
->tree_root
= tree_root
;
2864 chunk_root
= btrfs_alloc_root(fs_info
, BTRFS_CHUNK_TREE_OBJECTID
,
2866 fs_info
->chunk_root
= chunk_root
;
2867 if (!tree_root
|| !chunk_root
) {
2872 fs_info
->btree_inode
= new_inode(sb
);
2873 if (!fs_info
->btree_inode
) {
2877 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2878 btrfs_init_btree_inode(fs_info
);
2880 invalidate_bdev(fs_devices
->latest_bdev
);
2883 * Read super block and check the signature bytes only
2885 disk_super
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2886 if (IS_ERR(disk_super
)) {
2887 err
= PTR_ERR(disk_super
);
2892 * Verify the type first, if that or the the checksum value are
2893 * corrupted, we'll find out
2895 csum_type
= btrfs_super_csum_type(disk_super
);
2896 if (!btrfs_supported_super_csum(csum_type
)) {
2897 btrfs_err(fs_info
, "unsupported checksum algorithm: %u",
2900 btrfs_release_disk_super(disk_super
);
2904 ret
= btrfs_init_csum_hash(fs_info
, csum_type
);
2907 btrfs_release_disk_super(disk_super
);
2912 * We want to check superblock checksum, the type is stored inside.
2913 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2915 if (btrfs_check_super_csum(fs_info
, (u8
*)disk_super
)) {
2916 btrfs_err(fs_info
, "superblock checksum mismatch");
2918 btrfs_release_disk_super(disk_super
);
2923 * super_copy is zeroed at allocation time and we never touch the
2924 * following bytes up to INFO_SIZE, the checksum is calculated from
2925 * the whole block of INFO_SIZE
2927 memcpy(fs_info
->super_copy
, disk_super
, sizeof(*fs_info
->super_copy
));
2928 btrfs_release_disk_super(disk_super
);
2930 disk_super
= fs_info
->super_copy
;
2932 ASSERT(!memcmp(fs_info
->fs_devices
->fsid
, fs_info
->super_copy
->fsid
,
2935 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
)) {
2936 ASSERT(!memcmp(fs_info
->fs_devices
->metadata_uuid
,
2937 fs_info
->super_copy
->metadata_uuid
,
2941 features
= btrfs_super_flags(disk_super
);
2942 if (features
& BTRFS_SUPER_FLAG_CHANGING_FSID_V2
) {
2943 features
&= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2
;
2944 btrfs_set_super_flags(disk_super
, features
);
2946 "found metadata UUID change in progress flag, clearing");
2949 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2950 sizeof(*fs_info
->super_for_commit
));
2952 ret
= btrfs_validate_mount_super(fs_info
);
2954 btrfs_err(fs_info
, "superblock contains fatal errors");
2959 if (!btrfs_super_root(disk_super
))
2962 /* check FS state, whether FS is broken. */
2963 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2964 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2967 * In the long term, we'll store the compression type in the super
2968 * block, and it'll be used for per file compression control.
2970 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2972 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
2978 features
= btrfs_super_incompat_flags(disk_super
) &
2979 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2982 "cannot mount because of unsupported optional features (%llx)",
2988 features
= btrfs_super_incompat_flags(disk_super
);
2989 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2990 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2991 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2992 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
2993 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
2995 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2996 btrfs_info(fs_info
, "has skinny extents");
2999 * flag our filesystem as having big metadata blocks if
3000 * they are bigger than the page size
3002 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
3003 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
3005 "flagging fs with big metadata feature");
3006 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
3009 nodesize
= btrfs_super_nodesize(disk_super
);
3010 sectorsize
= btrfs_super_sectorsize(disk_super
);
3011 stripesize
= sectorsize
;
3012 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
3013 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
3015 /* Cache block sizes */
3016 fs_info
->nodesize
= nodesize
;
3017 fs_info
->sectorsize
= sectorsize
;
3018 fs_info
->stripesize
= stripesize
;
3021 * mixed block groups end up with duplicate but slightly offset
3022 * extent buffers for the same range. It leads to corruptions
3024 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
3025 (sectorsize
!= nodesize
)) {
3027 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3028 nodesize
, sectorsize
);
3033 * Needn't use the lock because there is no other task which will
3036 btrfs_set_super_incompat_flags(disk_super
, features
);
3038 features
= btrfs_super_compat_ro_flags(disk_super
) &
3039 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
3040 if (!sb_rdonly(sb
) && features
) {
3042 "cannot mount read-write because of unsupported optional features (%llx)",
3048 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
3051 goto fail_sb_buffer
;
3054 sb
->s_bdi
->congested_fn
= btrfs_congested_fn
;
3055 sb
->s_bdi
->congested_data
= fs_info
;
3056 sb
->s_bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
3057 sb
->s_bdi
->ra_pages
= VM_READAHEAD_PAGES
;
3058 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
3059 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
3061 sb
->s_blocksize
= sectorsize
;
3062 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
3063 memcpy(&sb
->s_uuid
, fs_info
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3065 mutex_lock(&fs_info
->chunk_mutex
);
3066 ret
= btrfs_read_sys_array(fs_info
);
3067 mutex_unlock(&fs_info
->chunk_mutex
);
3069 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
3070 goto fail_sb_buffer
;
3073 generation
= btrfs_super_chunk_root_generation(disk_super
);
3074 level
= btrfs_super_chunk_root_level(disk_super
);
3076 chunk_root
->node
= read_tree_block(fs_info
,
3077 btrfs_super_chunk_root(disk_super
),
3078 generation
, level
, NULL
);
3079 if (IS_ERR(chunk_root
->node
) ||
3080 !extent_buffer_uptodate(chunk_root
->node
)) {
3081 btrfs_err(fs_info
, "failed to read chunk root");
3082 if (!IS_ERR(chunk_root
->node
))
3083 free_extent_buffer(chunk_root
->node
);
3084 chunk_root
->node
= NULL
;
3085 goto fail_tree_roots
;
3087 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3088 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3090 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3091 offsetof(struct btrfs_header
, chunk_tree_uuid
),
3094 ret
= btrfs_read_chunk_tree(fs_info
);
3096 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3097 goto fail_tree_roots
;
3101 * Keep the devid that is marked to be the target device for the
3102 * device replace procedure
3104 btrfs_free_extra_devids(fs_devices
, 0);
3106 if (!fs_devices
->latest_bdev
) {
3107 btrfs_err(fs_info
, "failed to read devices");
3108 goto fail_tree_roots
;
3111 ret
= init_tree_roots(fs_info
);
3113 goto fail_tree_roots
;
3116 * If we have a uuid root and we're not being told to rescan we need to
3117 * check the generation here so we can set the
3118 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3119 * transaction during a balance or the log replay without updating the
3120 * uuid generation, and then if we crash we would rescan the uuid tree,
3121 * even though it was perfectly fine.
