1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
44 #include "compression.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 struct btrfs_dio_data
{
61 u64 unsubmitted_oe_range_start
;
62 u64 unsubmitted_oe_range_end
;
66 static const struct inode_operations btrfs_dir_inode_operations
;
67 static const struct inode_operations btrfs_symlink_inode_operations
;
68 static const struct inode_operations btrfs_special_inode_operations
;
69 static const struct inode_operations btrfs_file_inode_operations
;
70 static const struct address_space_operations btrfs_aops
;
71 static const struct file_operations btrfs_dir_file_operations
;
72 static const struct extent_io_ops btrfs_extent_io_ops
;
74 static struct kmem_cache
*btrfs_inode_cachep
;
75 struct kmem_cache
*btrfs_trans_handle_cachep
;
76 struct kmem_cache
*btrfs_path_cachep
;
77 struct kmem_cache
*btrfs_free_space_cachep
;
78 struct kmem_cache
*btrfs_free_space_bitmap_cachep
;
80 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
81 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
83 static noinline
int cow_file_range(struct inode
*inode
,
84 struct page
*locked_page
,
85 u64 start
, u64 end
, int *page_started
,
86 unsigned long *nr_written
, int unlock
);
87 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
88 u64 orig_start
, u64 block_start
,
89 u64 block_len
, u64 orig_block_len
,
90 u64 ram_bytes
, int compress_type
,
93 static void __endio_write_update_ordered(struct inode
*inode
,
94 const u64 offset
, const u64 bytes
,
98 * Cleanup all submitted ordered extents in specified range to handle errors
99 * from the btrfs_run_delalloc_range() callback.
101 * NOTE: caller must ensure that when an error happens, it can not call
102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104 * to be released, which we want to happen only when finishing the ordered
105 * extent (btrfs_finish_ordered_io()).
107 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
108 struct page
*locked_page
,
109 u64 offset
, u64 bytes
)
111 unsigned long index
= offset
>> PAGE_SHIFT
;
112 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
113 u64 page_start
= page_offset(locked_page
);
114 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
118 while (index
<= end_index
) {
119 page
= find_get_page(inode
->i_mapping
, index
);
123 ClearPagePrivate2(page
);
128 * In case this page belongs to the delalloc range being instantiated
129 * then skip it, since the first page of a range is going to be
130 * properly cleaned up by the caller of run_delalloc_range
132 if (page_start
>= offset
&& page_end
<= (offset
+ bytes
- 1)) {
137 return __endio_write_update_ordered(inode
, offset
, bytes
, false);
140 static int btrfs_dirty_inode(struct inode
*inode
);
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode
*inode
)
145 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
149 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
150 struct inode
*inode
, struct inode
*dir
,
151 const struct qstr
*qstr
)
155 err
= btrfs_init_acl(trans
, inode
, dir
);
157 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
162 * this does all the hard work for inserting an inline extent into
163 * the btree. The caller should have done a btrfs_drop_extents so that
164 * no overlapping inline items exist in the btree
166 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
167 struct btrfs_path
*path
, int extent_inserted
,
168 struct btrfs_root
*root
, struct inode
*inode
,
169 u64 start
, size_t size
, size_t compressed_size
,
171 struct page
**compressed_pages
)
173 struct extent_buffer
*leaf
;
174 struct page
*page
= NULL
;
177 struct btrfs_file_extent_item
*ei
;
179 size_t cur_size
= size
;
180 unsigned long offset
;
182 ASSERT((compressed_size
> 0 && compressed_pages
) ||
183 (compressed_size
== 0 && !compressed_pages
));
185 if (compressed_size
&& compressed_pages
)
186 cur_size
= compressed_size
;
188 inode_add_bytes(inode
, size
);
190 if (!extent_inserted
) {
191 struct btrfs_key key
;
194 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
196 key
.type
= BTRFS_EXTENT_DATA_KEY
;
198 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
199 path
->leave_spinning
= 1;
200 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
205 leaf
= path
->nodes
[0];
206 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
207 struct btrfs_file_extent_item
);
208 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
209 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
210 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
211 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
212 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
213 ptr
= btrfs_file_extent_inline_start(ei
);
215 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
218 while (compressed_size
> 0) {
219 cpage
= compressed_pages
[i
];
220 cur_size
= min_t(unsigned long, compressed_size
,
223 kaddr
= kmap_atomic(cpage
);
224 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
225 kunmap_atomic(kaddr
);
229 compressed_size
-= cur_size
;
231 btrfs_set_file_extent_compression(leaf
, ei
,
234 page
= find_get_page(inode
->i_mapping
,
235 start
>> PAGE_SHIFT
);
236 btrfs_set_file_extent_compression(leaf
, ei
, 0);
237 kaddr
= kmap_atomic(page
);
238 offset
= offset_in_page(start
);
239 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
240 kunmap_atomic(kaddr
);
243 btrfs_mark_buffer_dirty(leaf
);
244 btrfs_release_path(path
);
247 * We align size to sectorsize for inline extents just for simplicity
250 size
= ALIGN(size
, root
->fs_info
->sectorsize
);
251 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), start
, size
);
256 * we're an inline extent, so nobody can
257 * extend the file past i_size without locking
258 * a page we already have locked.
260 * We must do any isize and inode updates
261 * before we unlock the pages. Otherwise we
262 * could end up racing with unlink.
264 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
265 ret
= btrfs_update_inode(trans
, root
, inode
);
273 * conditionally insert an inline extent into the file. This
274 * does the checks required to make sure the data is small enough
275 * to fit as an inline extent.
277 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
278 u64 end
, size_t compressed_size
,
280 struct page
**compressed_pages
)
282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
283 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
284 struct btrfs_trans_handle
*trans
;
285 u64 isize
= i_size_read(inode
);
286 u64 actual_end
= min(end
+ 1, isize
);
287 u64 inline_len
= actual_end
- start
;
288 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
289 u64 data_len
= inline_len
;
291 struct btrfs_path
*path
;
292 int extent_inserted
= 0;
293 u32 extent_item_size
;
296 data_len
= compressed_size
;
299 actual_end
> fs_info
->sectorsize
||
300 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
302 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
304 data_len
> fs_info
->max_inline
) {
308 path
= btrfs_alloc_path();
312 trans
= btrfs_join_transaction(root
);
314 btrfs_free_path(path
);
315 return PTR_ERR(trans
);
317 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
319 if (compressed_size
&& compressed_pages
)
320 extent_item_size
= btrfs_file_extent_calc_inline_size(
323 extent_item_size
= btrfs_file_extent_calc_inline_size(
326 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
327 start
, aligned_end
, NULL
,
328 1, 1, extent_item_size
, &extent_inserted
);
330 btrfs_abort_transaction(trans
, ret
);
334 if (isize
> actual_end
)
335 inline_len
= min_t(u64
, isize
, actual_end
);
336 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
338 inline_len
, compressed_size
,
339 compress_type
, compressed_pages
);
340 if (ret
&& ret
!= -ENOSPC
) {
341 btrfs_abort_transaction(trans
, ret
);
343 } else if (ret
== -ENOSPC
) {
348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
349 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
352 * Don't forget to free the reserved space, as for inlined extent
353 * it won't count as data extent, free them directly here.
354 * And at reserve time, it's always aligned to page size, so
355 * just free one page here.
357 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
358 btrfs_free_path(path
);
359 btrfs_end_transaction(trans
);
363 struct async_extent
{
368 unsigned long nr_pages
;
370 struct list_head list
;
375 struct page
*locked_page
;
378 unsigned int write_flags
;
379 struct list_head extents
;
380 struct cgroup_subsys_state
*blkcg_css
;
381 struct btrfs_work work
;
386 /* Number of chunks in flight; must be first in the structure */
388 struct async_chunk chunks
[];
391 static noinline
int add_async_extent(struct async_chunk
*cow
,
392 u64 start
, u64 ram_size
,
395 unsigned long nr_pages
,
398 struct async_extent
*async_extent
;
400 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
401 BUG_ON(!async_extent
); /* -ENOMEM */
402 async_extent
->start
= start
;
403 async_extent
->ram_size
= ram_size
;
404 async_extent
->compressed_size
= compressed_size
;
405 async_extent
->pages
= pages
;
406 async_extent
->nr_pages
= nr_pages
;
407 async_extent
->compress_type
= compress_type
;
408 list_add_tail(&async_extent
->list
, &cow
->extents
);
413 * Check if the inode has flags compatible with compression
415 static inline bool inode_can_compress(struct inode
*inode
)
417 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
||
418 BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
424 * Check if the inode needs to be submitted to compression, based on mount
425 * options, defragmentation, properties or heuristics.
427 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
429 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
431 if (!inode_can_compress(inode
)) {
432 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
433 KERN_ERR
"BTRFS: unexpected compression for ino %llu\n",
434 btrfs_ino(BTRFS_I(inode
)));
438 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
441 if (BTRFS_I(inode
)->defrag_compress
)
443 /* bad compression ratios */
444 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
446 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
447 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
448 BTRFS_I(inode
)->prop_compress
)
449 return btrfs_compress_heuristic(inode
, start
, end
);
453 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
454 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
456 /* If this is a small write inside eof, kick off a defrag */
457 if (num_bytes
< small_write
&&
458 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
459 btrfs_add_inode_defrag(NULL
, inode
);
463 * we create compressed extents in two phases. The first
464 * phase compresses a range of pages that have already been
465 * locked (both pages and state bits are locked).
467 * This is done inside an ordered work queue, and the compression
468 * is spread across many cpus. The actual IO submission is step
469 * two, and the ordered work queue takes care of making sure that
470 * happens in the same order things were put onto the queue by
471 * writepages and friends.
473 * If this code finds it can't get good compression, it puts an
474 * entry onto the work queue to write the uncompressed bytes. This
475 * makes sure that both compressed inodes and uncompressed inodes
476 * are written in the same order that the flusher thread sent them
479 static noinline
int compress_file_range(struct async_chunk
*async_chunk
)
481 struct inode
*inode
= async_chunk
->inode
;
482 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
483 u64 blocksize
= fs_info
->sectorsize
;
484 u64 start
= async_chunk
->start
;
485 u64 end
= async_chunk
->end
;
489 struct page
**pages
= NULL
;
490 unsigned long nr_pages
;
491 unsigned long total_compressed
= 0;
492 unsigned long total_in
= 0;
495 int compress_type
= fs_info
->compress_type
;
496 int compressed_extents
= 0;
499 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
503 * We need to save i_size before now because it could change in between
504 * us evaluating the size and assigning it. This is because we lock and
505 * unlock the page in truncate and fallocate, and then modify the i_size
508 * The barriers are to emulate READ_ONCE, remove that once i_size_read
512 i_size
= i_size_read(inode
);
514 actual_end
= min_t(u64
, i_size
, end
+ 1);
517 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
518 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
519 nr_pages
= min_t(unsigned long, nr_pages
,
520 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
523 * we don't want to send crud past the end of i_size through
524 * compression, that's just a waste of CPU time. So, if the
525 * end of the file is before the start of our current
526 * requested range of bytes, we bail out to the uncompressed
527 * cleanup code that can deal with all of this.
529 * It isn't really the fastest way to fix things, but this is a
530 * very uncommon corner.
532 if (actual_end
<= start
)
533 goto cleanup_and_bail_uncompressed
;
535 total_compressed
= actual_end
- start
;
538 * skip compression for a small file range(<=blocksize) that
539 * isn't an inline extent, since it doesn't save disk space at all.
541 if (total_compressed
<= blocksize
&&
542 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
543 goto cleanup_and_bail_uncompressed
;
545 total_compressed
= min_t(unsigned long, total_compressed
,
546 BTRFS_MAX_UNCOMPRESSED
);
551 * we do compression for mount -o compress and when the
552 * inode has not been flagged as nocompress. This flag can
553 * change at any time if we discover bad compression ratios.
555 if (inode_need_compress(inode
, start
, end
)) {
557 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
559 /* just bail out to the uncompressed code */
564 if (BTRFS_I(inode
)->defrag_compress
)
565 compress_type
= BTRFS_I(inode
)->defrag_compress
;
566 else if (BTRFS_I(inode
)->prop_compress
)
567 compress_type
= BTRFS_I(inode
)->prop_compress
;
570 * we need to call clear_page_dirty_for_io on each
571 * page in the range. Otherwise applications with the file
572 * mmap'd can wander in and change the page contents while
573 * we are compressing them.
575 * If the compression fails for any reason, we set the pages
576 * dirty again later on.
578 * Note that the remaining part is redirtied, the start pointer
579 * has moved, the end is the original one.
582 extent_range_clear_dirty_for_io(inode
, start
, end
);
586 /* Compression level is applied here and only here */
587 ret
= btrfs_compress_pages(
588 compress_type
| (fs_info
->compress_level
<< 4),
589 inode
->i_mapping
, start
,
596 unsigned long offset
= offset_in_page(total_compressed
);
597 struct page
*page
= pages
[nr_pages
- 1];
600 /* zero the tail end of the last page, we might be
601 * sending it down to disk
604 kaddr
= kmap_atomic(page
);
605 memset(kaddr
+ offset
, 0,
607 kunmap_atomic(kaddr
);
614 /* lets try to make an inline extent */
615 if (ret
|| total_in
< actual_end
) {
616 /* we didn't compress the entire range, try
617 * to make an uncompressed inline extent.
619 ret
= cow_file_range_inline(inode
, start
, end
, 0,
620 BTRFS_COMPRESS_NONE
, NULL
);
622 /* try making a compressed inline extent */
623 ret
= cow_file_range_inline(inode
, start
, end
,
625 compress_type
, pages
);
628 unsigned long clear_flags
= EXTENT_DELALLOC
|
629 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
630 EXTENT_DO_ACCOUNTING
;
631 unsigned long page_error_op
;
633 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
636 * inline extent creation worked or returned error,
637 * we don't need to create any more async work items.
638 * Unlock and free up our temp pages.
640 * We use DO_ACCOUNTING here because we need the
641 * delalloc_release_metadata to be done _after_ we drop
642 * our outstanding extent for clearing delalloc for this
645 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
653 for (i
= 0; i
< nr_pages
; i
++) {
654 WARN_ON(pages
[i
]->mapping
);
665 * we aren't doing an inline extent round the compressed size
666 * up to a block size boundary so the allocator does sane
669 total_compressed
= ALIGN(total_compressed
, blocksize
);
672 * one last check to make sure the compression is really a
673 * win, compare the page count read with the blocks on disk,
674 * compression must free at least one sector size
676 total_in
= ALIGN(total_in
, PAGE_SIZE
);
677 if (total_compressed
+ blocksize
<= total_in
) {
678 compressed_extents
++;
681 * The async work queues will take care of doing actual
682 * allocation on disk for these compressed pages, and
683 * will submit them to the elevator.
