1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
14 #include "transaction.h"
16 #include "print-tree.h"
17 #include "compression.h"
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20 sizeof(struct btrfs_item) * 2) / \
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 * @inode - the inode we want to update the disk_i_size for
28 * @new_i_size - the i_size we want to set to, 0 if we use i_size
30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31 * returns as it is perfectly fine with a file that has holes without hole file
34 * However without NO_HOLES we need to only return the area that is contiguous
35 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
36 * to an extent that has a gap in between.
38 * Finally new_i_size should only be set in the case of truncate where we're not
39 * ready to use i_size_read() as the limiter yet.
41 void btrfs_inode_safe_disk_i_size_write(struct inode
*inode
, u64 new_i_size
)
43 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
44 u64 start
, end
, i_size
;
47 i_size
= new_i_size
?: i_size_read(inode
);
48 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
49 BTRFS_I(inode
)->disk_i_size
= i_size
;
53 spin_lock(&BTRFS_I(inode
)->lock
);
54 ret
= find_contiguous_extent_bit(&BTRFS_I(inode
)->file_extent_tree
, 0,
55 &start
, &end
, EXTENT_DIRTY
);
56 if (!ret
&& start
== 0)
57 i_size
= min(i_size
, end
+ 1);
60 BTRFS_I(inode
)->disk_i_size
= i_size
;
61 spin_unlock(&BTRFS_I(inode
)->lock
);
65 * @inode - the inode we're modifying
66 * @start - the start file offset of the file extent we've inserted
67 * @len - the logical length of the file extent item
69 * Call when we are inserting a new file extent where there was none before.
70 * Does not need to call this in the case where we're replacing an existing file
71 * extent, however if not sure it's fine to call this multiple times.
73 * The start and len must match the file extent item, so thus must be sectorsize
76 int btrfs_inode_set_file_extent_range(struct btrfs_inode
*inode
, u64 start
,
82 ASSERT(IS_ALIGNED(start
+ len
, inode
->root
->fs_info
->sectorsize
));
84 if (btrfs_fs_incompat(inode
->root
->fs_info
, NO_HOLES
))
86 return set_extent_bits(&inode
->file_extent_tree
, start
, start
+ len
- 1,
91 * @inode - the inode we're modifying
92 * @start - the start file offset of the file extent we've inserted
93 * @len - the logical length of the file extent item
95 * Called when we drop a file extent, for example when we truncate. Doesn't
96 * need to be called for cases where we're replacing a file extent, like when
97 * we've COWed a file extent.
99 * The start and len must match the file extent item, so thus must be sectorsize
102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode
*inode
, u64 start
,
108 ASSERT(IS_ALIGNED(start
+ len
, inode
->root
->fs_info
->sectorsize
) ||
111 if (btrfs_fs_incompat(inode
->root
->fs_info
, NO_HOLES
))
113 return clear_extent_bit(&inode
->file_extent_tree
, start
,
114 start
+ len
- 1, EXTENT_DIRTY
, 0, 0, NULL
);
117 static inline u32
max_ordered_sum_bytes(struct btrfs_fs_info
*fs_info
,
120 u32 ncsums
= (PAGE_SIZE
- sizeof(struct btrfs_ordered_sum
)) / csum_size
;
122 return ncsums
* fs_info
->sectorsize
;
125 int btrfs_insert_file_extent(struct btrfs_trans_handle
*trans
,
126 struct btrfs_root
*root
,
127 u64 objectid
, u64 pos
,
128 u64 disk_offset
, u64 disk_num_bytes
,
129 u64 num_bytes
, u64 offset
, u64 ram_bytes