3123 if (fs_info
->uuid_root
&& !btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) &&
3124 fs_info
->generation
== btrfs_super_uuid_tree_generation(disk_super
))
3125 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3127 ret
= btrfs_verify_dev_extents(fs_info
);
3130 "failed to verify dev extents against chunks: %d",
3132 goto fail_block_groups
;
3134 ret
= btrfs_recover_balance(fs_info
);
3136 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3137 goto fail_block_groups
;
3140 ret
= btrfs_init_dev_stats(fs_info
);
3142 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3143 goto fail_block_groups
;
3146 ret
= btrfs_init_dev_replace(fs_info
);
3148 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3149 goto fail_block_groups
;
3152 btrfs_free_extra_devids(fs_devices
, 1);
3154 ret
= btrfs_sysfs_add_fsid(fs_devices
);
3156 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3158 goto fail_block_groups
;
3161 ret
= btrfs_sysfs_add_mounted(fs_info
);
3163 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3164 goto fail_fsdev_sysfs
;
3167 ret
= btrfs_init_space_info(fs_info
);
3169 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3173 ret
= btrfs_read_block_groups(fs_info
);
3175 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3179 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3181 "writable mount is not allowed due to too many missing devices");
3185 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3187 if (IS_ERR(fs_info
->cleaner_kthread
))
3190 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3192 "btrfs-transaction");
3193 if (IS_ERR(fs_info
->transaction_kthread
))
3196 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3197 !fs_info
->fs_devices
->rotating
) {
3198 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3202 * Mount does not set all options immediately, we can do it now and do
3203 * not have to wait for transaction commit
3205 btrfs_apply_pending_changes(fs_info
);
3207 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3208 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3209 ret
= btrfsic_mount(fs_info
, fs_devices
,
3210 btrfs_test_opt(fs_info
,
3211 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3213 fs_info
->check_integrity_print_mask
);
3216 "failed to initialize integrity check module: %d",
3220 ret
= btrfs_read_qgroup_config(fs_info
);
3222 goto fail_trans_kthread
;
3224 if (btrfs_build_ref_tree(fs_info
))
3225 btrfs_err(fs_info
, "couldn't build ref tree");
3227 /* do not make disk changes in broken FS or nologreplay is given */
3228 if (btrfs_super_log_root(disk_super
) != 0 &&
3229 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3230 btrfs_info(fs_info
, "start tree-log replay");
3231 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3238 ret
= btrfs_find_orphan_roots(fs_info
);
3242 if (!sb_rdonly(sb
)) {
3243 ret
= btrfs_cleanup_fs_roots(fs_info
);
3247 mutex_lock(&fs_info
->cleaner_mutex
);
3248 ret
= btrfs_recover_relocation(tree_root
);
3249 mutex_unlock(&fs_info
->cleaner_mutex
);
3251 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3258 fs_info
->fs_root
= btrfs_get_fs_root(fs_info
, BTRFS_FS_TREE_OBJECTID
, true);
3259 if (IS_ERR(fs_info
->fs_root
)) {
3260 err
= PTR_ERR(fs_info
->fs_root
);
3261 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3262 fs_info
->fs_root
= NULL
;
3269 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
3270 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3271 clear_free_space_tree
= 1;
3272 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
3273 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
3274 btrfs_warn(fs_info
, "free space tree is invalid");
3275 clear_free_space_tree
= 1;
3278 if (clear_free_space_tree
) {
3279 btrfs_info(fs_info
, "clearing free space tree");
3280 ret
= btrfs_clear_free_space_tree(fs_info
);
3283 "failed to clear free space tree: %d", ret
);
3284 close_ctree(fs_info
);
3289 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
3290 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3291 btrfs_info(fs_info
, "creating free space tree");
3292 ret
= btrfs_create_free_space_tree(fs_info
);
3295 "failed to create free space tree: %d", ret
);
3296 close_ctree(fs_info
);
3301 down_read(&fs_info
->cleanup_work_sem
);
3302 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3303 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3304 up_read(&fs_info
->cleanup_work_sem
);
3305 close_ctree(fs_info
);
3308 up_read(&fs_info
->cleanup_work_sem
);
3310 ret
= btrfs_resume_balance_async(fs_info
);
3312 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3313 close_ctree(fs_info
);
3317 ret
= btrfs_resume_dev_replace_async(fs_info
);
3319 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3320 close_ctree(fs_info
);
3324 btrfs_qgroup_rescan_resume(fs_info
);
3325 btrfs_discard_resume(fs_info
);
3327 if (!fs_info
->uuid_root
) {
3328 btrfs_info(fs_info
, "creating UUID tree");
3329 ret
= btrfs_create_uuid_tree(fs_info
);
3332 "failed to create the UUID tree: %d", ret
);
3333 close_ctree(fs_info
);
3336 } else if (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3337 fs_info
->generation
!=
3338 btrfs_super_uuid_tree_generation(disk_super
)) {