685 add_async_extent(async_chunk
, start
, total_in
,
686 total_compressed
, pages
, nr_pages
,
689 if (start
+ total_in
< end
) {
695 return compressed_extents
;
700 * the compression code ran but failed to make things smaller,
701 * free any pages it allocated and our page pointer array
703 for (i
= 0; i
< nr_pages
; i
++) {
704 WARN_ON(pages
[i
]->mapping
);
709 total_compressed
= 0;
712 /* flag the file so we don't compress in the future */
713 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
714 !(BTRFS_I(inode
)->prop_compress
)) {
715 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
718 cleanup_and_bail_uncompressed
:
720 * No compression, but we still need to write the pages in the file
721 * we've been given so far. redirty the locked page if it corresponds
722 * to our extent and set things up for the async work queue to run
723 * cow_file_range to do the normal delalloc dance.
725 if (async_chunk
->locked_page
&&
726 (page_offset(async_chunk
->locked_page
) >= start
&&
727 page_offset(async_chunk
->locked_page
)) <= end
) {
728 __set_page_dirty_nobuffers(async_chunk
->locked_page
);
729 /* unlocked later on in the async handlers */
733 extent_range_redirty_for_io(inode
, start
, end
);
734 add_async_extent(async_chunk
, start
, end
- start
+ 1, 0, NULL
, 0,
735 BTRFS_COMPRESS_NONE
);
736 compressed_extents
++;
738 return compressed_extents
;
741 static void free_async_extent_pages(struct async_extent
*async_extent
)
745 if (!async_extent
->pages
)
748 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
749 WARN_ON(async_extent
->pages
[i
]->mapping
);
750 put_page(async_extent
->pages
[i
]);
752 kfree(async_extent
->pages
);
753 async_extent
->nr_pages
= 0;
754 async_extent
->pages
= NULL
;
758 * phase two of compressed writeback. This is the ordered portion
759 * of the code, which only gets called in the order the work was
760 * queued. We walk all the async extents created by compress_file_range
761 * and send them down to the disk.
763 static noinline
void submit_compressed_extents(struct async_chunk
*async_chunk
)
765 struct inode
*inode
= async_chunk
->inode
;
766 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
767 struct async_extent
*async_extent
;
769 struct btrfs_key ins
;
770 struct extent_map
*em
;
771 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
772 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
776 while (!list_empty(&async_chunk
->extents
)) {
777 async_extent
= list_entry(async_chunk
->extents
.next
,
778 struct async_extent
, list
);
779 list_del(&async_extent
->list
);
782 lock_extent(io_tree
, async_extent
->start
,
783 async_extent
->start
+ async_extent
->ram_size
- 1);
784 /* did the compression code fall back to uncompressed IO? */
785 if (!async_extent
->pages
) {
786 int page_started
= 0;
787 unsigned long nr_written
= 0;
789 /* allocate blocks */
790 ret
= cow_file_range(inode
, async_chunk
->locked_page
,
792 async_extent
->start
+
793 async_extent
->ram_size
- 1,
794 &page_started
, &nr_written
, 0);
799 * if page_started, cow_file_range inserted an
800 * inline extent and took care of all the unlocking
801 * and IO for us. Otherwise, we need to submit
802 * all those pages down to the drive.
804 if (!page_started
&& !ret
)
805 extent_write_locked_range(inode
,
807 async_extent
->start
+
808 async_extent
->ram_size
- 1,
810 else if (ret
&& async_chunk
->locked_page
)
811 unlock_page(async_chunk
->locked_page
);
817 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
818 async_extent
->compressed_size
,
819 async_extent
->compressed_size
,
820 0, alloc_hint
, &ins
, 1, 1);
822 free_async_extent_pages(async_extent
);
824 if (ret
== -ENOSPC
) {
825 unlock_extent(io_tree
, async_extent
->start
,
826 async_extent
->start
+
827 async_extent
->ram_size
- 1);
830 * we need to redirty the pages if we decide to
831 * fallback to uncompressed IO, otherwise we
832 * will not submit these pages down to lower
835 extent_range_redirty_for_io(inode
,
837 async_extent
->start
+
838 async_extent
->ram_size
- 1);
845 * here we're doing allocation and writeback of the
848 em
= create_io_em(inode
, async_extent
->start
,
849 async_extent
->ram_size
, /* len */
850 async_extent
->start
, /* orig_start */
851 ins
.objectid
, /* block_start */
852 ins
.offset
, /* block_len */
853 ins
.offset
, /* orig_block_len */
854 async_extent
->ram_size
, /* ram_bytes */
855 async_extent
->compress_type
,
856 BTRFS_ORDERED_COMPRESSED
);
858 /* ret value is not necessary due to void function */
859 goto out_free_reserve
;
862 ret
= btrfs_add_ordered_extent_compress(inode
,
865 async_extent
->ram_size
,
867 BTRFS_ORDERED_COMPRESSED
,
868 async_extent
->compress_type
);
870 btrfs_drop_extent_cache(BTRFS_I(inode
),
872 async_extent
->start
+
873 async_extent
->ram_size
- 1, 0);
874 goto out_free_reserve
;
876 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
879 * clear dirty, set writeback and unlock the pages.
881 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
882 async_extent
->start
+
883 async_extent
->ram_size
- 1,
884 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
885 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
887 if (btrfs_submit_compressed_write(inode
,
889 async_extent
->ram_size
,
891 ins
.offset
, async_extent
->pages
,
892 async_extent
->nr_pages
,
893 async_chunk
->write_flags
,
894 async_chunk
->blkcg_css
)) {
895 struct page
*p
= async_extent
->pages
[0];
896 const u64 start
= async_extent
->start
;
897 const u64 end
= start
+ async_extent
->ram_size
- 1;
899 p
->mapping
= inode
->i_mapping
;
900 btrfs_writepage_endio_finish_ordered(p
, start
, end
, 0);
903 extent_clear_unlock_delalloc(inode
, start
, end
,
907 free_async_extent_pages(async_extent
);
909 alloc_hint
= ins
.objectid
+ ins
.offset
;
915 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
916 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
918 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
919 async_extent
->start
+
920 async_extent
->ram_size
- 1,
921 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
922 EXTENT_DELALLOC_NEW
|
923 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
924 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
925 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
927 free_async_extent_pages(async_extent
);
932 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
935 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
936 struct extent_map
*em
;
939 read_lock(&em_tree
->lock
);
940 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
947 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
949 em
= search_extent_mapping(em_tree
, 0, 0);
950 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
951 alloc_hint
= em
->block_start
;
955 alloc_hint
= em
->block_start
;
959 read_unlock(&em_tree
->lock
);
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
977 static noinline
int cow_file_range(struct inode
*inode
,
978 struct page
*locked_page
,
979 u64 start
, u64 end
, int *page_started
,
980 unsigned long *nr_written
, int unlock
)
982 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
983 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
986 unsigned long ram_size
;
987 u64 cur_alloc_size
= 0;
989 u64 blocksize
= fs_info
->sectorsize
;
990 struct btrfs_key ins
;
991 struct extent_map
*em
;
993 unsigned long page_ops
;
994 bool extent_reserved
= false;
997 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
1003 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
1004 num_bytes
= max(blocksize
, num_bytes
);
1005 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
1007 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
1010 /* lets try to make an inline extent */
1011 ret
= cow_file_range_inline(inode
, start
, end
, 0,
1012 BTRFS_COMPRESS_NONE
, NULL
);
1015 * We use DO_ACCOUNTING here because we need the
1016 * delalloc_release_metadata to be run _after_ we drop
1017 * our outstanding extent for clearing delalloc for this
1020 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
1021 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1022 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1023 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1024 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1025 PAGE_END_WRITEBACK
);
1026 *nr_written
= *nr_written
+
1027 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1030 } else if (ret
< 0) {
1035 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1036 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1037 start
+ num_bytes
- 1, 0);
1040 * Relocation relies on the relocated extents to have exactly the same
1041 * size as the original extents. Normally writeback for relocation data
1042 * extents follows a NOCOW path because relocation preallocates the
1043 * extents. However, due to an operation such as scrub turning a block
1044 * group to RO mode, it may fallback to COW mode, so we must make sure
1045 * an extent allocated during COW has exactly the requested size and can
1046 * not be split into smaller extents, otherwise relocation breaks and
1047 * fails during the stage where it updates the bytenr of file extent
1050 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1051 min_alloc_size
= num_bytes
;
1053 min_alloc_size
= fs_info
->sectorsize
;
1055 while (num_bytes
> 0) {
1056 cur_alloc_size
= num_bytes
;
1057 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1058 min_alloc_size
, 0, alloc_hint
,
1062 cur_alloc_size
= ins
.offset
;
1063 extent_reserved
= true;
1065 ram_size
= ins
.offset
;
1066 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1067 start
, /* orig_start */
1068 ins
.objectid
, /* block_start */
1069 ins
.offset
, /* block_len */
1070 ins
.offset
, /* orig_block_len */
1071 ram_size
, /* ram_bytes */
1072 BTRFS_COMPRESS_NONE
, /* compress_type */
1073 BTRFS_ORDERED_REGULAR
/* type */);
1078 free_extent_map(em
);
1080 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1081 ram_size
, cur_alloc_size
, 0);
1083 goto out_drop_extent_cache
;
1085 if (root
->root_key
.objectid
==
1086 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1087 ret
= btrfs_reloc_clone_csums(inode
, start
,
1090 * Only drop cache here, and process as normal.
1092 * We must not allow extent_clear_unlock_delalloc()
1093 * at out_unlock label to free meta of this ordered
1094 * extent, as its meta should be freed by
1095 * btrfs_finish_ordered_io().
1097 * So we must continue until @start is increased to
1098 * skip current ordered extent.
1101 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1102 start
+ ram_size
- 1, 0);
1105 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1107 /* we're not doing compressed IO, don't unlock the first
1108 * page (which the caller expects to stay locked), don't
1109 * clear any dirty bits and don't set any writeback bits
1111 * Do set the Private2 bit so we know this page was properly
1112 * setup for writepage
1114 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1115 page_ops
|= PAGE_SET_PRIVATE2
;
1117 extent_clear_unlock_delalloc(inode
, start
,
1118 start
+ ram_size
- 1,
1120 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1122 if (num_bytes
< cur_alloc_size
)
1125 num_bytes
-= cur_alloc_size
;
1126 alloc_hint
= ins
.objectid
+ ins
.offset
;
1127 start
+= cur_alloc_size
;
1128 extent_reserved
= false;
1131 * btrfs_reloc_clone_csums() error, since start is increased
1132 * extent_clear_unlock_delalloc() at out_unlock label won't
1133 * free metadata of current ordered extent, we're OK to exit.
1141 out_drop_extent_cache
:
1142 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1144 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1145 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1147 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1148 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1149 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1152 * If we reserved an extent for our delalloc range (or a subrange) and
1153 * failed to create the respective ordered extent, then it means that
1154 * when we reserved the extent we decremented the extent's size from
1155 * the data space_info's bytes_may_use counter and incremented the
1156 * space_info's bytes_reserved counter by the same amount. We must make
1157 * sure extent_clear_unlock_delalloc() does not try to decrement again
1158 * the data space_info's bytes_may_use counter, therefore we do not pass
1159 * it the flag EXTENT_CLEAR_DATA_RESV.
1161 if (extent_reserved
) {
1162 extent_clear_unlock_delalloc(inode
, start
,
1163 start
+ cur_alloc_size
- 1,
1167 start
+= cur_alloc_size
;
1171 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1172 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1178 * work queue call back to started compression on a file and pages
1180 static noinline
void async_cow_start(struct btrfs_work
*work
)
1182 struct async_chunk
*async_chunk
;
1183 int compressed_extents
;
1185 async_chunk
= container_of(work
, struct async_chunk
, work
);
1187 compressed_extents
= compress_file_range(async_chunk
);
1188 if (compressed_extents
== 0) {
1189 btrfs_add_delayed_iput(async_chunk
->inode
);
1190 async_chunk
->inode
= NULL
;
1195 * work queue call back to submit previously compressed pages
1197 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1199 struct async_chunk
*async_chunk
= container_of(work
, struct async_chunk
,
1201 struct btrfs_fs_info
*fs_info
= btrfs_work_owner(work
);
1202 unsigned long nr_pages
;
1204 nr_pages
= (async_chunk
->end
- async_chunk
->start
+ PAGE_SIZE
) >>
1207 /* atomic_sub_return implies a barrier */
1208 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1210 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1213 * ->inode could be NULL if async_chunk_start has failed to compress,
1214 * in which case we don't have anything to submit, yet we need to
1215 * always adjust ->async_delalloc_pages as its paired with the init
1216 * happening in cow_file_range_async
1218 if (async_chunk
->inode
)
1219 submit_compressed_extents(async_chunk
);
1222 static noinline
void async_cow_free(struct btrfs_work
*work
)
1224 struct async_chunk
*async_chunk
;
1226 async_chunk
= container_of(work
, struct async_chunk
, work
);
1227 if (async_chunk
->inode
)
1228 btrfs_add_delayed_iput(async_chunk
->inode
);
1229 if (async_chunk
->blkcg_css
)
1230 css_put(async_chunk
->blkcg_css
);
1232 * Since the pointer to 'pending' is at the beginning of the array of
1233 * async_chunk's, freeing it ensures the whole array has been freed.
1235 if (atomic_dec_and_test(async_chunk
->pending
))
1236 kvfree(async_chunk
->pending
);
1239 static int cow_file_range_async(struct inode
*inode
,
1240 struct writeback_control
*wbc
,
1241 struct page
*locked_page
,
1242 u64 start
, u64 end
, int *page_started
,
1243 unsigned long *nr_written
)
1245 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1246 struct cgroup_subsys_state
*blkcg_css
= wbc_blkcg_css(wbc
);
1247 struct async_cow
*ctx
;
1248 struct async_chunk
*async_chunk
;
1249 unsigned long nr_pages
;
1251 u64 num_chunks
= DIV_ROUND_UP(end
- start
, SZ_512K
);
1253 bool should_compress
;
1255 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
1257 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1259 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1260 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
)) {
1262 should_compress
= false;
1264 should_compress
= true;
1267 nofs_flag
= memalloc_nofs_save();
1268 ctx
= kvmalloc(struct_size(ctx
, chunks
, num_chunks
), GFP_KERNEL
);
1269 memalloc_nofs_restore(nofs_flag
);
1272 unsigned clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
|
1273 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1274 EXTENT_DO_ACCOUNTING
;
1275 unsigned long page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1276 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
1279 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1280 clear_bits
, page_ops
);
1284 async_chunk
= ctx
->chunks
;
1285 atomic_set(&ctx
->num_chunks
, num_chunks
);
1287 for (i
= 0; i
< num_chunks
; i
++) {
1288 if (should_compress
)
1289 cur_end
= min(end
, start
+ SZ_512K
- 1);
1294 * igrab is called higher up in the call chain, take only the
1295 * lightweight reference for the callback lifetime
1298 async_chunk
[i
].pending
= &ctx
->num_chunks
;
1299 async_chunk
[i
].inode
= inode
;
1300 async_chunk
[i
].start
= start
;
1301 async_chunk
[i
].end
= cur_end
;
1302 async_chunk
[i
].write_flags
= write_flags
;
1303 INIT_LIST_HEAD(&async_chunk
[i
].extents
);
1306 * The locked_page comes all the way from writepage and its
1307 * the original page we were actually given. As we spread
1308 * this large delalloc region across multiple async_chunk
1309 * structs, only the first struct needs a pointer to locked_page
1311 * This way we don't need racey decisions about who is supposed
1316 * Depending on the compressibility, the pages might or
1317 * might not go through async. We want all of them to
1318 * be accounted against wbc once. Let's do it here
1319 * before the paths diverge. wbc accounting is used
1320 * only for foreign writeback detection and doesn't
1321 * need full accuracy. Just account the whole thing
1322 * against the first page.