,
130 u8 compression
, u8 encryption
, u16 other_encoding
)
133 struct btrfs_file_extent_item
*item
;
134 struct btrfs_key file_key
;
135 struct btrfs_path
*path
;
136 struct extent_buffer
*leaf
;
138 path
= btrfs_alloc_path();
141 file_key
.objectid
= objectid
;
142 file_key
.offset
= pos
;
143 file_key
.type
= BTRFS_EXTENT_DATA_KEY
;
145 path
->leave_spinning
= 1;
146 ret
= btrfs_insert_empty_item(trans
, root
, path
, &file_key
,
150 BUG_ON(ret
); /* Can't happen */
151 leaf
= path
->nodes
[0];
152 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
153 struct btrfs_file_extent_item
);
154 btrfs_set_file_extent_disk_bytenr(leaf
, item
, disk_offset
);
155 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, disk_num_bytes
);
156 btrfs_set_file_extent_offset(leaf
, item
, offset
);
157 btrfs_set_file_extent_num_bytes(leaf
, item
, num_bytes
);
158 btrfs_set_file_extent_ram_bytes(leaf
, item
, ram_bytes
);
159 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
160 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
161 btrfs_set_file_extent_compression(leaf
, item
, compression
);
162 btrfs_set_file_extent_encryption(leaf
, item
, encryption
);
163 btrfs_set_file_extent_other_encoding(leaf
, item
, other_encoding
);
165 btrfs_mark_buffer_dirty(leaf
);
167 btrfs_free_path(path
);
171 static struct btrfs_csum_item
*
172 btrfs_lookup_csum(struct btrfs_trans_handle
*trans
,
173 struct btrfs_root
*root
,
174 struct btrfs_path
*path
,
177 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
179 struct btrfs_key file_key
;
180 struct btrfs_key found_key
;
181 struct btrfs_csum_item
*item
;
182 struct extent_buffer
*leaf
;
184 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
187 file_key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
188 file_key
.offset
= bytenr
;
189 file_key
.type
= BTRFS_EXTENT_CSUM_KEY
;
190 ret
= btrfs_search_slot(trans
, root
, &file_key
, path
, 0, cow
);
193 leaf
= path
->nodes
[0];
196 if (path
->slots
[0] == 0)
199 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
200 if (found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
)
203 csum_offset
= (bytenr
- found_key
.offset
) >>
204 fs_info
->sb
->s_blocksize_bits
;
205 csums_in_item
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
206 csums_in_item
/= csum_size
;
208 if (csum_offset
== csums_in_item
) {
211 } else if (csum_offset
> csums_in_item
) {
215 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_csum_item
);
216 item
= (struct btrfs_csum_item
*)((unsigned char *)item
+
217 csum_offset
* csum_size
);
225 int btrfs_lookup_file_extent(struct btrfs_trans_handle
*trans
,
226 struct btrfs_root
*root
,
227 struct btrfs_path
*path
, u64 objectid
,
231 struct btrfs_key file_key
;
232 int ins_len
= mod
< 0 ? -1 : 0;
235 file_key
.objectid
= objectid
;
236 file_key
.offset
= offset
;
237 file_key
.type
= BTRFS_EXTENT_DATA_KEY
;
238 ret
= btrfs_search_slot(trans
, root
, &file_key
, path
, ins_len
, cow
);
243 * btrfs_lookup_bio_sums - Look up checksums for a bio.
244 * @inode: inode that the bio is for.
245 * @bio: bio to look up.
246 * @offset: Unless (u64)-1, look up checksums for this offset in the file.
247 * If (u64)-1, use the page offsets from the bio instead.
248 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
249 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
250 * NULL, the checksum buffer is allocated and returned in
251 * btrfs_io_bio(bio)->csum instead.