3339 btrfs_info(fs_info
, "checking UUID tree");
3340 ret
= btrfs_check_uuid_tree(fs_info
);
3343 "failed to check the UUID tree: %d", ret
);
3344 close_ctree(fs_info
);
3348 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3351 * backuproot only affect mount behavior, and if open_ctree succeeded,
3352 * no need to keep the flag
3354 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3359 btrfs_free_qgroup_config(fs_info
);
3361 kthread_stop(fs_info
->transaction_kthread
);
3362 btrfs_cleanup_transaction(fs_info
);
3363 btrfs_free_fs_roots(fs_info
);
3365 kthread_stop(fs_info
->cleaner_kthread
);
3368 * make sure we're done with the btree inode before we stop our
3371 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3374 btrfs_sysfs_remove_mounted(fs_info
);
3377 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3380 btrfs_put_block_group_cache(fs_info
);
3383 free_root_pointers(fs_info
, true);
3384 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3387 btrfs_stop_all_workers(fs_info
);
3388 btrfs_free_block_groups(fs_info
);
3390 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3392 iput(fs_info
->btree_inode
);
3394 btrfs_close_devices(fs_info
->fs_devices
);
3397 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3399 static void btrfs_end_super_write(struct bio
*bio
)
3401 struct btrfs_device
*device
= bio
->bi_private
;
3402 struct bio_vec
*bvec
;
3403 struct bvec_iter_all iter_all
;
3406 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3407 page
= bvec
->bv_page
;
3409 if (bio
->bi_status
) {
3410 btrfs_warn_rl_in_rcu(device
->fs_info
,
3411 "lost page write due to IO error on %s (%d)",
3412 rcu_str_deref(device
->name
),
3413 blk_status_to_errno(bio
->bi_status
));
3414 ClearPageUptodate(page
);
3416 btrfs_dev_stat_inc_and_print(device
,
3417 BTRFS_DEV_STAT_WRITE_ERRS
);
3419 SetPageUptodate(page
);
3429 struct btrfs_super_block
*btrfs_read_dev_one_super(struct block_device
*bdev
,
3432 struct btrfs_super_block
*super
;
3435 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
3437 bytenr
= btrfs_sb_offset(copy_num
);
3438 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3439 return ERR_PTR(-EINVAL
);
3441 page
= read_cache_page_gfp(mapping
, bytenr
>> PAGE_SHIFT
, GFP_NOFS
);
3443 return ERR_CAST(page
);
3445 super
= page_address(page
);
3446 if (btrfs_super_bytenr(super
) != bytenr
||
3447 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3448 btrfs_release_disk_super(super
);
3449 return ERR_PTR(-EINVAL
);
3456 struct btrfs_super_block
*btrfs_read_dev_super(struct block_device
*bdev
)
3458 struct btrfs_super_block
*super
, *latest
= NULL
;
3462 /* we would like to check all the supers, but that would make
3463 * a btrfs mount succeed after a mkfs from a different FS.
3464 * So, we need to add a special mount option to scan for
3465 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3467 for (i
= 0; i
< 1; i
++) {
3468 super
= btrfs_read_dev_one_super(bdev
, i
);
3472 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3474 btrfs_release_disk_super(super
);
3477 transid
= btrfs_super_generation(super
);
3485 * Write superblock @sb to the @device. Do not wait for completion, all the
3486 * pages we use for writing are locked.
3488 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3489 * the expected device size at commit time. Note that max_mirrors must be
3490 * same for write and wait phases.
3492 * Return number of errors when page is not found or submission fails.
3494 static int write_dev_supers(struct btrfs_device
*device
,
3495 struct btrfs_super_block
*sb
, int max_mirrors
)
3497 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
3498 struct address_space
*mapping
= device
->bdev
->bd_inode
->i_mapping
;
3499 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3504 if (max_mirrors
== 0)
3505 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3507 shash
->tfm
= fs_info
->csum_shash
;
3509 for (i
= 0; i
< max_mirrors
; i
++) {
3512 struct btrfs_super_block
*disk_super
;
3514 bytenr
= btrfs_sb_offset(i
);
3515 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3516 device
->commit_total_bytes
)
3519 btrfs_set_super_bytenr(sb
, bytenr
);
3521 crypto_shash_digest(shash
, (const char *)sb
+ BTRFS_CSUM_SIZE
,
3522 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
,
3525 page
= find_or_create_page(mapping
, bytenr
>> PAGE_SHIFT
,
3528 btrfs_err(device
->fs_info
,
3529 "couldn't get super block page for bytenr %llu",
3535 /* Bump the refcount for wait_dev_supers() */
3538 disk_super
= page_address(page
);
3539 memcpy(disk_super
, sb
, BTRFS_SUPER_INFO_SIZE
);
3542 * Directly use bios here instead of relying on the page cache
3543 * to do I/O, so we don't lose the ability to do integrity
3546 bio
= bio_alloc(GFP_NOFS
, 1);
3547 bio_set_dev(bio
, device
->bdev
);
3548 bio
->bi_iter
.bi_sector
= bytenr
>> SECTOR_SHIFT
;
3549 bio
->bi_private
= device
;
3550 bio
->bi_end_io
= btrfs_end_super_write
;
3551 __bio_add_page(bio
, page
, BTRFS_SUPER_INFO_SIZE
,
3552 offset_in_page(bytenr
));
3555 * We FUA only the first super block. The others we allow to
3556 * go down lazy and there's a short window where the on-disk
3557 * copies might still contain the older version.