1324 wbc_account_cgroup_owner(wbc
, locked_page
,
1326 async_chunk
[i
].locked_page
= locked_page
;
1329 async_chunk
[i
].locked_page
= NULL
;
1332 if (blkcg_css
!= blkcg_root_css
) {
1334 async_chunk
[i
].blkcg_css
= blkcg_css
;
1336 async_chunk
[i
].blkcg_css
= NULL
;
1339 btrfs_init_work(&async_chunk
[i
].work
, async_cow_start
,
1340 async_cow_submit
, async_cow_free
);
1342 nr_pages
= DIV_ROUND_UP(cur_end
- start
, PAGE_SIZE
);
1343 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1345 btrfs_queue_work(fs_info
->delalloc_workers
, &async_chunk
[i
].work
);
1347 *nr_written
+= nr_pages
;
1348 start
= cur_end
+ 1;
1354 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1355 u64 bytenr
, u64 num_bytes
)
1358 struct btrfs_ordered_sum
*sums
;
1361 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1362 bytenr
+ num_bytes
- 1, &list
, 0);
1363 if (ret
== 0 && list_empty(&list
))
1366 while (!list_empty(&list
)) {
1367 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1368 list_del(&sums
->list
);
1376 static int fallback_to_cow(struct inode
*inode
, struct page
*locked_page
,
1377 const u64 start
, const u64 end
,
1378 int *page_started
, unsigned long *nr_written
)
1380 const bool is_space_ino
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1381 const bool is_reloc_ino
= (BTRFS_I(inode
)->root
->root_key
.objectid
==
1382 BTRFS_DATA_RELOC_TREE_OBJECTID
);
1383 const u64 range_bytes
= end
+ 1 - start
;
1384 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1385 u64 range_start
= start
;
1389 * If EXTENT_NORESERVE is set it means that when the buffered write was
1390 * made we had not enough available data space and therefore we did not
1391 * reserve data space for it, since we though we could do NOCOW for the
1392 * respective file range (either there is prealloc extent or the inode
1393 * has the NOCOW bit set).
1395 * However when we need to fallback to COW mode (because for example the
1396 * block group for the corresponding extent was turned to RO mode by a
1397 * scrub or relocation) we need to do the following:
1399 * 1) We increment the bytes_may_use counter of the data space info.
1400 * If COW succeeds, it allocates a new data extent and after doing
1401 * that it decrements the space info's bytes_may_use counter and
1402 * increments its bytes_reserved counter by the same amount (we do
1403 * this at btrfs_add_reserved_bytes()). So we need to increment the
1404 * bytes_may_use counter to compensate (when space is reserved at
1405 * buffered write time, the bytes_may_use counter is incremented);
1407 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1408 * that if the COW path fails for any reason, it decrements (through
1409 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1410 * data space info, which we incremented in the step above.
1412 * If we need to fallback to cow and the inode corresponds to a free
1413 * space cache inode or an inode of the data relocation tree, we must
1414 * also increment bytes_may_use of the data space_info for the same
1415 * reason. Space caches and relocated data extents always get a prealloc
1416 * extent for them, however scrub or balance may have set the block
1417 * group that contains that extent to RO mode and therefore force COW
1418 * when starting writeback.
1420 count
= count_range_bits(io_tree
, &range_start
, end
, range_bytes
,
1421 EXTENT_NORESERVE
, 0);
1422 if (count
> 0 || is_space_ino
|| is_reloc_ino
) {
1424 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1425 struct btrfs_space_info
*sinfo
= fs_info
->data_sinfo
;
1427 if (is_space_ino
|| is_reloc_ino
)
1428 bytes
= range_bytes
;
1430 spin_lock(&sinfo
->lock
);
1431 btrfs_space_info_update_bytes_may_use(fs_info
, sinfo
, bytes
);
1432 spin_unlock(&sinfo
->lock
);
1435 clear_extent_bit(io_tree
, start
, end
, EXTENT_NORESERVE
,
1439 return cow_file_range(inode
, locked_page
, start
, end
, page_started
,
1444 * when nowcow writeback call back. This checks for snapshots or COW copies
1445 * of the extents that exist in the file, and COWs the file as required.
1447 * If no cow copies or snapshots exist, we write directly to the existing
1450 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1451 struct page
*locked_page
,
1452 const u64 start
, const u64 end
,
1453 int *page_started
, int force
,
1454 unsigned long *nr_written
)
1456 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1457 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1458 struct btrfs_path
*path
;
1459 u64 cow_start
= (u64
)-1;
1460 u64 cur_offset
= start
;
1462 bool check_prev
= true;
1463 const bool freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1464 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1466 u64 disk_bytenr
= 0;
1468 path
= btrfs_alloc_path();
1470 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1471 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1472 EXTENT_DO_ACCOUNTING
|
1473 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1475 PAGE_SET_WRITEBACK
|
1476 PAGE_END_WRITEBACK
);
1481 struct btrfs_key found_key
;
1482 struct btrfs_file_extent_item
*fi
;
1483 struct extent_buffer
*leaf
;
1493 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1499 * If there is no extent for our range when doing the initial
1500 * search, then go back to the previous slot as it will be the
1501 * one containing the search offset
1503 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1504 leaf
= path
->nodes
[0];
1505 btrfs_item_key_to_cpu(leaf
, &found_key
,
1506 path
->slots
[0] - 1);
1507 if (found_key
.objectid
== ino
&&
1508 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1513 /* Go to next leaf if we have exhausted the current one */
1514 leaf
= path
->nodes
[0];
1515 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1516 ret
= btrfs_next_leaf(root
, path
);
1518 if (cow_start
!= (u64
)-1)
1519 cur_offset
= cow_start
;
1524 leaf
= path
->nodes
[0];
1527 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1529 /* Didn't find anything for our INO */
1530 if (found_key
.objectid
> ino
)
1533 * Keep searching until we find an EXTENT_ITEM or there are no
1534 * more extents for this inode
1536 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1537 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1542 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1543 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1544 found_key
.offset
> end
)
1548 * If the found extent starts after requested offset, then
1549 * adjust extent_end to be right before this extent begins
1551 if (found_key
.offset
> cur_offset
) {
1552 extent_end
= found_key
.offset
;
1558 * Found extent which begins before our range and potentially
1561 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1562 struct btrfs_file_extent_item
);
1563 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1565 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1566 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1567 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1568 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1569 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1570 extent_end
= found_key
.offset
+
1571 btrfs_file_extent_num_bytes(leaf
, fi
);
1573 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1575 * If the extent we got ends before our current offset,
1576 * skip to the next extent.
1578 if (extent_end
<= cur_offset
) {
1583 if (disk_bytenr
== 0)
1585 /* Skip compressed/encrypted/encoded extents */
1586 if (btrfs_file_extent_compression(leaf
, fi
) ||
1587 btrfs_file_extent_encryption(leaf
, fi
) ||
1588 btrfs_file_extent_other_encoding(leaf
, fi
))
1591 * If extent is created before the last volume's snapshot
1592 * this implies the extent is shared, hence we can't do
1593 * nocow. This is the same check as in
1594 * btrfs_cross_ref_exist but without calling
1595 * btrfs_search_slot.
1597 if (!freespace_inode
&&
1598 btrfs_file_extent_generation(leaf
, fi
) <=
1599 btrfs_root_last_snapshot(&root
->root_item
))
1601 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1603 /* If extent is RO, we must COW it */
1604 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1606 ret
= btrfs_cross_ref_exist(root
, ino
,
1608 extent_offset
, disk_bytenr
);
1611 * ret could be -EIO if the above fails to read
1615 if (cow_start
!= (u64
)-1)
1616 cur_offset
= cow_start
;
1620 WARN_ON_ONCE(freespace_inode
);
1623 disk_bytenr
+= extent_offset
;
1624 disk_bytenr
+= cur_offset
- found_key
.offset
;
1625 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1627 * If there are pending snapshots for this root, we
1628 * fall into common COW way
1630 if (!freespace_inode
&& atomic_read(&root
->snapshot_force_cow
))
1633 * force cow if csum exists in the range.
1634 * this ensure that csum for a given extent are
1635 * either valid or do not exist.
1637 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1641 * ret could be -EIO if the above fails to read
1645 if (cow_start
!= (u64
)-1)
1646 cur_offset
= cow_start
;
1649 WARN_ON_ONCE(freespace_inode
);
1652 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1655 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1656 extent_end
= found_key
.offset
+ ram_bytes
;
1657 extent_end
= ALIGN(extent_end
, fs_info
->sectorsize
);
1658 /* Skip extents outside of our requested range */
1659 if (extent_end
<= start
) {
1664 /* If this triggers then we have a memory corruption */
1669 * If nocow is false then record the beginning of the range
1670 * that needs to be COWed
1673 if (cow_start
== (u64
)-1)
1674 cow_start
= cur_offset
;
1675 cur_offset
= extent_end
;
1676 if (cur_offset
> end
)
1682 btrfs_release_path(path
);
1685 * COW range from cow_start to found_key.offset - 1. As the key
1686 * will contain the beginning of the first extent that can be
1687 * NOCOW, following one which needs to be COW'ed
1689 if (cow_start
!= (u64
)-1) {
1690 ret
= fallback_to_cow(inode
, locked_page
, cow_start
,
1691 found_key
.offset
- 1,
1692 page_started
, nr_written
);
1695 btrfs_dec_nocow_writers(fs_info
,
1699 cow_start
= (u64
)-1;
1702 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1703 u64 orig_start
= found_key
.offset
- extent_offset
;
1704 struct extent_map
*em
;
1706 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1708 disk_bytenr
, /* block_start */
1709 num_bytes
, /* block_len */
1710 disk_num_bytes
, /* orig_block_len */
1711 ram_bytes
, BTRFS_COMPRESS_NONE
,
1712 BTRFS_ORDERED_PREALLOC
);
1715 btrfs_dec_nocow_writers(fs_info
,
1720 free_extent_map(em
);
1721 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1722 disk_bytenr
, num_bytes
,
1724 BTRFS_ORDERED_PREALLOC
);
1726 btrfs_drop_extent_cache(BTRFS_I(inode
),
1728 cur_offset
+ num_bytes
- 1,
1733 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1734 disk_bytenr
, num_bytes
,
1736 BTRFS_ORDERED_NOCOW
);
1742 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1745 if (root
->root_key
.objectid
==
1746 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1748 * Error handled later, as we must prevent
1749 * extent_clear_unlock_delalloc() in error handler
1750 * from freeing metadata of created ordered extent.
1752 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1755 extent_clear_unlock_delalloc(inode
, cur_offset
,
1756 cur_offset
+ num_bytes
- 1,
1757 locked_page
, EXTENT_LOCKED
|
1759 EXTENT_CLEAR_DATA_RESV
,
1760 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1762 cur_offset
= extent_end
;
1765 * btrfs_reloc_clone_csums() error, now we're OK to call error
1766 * handler, as metadata for created ordered extent will only
1767 * be freed by btrfs_finish_ordered_io().
1771 if (cur_offset
> end
)
1774 btrfs_release_path(path
);
1776 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1777 cow_start
= cur_offset
;
1779 if (cow_start
!= (u64
)-1) {
1781 ret
= fallback_to_cow(inode
, locked_page
, cow_start
, end
,
1782 page_started
, nr_written
);
1789 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1791 if (ret
&& cur_offset
< end
)
1792 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1793 locked_page
, EXTENT_LOCKED
|
1794 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1795 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1797 PAGE_SET_WRITEBACK
|
1798 PAGE_END_WRITEBACK
);
1799 btrfs_free_path(path
);
1803 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1806 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1807 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1811 * @defrag_bytes is a hint value, no spinlock held here,
1812 * if is not zero, it means the file is defragging.
1813 * Force cow if given extent needs to be defragged.
1815 if (BTRFS_I(inode
)->defrag_bytes
&&
1816 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1817 EXTENT_DEFRAG
, 0, NULL
))
1824 * Function to process delayed allocation (create CoW) for ranges which are
1825 * being touched for the first time.
1827 int btrfs_run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1828 u64 start
, u64 end
, int *page_started
, unsigned long *nr_written
,
1829 struct writeback_control
*wbc
)
1832 int force_cow
= need_force_cow(inode
, start
, end
);
1834 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1835 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1836 page_started
, 1, nr_written
);
1837 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1838 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1839 page_started
, 0, nr_written
);
1840 } else if (!inode_can_compress(inode
) ||
1841 !inode_need_compress(inode
, start
, end
)) {
1842 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1843 page_started
, nr_written
, 1);
1845 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1846 &BTRFS_I(inode
)->runtime_flags
);
1847 ret
= cow_file_range_async(inode
, wbc
, locked_page
, start
, end
,
1848 page_started
, nr_written
);
1851 btrfs_cleanup_ordered_extents(inode
, locked_page
, start
,
1856 void btrfs_split_delalloc_extent(struct inode
*inode
,
1857 struct extent_state
*orig
, u64 split
)
1861 /* not delalloc, ignore it */
1862 if (!(orig
->state
& EXTENT_DELALLOC
))
1865 size
= orig
->end
- orig
->start
+ 1;
1866 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1871 * See the explanation in btrfs_merge_delalloc_extent, the same
1872 * applies here, just in reverse.
1874 new_size
= orig
->end
- split
+ 1;
1875 num_extents
= count_max_extents(new_size
);
1876 new_size
= split
- orig
->start
;
1877 num_extents
+= count_max_extents(new_size
);
1878 if (count_max_extents(size
) >= num_extents
)
1882 spin_lock(&BTRFS_I(inode
)->lock
);
1883 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1884 spin_unlock(&BTRFS_I(inode
)->lock
);
1888 * Handle merged delayed allocation extents so we can keep track of new extents
1889 * that are just merged onto old extents, such as when we are doing sequential
1890 * writes, so we can properly account for the metadata space we'll need.