253 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
255 blk_status_t
btrfs_lookup_bio_sums(struct inode
*inode
, struct bio
*bio
,
258 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
260 struct bvec_iter iter
;
261 struct btrfs_csum_item
*item
= NULL
;
262 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
263 struct btrfs_path
*path
;
264 const bool page_offsets
= (offset
== (u64
)-1);
266 u64 item_start_offset
= 0;
267 u64 item_last_offset
= 0;
273 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
275 path
= btrfs_alloc_path();
277 return BLK_STS_RESOURCE
;
279 nblocks
= bio
->bi_iter
.bi_size
>> inode
->i_sb
->s_blocksize_bits
;
281 struct btrfs_io_bio
*btrfs_bio
= btrfs_io_bio(bio
);
283 if (nblocks
* csum_size
> BTRFS_BIO_INLINE_CSUM_SIZE
) {
284 btrfs_bio
->csum
= kmalloc_array(nblocks
, csum_size
,
286 if (!btrfs_bio
->csum
) {
287 btrfs_free_path(path
);
288 return BLK_STS_RESOURCE
;
291 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
293 csum
= btrfs_bio
->csum
;
298 if (bio
->bi_iter
.bi_size
> PAGE_SIZE
* 8)
299 path
->reada
= READA_FORWARD
;
302 * the free space stuff is only read when it hasn't been
303 * updated in the current transaction. So, we can safely
304 * read from the commit root and sidestep a nasty deadlock
305 * between reading the free space cache and updating the csum tree.
307 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
308 path
->search_commit_root
= 1;
309 path
->skip_locking
= 1;
312 disk_bytenr
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
314 bio_for_each_segment(bvec
, bio
, iter
) {
315 page_bytes_left
= bvec
.bv_len
;
320 offset
= page_offset(bvec
.bv_page
) + bvec
.bv_offset
;
321 count
= btrfs_find_ordered_sum(inode
, offset
, disk_bytenr
,
326 if (!item
|| disk_bytenr
< item_start_offset
||
327 disk_bytenr
>= item_last_offset
) {
328 struct btrfs_key found_key
;
332 btrfs_release_path(path
);
333 item
= btrfs_lookup_csum(NULL
, fs_info
->csum_root
,
334 path
, disk_bytenr
, 0);
337 memset(csum
, 0, csum_size
);
338 if (BTRFS_I(inode
)->root
->root_key
.objectid
==
339 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
340 set_extent_bits(io_tree
, offset
,
341 offset
+ fs_info
->sectorsize
- 1,
344 btrfs_info_rl(fs_info
,
345 "no csum found for inode %llu start %llu",
346 btrfs_ino(BTRFS_I(inode
)), offset
);
349 btrfs_release_path(path
);
352 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
355 item_start_offset
= found_key
.offset
;
356 item_size
= btrfs_item_size_nr(path
->nodes
[0],
358 item_last_offset
= item_start_offset
+
359 (item_size
/ csum_size
) *
361 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
362 struct btrfs_csum_item
);
365 * this byte range must be able to fit inside
366 * a single leaf so it will also fit inside a u32
368 diff
= disk_bytenr
- item_start_offset
;
369 diff
= diff
/ fs_info
->sectorsize
;
370 diff
= diff
* csum_size
;
371 count
= min_t(int, nblocks
, (item_last_offset
- disk_bytenr
) >>
372 inode
->i_sb
->s_blocksize_bits
);
373 read_extent_buffer(path
->nodes
[0], csum
,
374 ((unsigned long)item
) + diff
,
377 csum
+= count
* csum_size
;
382 disk_bytenr
+= fs_info
->sectorsize
;
383 offset
+= fs_info
->sectorsize
;
384 page_bytes_left
-= fs_info
->sectorsize
;
385 if (!page_bytes_left
)
386 break; /* move to next bio */
391 btrfs_free_path(path
);
395 int btrfs_lookup_csums_range(struct btrfs_root
*root
, u64 start
, u64 end
,
396 struct list_head
*list
, int search_commit
)
398 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
399 struct btrfs_key key
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_ordered_sum
*sums
;
403 struct btrfs_csum_item
*item
;
405 unsigned long offset
;
409 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
411 ASSERT(IS_ALIGNED(start
, fs_info
->sectorsize
) &&
412 IS_ALIGNED(end
+ 1, fs_info
->sectorsize
));
414 path
= btrfs_alloc_path();