3559 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
| REQ_PRIO
;
3560 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3561 bio
->bi_opf
|= REQ_FUA
;
3563 btrfsic_submit_bio(bio
);
3565 return errors
< i
? 0 : -1;
3569 * Wait for write completion of superblocks done by write_dev_supers,
3570 * @max_mirrors same for write and wait phases.
3572 * Return number of errors when page is not found or not marked up to
3575 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3579 bool primary_failed
= false;
3582 if (max_mirrors
== 0)
3583 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3585 for (i
= 0; i
< max_mirrors
; i
++) {
3588 bytenr
= btrfs_sb_offset(i
);
3589 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3590 device
->commit_total_bytes
)
3593 page
= find_get_page(device
->bdev
->bd_inode
->i_mapping
,
3594 bytenr
>> PAGE_SHIFT
);
3598 primary_failed
= true;
3601 /* Page is submitted locked and unlocked once the IO completes */
3602 wait_on_page_locked(page
);
3603 if (PageError(page
)) {
3606 primary_failed
= true;
3609 /* Drop our reference */
3612 /* Drop the reference from the writing run */
3616 /* log error, force error return */
3617 if (primary_failed
) {
3618 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3623 return errors
< i
? 0 : -1;
3627 * endio for the write_dev_flush, this will wake anyone waiting
3628 * for the barrier when it is done
3630 static void btrfs_end_empty_barrier(struct bio
*bio
)
3632 complete(bio
->bi_private
);
3636 * Submit a flush request to the device if it supports it. Error handling is
3637 * done in the waiting counterpart.
3639 static void write_dev_flush(struct btrfs_device
*device
)
3641 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3642 struct bio
*bio
= device
->flush_bio
;
3644 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3648 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3649 bio_set_dev(bio
, device
->bdev
);
3650 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3651 init_completion(&device
->flush_wait
);
3652 bio
->bi_private
= &device
->flush_wait
;
3654 btrfsic_submit_bio(bio
);
3655 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3659 * If the flush bio has been submitted by write_dev_flush, wait for it.
3661 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3663 struct bio
*bio
= device
->flush_bio
;
3665 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3668 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3669 wait_for_completion_io(&device
->flush_wait
);
3671 return bio
->bi_status
;
3674 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3676 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3682 * send an empty flush down to each device in parallel,
3683 * then wait for them
3685 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3687 struct list_head
*head
;
3688 struct btrfs_device
*dev
;
3689 int errors_wait
= 0;
3692 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3693 /* send down all the barriers */
3694 head
= &info
->fs_devices
->devices
;
3695 list_for_each_entry(dev
, head
, dev_list
) {
3696 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3700 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3701 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3704 write_dev_flush(dev
);
3705 dev
->last_flush_error
= BLK_STS_OK
;
3708 /* wait for all the barriers */
3709 list_for_each_entry(dev
, head
, dev_list
) {
3710 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3716 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3717 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3720 ret
= wait_dev_flush(dev
);
3722 dev
->last_flush_error
= ret
;
3723 btrfs_dev_stat_inc_and_print(dev
,
3724 BTRFS_DEV_STAT_FLUSH_ERRS
);
3731 * At some point we need the status of all disks
3732 * to arrive at the volume status. So error checking
3733 * is being pushed to a separate loop.
3735 return check_barrier_error(info
);
3740 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3743 int min_tolerated
= INT_MAX
;
3745 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3746 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3747 min_tolerated
= min_t(int, min_tolerated
,
3748 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3749 tolerated_failures
);
3751 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3752 if (raid_type
== BTRFS_RAID_SINGLE
)
3754 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3756 min_tolerated
= min_t(int, min_tolerated
,
3757 btrfs_raid_array
[raid_type
].
3758 tolerated_failures
);
3761 if (min_tolerated
== INT_MAX
) {
3762 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3766 return min_tolerated
;
3769 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3771 struct list_head
*head
;
3772 struct btrfs_device
*dev
;
3773 struct btrfs_super_block
*sb
;
3774 struct btrfs_dev_item
*dev_item
;
3778 int total_errors
= 0;
3781 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3784 * max_mirrors == 0 indicates we're from commit_transaction,
3785 * not from fsync where the tree roots in fs_info have not
3786 * been consistent on disk.