1892 void btrfs_merge_delalloc_extent(struct inode
*inode
, struct extent_state
*new,
1893 struct extent_state
*other
)
1895 u64 new_size
, old_size
;
1898 /* not delalloc, ignore it */
1899 if (!(other
->state
& EXTENT_DELALLOC
))
1902 if (new->start
> other
->start
)
1903 new_size
= new->end
- other
->start
+ 1;
1905 new_size
= other
->end
- new->start
+ 1;
1907 /* we're not bigger than the max, unreserve the space and go */
1908 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1909 spin_lock(&BTRFS_I(inode
)->lock
);
1910 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1911 spin_unlock(&BTRFS_I(inode
)->lock
);
1916 * We have to add up either side to figure out how many extents were
1917 * accounted for before we merged into one big extent. If the number of
1918 * extents we accounted for is <= the amount we need for the new range
1919 * then we can return, otherwise drop. Think of it like this
1923 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1924 * need 2 outstanding extents, on one side we have 1 and the other side
1925 * we have 1 so they are == and we can return. But in this case
1927 * [MAX_SIZE+4k][MAX_SIZE+4k]
1929 * Each range on their own accounts for 2 extents, but merged together
1930 * they are only 3 extents worth of accounting, so we need to drop in
1933 old_size
= other
->end
- other
->start
+ 1;
1934 num_extents
= count_max_extents(old_size
);
1935 old_size
= new->end
- new->start
+ 1;
1936 num_extents
+= count_max_extents(old_size
);
1937 if (count_max_extents(new_size
) >= num_extents
)
1940 spin_lock(&BTRFS_I(inode
)->lock
);
1941 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1942 spin_unlock(&BTRFS_I(inode
)->lock
);
1945 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1946 struct inode
*inode
)
1948 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1950 spin_lock(&root
->delalloc_lock
);
1951 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1952 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1953 &root
->delalloc_inodes
);
1954 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1955 &BTRFS_I(inode
)->runtime_flags
);
1956 root
->nr_delalloc_inodes
++;
1957 if (root
->nr_delalloc_inodes
== 1) {
1958 spin_lock(&fs_info
->delalloc_root_lock
);
1959 BUG_ON(!list_empty(&root
->delalloc_root
));
1960 list_add_tail(&root
->delalloc_root
,
1961 &fs_info
->delalloc_roots
);
1962 spin_unlock(&fs_info
->delalloc_root_lock
);
1965 spin_unlock(&root
->delalloc_lock
);
1969 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1970 struct btrfs_inode
*inode
)
1972 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1974 if (!list_empty(&inode
->delalloc_inodes
)) {
1975 list_del_init(&inode
->delalloc_inodes
);
1976 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1977 &inode
->runtime_flags
);
1978 root
->nr_delalloc_inodes
--;
1979 if (!root
->nr_delalloc_inodes
) {
1980 ASSERT(list_empty(&root
->delalloc_inodes
));
1981 spin_lock(&fs_info
->delalloc_root_lock
);
1982 BUG_ON(list_empty(&root
->delalloc_root
));
1983 list_del_init(&root
->delalloc_root
);
1984 spin_unlock(&fs_info
->delalloc_root_lock
);
1989 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1990 struct btrfs_inode
*inode
)
1992 spin_lock(&root
->delalloc_lock
);
1993 __btrfs_del_delalloc_inode(root
, inode
);
1994 spin_unlock(&root
->delalloc_lock
);
1998 * Properly track delayed allocation bytes in the inode and to maintain the
1999 * list of inodes that have pending delalloc work to be done.
2001 void btrfs_set_delalloc_extent(struct inode
*inode
, struct extent_state
*state
,
2004 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2006 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
2009 * set_bit and clear bit hooks normally require _irqsave/restore
2010 * but in this case, we are only testing for the DELALLOC
2011 * bit, which is only set or cleared with irqs on
2013 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
2014 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2015 u64 len
= state
->end
+ 1 - state
->start
;
2016 u32 num_extents
= count_max_extents(len
);
2017 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
2019 spin_lock(&BTRFS_I(inode
)->lock
);
2020 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
2021 spin_unlock(&BTRFS_I(inode
)->lock
);
2023 /* For sanity tests */
2024 if (btrfs_is_testing(fs_info
))
2027 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
2028 fs_info
->delalloc_batch
);
2029 spin_lock(&BTRFS_I(inode
)->lock
);
2030 BTRFS_I(inode
)->delalloc_bytes
+= len
;
2031 if (*bits
& EXTENT_DEFRAG
)
2032 BTRFS_I(inode
)->defrag_bytes
+= len
;
2033 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2034 &BTRFS_I(inode
)->runtime_flags
))
2035 btrfs_add_delalloc_inodes(root
, inode
);
2036 spin_unlock(&BTRFS_I(inode
)->lock
);
2039 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
2040 (*bits
& EXTENT_DELALLOC_NEW
)) {
2041 spin_lock(&BTRFS_I(inode
)->lock
);
2042 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
2044 spin_unlock(&BTRFS_I(inode
)->lock
);
2049 * Once a range is no longer delalloc this function ensures that proper
2050 * accounting happens.
2052 void btrfs_clear_delalloc_extent(struct inode
*vfs_inode
,
2053 struct extent_state
*state
, unsigned *bits
)
2055 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
2056 struct btrfs_fs_info
*fs_info
= btrfs_sb(vfs_inode
->i_sb
);
2057 u64 len
= state
->end
+ 1 - state
->start
;
2058 u32 num_extents
= count_max_extents(len
);
2060 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
2061 spin_lock(&inode
->lock
);
2062 inode
->defrag_bytes
-= len
;
2063 spin_unlock(&inode
->lock
);
2067 * set_bit and clear bit hooks normally require _irqsave/restore
2068 * but in this case, we are only testing for the DELALLOC
2069 * bit, which is only set or cleared with irqs on
2071 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
2072 struct btrfs_root
*root
= inode
->root
;
2073 bool do_list
= !btrfs_is_free_space_inode(inode
);
2075 spin_lock(&inode
->lock
);
2076 btrfs_mod_outstanding_extents(inode
, -num_extents
);
2077 spin_unlock(&inode
->lock
);
2080 * We don't reserve metadata space for space cache inodes so we
2081 * don't need to call delalloc_release_metadata if there is an
2084 if (*bits
& EXTENT_CLEAR_META_RESV
&&
2085 root
!= fs_info
->tree_root
)
2086 btrfs_delalloc_release_metadata(inode
, len
, false);
2088 /* For sanity tests. */
2089 if (btrfs_is_testing(fs_info
))
2092 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2093 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
2094 (*bits
& EXTENT_CLEAR_DATA_RESV
))
2095 btrfs_free_reserved_data_space_noquota(
2099 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
2100 fs_info
->delalloc_batch
);
2101 spin_lock(&inode
->lock
);
2102 inode
->delalloc_bytes
-= len
;
2103 if (do_list
&& inode
->delalloc_bytes
== 0 &&
2104 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2105 &inode
->runtime_flags
))
2106 btrfs_del_delalloc_inode(root
, inode
);
2107 spin_unlock(&inode
->lock
);
2110 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
2111 (*bits
& EXTENT_DELALLOC_NEW
)) {
2112 spin_lock(&inode
->lock
);
2113 ASSERT(inode
->new_delalloc_bytes
>= len
);
2114 inode
->new_delalloc_bytes
-= len
;
2115 spin_unlock(&inode
->lock
);
2120 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2121 * in a chunk's stripe. This function ensures that bios do not span a
2124 * @page - The page we are about to add to the bio
2125 * @size - size we want to add to the bio
2126 * @bio - bio we want to ensure is smaller than a stripe
2127 * @bio_flags - flags of the bio
2129 * return 1 if page cannot be added to the bio
2130 * return 0 if page can be added to the bio
2131 * return error otherwise
2133 int btrfs_bio_fits_in_stripe(struct page
*page
, size_t size
, struct bio
*bio
,
2134 unsigned long bio_flags
)
2136 struct inode
*inode
= page
->mapping
->host
;
2137 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2138 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
2142 struct btrfs_io_geometry geom
;
2144 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
2147 length
= bio
->bi_iter
.bi_size
;
2148 map_length
= length
;
2149 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(bio
), logical
, map_length
,
2154 if (geom
.len
< length
+ size
)
2160 * in order to insert checksums into the metadata in large chunks,
2161 * we wait until bio submission time. All the pages in the bio are
2162 * checksummed and sums are attached onto the ordered extent record.
2164 * At IO completion time the cums attached on the ordered extent record
2165 * are inserted into the btree
2167 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
2170 struct inode
*inode
= private_data
;
2171 blk_status_t ret
= 0;
2173 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2174 BUG_ON(ret
); /* -ENOMEM */
2179 * extent_io.c submission hook. This does the right thing for csum calculation
2180 * on write, or reading the csums from the tree before a read.
2182 * Rules about async/sync submit,
2183 * a) read: sync submit
2185 * b) write without checksum: sync submit
2187 * c) write with checksum:
2188 * c-1) if bio is issued by fsync: sync submit
2189 * (sync_writers != 0)
2191 * c-2) if root is reloc root: sync submit
2192 * (only in case of buffered IO)
2194 * c-3) otherwise: async submit
2196 static blk_status_t
btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
2198 unsigned long bio_flags
)
2201 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2202 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2203 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2204 blk_status_t ret
= 0;
2206 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2208 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
2210 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2211 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2213 if (bio_op(bio
) != REQ_OP_WRITE
) {
2214 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2218 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2219 ret
= btrfs_submit_compressed_read(inode
, bio
,
2223 } else if (!skip_sum
) {
2224 ret
= btrfs_lookup_bio_sums(inode
, bio
, (u64
)-1, NULL
);
2229 } else if (async
&& !skip_sum
) {
2230 /* csum items have already been cloned */
2231 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2233 /* we're doing a write, do the async checksumming */
2234 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2235 0, inode
, btrfs_submit_bio_start
);
2237 } else if (!skip_sum
) {
2238 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2244 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
2248 bio
->bi_status
= ret
;
2255 * given a list of ordered sums record them in the inode. This happens
2256 * at IO completion time based on sums calculated at bio submission time.
2258 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2259 struct inode
*inode
, struct list_head
*list
)
2261 struct btrfs_ordered_sum
*sum
;
2264 list_for_each_entry(sum
, list
, list
) {
2265 trans
->adding_csums
= true;
2266 ret
= btrfs_csum_file_blocks(trans
,
2267 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2268 trans
->adding_csums
= false;
2275 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2276 unsigned int extra_bits
,
2277 struct extent_state
**cached_state
)
2279 WARN_ON(PAGE_ALIGNED(end
));
2280 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2281 extra_bits
, cached_state
);
2284 /* see btrfs_writepage_start_hook for details on why this is required */
2285 struct btrfs_writepage_fixup
{
2287 struct inode
*inode
;
2288 struct btrfs_work work
;
2291 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2293 struct btrfs_writepage_fixup
*fixup
;
2294 struct btrfs_ordered_extent
*ordered
;
2295 struct extent_state
*cached_state
= NULL
;
2296 struct extent_changeset
*data_reserved
= NULL
;
2298 struct inode
*inode
;
2302 bool free_delalloc_space
= true;
2304 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2306 inode
= fixup
->inode
;
2307 page_start
= page_offset(page
);
2308 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2311 * This is similar to page_mkwrite, we need to reserve the space before
2312 * we take the page lock.
2314 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2320 * Before we queued this fixup, we took a reference on the page.
2321 * page->mapping may go NULL, but it shouldn't be moved to a different
2324 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2326 * Unfortunately this is a little tricky, either
2328 * 1) We got here and our page had already been dealt with and
2329 * we reserved our space, thus ret == 0, so we need to just
2330 * drop our space reservation and bail. This can happen the
2331 * first time we come into the fixup worker, or could happen
2332 * while waiting for the ordered extent.
2333 * 2) Our page was already dealt with, but we happened to get an
2334 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2335 * this case we obviously don't have anything to release, but
2336 * because the page was already dealt with we don't want to
2337 * mark the page with an error, so make sure we're resetting
2338 * ret to 0. This is why we have this check _before_ the ret
2339 * check, because we do not want to have a surprise ENOSPC
2340 * when the page was already properly dealt with.
2343 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2345 btrfs_delalloc_release_space(inode
, data_reserved
,
2346 page_start
, PAGE_SIZE
,
2354 * We can't mess with the page state unless it is locked, so now that
2355 * it is locked bail if we failed to make our space reservation.
2360 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2363 /* already ordered? We're done */
2364 if (PagePrivate2(page
))
2367 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2370 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2371 page_end
, &cached_state
);
2373 btrfs_start_ordered_extent(inode
, ordered
, 1);
2374 btrfs_put_ordered_extent(ordered
);
2378 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2384 * Everything went as planned, we're now the owner of a dirty page with
2385 * delayed allocation bits set and space reserved for our COW
2388 * The page was dirty when we started, nothing should have cleaned it.
2390 BUG_ON(!PageDirty(page
));
2391 free_delalloc_space
= false;
2393 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2394 if (free_delalloc_space
)
2395 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
2397 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2402 * We hit ENOSPC or other errors. Update the mapping and page
2403 * to reflect the errors and clean the page.
2405 mapping_set_error(page
->mapping
, ret
);
2406 end_extent_writepage(page
, ret
, page_start
, page_end
);
2407 clear_page_dirty_for_io(page
);
2410 ClearPageChecked(page
);
2414 extent_changeset_free(data_reserved
);
2416 * As a precaution, do a delayed iput in case it would be the last iput
2417 * that could need flushing space. Recursing back to fixup worker would
2420 btrfs_add_delayed_iput(inode
);
2424 * There are a few paths in the higher layers of the kernel that directly
2425 * set the page dirty bit without asking the filesystem if it is a
2426 * good idea. This causes problems because we want to make sure COW
2427 * properly happens and the data=ordered rules are followed.
2429 * In our case any range that doesn't have the ORDERED bit set
2430 * hasn't been properly setup for IO. We kick off an async process
2431 * to fix it up. The async helper will wait for ordered extents, set
2432 * the delalloc bit and make it safe to write the page.
2434 int btrfs_writepage_cow_fixup(struct page
*page
, u64 start
, u64 end
)
2436 struct inode
*inode
= page
->mapping
->host
;
2437 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2438 struct btrfs_writepage_fixup
*fixup
;
2440 /* this page is properly in the ordered list */
2441 if (TestClearPagePrivate2(page
))
2445 * PageChecked is set below when we create a fixup worker for this page,
2446 * don't try to create another one if we're already PageChecked()
2448 * The extent_io writepage code will redirty the page if we send back
2451 if (PageChecked(page
))
2454 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2459 * We are already holding a reference to this inode from
2460 * write_cache_pages. We need to hold it because the space reservation
2461 * takes place outside of the page lock, and we can't trust
2462 * page->mapping outside of the page lock.