419 path
->skip_locking
= 1;
420 path
->reada
= READA_FORWARD
;
421 path
->search_commit_root
= 1;
424 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
426 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
428 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
431 if (ret
> 0 && path
->slots
[0] > 0) {
432 leaf
= path
->nodes
[0];
433 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
434 if (key
.objectid
== BTRFS_EXTENT_CSUM_OBJECTID
&&
435 key
.type
== BTRFS_EXTENT_CSUM_KEY
) {
436 offset
= (start
- key
.offset
) >>
437 fs_info
->sb
->s_blocksize_bits
;
438 if (offset
* csum_size
<
439 btrfs_item_size_nr(leaf
, path
->slots
[0] - 1))
444 while (start
<= end
) {
445 leaf
= path
->nodes
[0];
446 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
447 ret
= btrfs_next_leaf(root
, path
);
452 leaf
= path
->nodes
[0];
455 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
456 if (key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
457 key
.type
!= BTRFS_EXTENT_CSUM_KEY
||
461 if (key
.offset
> start
)
464 size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
465 csum_end
= key
.offset
+ (size
/ csum_size
) * fs_info
->sectorsize
;
466 if (csum_end
<= start
) {
471 csum_end
= min(csum_end
, end
+ 1);
472 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
473 struct btrfs_csum_item
);
474 while (start
< csum_end
) {
475 size
= min_t(size_t, csum_end
- start
,
476 max_ordered_sum_bytes(fs_info
, csum_size
));
477 sums
= kzalloc(btrfs_ordered_sum_size(fs_info
, size
),
484 sums
->bytenr
= start
;
485 sums
->len
= (int)size
;
487 offset
= (start
- key
.offset
) >>
488 fs_info
->sb
->s_blocksize_bits
;
490 size
>>= fs_info
->sb
->s_blocksize_bits
;
492 read_extent_buffer(path
->nodes
[0],
494 ((unsigned long)item
) + offset
,
497 start
+= fs_info
->sectorsize
* size
;
498 list_add_tail(&sums
->list
, &tmplist
);
504 while (ret
< 0 && !list_empty(&tmplist
)) {
505 sums
= list_entry(tmplist
.next
, struct btrfs_ordered_sum
, list
);
506 list_del(&sums
->list
);
509 list_splice_tail(&tmplist
, list
);
511 btrfs_free_path(path
);
516 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
517 * @inode: Owner of the data inside the bio
518 * @bio: Contains the data to be checksummed
519 * @file_start: offset in file this bio begins to describe
520 * @contig: Boolean. If true/1 means all bio vecs in this bio are
521 * contiguous and they begin at @file_start in the file. False/0
522 * means this bio can contains potentially discontigous bio vecs
523 * so the logical offset of each should be calculated separately.
525 blk_status_t
btrfs_csum_one_bio(struct inode
*inode
, struct bio
*bio
,
526 u64 file_start
, int contig
)
528 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
529 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
530 struct btrfs_ordered_sum
*sums
;
531 struct btrfs_ordered_extent
*ordered
= NULL
;
533 struct bvec_iter iter
;
537 unsigned long total_bytes
= 0;
538 unsigned long this_sum_bytes
= 0;
542 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
544 nofs_flag
= memalloc_nofs_save();
545 sums
= kvzalloc(btrfs_ordered_sum_size(fs_info
, bio
->bi_iter
.bi_size
),
547 memalloc_nofs_restore(nofs_flag
);
550 return BLK_STS_RESOURCE
;
552 sums
->len
= bio
->bi_iter
.bi_size
;
553 INIT_LIST_HEAD(&sums
->list
);
558 offset
= 0; /* shut up gcc */
560 sums
->bytenr
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
563 shash
->tfm
= fs_info
->csum_shash
;
565 bio_for_each_segment(bvec
, bio
, iter
) {
567 offset
= page_offset(bvec
.bv_page
) + bvec
.bv_offset
;
570 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
571 BUG_ON(!ordered
); /* Logic error */
574 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
,
575 bvec
.bv_len
+ fs_info
->sectorsize
578 for (i
= 0; i
< nr_sectors
; i
++) {
579 if (offset
>= ordered
->file_offset
+ ordered
->num_bytes
||