3788 if (max_mirrors
== 0)
3789 backup_super_roots(fs_info
);
3791 sb
= fs_info
->super_for_commit
;
3792 dev_item
= &sb
->dev_item
;
3794 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3795 head
= &fs_info
->fs_devices
->devices
;
3796 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3799 ret
= barrier_all_devices(fs_info
);
3802 &fs_info
->fs_devices
->device_list_mutex
);
3803 btrfs_handle_fs_error(fs_info
, ret
,
3804 "errors while submitting device barriers.");
3809 list_for_each_entry(dev
, head
, dev_list
) {
3814 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3815 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3818 btrfs_set_stack_device_generation(dev_item
, 0);
3819 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3820 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3821 btrfs_set_stack_device_total_bytes(dev_item
,
3822 dev
->commit_total_bytes
);
3823 btrfs_set_stack_device_bytes_used(dev_item
,
3824 dev
->commit_bytes_used
);
3825 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3826 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3827 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3828 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3829 memcpy(dev_item
->fsid
, dev
->fs_devices
->metadata_uuid
,
3832 flags
= btrfs_super_flags(sb
);
3833 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3835 ret
= btrfs_validate_write_super(fs_info
, sb
);
3837 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3838 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3839 "unexpected superblock corruption detected");
3843 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3847 if (total_errors
> max_errors
) {
3848 btrfs_err(fs_info
, "%d errors while writing supers",
3850 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3852 /* FUA is masked off if unsupported and can't be the reason */
3853 btrfs_handle_fs_error(fs_info
, -EIO
,
3854 "%d errors while writing supers",
3860 list_for_each_entry(dev
, head
, dev_list
) {
3863 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3864 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3867 ret
= wait_dev_supers(dev
, max_mirrors
);
3871 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3872 if (total_errors
> max_errors
) {
3873 btrfs_handle_fs_error(fs_info
, -EIO
,
3874 "%d errors while writing supers",
3881 /* Drop a fs root from the radix tree and free it. */
3882 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3883 struct btrfs_root
*root
)
3885 bool drop_ref
= false;
3887 spin_lock(&fs_info
->fs_roots_radix_lock
);
3888 radix_tree_delete(&fs_info
->fs_roots_radix
,
3889 (unsigned long)root
->root_key
.objectid
);
3890 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
3892 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3894 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3895 ASSERT(root
->log_root
== NULL
);
3896 if (root
->reloc_root
) {
3897 btrfs_put_root(root
->reloc_root
);
3898 root
->reloc_root
= NULL
;
3902 if (root
->free_ino_pinned
)
3903 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3904 if (root
->free_ino_ctl
)
3905 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3906 if (root
->ino_cache_inode
) {
3907 iput(root
->ino_cache_inode
);
3908 root
->ino_cache_inode
= NULL
;
3911 btrfs_put_root(root
);
3914 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3916 u64 root_objectid
= 0;
3917 struct btrfs_root
*gang
[8];
3920 unsigned int ret
= 0;
3923 spin_lock(&fs_info
->fs_roots_radix_lock
);
3924 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3925 (void **)gang
, root_objectid
,
3928 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3931 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3933 for (i
= 0; i
< ret
; i
++) {
3934 /* Avoid to grab roots in dead_roots */
3935 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3939 /* grab all the search result for later use */
3940 gang
[i
] = btrfs_grab_root(gang
[i
]);
3942 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3944 for (i
= 0; i
< ret
; i
++) {
3947 root_objectid
= gang
[i
]->root_key
.objectid
;
3948 err
= btrfs_orphan_cleanup(gang
[i
]);
3951 btrfs_put_root(gang
[i
]);
3956 /* release the uncleaned roots due to error */
3957 for (; i
< ret
; i
++) {
3959 btrfs_put_root(gang
[i
]);
3964 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
3966 struct btrfs_root
*root
= fs_info
->tree_root
;
3967 struct btrfs_trans_handle
*trans
;
3969 mutex_lock(&fs_info
->cleaner_mutex
);
3970 btrfs_run_delayed_iputs(fs_info
);
3971 mutex_unlock(&fs_info
->cleaner_mutex
);
3972 wake_up_process(fs_info
->cleaner_kthread
);
3974 /* wait until ongoing cleanup work done */
3975 down_write(&fs_info
->cleanup_work_sem
);
3976 up_write(&fs_info
->cleanup_work_sem
);
3978 trans
= btrfs_join_transaction(root
);
3980 return PTR_ERR(trans
);
3981 return btrfs_commit_transaction(trans
);
3984 void __cold
close_ctree(struct btrfs_fs_info
*fs_info
)
3988 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
3990 * We don't want the cleaner to start new transactions, add more delayed
3991 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3992 * because that frees the task_struct, and the transaction kthread might
3993 * still try to wake up the cleaner.
3995 kthread_park(fs_info
->cleaner_kthread
);
3997 /* wait for the qgroup rescan worker to stop */
3998 btrfs_qgroup_wait_for_completion(fs_info
, false);
4000 /* wait for the uuid_scan task to finish */
4001 down(&fs_info
->uuid_tree_rescan_sem
);
4002 /* avoid complains from lockdep et al., set sem back to initial state */
4003 up(&fs_info
->uuid_tree_rescan_sem
);
4005 /* pause restriper - we want to resume on mount */
4006 btrfs_pause_balance(fs_info
);
4008 btrfs_dev_replace_suspend_for_unmount(fs_info
);
4010 btrfs_scrub_cancel(fs_info
);
4012 /* wait for any defraggers to finish */
4013 wait_event(fs_info
->transaction_wait
,
4014 (atomic_read(&fs_info
->defrag_running
) == 0));
4016 /* clear out the rbtree of defraggable inodes */
4017 btrfs_cleanup_defrag_inodes(fs_info
);
4019 cancel_work_sync(&fs_info
->async_reclaim_work
);
4021 /* Cancel or finish ongoing discard work */
4022 btrfs_discard_cleanup(fs_info
);
4024 if (!sb_rdonly(fs_info
->sb
)) {
4026 * The cleaner kthread is stopped, so do one final pass over
4027 * unused block groups.
4029 btrfs_delete_unused_bgs(fs_info
);
4032 * There might be existing delayed inode workers still running
4033 * and holding an empty delayed inode item. We must wait for
4034 * them to complete first because they can create a transaction.