2465 SetPageChecked(page
);
2467 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
2469 fixup
->inode
= inode
;
2470 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2475 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2476 struct inode
*inode
, u64 file_pos
,
2477 u64 disk_bytenr
, u64 disk_num_bytes
,
2478 u64 num_bytes
, u64 ram_bytes
,
2479 u8 compression
, u8 encryption
,
2480 u16 other_encoding
, int extent_type
)
2482 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2483 struct btrfs_file_extent_item
*fi
;
2484 struct btrfs_path
*path
;
2485 struct extent_buffer
*leaf
;
2486 struct btrfs_key ins
;
2488 int extent_inserted
= 0;
2491 path
= btrfs_alloc_path();
2496 * we may be replacing one extent in the tree with another.
2497 * The new extent is pinned in the extent map, and we don't want
2498 * to drop it from the cache until it is completely in the btree.
2500 * So, tell btrfs_drop_extents to leave this extent in the cache.
2501 * the caller is expected to unpin it and allow it to be merged
2504 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2505 file_pos
+ num_bytes
, NULL
, 0,
2506 1, sizeof(*fi
), &extent_inserted
);
2510 if (!extent_inserted
) {
2511 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2512 ins
.offset
= file_pos
;
2513 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2515 path
->leave_spinning
= 1;
2516 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2521 leaf
= path
->nodes
[0];
2522 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2523 struct btrfs_file_extent_item
);
2524 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2525 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2526 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2527 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2528 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2529 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2530 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2531 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2532 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2533 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2535 btrfs_mark_buffer_dirty(leaf
);
2536 btrfs_release_path(path
);
2538 inode_add_bytes(inode
, num_bytes
);
2540 ins
.objectid
= disk_bytenr
;
2541 ins
.offset
= disk_num_bytes
;
2542 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2544 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), file_pos
,
2550 * Release the reserved range from inode dirty range map, as it is
2551 * already moved into delayed_ref_head
2553 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2557 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2558 btrfs_ino(BTRFS_I(inode
)),
2559 file_pos
, qg_released
, &ins
);
2561 btrfs_free_path(path
);
2566 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2569 struct btrfs_block_group
*cache
;
2571 cache
= btrfs_lookup_block_group(fs_info
, start
);
2574 spin_lock(&cache
->lock
);
2575 cache
->delalloc_bytes
-= len
;
2576 spin_unlock(&cache
->lock
);
2578 btrfs_put_block_group(cache
);
2581 /* as ordered data IO finishes, this gets called so we can finish
2582 * an ordered extent if the range of bytes in the file it covers are
2585 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2587 struct inode
*inode
= ordered_extent
->inode
;
2588 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2589 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2590 struct btrfs_trans_handle
*trans
= NULL
;
2591 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2592 struct extent_state
*cached_state
= NULL
;
2594 int compress_type
= 0;
2596 u64 logical_len
= ordered_extent
->num_bytes
;
2597 bool freespace_inode
;
2598 bool truncated
= false;
2599 bool range_locked
= false;
2600 bool clear_new_delalloc_bytes
= false;
2601 bool clear_reserved_extent
= true;
2602 unsigned int clear_bits
;
2604 start
= ordered_extent
->file_offset
;
2605 end
= start
+ ordered_extent
->num_bytes
- 1;
2607 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2608 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2609 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2610 clear_new_delalloc_bytes
= true;
2612 freespace_inode
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2614 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2619 btrfs_free_io_failure_record(BTRFS_I(inode
), start
, end
);
2621 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2623 logical_len
= ordered_extent
->truncated_len
;
2624 /* Truncated the entire extent, don't bother adding */
2629 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2630 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2633 * For mwrite(mmap + memset to write) case, we still reserve
2634 * space for NOCOW range.
2635 * As NOCOW won't cause a new delayed ref, just free the space
2637 btrfs_qgroup_free_data(inode
, NULL
, start
,
2638 ordered_extent
->num_bytes
);
2639 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2640 if (freespace_inode
)
2641 trans
= btrfs_join_transaction_spacecache(root
);
2643 trans
= btrfs_join_transaction(root
);
2644 if (IS_ERR(trans
)) {
2645 ret
= PTR_ERR(trans
);
2649 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2650 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2651 if (ret
) /* -ENOMEM or corruption */
2652 btrfs_abort_transaction(trans
, ret
);
2656 range_locked
= true;
2657 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
2659 if (freespace_inode
)
2660 trans
= btrfs_join_transaction_spacecache(root
);
2662 trans
= btrfs_join_transaction(root
);
2663 if (IS_ERR(trans
)) {
2664 ret
= PTR_ERR(trans
);
2669 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2671 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2672 compress_type
= ordered_extent
->compress_type
;
2673 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2674 BUG_ON(compress_type
);
2675 btrfs_qgroup_free_data(inode
, NULL
, start
,
2676 ordered_extent
->num_bytes
);
2677 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
2678 ordered_extent
->file_offset
,
2679 ordered_extent
->file_offset
+
2682 BUG_ON(root
== fs_info
->tree_root
);
2683 ret
= insert_reserved_file_extent(trans
, inode
, start
,
2684 ordered_extent
->disk_bytenr
,
2685 ordered_extent
->disk_num_bytes
,
2686 logical_len
, logical_len
,
2687 compress_type
, 0, 0,
2688 BTRFS_FILE_EXTENT_REG
);
2690 clear_reserved_extent
= false;
2691 btrfs_release_delalloc_bytes(fs_info
,
2692 ordered_extent
->disk_bytenr
,
2693 ordered_extent
->disk_num_bytes
);
2696 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2697 ordered_extent
->file_offset
,
2698 ordered_extent
->num_bytes
, trans
->transid
);
2700 btrfs_abort_transaction(trans
, ret
);
2704 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
2706 btrfs_abort_transaction(trans
, ret
);
2710 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2711 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2712 if (ret
) { /* -ENOMEM or corruption */
2713 btrfs_abort_transaction(trans
, ret
);
2718 clear_bits
= EXTENT_DEFRAG
;
2720 clear_bits
|= EXTENT_LOCKED
;
2721 if (clear_new_delalloc_bytes
)
2722 clear_bits
|= EXTENT_DELALLOC_NEW
;
2723 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
,
2724 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0, 0,
2728 btrfs_end_transaction(trans
);
2730 if (ret
|| truncated
) {
2731 u64 unwritten_start
= start
;
2734 unwritten_start
+= logical_len
;
2735 clear_extent_uptodate(io_tree
, unwritten_start
, end
, NULL
);
2737 /* Drop the cache for the part of the extent we didn't write. */
2738 btrfs_drop_extent_cache(BTRFS_I(inode
), unwritten_start
, end
, 0);
2741 * If the ordered extent had an IOERR or something else went
2742 * wrong we need to return the space for this ordered extent
2743 * back to the allocator. We only free the extent in the
2744 * truncated case if we didn't write out the extent at all.
2746 * If we made it past insert_reserved_file_extent before we
2747 * errored out then we don't need to do this as the accounting
2748 * has already been done.
2750 if ((ret
|| !logical_len
) &&
2751 clear_reserved_extent
&&
2752 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2753 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2755 * Discard the range before returning it back to the
2758 if (ret
&& btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2759 btrfs_discard_extent(fs_info
,
2760 ordered_extent
->disk_bytenr
,
2761 ordered_extent
->disk_num_bytes
,
2763 btrfs_free_reserved_extent(fs_info
,
2764 ordered_extent
->disk_bytenr
,
2765 ordered_extent
->disk_num_bytes
, 1);
2770 * This needs to be done to make sure anybody waiting knows we are done
2771 * updating everything for this ordered extent.
2773 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2776 btrfs_put_ordered_extent(ordered_extent
);
2777 /* once for the tree */
2778 btrfs_put_ordered_extent(ordered_extent
);
2783 static void finish_ordered_fn(struct btrfs_work
*work
)
2785 struct btrfs_ordered_extent
*ordered_extent
;
2786 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2787 btrfs_finish_ordered_io(ordered_extent
);
2790 void btrfs_writepage_endio_finish_ordered(struct page
*page
, u64 start
,
2791 u64 end
, int uptodate
)
2793 struct inode
*inode
= page
->mapping
->host
;
2794 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2795 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2796 struct btrfs_workqueue
*wq
;
2798 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2800 ClearPagePrivate2(page
);
2801 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2802 end
- start
+ 1, uptodate
))
2805 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2806 wq
= fs_info
->endio_freespace_worker
;
2808 wq
= fs_info
->endio_write_workers
;
2810 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
2811 btrfs_queue_work(wq
, &ordered_extent
->work
);
2814 static int check_data_csum(struct inode
*inode
, struct btrfs_io_bio
*io_bio
,
2815 int icsum
, struct page
*page
, int pgoff
, u64 start
,
2818 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2819 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
2821 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2823 u8 csum
[BTRFS_CSUM_SIZE
];
2825 csum_expected
= ((u8
*)io_bio
->csum
) + icsum
* csum_size
;
2827 kaddr
= kmap_atomic(page
);
2828 shash
->tfm
= fs_info
->csum_shash
;
2830 crypto_shash_digest(shash
, kaddr
+ pgoff
, len
, csum
);
2832 if (memcmp(csum
, csum_expected
, csum_size
))
2835 kunmap_atomic(kaddr
);
2838 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
2839 io_bio
->mirror_num
);
2840 memset(kaddr
+ pgoff
, 1, len
);
2841 flush_dcache_page(page
);
2842 kunmap_atomic(kaddr
);
2847 * when reads are done, we need to check csums to verify the data is correct
2848 * if there's a match, we allow the bio to finish. If not, the code in
2849 * extent_io.c will try to find good copies for us.
2851 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
2852 u64 phy_offset
, struct page
*page
,
2853 u64 start
, u64 end
, int mirror
)
2855 size_t offset
= start
- page_offset(page
);
2856 struct inode
*inode
= page
->mapping
->host
;
2857 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2858 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2860 if (PageChecked(page
)) {
2861 ClearPageChecked(page
);
2865 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2868 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2869 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2870 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
2874 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2875 return check_data_csum(inode
, io_bio
, phy_offset
, page
, offset
, start
,
2876 (size_t)(end
- start
+ 1));
2880 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2882 * @inode: The inode we want to perform iput on
2884 * This function uses the generic vfs_inode::i_count to track whether we should
2885 * just decrement it (in case it's > 1) or if this is the last iput then link
2886 * the inode to the delayed iput machinery. Delayed iputs are processed at
2887 * transaction commit time/superblock commit/cleaner kthread.
2889 void btrfs_add_delayed_iput(struct inode
*inode
)
2891 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2892 struct btrfs_inode
*binode
= BTRFS_I(inode
);
2894 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2897 atomic_inc(&fs_info
->nr_delayed_iputs
);
2898 spin_lock(&fs_info
->delayed_iput_lock
);
2899 ASSERT(list_empty(&binode
->delayed_iput
));
2900 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
2901 spin_unlock(&fs_info
->delayed_iput_lock
);
2902 if (!test_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
))
2903 wake_up_process(fs_info
->cleaner_kthread
);
2906 static void run_delayed_iput_locked(struct btrfs_fs_info
*fs_info
,
2907 struct btrfs_inode
*inode
)
2909 list_del_init(&inode
->delayed_iput
);
2910 spin_unlock(&fs_info
->delayed_iput_lock
);
2911 iput(&inode
->vfs_inode
);
2912 if (atomic_dec_and_test(&fs_info
->nr_delayed_iputs
))
2913 wake_up(&fs_info
->delayed_iputs_wait
);
2914 spin_lock(&fs_info
->delayed_iput_lock
);
2917 static void btrfs_run_delayed_iput(struct btrfs_fs_info
*fs_info
,
2918 struct btrfs_inode
*inode
)
2920 if (!list_empty(&inode
->delayed_iput
)) {
2921 spin_lock(&fs_info
->delayed_iput_lock
);
2922 if (!list_empty(&inode
->delayed_iput
))
2923 run_delayed_iput_locked(fs_info
, inode
);
2924 spin_unlock(&fs_info
->delayed_iput_lock
);
2928 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2931 spin_lock(&fs_info
->delayed_iput_lock
);
2932 while (!list_empty(&fs_info
->delayed_iputs
)) {
2933 struct btrfs_inode
*inode
;
2935 inode
= list_first_entry(&fs_info
->delayed_iputs
,
2936 struct btrfs_inode
, delayed_iput
);
2937 run_delayed_iput_locked(fs_info
, inode
);
2939 spin_unlock(&fs_info
->delayed_iput_lock
);
2943 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2944 * @fs_info - the fs_info for this fs
2945 * @return - EINTR if we were killed, 0 if nothing's pending
2947 * This will wait on any delayed iputs that are currently running with KILLABLE
2948 * set. Once they are all done running we will return, unless we are killed in
2949 * which case we return EINTR. This helps in user operations like fallocate etc
2950 * that might get blocked on the iputs.
2952 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info
*fs_info
)
2954 int ret
= wait_event_killable(fs_info
->delayed_iputs_wait
,
2955 atomic_read(&fs_info
->nr_delayed_iputs
) == 0);
2962 * This creates an orphan entry for the given inode in case something goes wrong
2963 * in the middle of an unlink.
2965 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
2966 struct btrfs_inode
*inode
)
2970 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2971 if (ret
&& ret
!= -EEXIST
) {
2972 btrfs_abort_transaction(trans
, ret
);
2980 * We have done the delete so we can go ahead and remove the orphan item for
2981 * this particular inode.
2983 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
2984 struct btrfs_inode
*inode
)
2986 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
2990 * this cleans up any orphans that may be left on the list from the last use
2993 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2995 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2996 struct btrfs_path
*path
;
2997 struct extent_buffer
*leaf
;
2998 struct btrfs_key key
, found_key
;
2999 struct btrfs_trans_handle
*trans
;
3000 struct inode
*inode
;
3001 u64 last_objectid
= 0;
3002 int ret
= 0, nr_unlink
= 0;
3004 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3007 path
= btrfs_alloc_path();
3012 path
->reada
= READA_BACK
;
3014 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3015 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3016 key
.offset
= (u64
)-1;
3019 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3024 * if ret == 0 means we found what we were searching for, which
3025 * is weird, but possible, so only screw with path if we didn't
3026 * find the key and see if we have stuff that matches
3030 if (path
->slots
[0] == 0)
3035 /* pull out the item */
3036 leaf
= path
->nodes
[0];
3037 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3039 /* make sure the item matches what we want */
3040 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3042 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3045 /* release the path since we're done with it */
3046 btrfs_release_path(path
);
3049 * this is where we are basically btrfs_lookup, without the
3050 * crossing root thing. we store the inode number in the
3051 * offset of the orphan item.
3054 if (found_key
.offset
== last_objectid
) {
3056 "Error removing orphan entry, stopping orphan cleanup");
3061 last_objectid
= found_key
.offset
;
3063 found_key
.objectid
= found_key
.offset
;
3064 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3065 found_key
.offset
= 0;
3066 inode
= btrfs_iget(fs_info
->sb
, last_objectid
, root
);
3067 ret
= PTR_ERR_OR_ZERO(inode
);
3068 if (ret
&& ret
!= -ENOENT
)
3071 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3072 struct btrfs_root
*dead_root
;
3073 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3074 int is_dead_root
= 0;
3077 * this is an orphan in the tree root. Currently these
3078 * could come from 2 sources:
3079 * a) a snapshot deletion in progress
3080 * b) a free space cache inode
3081 * We need to distinguish those two, as the snapshot
3082 * orphan must not get deleted.