580 offset
< ordered
->file_offset
) {
581 unsigned long bytes_left
;
583 sums
->len
= this_sum_bytes
;
585 btrfs_add_ordered_sum(ordered
, sums
);
586 btrfs_put_ordered_extent(ordered
);
588 bytes_left
= bio
->bi_iter
.bi_size
- total_bytes
;
590 nofs_flag
= memalloc_nofs_save();
591 sums
= kvzalloc(btrfs_ordered_sum_size(fs_info
,
592 bytes_left
), GFP_KERNEL
);
593 memalloc_nofs_restore(nofs_flag
);
594 BUG_ON(!sums
); /* -ENOMEM */
595 sums
->len
= bytes_left
;
596 ordered
= btrfs_lookup_ordered_extent(inode
,
598 ASSERT(ordered
); /* Logic error */
599 sums
->bytenr
= ((u64
)bio
->bi_iter
.bi_sector
<< 9)
604 data
= kmap_atomic(bvec
.bv_page
);
605 crypto_shash_digest(shash
, data
+ bvec
.bv_offset
606 + (i
* fs_info
->sectorsize
),
611 offset
+= fs_info
->sectorsize
;
612 this_sum_bytes
+= fs_info
->sectorsize
;
613 total_bytes
+= fs_info
->sectorsize
;
618 btrfs_add_ordered_sum(ordered
, sums
);
619 btrfs_put_ordered_extent(ordered
);
624 * helper function for csum removal, this expects the
625 * key to describe the csum pointed to by the path, and it expects
626 * the csum to overlap the range [bytenr, len]
628 * The csum should not be entirely contained in the range and the
629 * range should not be entirely contained in the csum.
631 * This calls btrfs_truncate_item with the correct args based on the
632 * overlap, and fixes up the key as required.
634 static noinline
void truncate_one_csum(struct btrfs_fs_info
*fs_info
,
635 struct btrfs_path
*path
,
636 struct btrfs_key
*key
,
639 struct extent_buffer
*leaf
;
640 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
642 u64 end_byte
= bytenr
+ len
;
643 u32 blocksize_bits
= fs_info
->sb
->s_blocksize_bits
;
645 leaf
= path
->nodes
[0];
646 csum_end
= btrfs_item_size_nr(leaf
, path
->slots
[0]) / csum_size
;
647 csum_end
<<= fs_info
->sb
->s_blocksize_bits
;
648 csum_end
+= key
->offset
;
650 if (key
->offset
< bytenr
&& csum_end
<= end_byte
) {
655 * A simple truncate off the end of the item
657 u32 new_size
= (bytenr
- key
->offset
) >> blocksize_bits
;
658 new_size
*= csum_size
;
659 btrfs_truncate_item(path
, new_size
, 1);
660 } else if (key
->offset
>= bytenr
&& csum_end
> end_byte
&&
661 end_byte
> key
->offset
) {
666 * we need to truncate from the beginning of the csum
668 u32 new_size
= (csum_end
- end_byte
) >> blocksize_bits
;
669 new_size
*= csum_size
;
671 btrfs_truncate_item(path
, new_size
, 0);
673 key
->offset
= end_byte
;
674 btrfs_set_item_key_safe(fs_info
, path
, key
);
681 * deletes the csum items from the csum tree for a given
684 int btrfs_del_csums(struct btrfs_trans_handle
*trans
,
685 struct btrfs_root
*root
, u64 bytenr
, u64 len
)
687 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
688 struct btrfs_path
*path
;
689 struct btrfs_key key
;
690 u64 end_byte
= bytenr
+ len
;
692 struct extent_buffer
*leaf
;
694 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
695 int blocksize_bits
= fs_info
->sb
->s_blocksize_bits
;
697 ASSERT(root
== fs_info
->csum_root
||
698 root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
700 path
= btrfs_alloc_path();
705 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
706 key
.offset
= end_byte
- 1;
707 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
709 path
->leave_spinning
= 1;
710 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
712 if (path
->slots
[0] == 0)
715 } else if (ret
< 0) {
719 leaf
= path
->nodes
[0];
720 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
722 if (key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
723 key
.type
!= BTRFS_EXTENT_CSUM_KEY
) {
727 if (key
.offset
>= end_byte
)
730 csum_end
= btrfs_item_size_nr(leaf
, path
->slots
[0]) / csum_size
;
731 csum_end
<<= blocksize_bits
;
732 csum_end
+= key
.offset
;
734 /* this csum ends before we start, we're done */
735 if (csum_end
<= bytenr
)
738 /* delete the entire item, it is inside our range */