4035 * This happens when someone calls btrfs_balance_delayed_items()
4036 * and then a transaction commit runs the same delayed nodes
4037 * before any delayed worker has done something with the nodes.
4038 * We must wait for any worker here and not at transaction
4039 * commit time since that could cause a deadlock.
4040 * This is a very rare case.
4042 btrfs_flush_workqueue(fs_info
->delayed_workers
);
4044 ret
= btrfs_commit_super(fs_info
);
4046 btrfs_err(fs_info
, "commit super ret %d", ret
);
4049 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4050 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4051 btrfs_error_commit_super(fs_info
);
4053 kthread_stop(fs_info
->transaction_kthread
);
4054 kthread_stop(fs_info
->cleaner_kthread
);
4056 ASSERT(list_empty(&fs_info
->delayed_iputs
));
4057 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4059 btrfs_free_qgroup_config(fs_info
);
4060 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4062 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4063 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4064 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4067 if (percpu_counter_sum(&fs_info
->dio_bytes
))
4068 btrfs_info(fs_info
, "at unmount dio bytes count %lld",
4069 percpu_counter_sum(&fs_info
->dio_bytes
));
4071 btrfs_sysfs_remove_mounted(fs_info
);
4072 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4074 btrfs_put_block_group_cache(fs_info
);
4077 * we must make sure there is not any read request to
4078 * submit after we stopping all workers.
4080 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4081 btrfs_stop_all_workers(fs_info
);
4083 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4084 free_root_pointers(fs_info
, true);
4085 btrfs_free_fs_roots(fs_info
);
4088 * We must free the block groups after dropping the fs_roots as we could
4089 * have had an IO error and have left over tree log blocks that aren't
4090 * cleaned up until the fs roots are freed. This makes the block group
4091 * accounting appear to be wrong because there's pending reserved bytes,
4092 * so make sure we do the block group cleanup afterwards.
4094 btrfs_free_block_groups(fs_info
);
4096 iput(fs_info
->btree_inode
);
4098 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4099 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4100 btrfsic_unmount(fs_info
->fs_devices
);
4103 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4104 btrfs_close_devices(fs_info
->fs_devices
);
4107 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4111 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4113 ret
= extent_buffer_uptodate(buf
);
4117 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4118 parent_transid
, atomic
);
4124 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4126 struct btrfs_fs_info
*fs_info
;
4127 struct btrfs_root
*root
;
4128 u64 transid
= btrfs_header_generation(buf
);
4131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4133 * This is a fast path so only do this check if we have sanity tests
4134 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4135 * outside of the sanity tests.
4137 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4140 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4141 fs_info
= root
->fs_info
;
4142 btrfs_assert_tree_locked(buf
);
4143 if (transid
!= fs_info
->generation
)
4144 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4145 buf
->start
, transid
, fs_info
->generation
);
4146 was_dirty
= set_extent_buffer_dirty(buf
);
4148 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4150 fs_info
->dirty_metadata_batch
);
4151 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4153 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4154 * but item data not updated.
4155 * So here we should only check item pointers, not item data.
4157 if (btrfs_header_level(buf
) == 0 &&
4158 btrfs_check_leaf_relaxed(buf
)) {
4159 btrfs_print_leaf(buf
);
4165 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4169 * looks as though older kernels can get into trouble with
4170 * this code, they end up stuck in balance_dirty_pages forever
4174 if (current
->flags
& PF_MEMALLOC
)
4178 btrfs_balance_delayed_items(fs_info
);
4180 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4181 BTRFS_DIRTY_METADATA_THRESH
,
4182 fs_info
->dirty_metadata_batch
);
4184 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4188 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4190 __btrfs_btree_balance_dirty(fs_info
, 1);
4193 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4195 __btrfs_btree_balance_dirty(fs_info
, 0);
4198 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4199 struct btrfs_key
*first_key
)
4201 return btree_read_extent_buffer_pages(buf
, parent_transid
,
4205 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4207 /* cleanup FS via transaction */
4208 btrfs_cleanup_transaction(fs_info
);
4210 mutex_lock(&fs_info
->cleaner_mutex
);
4211 btrfs_run_delayed_iputs(fs_info
);
4212 mutex_unlock(&fs_info
->cleaner_mutex
);
4214 down_write(&fs_info
->cleanup_work_sem
);
4215 up_write(&fs_info
->cleanup_work_sem
);
4218 static void btrfs_drop_all_logs(struct btrfs_fs_info
*fs_info
)
4220 struct btrfs_root
*gang
[8];
4221 u64 root_objectid
= 0;
4224 spin_lock(&fs_info
->fs_roots_radix_lock
);
4225 while ((ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
4226 (void **)gang
, root_objectid
,
4227 ARRAY_SIZE(gang
))) != 0) {
4230 for (i
= 0; i
< ret
; i
++)
4231 gang
[i
] = btrfs_grab_root(gang
[i
]);
4232 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4234 for (i
= 0; i
< ret
; i
++) {
4237 root_objectid
= gang
[i
]->root_key
.objectid
;
4238 btrfs_free_log(NULL
, gang
[i
]);
4239 btrfs_put_root(gang
[i
]);
4242 spin_lock(&fs_info
->fs_roots_radix_lock
);
4244 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4245 btrfs_free_log_root_tree(NULL
, fs_info
);
4248 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4250 struct btrfs_ordered_extent
*ordered
;
4252 spin_lock(&root
->ordered_extent_lock
);
4254 * This will just short circuit the ordered completion stuff which will
4255 * make sure the ordered extent gets properly cleaned up.