3083 * find_dead_roots already ran before us, so if this
3084 * is a snapshot deletion, we should find the root
3085 * in the fs_roots radix tree.
3088 spin_lock(&fs_info
->fs_roots_radix_lock
);
3089 dead_root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
3090 (unsigned long)found_key
.objectid
);
3091 if (dead_root
&& btrfs_root_refs(&dead_root
->root_item
) == 0)
3093 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3096 /* prevent this orphan from being found again */
3097 key
.offset
= found_key
.objectid
- 1;
3104 * If we have an inode with links, there are a couple of
3105 * possibilities. Old kernels (before v3.12) used to create an
3106 * orphan item for truncate indicating that there were possibly
3107 * extent items past i_size that needed to be deleted. In v3.12,
3108 * truncate was changed to update i_size in sync with the extent
3109 * items, but the (useless) orphan item was still created. Since
3110 * v4.18, we don't create the orphan item for truncate at all.
3112 * So, this item could mean that we need to do a truncate, but
3113 * only if this filesystem was last used on a pre-v3.12 kernel
3114 * and was not cleanly unmounted. The odds of that are quite
3115 * slim, and it's a pain to do the truncate now, so just delete
3118 * It's also possible that this orphan item was supposed to be
3119 * deleted but wasn't. The inode number may have been reused,
3120 * but either way, we can delete the orphan item.
3122 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3125 trans
= btrfs_start_transaction(root
, 1);
3126 if (IS_ERR(trans
)) {
3127 ret
= PTR_ERR(trans
);
3130 btrfs_debug(fs_info
, "auto deleting %Lu",
3131 found_key
.objectid
);
3132 ret
= btrfs_del_orphan_item(trans
, root
,
3133 found_key
.objectid
);
3134 btrfs_end_transaction(trans
);
3142 /* this will do delete_inode and everything for us */
3145 /* release the path since we're done with it */
3146 btrfs_release_path(path
);
3148 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3150 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3151 trans
= btrfs_join_transaction(root
);
3153 btrfs_end_transaction(trans
);
3157 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3161 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3162 btrfs_free_path(path
);
3167 * very simple check to peek ahead in the leaf looking for xattrs. If we
3168 * don't find any xattrs, we know there can't be any acls.
3170 * slot is the slot the inode is in, objectid is the objectid of the inode
3172 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3173 int slot
, u64 objectid
,
3174 int *first_xattr_slot
)
3176 u32 nritems
= btrfs_header_nritems(leaf
);
3177 struct btrfs_key found_key
;
3178 static u64 xattr_access
= 0;
3179 static u64 xattr_default
= 0;
3182 if (!xattr_access
) {
3183 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3184 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3185 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3186 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3190 *first_xattr_slot
= -1;
3191 while (slot
< nritems
) {
3192 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3194 /* we found a different objectid, there must not be acls */
3195 if (found_key
.objectid
!= objectid
)
3198 /* we found an xattr, assume we've got an acl */
3199 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3200 if (*first_xattr_slot
== -1)
3201 *first_xattr_slot
= slot
;
3202 if (found_key
.offset
== xattr_access
||
3203 found_key
.offset
== xattr_default
)
3208 * we found a key greater than an xattr key, there can't
3209 * be any acls later on
3211 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3218 * it goes inode, inode backrefs, xattrs, extents,
3219 * so if there are a ton of hard links to an inode there can
3220 * be a lot of backrefs. Don't waste time searching too hard,
3221 * this is just an optimization
3226 /* we hit the end of the leaf before we found an xattr or
3227 * something larger than an xattr. We have to assume the inode
3230 if (*first_xattr_slot
== -1)
3231 *first_xattr_slot
= slot
;
3236 * read an inode from the btree into the in-memory inode
3238 static int btrfs_read_locked_inode(struct inode
*inode
,
3239 struct btrfs_path
*in_path
)
3241 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3242 struct btrfs_path
*path
= in_path
;
3243 struct extent_buffer
*leaf
;
3244 struct btrfs_inode_item
*inode_item
;
3245 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3246 struct btrfs_key location
;
3251 bool filled
= false;
3252 int first_xattr_slot
;
3254 ret
= btrfs_fill_inode(inode
, &rdev
);
3259 path
= btrfs_alloc_path();
3264 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3266 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3268 if (path
!= in_path
)
3269 btrfs_free_path(path
);
3273 leaf
= path
->nodes
[0];
3278 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3279 struct btrfs_inode_item
);
3280 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3281 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3282 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3283 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3284 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3285 btrfs_inode_set_file_extent_range(BTRFS_I(inode
), 0,
3286 round_up(i_size_read(inode
), fs_info
->sectorsize
));
3288 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3289 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3291 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3292 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3294 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3295 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3297 BTRFS_I(inode
)->i_otime
.tv_sec
=
3298 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3299 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3300 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3302 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3303 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3304 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3306 inode_set_iversion_queried(inode
,
3307 btrfs_inode_sequence(leaf
, inode_item
));
3308 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3310 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3312 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3313 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3317 * If we were modified in the current generation and evicted from memory
3318 * and then re-read we need to do a full sync since we don't have any
3319 * idea about which extents were modified before we were evicted from
3322 * This is required for both inode re-read from disk and delayed inode
3323 * in delayed_nodes_tree.
3325 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3327 &BTRFS_I(inode
)->runtime_flags
);
3330 * We don't persist the id of the transaction where an unlink operation
3331 * against the inode was last made. So here we assume the inode might
3332 * have been evicted, and therefore the exact value of last_unlink_trans
3333 * lost, and set it to last_trans to avoid metadata inconsistencies
3334 * between the inode and its parent if the inode is fsync'ed and the log
3335 * replayed. For example, in the scenario:
3338 * ln mydir/foo mydir/bar
3341 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3342 * xfs_io -c fsync mydir/foo
3344 * mount fs, triggers fsync log replay
3346 * We must make sure that when we fsync our inode foo we also log its
3347 * parent inode, otherwise after log replay the parent still has the
3348 * dentry with the "bar" name but our inode foo has a link count of 1
3349 * and doesn't have an inode ref with the name "bar" anymore.
3351 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3352 * but it guarantees correctness at the expense of occasional full
3353 * transaction commits on fsync if our inode is a directory, or if our
3354 * inode is not a directory, logging its parent unnecessarily.
3356 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3359 if (inode
->i_nlink
!= 1 ||
3360 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3363 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3364 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3367 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3368 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3369 struct btrfs_inode_ref
*ref
;
3371 ref
= (struct btrfs_inode_ref
*)ptr
;
3372 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3373 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3374 struct btrfs_inode_extref
*extref
;
3376 extref
= (struct btrfs_inode_extref
*)ptr
;
3377 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3382 * try to precache a NULL acl entry for files that don't have
3383 * any xattrs or acls
3385 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3386 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3387 if (first_xattr_slot
!= -1) {
3388 path
->slots
[0] = first_xattr_slot
;
3389 ret
= btrfs_load_inode_props(inode
, path
);
3392 "error loading props for ino %llu (root %llu): %d",
3393 btrfs_ino(BTRFS_I(inode
)),
3394 root
->root_key
.objectid
, ret
);
3396 if (path
!= in_path
)
3397 btrfs_free_path(path
);
3400 cache_no_acl(inode
);
3402 switch (inode
->i_mode
& S_IFMT
) {
3404 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3405 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3406 inode
->i_fop
= &btrfs_file_operations
;
3407 inode
->i_op
= &btrfs_file_inode_operations
;
3410 inode
->i_fop
= &btrfs_dir_file_operations
;
3411 inode
->i_op
= &btrfs_dir_inode_operations
;
3414 inode
->i_op
= &btrfs_symlink_inode_operations
;
3415 inode_nohighmem(inode
);
3416 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3419 inode
->i_op
= &btrfs_special_inode_operations
;
3420 init_special_inode(inode
, inode
->i_mode
, rdev
);
3424 btrfs_sync_inode_flags_to_i_flags(inode
);
3429 * given a leaf and an inode, copy the inode fields into the leaf
3431 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3432 struct extent_buffer
*leaf
,
3433 struct btrfs_inode_item
*item
,
3434 struct inode
*inode
)
3436 struct btrfs_map_token token
;
3438 btrfs_init_map_token(&token
, leaf
);
3440 btrfs_set_token_inode_uid(&token
, item
, i_uid_read(inode
));
3441 btrfs_set_token_inode_gid(&token
, item
, i_gid_read(inode
));
3442 btrfs_set_token_inode_size(&token
, item
, BTRFS_I(inode
)->disk_i_size
);
3443 btrfs_set_token_inode_mode(&token
, item
, inode
->i_mode
);
3444 btrfs_set_token_inode_nlink(&token
, item
, inode
->i_nlink
);
3446 btrfs_set_token_timespec_sec(&token
, &item
->atime
,
3447 inode
->i_atime
.tv_sec
);
3448 btrfs_set_token_timespec_nsec(&token
, &item
->atime
,
3449 inode
->i_atime
.tv_nsec
);
3451 btrfs_set_token_timespec_sec(&token
, &item
->mtime
,
3452 inode
->i_mtime
.tv_sec
);
3453 btrfs_set_token_timespec_nsec(&token
, &item
->mtime
,
3454 inode
->i_mtime
.tv_nsec
);
3456 btrfs_set_token_timespec_sec(&token
, &item
->ctime
,
3457 inode
->i_ctime
.tv_sec
);
3458 btrfs_set_token_timespec_nsec(&token
, &item
->ctime
,
3459 inode
->i_ctime
.tv_nsec
);
3461 btrfs_set_token_timespec_sec(&token
, &item
->otime
,
3462 BTRFS_I(inode
)->i_otime
.tv_sec
);
3463 btrfs_set_token_timespec_nsec(&token
, &item
->otime
,
3464 BTRFS_I(inode
)->i_otime
.tv_nsec
);
3466 btrfs_set_token_inode_nbytes(&token
, item
, inode_get_bytes(inode
));
3467 btrfs_set_token_inode_generation(&token
, item
,
3468 BTRFS_I(inode
)->generation
);
3469 btrfs_set_token_inode_sequence(&token
, item
, inode_peek_iversion(inode
));
3470 btrfs_set_token_inode_transid(&token
, item
, trans
->transid
);
3471 btrfs_set_token_inode_rdev(&token
, item
, inode
->i_rdev
);
3472 btrfs_set_token_inode_flags(&token
, item
, BTRFS_I(inode
)->flags
);
3473 btrfs_set_token_inode_block_group(&token
, item
, 0);
3477 * copy everything in the in-memory inode into the btree.
3479 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3480 struct btrfs_root
*root
, struct inode
*inode
)
3482 struct btrfs_inode_item
*inode_item
;
3483 struct btrfs_path
*path
;
3484 struct extent_buffer
*leaf
;
3487 path
= btrfs_alloc_path();
3491 path
->leave_spinning
= 1;
3492 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3500 leaf
= path
->nodes
[0];
3501 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3502 struct btrfs_inode_item
);
3504 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3505 btrfs_mark_buffer_dirty(leaf
);
3506 btrfs_set_inode_last_trans(trans
, inode
);
3509 btrfs_free_path(path
);
3514 * copy everything in the in-memory inode into the btree.
3516 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3517 struct btrfs_root
*root
, struct inode
*inode
)
3519 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3523 * If the inode is a free space inode, we can deadlock during commit
3524 * if we put it into the delayed code.
3526 * The data relocation inode should also be directly updated
3529 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3530 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3531 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3532 btrfs_update_root_times(trans
, root
);
3534 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3536 btrfs_set_inode_last_trans(trans
, inode
);
3540 return btrfs_update_inode_item(trans
, root
, inode
);
3543 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3544 struct btrfs_root
*root
,
3545 struct inode
*inode
)
3549 ret
= btrfs_update_inode(trans
, root
, inode
);
3551 return btrfs_update_inode_item(trans
, root
, inode
);
3556 * unlink helper that gets used here in inode.c and in the tree logging
3557 * recovery code. It remove a link in a directory with a given name, and
3558 * also drops the back refs in the inode to the directory
3560 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3561 struct btrfs_root
*root
,
3562 struct btrfs_inode
*dir
,
3563 struct btrfs_inode
*inode
,
3564 const char *name
, int name_len
)
3566 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3567 struct btrfs_path
*path
;
3569 struct btrfs_dir_item
*di
;
3571 u64 ino
= btrfs_ino(inode
);
3572 u64 dir_ino
= btrfs_ino(dir
);
3574 path
= btrfs_alloc_path();
3580 path
->leave_spinning
= 1;
3581 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3582 name
, name_len
, -1);
3583 if (IS_ERR_OR_NULL(di
)) {
3584 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3587 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3590 btrfs_release_path(path
);
3593 * If we don't have dir index, we have to get it by looking up
3594 * the inode ref, since we get the inode ref, remove it directly,
3595 * it is unnecessary to do delayed deletion.
3597 * But if we have dir index, needn't search inode ref to get it.
3598 * Since the inode ref is close to the inode item, it is better
3599 * that we delay to delete it, and just do this deletion when
3600 * we update the inode item.
3602 if (inode
->dir_index
) {
3603 ret
= btrfs_delayed_delete_inode_ref(inode
);
3605 index
= inode
->dir_index
;
3610 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3614 "failed to delete reference to %.*s, inode %llu parent %llu",
3615 name_len
, name
, ino
, dir_ino
);
3616 btrfs_abort_transaction(trans
, ret
);
3620 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3622 btrfs_abort_transaction(trans
, ret
);
3626 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3628 if (ret
!= 0 && ret
!= -ENOENT
) {
3629 btrfs_abort_transaction(trans
, ret
);
3633 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3638 btrfs_abort_transaction(trans
, ret
);
3641 * If we have a pending delayed iput we could end up with the final iput
3642 * being run in btrfs-cleaner context. If we have enough of these built
3643 * up we can end up burning a lot of time in btrfs-cleaner without any
3644 * way to throttle the unlinks. Since we're currently holding a ref on
3645 * the inode we can run the delayed iput here without any issues as the
3646 * final iput won't be done until after we drop the ref we're currently
3649 btrfs_run_delayed_iput(fs_info
, inode
);
3651 btrfs_free_path(path
);
3655 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3656 inode_inc_iversion(&inode
->vfs_inode
);
3657 inode_inc_iversion(&dir
->vfs_inode
);
3658 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3659 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3660 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
3665 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3666 struct btrfs_root
*root
,
3667 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3668 const char *name
, int name_len
)
3671 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3673 drop_nlink(&inode
->vfs_inode
);
3674 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
3680 * helper to start transaction for unlink and rmdir.