739 if (key
.offset
>= bytenr
&& csum_end
<= end_byte
) {
743 * Check how many csum items preceding this one in this
744 * leaf correspond to our range and then delete them all
747 if (key
.offset
> bytenr
&& path
->slots
[0] > 0) {
748 int slot
= path
->slots
[0] - 1;
753 btrfs_item_key_to_cpu(leaf
, &pk
, slot
);
754 if (pk
.offset
< bytenr
||
755 pk
.type
!= BTRFS_EXTENT_CSUM_KEY
||
757 BTRFS_EXTENT_CSUM_OBJECTID
)
759 path
->slots
[0] = slot
;
761 key
.offset
= pk
.offset
;
765 ret
= btrfs_del_items(trans
, root
, path
,
766 path
->slots
[0], del_nr
);
769 if (key
.offset
== bytenr
)
771 } else if (key
.offset
< bytenr
&& csum_end
> end_byte
) {
772 unsigned long offset
;
773 unsigned long shift_len
;
774 unsigned long item_offset
;
779 * Our bytes are in the middle of the csum,
780 * we need to split this item and insert a new one.
782 * But we can't drop the path because the
783 * csum could change, get removed, extended etc.
785 * The trick here is the max size of a csum item leaves
786 * enough room in the tree block for a single
787 * item header. So, we split the item in place,
788 * adding a new header pointing to the existing
789 * bytes. Then we loop around again and we have
790 * a nicely formed csum item that we can neatly
793 offset
= (bytenr
- key
.offset
) >> blocksize_bits
;
796 shift_len
= (len
>> blocksize_bits
) * csum_size
;
798 item_offset
= btrfs_item_ptr_offset(leaf
,
801 memzero_extent_buffer(leaf
, item_offset
+ offset
,
806 * btrfs_split_item returns -EAGAIN when the
807 * item changed size or key
809 ret
= btrfs_split_item(trans
, root
, path
, &key
, offset
);
810 if (ret
&& ret
!= -EAGAIN
) {
811 btrfs_abort_transaction(trans
, ret
);
815 key
.offset
= end_byte
- 1;
817 truncate_one_csum(fs_info
, path
, &key
, bytenr
, len
);
818 if (key
.offset
< bytenr
)
821 btrfs_release_path(path
);
825 btrfs_free_path(path
);
829 int btrfs_csum_file_blocks(struct btrfs_trans_handle
*trans
,
830 struct btrfs_root
*root
,
831 struct btrfs_ordered_sum
*sums
)
833 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
834 struct btrfs_key file_key
;
835 struct btrfs_key found_key
;
836 struct btrfs_path
*path
;
837 struct btrfs_csum_item
*item
;
838 struct btrfs_csum_item
*item_end
;
839 struct extent_buffer
*leaf
= NULL
;
849 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
851 path
= btrfs_alloc_path();
855 next_offset
= (u64
)-1;
857 bytenr
= sums
->bytenr
+ total_bytes
;
858 file_key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
859 file_key
.offset
= bytenr
;
860 file_key
.type
= BTRFS_EXTENT_CSUM_KEY
;
862 item
= btrfs_lookup_csum(trans
, root
, path
, bytenr
, 1);
865 leaf
= path
->nodes
[0];
866 item_end
= btrfs_item_ptr(leaf
, path
->slots
[0],
867 struct btrfs_csum_item
);
868 item_end
= (struct btrfs_csum_item
*)((char *)item_end
+
869 btrfs_item_size_nr(leaf
, path
->slots
[0]));
873 if (ret
!= -EFBIG
&& ret
!= -ENOENT
)
878 /* we found one, but it isn't big enough yet */
879 leaf
= path
->nodes
[0];
880 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
881 if ((item_size
/ csum_size
) >=
882 MAX_CSUM_ITEMS(fs_info
, csum_size
)) {
883 /* already at max size, make a new one */
887 int slot
= path
->slots
[0] + 1;
888 /* we didn't find a csum item, insert one */
889 nritems
= btrfs_header_nritems(path
->nodes
[0]);
890 if (!nritems
|| (path
->slots
[0] >= nritems
- 1)) {
891 ret
= btrfs_next_leaf(root
, path
);
894 } else if (ret
> 0) {
898 slot
= path
->slots
[0];
900 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, slot
);
901 if (found_key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
902 found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
) {
906 next_offset
= found_key
.offset
;
912 * At this point, we know the tree has a checksum item that ends at an
913 * offset matching the start of the checksum range we want to insert.