4257 list_for_each_entry(ordered
, &root
->ordered_extents
,
4259 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4260 spin_unlock(&root
->ordered_extent_lock
);
4263 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4265 struct btrfs_root
*root
;
4266 struct list_head splice
;
4268 INIT_LIST_HEAD(&splice
);
4270 spin_lock(&fs_info
->ordered_root_lock
);
4271 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4272 while (!list_empty(&splice
)) {
4273 root
= list_first_entry(&splice
, struct btrfs_root
,
4275 list_move_tail(&root
->ordered_root
,
4276 &fs_info
->ordered_roots
);
4278 spin_unlock(&fs_info
->ordered_root_lock
);
4279 btrfs_destroy_ordered_extents(root
);
4282 spin_lock(&fs_info
->ordered_root_lock
);
4284 spin_unlock(&fs_info
->ordered_root_lock
);
4287 * We need this here because if we've been flipped read-only we won't
4288 * get sync() from the umount, so we need to make sure any ordered
4289 * extents that haven't had their dirty pages IO start writeout yet
4290 * actually get run and error out properly.
4292 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
4295 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4296 struct btrfs_fs_info
*fs_info
)
4298 struct rb_node
*node
;
4299 struct btrfs_delayed_ref_root
*delayed_refs
;
4300 struct btrfs_delayed_ref_node
*ref
;
4303 delayed_refs
= &trans
->delayed_refs
;
4305 spin_lock(&delayed_refs
->lock
);
4306 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4307 spin_unlock(&delayed_refs
->lock
);
4308 btrfs_debug(fs_info
, "delayed_refs has NO entry");
4312 while ((node
= rb_first_cached(&delayed_refs
->href_root
)) != NULL
) {
4313 struct btrfs_delayed_ref_head
*head
;
4315 bool pin_bytes
= false;
4317 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4319 if (btrfs_delayed_ref_lock(delayed_refs
, head
))
4322 spin_lock(&head
->lock
);
4323 while ((n
= rb_first_cached(&head
->ref_tree
)) != NULL
) {
4324 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4327 rb_erase_cached(&ref
->ref_node
, &head
->ref_tree
);
4328 RB_CLEAR_NODE(&ref
->ref_node
);
4329 if (!list_empty(&ref
->add_list
))
4330 list_del(&ref
->add_list
);
4331 atomic_dec(&delayed_refs
->num_entries
);
4332 btrfs_put_delayed_ref(ref
);
4334 if (head
->must_insert_reserved
)
4336 btrfs_free_delayed_extent_op(head
->extent_op
);
4337 btrfs_delete_ref_head(delayed_refs
, head
);
4338 spin_unlock(&head
->lock
);
4339 spin_unlock(&delayed_refs
->lock
);
4340 mutex_unlock(&head
->mutex
);
4343 struct btrfs_block_group
*cache
;
4345 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
4348 spin_lock(&cache
->space_info
->lock
);
4349 spin_lock(&cache
->lock
);
4350 cache
->pinned
+= head
->num_bytes
;
4351 btrfs_space_info_update_bytes_pinned(fs_info
,
4352 cache
->space_info
, head
->num_bytes
);
4353 cache
->reserved
-= head
->num_bytes
;
4354 cache
->space_info
->bytes_reserved
-= head
->num_bytes
;
4355 spin_unlock(&cache
->lock
);
4356 spin_unlock(&cache
->space_info
->lock
);
4357 percpu_counter_add_batch(
4358 &cache
->space_info
->total_bytes_pinned
,
4359 head
->num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
4361 btrfs_put_block_group(cache
);
4363 btrfs_error_unpin_extent_range(fs_info
, head
->bytenr
,
4364 head
->bytenr
+ head
->num_bytes
- 1);
4366 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
4367 btrfs_put_delayed_ref_head(head
);
4369 spin_lock(&delayed_refs
->lock
);
4371 btrfs_qgroup_destroy_extent_records(trans
);
4373 spin_unlock(&delayed_refs
->lock
);
4378 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4380 struct btrfs_inode
*btrfs_inode
;
4381 struct list_head splice
;
4383 INIT_LIST_HEAD(&splice
);
4385 spin_lock(&root
->delalloc_lock
);
4386 list_splice_init(&root
->delalloc_inodes
, &splice
);
4388 while (!list_empty(&splice
)) {
4389 struct inode
*inode
= NULL
;
4390 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4392 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4393 spin_unlock(&root
->delalloc_lock
);
4396 * Make sure we get a live inode and that it'll not disappear
4399 inode
= igrab(&btrfs_inode
->vfs_inode
);
4401 invalidate_inode_pages2(inode
->i_mapping
);
4404 spin_lock(&root
->delalloc_lock
);
4406 spin_unlock(&root
->delalloc_lock
);
4409 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4411 struct btrfs_root
*root
;
4412 struct list_head splice
;
4414 INIT_LIST_HEAD(&splice
);
4416 spin_lock(&fs_info
->delalloc_root_lock
);
4417 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4418 while (!list_empty(&splice
)) {
4419 root
= list_first_entry(&splice
, struct btrfs_root
,
4421 root
= btrfs_grab_root(root
);
4423 spin_unlock(&fs_info
->delalloc_root_lock
);
4425 btrfs_destroy_delalloc_inodes(root
);
4426 btrfs_put_root(root
);
4428 spin_lock(&fs_info
->delalloc_root_lock
);
4430 spin_unlock(&fs_info
->delalloc_root_lock
);
4433 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4434 struct extent_io_tree
*dirty_pages
,
4438 struct extent_buffer
*eb
;
4443 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4448 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4449 while (start
<= end
) {
4450 eb
= find_extent_buffer(fs_info
, start
);
4451 start
+= fs_info
->nodesize
;
4454 wait_on_extent_buffer_writeback(eb
);
4456 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4458 clear_extent_buffer_dirty(eb
);
4459 free_extent_buffer_stale(eb
);
4466 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4467 struct extent_io_tree
*unpin
)
4474 struct extent_state
*cached_state
= NULL
;
4477 * The btrfs_finish_extent_commit() may get the same range as
4478 * ours between find_first_extent_bit and clear_extent_dirty.