3682 * unlink and rmdir are special in btrfs, they do not always free space, so
3683 * if we cannot make our reservations the normal way try and see if there is
3684 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3685 * allow the unlink to occur.
3687 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3689 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3692 * 1 for the possible orphan item
3693 * 1 for the dir item
3694 * 1 for the dir index
3695 * 1 for the inode ref
3698 return btrfs_start_transaction_fallback_global_rsv(root
, 5);
3701 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3703 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3704 struct btrfs_trans_handle
*trans
;
3705 struct inode
*inode
= d_inode(dentry
);
3708 trans
= __unlink_start_trans(dir
);
3710 return PTR_ERR(trans
);
3712 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
3715 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
3716 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
3717 dentry
->d_name
.len
);
3721 if (inode
->i_nlink
== 0) {
3722 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3728 btrfs_end_transaction(trans
);
3729 btrfs_btree_balance_dirty(root
->fs_info
);
3733 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3734 struct inode
*dir
, struct dentry
*dentry
)
3736 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3737 struct btrfs_inode
*inode
= BTRFS_I(d_inode(dentry
));
3738 struct btrfs_path
*path
;
3739 struct extent_buffer
*leaf
;
3740 struct btrfs_dir_item
*di
;
3741 struct btrfs_key key
;
3742 const char *name
= dentry
->d_name
.name
;
3743 int name_len
= dentry
->d_name
.len
;
3747 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
3749 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
) {
3750 objectid
= inode
->root
->root_key
.objectid
;
3751 } else if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3752 objectid
= inode
->location
.objectid
;
3758 path
= btrfs_alloc_path();
3762 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3763 name
, name_len
, -1);
3764 if (IS_ERR_OR_NULL(di
)) {
3765 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3769 leaf
= path
->nodes
[0];
3770 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3771 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3772 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3774 btrfs_abort_transaction(trans
, ret
);
3777 btrfs_release_path(path
);
3780 * This is a placeholder inode for a subvolume we didn't have a
3781 * reference to at the time of the snapshot creation. In the meantime
3782 * we could have renamed the real subvol link into our snapshot, so
3783 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3784 * Instead simply lookup the dir_index_item for this entry so we can
3785 * remove it. Otherwise we know we have a ref to the root and we can
3786 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3788 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3789 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3791 if (IS_ERR_OR_NULL(di
)) {
3796 btrfs_abort_transaction(trans
, ret
);
3800 leaf
= path
->nodes
[0];
3801 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3803 btrfs_release_path(path
);
3805 ret
= btrfs_del_root_ref(trans
, objectid
,
3806 root
->root_key
.objectid
, dir_ino
,
3807 &index
, name
, name_len
);
3809 btrfs_abort_transaction(trans
, ret
);
3814 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
3816 btrfs_abort_transaction(trans
, ret
);
3820 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
3821 inode_inc_iversion(dir
);
3822 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
3823 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3825 btrfs_abort_transaction(trans
, ret
);
3827 btrfs_free_path(path
);
3832 * Helper to check if the subvolume references other subvolumes or if it's
3835 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
3837 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3838 struct btrfs_path
*path
;
3839 struct btrfs_dir_item
*di
;
3840 struct btrfs_key key
;
3844 path
= btrfs_alloc_path();
3848 /* Make sure this root isn't set as the default subvol */
3849 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
3850 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
3851 dir_id
, "default", 7, 0);
3852 if (di
&& !IS_ERR(di
)) {
3853 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
3854 if (key
.objectid
== root
->root_key
.objectid
) {
3857 "deleting default subvolume %llu is not allowed",
3861 btrfs_release_path(path
);
3864 key
.objectid
= root
->root_key
.objectid
;
3865 key
.type
= BTRFS_ROOT_REF_KEY
;
3866 key
.offset
= (u64
)-1;
3868 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3874 if (path
->slots
[0] > 0) {
3876 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3877 if (key
.objectid
== root
->root_key
.objectid
&&
3878 key
.type
== BTRFS_ROOT_REF_KEY
)
3882 btrfs_free_path(path
);
3886 /* Delete all dentries for inodes belonging to the root */
3887 static void btrfs_prune_dentries(struct btrfs_root
*root
)
3889 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3890 struct rb_node
*node
;
3891 struct rb_node
*prev
;
3892 struct btrfs_inode
*entry
;
3893 struct inode
*inode
;
3896 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3897 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3899 spin_lock(&root
->inode_lock
);
3901 node
= root
->inode_tree
.rb_node
;
3905 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3907 if (objectid
< btrfs_ino(entry
))
3908 node
= node
->rb_left
;
3909 else if (objectid
> btrfs_ino(entry
))
3910 node
= node
->rb_right
;
3916 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3917 if (objectid
<= btrfs_ino(entry
)) {
3921 prev
= rb_next(prev
);
3925 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3926 objectid
= btrfs_ino(entry
) + 1;
3927 inode
= igrab(&entry
->vfs_inode
);
3929 spin_unlock(&root
->inode_lock
);
3930 if (atomic_read(&inode
->i_count
) > 1)
3931 d_prune_aliases(inode
);
3933 * btrfs_drop_inode will have it removed from the inode
3934 * cache when its usage count hits zero.
3938 spin_lock(&root
->inode_lock
);
3942 if (cond_resched_lock(&root
->inode_lock
))
3945 node
= rb_next(node
);
3947 spin_unlock(&root
->inode_lock
);
3950 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
3952 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
3953 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3954 struct inode
*inode
= d_inode(dentry
);
3955 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
3956 struct btrfs_trans_handle
*trans
;
3957 struct btrfs_block_rsv block_rsv
;
3963 * Don't allow to delete a subvolume with send in progress. This is
3964 * inside the inode lock so the error handling that has to drop the bit
3965 * again is not run concurrently.
3967 spin_lock(&dest
->root_item_lock
);
3968 if (dest
->send_in_progress
) {
3969 spin_unlock(&dest
->root_item_lock
);
3971 "attempt to delete subvolume %llu during send",
3972 dest
->root_key
.objectid
);
3975 root_flags
= btrfs_root_flags(&dest
->root_item
);
3976 btrfs_set_root_flags(&dest
->root_item
,
3977 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
3978 spin_unlock(&dest
->root_item_lock
);
3980 down_write(&fs_info
->subvol_sem
);
3982 err
= may_destroy_subvol(dest
);
3986 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
3988 * One for dir inode,
3989 * two for dir entries,
3990 * two for root ref/backref.
3992 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
3996 trans
= btrfs_start_transaction(root
, 0);
3997 if (IS_ERR(trans
)) {
3998 err
= PTR_ERR(trans
);
4001 trans
->block_rsv
= &block_rsv
;
4002 trans
->bytes_reserved
= block_rsv
.size
;
4004 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4006 ret
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4009 btrfs_abort_transaction(trans
, ret
);
4013 btrfs_record_root_in_trans(trans
, dest
);
4015 memset(&dest
->root_item
.drop_progress
, 0,
4016 sizeof(dest
->root_item
.drop_progress
));
4017 dest
->root_item
.drop_level
= 0;
4018 btrfs_set_root_refs(&dest
->root_item
, 0);
4020 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4021 ret
= btrfs_insert_orphan_item(trans
,
4023 dest
->root_key
.objectid
);
4025 btrfs_abort_transaction(trans
, ret
);
4031 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4032 BTRFS_UUID_KEY_SUBVOL
,
4033 dest
->root_key
.objectid
);
4034 if (ret
&& ret
!= -ENOENT
) {
4035 btrfs_abort_transaction(trans
, ret
);
4039 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4040 ret
= btrfs_uuid_tree_remove(trans
,
4041 dest
->root_item
.received_uuid
,
4042 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4043 dest
->root_key
.objectid
);
4044 if (ret
&& ret
!= -ENOENT
) {
4045 btrfs_abort_transaction(trans
, ret
);
4052 trans
->block_rsv
= NULL
;
4053 trans
->bytes_reserved
= 0;
4054 ret
= btrfs_end_transaction(trans
);
4057 inode
->i_flags
|= S_DEAD
;
4059 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
4061 up_write(&fs_info
->subvol_sem
);
4063 spin_lock(&dest
->root_item_lock
);
4064 root_flags
= btrfs_root_flags(&dest
->root_item
);
4065 btrfs_set_root_flags(&dest
->root_item
,
4066 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4067 spin_unlock(&dest
->root_item_lock
);
4069 d_invalidate(dentry
);
4070 btrfs_prune_dentries(dest
);
4071 ASSERT(dest
->send_in_progress
== 0);
4074 if (dest
->ino_cache_inode
) {
4075 iput(dest
->ino_cache_inode
);
4076 dest
->ino_cache_inode
= NULL
;
4083 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4085 struct inode
*inode
= d_inode(dentry
);
4087 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4088 struct btrfs_trans_handle
*trans
;
4089 u64 last_unlink_trans
;
4091 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4093 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4094 return btrfs_delete_subvolume(dir
, dentry
);
4096 trans
= __unlink_start_trans(dir
);
4098 return PTR_ERR(trans
);
4100 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4101 err
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4105 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4109 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4111 /* now the directory is empty */
4112 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4113 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4114 dentry
->d_name
.len
);
4116 btrfs_i_size_write(BTRFS_I(inode
), 0);
4118 * Propagate the last_unlink_trans value of the deleted dir to
4119 * its parent directory. This is to prevent an unrecoverable
4120 * log tree in the case we do something like this:
4122 * 2) create snapshot under dir foo
4123 * 3) delete the snapshot
4126 * 6) fsync foo or some file inside foo
4128 if (last_unlink_trans
>= trans
->transid
)
4129 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4132 btrfs_end_transaction(trans
);
4133 btrfs_btree_balance_dirty(root
->fs_info
);
4139 * Return this if we need to call truncate_block for the last bit of the
4142 #define NEED_TRUNCATE_BLOCK 1
4145 * this can truncate away extent items, csum items and directory items.
4146 * It starts at a high offset and removes keys until it can't find
4147 * any higher than new_size
4149 * csum items that cross the new i_size are truncated to the new size
4152 * min_type is the minimum key type to truncate down to. If set to 0, this
4153 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4155 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4156 struct btrfs_root
*root
,
4157 struct inode
*inode
,
4158 u64 new_size
, u32 min_type
)
4160 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4161 struct btrfs_path
*path
;
4162 struct extent_buffer
*leaf
;
4163 struct btrfs_file_extent_item
*fi
;
4164 struct btrfs_key key
;
4165 struct btrfs_key found_key
;
4166 u64 extent_start
= 0;
4167 u64 extent_num_bytes
= 0;
4168 u64 extent_offset
= 0;
4170 u64 last_size
= new_size
;
4171 u32 found_type
= (u8
)-1;
4174 int pending_del_nr
= 0;
4175 int pending_del_slot
= 0;
4176 int extent_type
= -1;
4178 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4179 u64 bytes_deleted
= 0;
4180 bool be_nice
= false;
4181 bool should_throttle
= false;
4182 const u64 lock_start
= ALIGN_DOWN(new_size
, fs_info
->sectorsize
);
4183 struct extent_state
*cached_state
= NULL
;
4185 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4188 * For non-free space inodes and non-shareable roots, we want to back
4189 * off from time to time. This means all inodes in subvolume roots,
4190 * reloc roots, and data reloc roots.
4192 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4193 test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
4196 path
= btrfs_alloc_path();
4199 path
->reada
= READA_BACK
;
4201 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4202 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, (u64
)-1,
4206 * We want to drop from the next block forward in case this
4207 * new size is not block aligned since we will be keeping the
4208 * last block of the extent just the way it is.
4210 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4211 fs_info
->sectorsize
),
4216 * This function is also used to drop the items in the log tree before
4217 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4218 * it is used to drop the logged items. So we shouldn't kill the delayed
4221 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4222 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4225 key
.offset
= (u64
)-1;
4230 * with a 16K leaf size and 128MB extents, you can actually queue
4231 * up a huge file in a single leaf. Most of the time that
4232 * bytes_deleted is > 0, it will be huge by the time we get here
4234 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4235 btrfs_should_end_transaction(trans
)) {
4240 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4246 /* there are no items in the tree for us to truncate, we're
4249 if (path
->slots
[0] == 0)
4255 u64 clear_start
= 0, clear_len
= 0;
4258 leaf
= path
->nodes
[0];
4259 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4260 found_type
= found_key
.type
;
4262 if (found_key
.objectid
!= ino
)
4265 if (found_type
< min_type
)
4268 item_end
= found_key
.offset
;
4269 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4270 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4271 struct btrfs_file_extent_item
);
4272 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4273 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4275 btrfs_file_extent_num_bytes(leaf
, fi
);
4277 trace_btrfs_truncate_show_fi_regular(
4278 BTRFS_I(inode
), leaf
, fi
,
4280 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4281 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4284 trace_btrfs_truncate_show_fi_inline(
4285 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4290 if (found_type
> min_type
) {
4293 if (item_end
< new_size
)
4295 if (found_key
.offset
>= new_size
)
4301 /* FIXME, shrink the extent if the ref count is only 1 */
4302 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4305 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4308 clear_start
= found_key
.offset
;
4309 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4311 u64 orig_num_bytes
=
4312 btrfs_file_extent_num_bytes(leaf
, fi
);
4313 extent_num_bytes
= ALIGN(new_size
-
4315 fs_info
->sectorsize
);
4316 clear_start
= ALIGN(new_size
, fs_info
->sectorsize
);
4317 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4319 num_dec
= (orig_num_bytes
-
4321 if (test_bit(BTRFS_ROOT_SHAREABLE
,
4324 inode_sub_bytes(inode
, num_dec
);
4325 btrfs_mark_buffer_dirty(leaf
);
4328 btrfs_file_extent_disk_num_bytes(leaf
,
4330 extent_offset
= found_key
.offset
-
4331 btrfs_file_extent_offset(leaf
, fi
);
4333 /* FIXME blocksize != 4096 */
4334 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4335 if (extent_start
!= 0) {
4337 if (test_bit(BTRFS_ROOT_SHAREABLE
,
4339 inode_sub_bytes(inode
, num_dec
);
4342 clear_len
= num_dec
;
4343 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4345 * we can't truncate inline items that have had
4349 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4350 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4351 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4352 u32 size
= (u32
)(new_size
- found_key
.offset
);
4354 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4355 size
= btrfs_file_extent_calc_inline_size(size
);
4356 btrfs_truncate_item(path
, size
, 1);
4357 } else if (!del_item
) {
4359 * We have to bail so the last_size is set to
4360 * just before this extent.
4362 ret
= NEED_TRUNCATE_BLOCK
;
4366 * Inline extents are special, we just treat
4367 * them as a full sector worth in the file
4368 * extent tree just for simplicity sake.
4370 clear_len
= fs_info
->sectorsize
;
4373 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
4374 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4378 * We use btrfs_truncate_inode_items() to clean up log trees for
4379 * multiple fsyncs, and in this case we don't want to clear the
4380 * file extent range because it's just the log.