914 * We try to extend that item as much as possible and then add as many
915 * checksums to it as they fit.
917 * First check if the leaf has enough free space for at least one
918 * checksum. If it has go directly to the item extension code, otherwise
919 * release the path and do a search for insertion before the extension.
921 if (btrfs_leaf_free_space(leaf
) >= csum_size
) {
922 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
923 csum_offset
= (bytenr
- found_key
.offset
) >>
924 fs_info
->sb
->s_blocksize_bits
;
928 btrfs_release_path(path
);
929 ret
= btrfs_search_slot(trans
, root
, &file_key
, path
,
935 if (path
->slots
[0] == 0)
940 leaf
= path
->nodes
[0];
941 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
942 csum_offset
= (bytenr
- found_key
.offset
) >>
943 fs_info
->sb
->s_blocksize_bits
;
945 if (found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
||
946 found_key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
947 csum_offset
>= MAX_CSUM_ITEMS(fs_info
, csum_size
)) {
952 if (csum_offset
== btrfs_item_size_nr(leaf
, path
->slots
[0]) /
958 tmp
= sums
->len
- total_bytes
;
959 tmp
>>= fs_info
->sb
->s_blocksize_bits
;
962 extend_nr
= max_t(int, 1, (int)tmp
);
963 diff
= (csum_offset
+ extend_nr
) * csum_size
;
965 MAX_CSUM_ITEMS(fs_info
, csum_size
) * csum_size
);
967 diff
= diff
- btrfs_item_size_nr(leaf
, path
->slots
[0]);
968 diff
= min_t(u32
, btrfs_leaf_free_space(leaf
), diff
);
972 btrfs_extend_item(path
, diff
);
978 btrfs_release_path(path
);
983 tmp
= sums
->len
- total_bytes
;
984 tmp
>>= fs_info
->sb
->s_blocksize_bits
;
985 tmp
= min(tmp
, (next_offset
- file_key
.offset
) >>
986 fs_info
->sb
->s_blocksize_bits
);
988 tmp
= max_t(u64
, 1, tmp
);
989 tmp
= min_t(u64
, tmp
, MAX_CSUM_ITEMS(fs_info
, csum_size
));
990 ins_size
= csum_size
* tmp
;
992 ins_size
= csum_size
;
994 path
->leave_spinning
= 1;
995 ret
= btrfs_insert_empty_item(trans
, root
, path
, &file_key
,
997 path
->leave_spinning
= 0;
1000 if (WARN_ON(ret
!= 0))
1002 leaf
= path
->nodes
[0];
1004 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_csum_item
);
1005 item_end
= (struct btrfs_csum_item
*)((unsigned char *)item
+
1006 btrfs_item_size_nr(leaf
, path
->slots
[0]));
1007 item
= (struct btrfs_csum_item
*)((unsigned char *)item
+
1008 csum_offset
* csum_size
);
1010 ins_size
= (u32
)(sums
->len
- total_bytes
) >>
1011 fs_info
->sb
->s_blocksize_bits
;
1012 ins_size
*= csum_size
;
1013 ins_size
= min_t(u32
, (unsigned long)item_end
- (unsigned long)item
,
1015 write_extent_buffer(leaf
, sums
->sums
+ index
, (unsigned long)item
,
1019 ins_size
/= csum_size
;
1020 total_bytes
+= ins_size
* fs_info
->sectorsize
;
1022 btrfs_mark_buffer_dirty(path
->nodes
[0]);
1023 if (total_bytes
< sums
->len
) {
1024 btrfs_release_path(path
);
1029 btrfs_free_path(path
);
1033 void btrfs_extent_item_to_extent_map(struct btrfs_inode
*inode
,
1034 const struct btrfs_path
*path
,
1035 struct btrfs_file_extent_item
*fi
,
1036 const bool new_inline
,
1037 struct extent_map