4479 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4480 * the same extent range.
4482 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4483 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4484 EXTENT_DIRTY
, &cached_state
);
4486 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4490 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
4491 free_extent_state(cached_state
);
4492 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4493 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4500 static void btrfs_cleanup_bg_io(struct btrfs_block_group
*cache
)
4502 struct inode
*inode
;
4504 inode
= cache
->io_ctl
.inode
;
4506 invalidate_inode_pages2(inode
->i_mapping
);
4507 BTRFS_I(inode
)->generation
= 0;
4508 cache
->io_ctl
.inode
= NULL
;
4511 btrfs_put_block_group(cache
);
4514 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4515 struct btrfs_fs_info
*fs_info
)
4517 struct btrfs_block_group
*cache
;
4519 spin_lock(&cur_trans
->dirty_bgs_lock
);
4520 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4521 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4522 struct btrfs_block_group
,
4525 if (!list_empty(&cache
->io_list
)) {
4526 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4527 list_del_init(&cache
->io_list
);
4528 btrfs_cleanup_bg_io(cache
);
4529 spin_lock(&cur_trans
->dirty_bgs_lock
);
4532 list_del_init(&cache
->dirty_list
);
4533 spin_lock(&cache
->lock
);
4534 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4535 spin_unlock(&cache
->lock
);
4537 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4538 btrfs_put_block_group(cache
);
4539 btrfs_delayed_refs_rsv_release(fs_info
, 1);
4540 spin_lock(&cur_trans
->dirty_bgs_lock
);
4542 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4545 * Refer to the definition of io_bgs member for details why it's safe
4546 * to use it without any locking
4548 while (!list_empty(&cur_trans
->io_bgs
)) {
4549 cache
= list_first_entry(&cur_trans
->io_bgs
,
4550 struct btrfs_block_group
,
4553 list_del_init(&cache
->io_list
);
4554 spin_lock(&cache
->lock
);
4555 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4556 spin_unlock(&cache
->lock
);
4557 btrfs_cleanup_bg_io(cache
);
4561 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4562 struct btrfs_fs_info
*fs_info
)
4564 struct btrfs_device
*dev
, *tmp
;
4566 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4567 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4568 ASSERT(list_empty(&cur_trans
->io_bgs
));
4570 list_for_each_entry_safe(dev
, tmp
, &cur_trans
->dev_update_list
,
4572 list_del_init(&dev
->post_commit_list
);
4575 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4577 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4578 wake_up(&fs_info
->transaction_blocked_wait
);
4580 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4581 wake_up(&fs_info
->transaction_wait
);
4583 btrfs_destroy_delayed_inodes(fs_info
);
4585 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4587 btrfs_destroy_pinned_extent(fs_info
, &cur_trans
->pinned_extents
);
4589 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4590 wake_up(&cur_trans
->commit_wait
);
4593 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4595 struct btrfs_transaction
*t
;
4597 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4599 spin_lock(&fs_info
->trans_lock
);
4600 while (!list_empty(&fs_info
->trans_list
)) {
4601 t
= list_first_entry(&fs_info
->trans_list
,
4602 struct btrfs_transaction
, list
);
4603 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4604 refcount_inc(&t
->use_count
);
4605 spin_unlock(&fs_info
->trans_lock
);
4606 btrfs_wait_for_commit(fs_info
, t
->transid
);
4607 btrfs_put_transaction(t
);
4608 spin_lock(&fs_info
->trans_lock
);
4611 if (t
== fs_info
->running_transaction
) {
4612 t
->state
= TRANS_STATE_COMMIT_DOING
;
4613 spin_unlock(&fs_info
->trans_lock
);
4615 * We wait for 0 num_writers since we don't hold a trans
4616 * handle open currently for this transaction.
4618 wait_event(t
->writer_wait
,
4619 atomic_read(&t
->num_writers
) == 0);
4621 spin_unlock(&fs_info
->trans_lock
);
4623 btrfs_cleanup_one_transaction(t
, fs_info
);
4625 spin_lock(&fs_info
->trans_lock
);
4626 if (t
== fs_info
->running_transaction
)
4627 fs_info
->running_transaction
= NULL
;
4628 list_del_init(&t
->list
);
4629 spin_unlock(&fs_info
->trans_lock
);
4631 btrfs_put_transaction(t
);
4632 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4633 spin_lock(&fs_info
->trans_lock
);
4635 spin_unlock(&fs_info
->trans_lock
);
4636 btrfs_destroy_all_ordered_extents(fs_info
);
4637 btrfs_destroy_delayed_inodes(fs_info
);
4638 btrfs_assert_delayed_root_empty(fs_info
);
4639 btrfs_destroy_all_delalloc_inodes(fs_info
);
4640 btrfs_drop_all_logs(fs_info
);
4641 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4646 static const struct extent_io_ops btree_extent_io_ops
= {
4647 /* mandatory callbacks */
4648 .submit_bio_hook
= btree_submit_bio_hook
,
4649 .readpage_end_io_hook
= btree_readpage_end_io_hook
,