*em
)
1039 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1040 struct btrfs_root
*root
= inode
->root
;
1041 struct extent_buffer
*leaf
= path
->nodes
[0];
1042 const int slot
= path
->slots
[0];
1043 struct btrfs_key key
;
1044 u64 extent_start
, extent_end
;
1046 u8 type
= btrfs_file_extent_type(leaf
, fi
);
1047 int compress_type
= btrfs_file_extent_compression(leaf
, fi
);
1049 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1050 extent_start
= key
.offset
;
1051 extent_end
= btrfs_file_extent_end(path
);
1052 em
->ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1053 if (type
== BTRFS_FILE_EXTENT_REG
||
1054 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1055 em
->start
= extent_start
;
1056 em
->len
= extent_end
- extent_start
;
1057 em
->orig_start
= extent_start
-
1058 btrfs_file_extent_offset(leaf
, fi
);
1059 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1060 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1062 em
->block_start
= EXTENT_MAP_HOLE
;
1065 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
1066 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
1067 em
->compress_type
= compress_type
;
1068 em
->block_start
= bytenr
;
1069 em
->block_len
= em
->orig_block_len
;
1071 bytenr
+= btrfs_file_extent_offset(leaf
, fi
);
1072 em
->block_start
= bytenr
;
1073 em
->block_len
= em
->len
;
1074 if (type
== BTRFS_FILE_EXTENT_PREALLOC
)
1075 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
1077 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
1078 em
->block_start
= EXTENT_MAP_INLINE
;
1079 em
->start
= extent_start
;
1080 em
->len
= extent_end
- extent_start
;
1082 * Initialize orig_start and block_len with the same values
1083 * as in inode.c:btrfs_get_extent().
1085 em
->orig_start
= EXTENT_MAP_HOLE
;
1086 em
->block_len
= (u64
)-1;
1087 if (!new_inline
&& compress_type
!= BTRFS_COMPRESS_NONE
) {
1088 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
1089 em
->compress_type
= compress_type
;
1093 "unknown file extent item type %d, inode %llu, offset %llu, "
1094 "root %llu", type
, btrfs_ino(inode
), extent_start
,
1095 root
->root_key
.objectid
);
1100 * Returns the end offset (non inclusive) of the file extent item the given path
1101 * points to. If it points to an inline extent, the returned offset is rounded
1102 * up to the sector size.
1104 u64
btrfs_file_extent_end(const struct btrfs_path
*path
)
1106 const struct extent_buffer
*leaf
= path
->nodes
[0];
1107 const int slot
= path
->slots
[0];
1108 struct btrfs_file_extent_item
*fi
;
1109 struct btrfs_key key
;
1112 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1113 ASSERT(key
.type
== BTRFS_EXTENT_DATA_KEY
);
1114 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1116 if (btrfs_file_extent_type(leaf
, fi
) == BTRFS_FILE_EXTENT_INLINE
) {
1117 end
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1118 end
= ALIGN(key
.offset
+ end
, leaf
->fs_info
->sectorsize
);
1120 end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);