4382 if (root
== BTRFS_I(inode
)->root
) {
4383 ret
= btrfs_inode_clear_file_extent_range(BTRFS_I(inode
),
4384 clear_start
, clear_len
);
4386 btrfs_abort_transaction(trans
, ret
);
4392 last_size
= found_key
.offset
;
4394 last_size
= new_size
;
4396 if (!pending_del_nr
) {
4397 /* no pending yet, add ourselves */
4398 pending_del_slot
= path
->slots
[0];
4400 } else if (pending_del_nr
&&
4401 path
->slots
[0] + 1 == pending_del_slot
) {
4402 /* hop on the pending chunk */
4404 pending_del_slot
= path
->slots
[0];
4411 should_throttle
= false;
4414 root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4415 struct btrfs_ref ref
= { 0 };
4417 bytes_deleted
+= extent_num_bytes
;
4419 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
,
4420 extent_start
, extent_num_bytes
, 0);
4421 ref
.real_root
= root
->root_key
.objectid
;
4422 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
4423 ino
, extent_offset
);
4424 ret
= btrfs_free_extent(trans
, &ref
);
4426 btrfs_abort_transaction(trans
, ret
);
4430 if (btrfs_should_throttle_delayed_refs(trans
))
4431 should_throttle
= true;
4435 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4438 if (path
->slots
[0] == 0 ||
4439 path
->slots
[0] != pending_del_slot
||
4441 if (pending_del_nr
) {
4442 ret
= btrfs_del_items(trans
, root
, path
,
4446 btrfs_abort_transaction(trans
, ret
);
4451 btrfs_release_path(path
);
4454 * We can generate a lot of delayed refs, so we need to
4455 * throttle every once and a while and make sure we're
4456 * adding enough space to keep up with the work we are
4457 * generating. Since we hold a transaction here we
4458 * can't flush, and we don't want to FLUSH_LIMIT because
4459 * we could have generated too many delayed refs to
4460 * actually allocate, so just bail if we're short and
4461 * let the normal reservation dance happen higher up.
4463 if (should_throttle
) {
4464 ret
= btrfs_delayed_refs_rsv_refill(fs_info
,
4465 BTRFS_RESERVE_NO_FLUSH
);
4477 if (ret
>= 0 && pending_del_nr
) {
4480 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4483 btrfs_abort_transaction(trans
, err
);
4487 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4488 ASSERT(last_size
>= new_size
);
4489 if (!ret
&& last_size
> new_size
)
4490 last_size
= new_size
;
4491 btrfs_inode_safe_disk_i_size_write(inode
, last_size
);
4492 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
,
4493 (u64
)-1, &cached_state
);
4496 btrfs_free_path(path
);
4501 * btrfs_truncate_block - read, zero a chunk and write a block
4502 * @inode - inode that we're zeroing
4503 * @from - the offset to start zeroing
4504 * @len - the length to zero, 0 to zero the entire range respective to the
4506 * @front - zero up to the offset instead of from the offset on
4508 * This will find the block for the "from" offset and cow the block and zero the
4509 * part we want to zero. This is used with truncate and hole punching.
4511 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4514 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4515 struct address_space
*mapping
= inode
->i_mapping
;
4516 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4517 struct btrfs_ordered_extent
*ordered
;
4518 struct extent_state
*cached_state
= NULL
;
4519 struct extent_changeset
*data_reserved
= NULL
;
4521 u32 blocksize
= fs_info
->sectorsize
;
4522 pgoff_t index
= from
>> PAGE_SHIFT
;
4523 unsigned offset
= from
& (blocksize
- 1);
4525 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4530 if (IS_ALIGNED(offset
, blocksize
) &&
4531 (!len
|| IS_ALIGNED(len
, blocksize
)))
4534 block_start
= round_down(from
, blocksize
);
4535 block_end
= block_start
+ blocksize
- 1;
4537 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4538 block_start
, blocksize
);
4543 page
= find_or_create_page(mapping
, index
, mask
);
4545 btrfs_delalloc_release_space(inode
, data_reserved
,
4546 block_start
, blocksize
, true);
4547 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4552 if (!PageUptodate(page
)) {
4553 ret
= btrfs_readpage(NULL
, page
);
4555 if (page
->mapping
!= mapping
) {
4560 if (!PageUptodate(page
)) {
4565 wait_on_page_writeback(page
);
4567 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4568 set_page_extent_mapped(page
);
4570 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4572 unlock_extent_cached(io_tree
, block_start
, block_end
,
4576 btrfs_start_ordered_extent(inode
, ordered
, 1);
4577 btrfs_put_ordered_extent(ordered
);
4581 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4582 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4583 0, 0, &cached_state
);
4585 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4588 unlock_extent_cached(io_tree
, block_start
, block_end
,
4593 if (offset
!= blocksize
) {
4595 len
= blocksize
- offset
;
4598 memset(kaddr
+ (block_start
- page_offset(page
)),
4601 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4603 flush_dcache_page(page
);
4606 ClearPageChecked(page
);
4607 set_page_dirty(page
);
4608 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4612 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4614 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4618 extent_changeset_free(data_reserved
);
4622 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4623 u64 offset
, u64 len
)
4625 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4626 struct btrfs_trans_handle
*trans
;
4630 * Still need to make sure the inode looks like it's been updated so
4631 * that any holes get logged if we fsync.
4633 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4634 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4635 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4636 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4641 * 1 - for the one we're dropping
4642 * 1 - for the one we're adding
4643 * 1 - for updating the inode.
4645 trans
= btrfs_start_transaction(root
, 3);
4647 return PTR_ERR(trans
);
4649 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4651 btrfs_abort_transaction(trans
, ret
);
4652 btrfs_end_transaction(trans
);
4656 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4657 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4659 btrfs_abort_transaction(trans
, ret
);
4661 btrfs_update_inode(trans
, root
, inode
);
4662 btrfs_end_transaction(trans
);
4667 * This function puts in dummy file extents for the area we're creating a hole
4668 * for. So if we are truncating this file to a larger size we need to insert
4669 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4670 * the range between oldsize and size
4672 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4674 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4675 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4676 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4677 struct extent_map
*em
= NULL
;
4678 struct extent_state
*cached_state
= NULL
;
4679 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4680 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4681 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4688 * If our size started in the middle of a block we need to zero out the
4689 * rest of the block before we expand the i_size, otherwise we could
4690 * expose stale data.
4692 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4696 if (size
<= hole_start
)
4699 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode
), hole_start
,
4700 block_end
- 1, &cached_state
);
4701 cur_offset
= hole_start
;
4703 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4704 block_end
- cur_offset
);
4710 last_byte
= min(extent_map_end(em
), block_end
);
4711 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4712 hole_size
= last_byte
- cur_offset
;
4714 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4715 struct extent_map
*hole_em
;
4717 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4722 err
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
),
4723 cur_offset
, hole_size
);
4727 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4728 cur_offset
+ hole_size
- 1, 0);
4729 hole_em
= alloc_extent_map();
4731 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4732 &BTRFS_I(inode
)->runtime_flags
);
4735 hole_em
->start
= cur_offset
;
4736 hole_em
->len
= hole_size
;
4737 hole_em
->orig_start
= cur_offset
;
4739 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4740 hole_em
->block_len
= 0;
4741 hole_em
->orig_block_len
= 0;
4742 hole_em
->ram_bytes
= hole_size
;
4743 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4744 hole_em
->generation
= fs_info
->generation
;
4747 write_lock(&em_tree
->lock
);
4748 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4749 write_unlock(&em_tree
->lock
);
4752 btrfs_drop_extent_cache(BTRFS_I(inode
),
4757 free_extent_map(hole_em
);
4759 err
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
),
4760 cur_offset
, hole_size
);
4765 free_extent_map(em
);
4767 cur_offset
= last_byte
;
4768 if (cur_offset
>= block_end
)
4771 free_extent_map(em
);
4772 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
4776 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4778 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4779 struct btrfs_trans_handle
*trans
;
4780 loff_t oldsize
= i_size_read(inode
);
4781 loff_t newsize
= attr
->ia_size
;
4782 int mask
= attr
->ia_valid
;
4786 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4787 * special case where we need to update the times despite not having
4788 * these flags set. For all other operations the VFS set these flags
4789 * explicitly if it wants a timestamp update.
4791 if (newsize
!= oldsize
) {
4792 inode_inc_iversion(inode
);
4793 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4794 inode
->i_ctime
= inode
->i_mtime
=
4795 current_time(inode
);
4798 if (newsize
> oldsize
) {
4800 * Don't do an expanding truncate while snapshotting is ongoing.
4801 * This is to ensure the snapshot captures a fully consistent
4802 * state of this file - if the snapshot captures this expanding
4803 * truncation, it must capture all writes that happened before
4806 btrfs_drew_write_lock(&root
->snapshot_lock
);
4807 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4809 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4813 trans
= btrfs_start_transaction(root
, 1);
4814 if (IS_ERR(trans
)) {
4815 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4816 return PTR_ERR(trans
);
4819 i_size_write(inode
, newsize
);
4820 btrfs_inode_safe_disk_i_size_write(inode
, 0);
4821 pagecache_isize_extended(inode
, oldsize
, newsize
);
4822 ret
= btrfs_update_inode(trans
, root
, inode
);
4823 btrfs_drew_write_unlock(&root
->snapshot_lock
);
4824 btrfs_end_transaction(trans
);
4828 * We're truncating a file that used to have good data down to
4829 * zero. Make sure it gets into the ordered flush list so that
4830 * any new writes get down to disk quickly.
4833 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4834 &BTRFS_I(inode
)->runtime_flags
);
4836 truncate_setsize(inode
, newsize
);
4838 /* Disable nonlocked read DIO to avoid the endless truncate */
4839 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
4840 inode_dio_wait(inode
);
4841 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
4843 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
4844 if (ret
&& inode
->i_nlink
) {
4848 * Truncate failed, so fix up the in-memory size. We
4849 * adjusted disk_i_size down as we removed extents, so
4850 * wait for disk_i_size to be stable and then update the
4851 * in-memory size to match.
4853 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
4856 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
4863 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4865 struct inode
*inode
= d_inode(dentry
);
4866 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4869 if (btrfs_root_readonly(root
))
4872 err
= setattr_prepare(dentry
, attr
);
4876 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
4877 err
= btrfs_setsize(inode
, attr
);
4882 if (attr
->ia_valid
) {
4883 setattr_copy(inode
, attr
);
4884 inode_inc_iversion(inode
);
4885 err
= btrfs_dirty_inode(inode
);
4887 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
4888 err
= posix_acl_chmod(inode
, inode
->i_mode
);
4895 * While truncating the inode pages during eviction, we get the VFS calling
4896 * btrfs_invalidatepage() against each page of the inode. This is slow because
4897 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4898 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4899 * extent_state structures over and over, wasting lots of time.
4901 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4902 * those expensive operations on a per page basis and do only the ordered io
4903 * finishing, while we release here the extent_map and extent_state structures,
4904 * without the excessive merging and splitting.
4906 static void evict_inode_truncate_pages(struct inode
*inode
)
4908 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4909 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
4910 struct rb_node
*node
;
4912 ASSERT(inode
->i_state
& I_FREEING
);
4913 truncate_inode_pages_final(&inode
->i_data
);
4915 write_lock(&map_tree
->lock
);
4916 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
4917 struct extent_map
*em
;
4919 node
= rb_first_cached(&map_tree
->map
);
4920 em
= rb_entry(node
, struct extent_map
, rb_node
);
4921 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
4922 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4923 remove_extent_mapping(map_tree
, em
);
4924 free_extent_map(em
);
4925 if (need_resched()) {
4926 write_unlock(&map_tree
->lock
);
4928 write_lock(&map_tree
->lock
);
4931 write_unlock(&map_tree
->lock
);
4934 * Keep looping until we have no more ranges in the io tree.
4935 * We can have ongoing bios started by readahead that have
4936 * their endio callback (extent_io.c:end_bio_extent_readpage)
4937 * still in progress (unlocked the pages in the bio but did not yet
4938 * unlocked the ranges in the io tree). Therefore this means some
4939 * ranges can still be locked and eviction started because before
4940 * submitting those bios, which are executed by a separate task (work
4941 * queue kthread), inode references (inode->i_count) were not taken
4942 * (which would be dropped in the end io callback of each bio).
4943 * Therefore here we effectively end up waiting for those bios and
4944 * anyone else holding locked ranges without having bumped the inode's
4945 * reference count - if we don't do it, when they access the inode's
4946 * io_tree to unlock a range it may be too late, leading to an
4947 * use-after-free issue.
4949 spin_lock(&io_tree
->lock
);
4950 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
4951 struct extent_state
*state
;
4952 struct extent_state
*cached_state
= NULL
;
4955 unsigned state_flags
;
4957 node
= rb_first(&io_tree
->state
);
4958 state
= rb_entry(node
, struct extent_state
, rb_node
);
4959 start
= state
->start
;
4961 state_flags
= state
->state
;
4962 spin_unlock(&io_tree
->lock
);
4964 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
4967 * If still has DELALLOC flag, the extent didn't reach disk,
4968 * and its reserved space won't be freed by delayed_ref.
4969 * So we need to free its reserved space here.
4970 * (Refer to comment in btrfs_invalidatepage, case 2)
4972 * Note, end is the bytenr of last byte, so we need + 1 here.
4974 if (state_flags
& EXTENT_DELALLOC
)
4975 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
4977 clear_extent_bit(io_tree
, start
, end
,
4978 EXTENT_LOCKED
| EXTENT_DELALLOC
|
4979 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
4983 spin_lock(&io_tree
->lock
);
4985 spin_unlock(&io_tree
->lock
);
4988 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
4989 struct btrfs_block_rsv
*rsv
)
4991 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4992 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4993 struct btrfs_trans_handle
*trans
;
4994 u64 delayed_refs_extra
= btrfs_calc_insert_metadata_size(fs_info
, 1);
4998 * Eviction should be taking place at some place safe because of our
4999 * delayed iputs. However the normal flushing code will run delayed
5000 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5002 * We reserve the delayed_refs_extra here again because we can't use
5003 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5004 * above. We reserve our extra bit here because we generate a ton of
5005 * delayed refs activity by truncating.
5007 * If we cannot make our reservation we'll attempt to steal from the
5008 * global reserve, because we really want to be able to free up space.
5010 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
+ delayed_refs_extra
,
5011 BTRFS_RESERVE_FLUSH_EVICT
);
5014 * Try to steal from the global reserve if there is space for
5017 if (btrfs_check_space_for_delayed_refs(fs_info
) ||
5018 btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, 0)) {
5020 "could not allocate space for delete; will truncate on mount");
5021 return ERR_PTR(-ENOSPC
);
5023 delayed_refs_extra
= 0;
5026 trans
= btrfs_join_transaction(root
);
5030 if (delayed_refs_extra
) {
5031 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5032 trans
->bytes_reserved
= delayed_refs_extra
;
5033 btrfs_block_rsv_migrate(rsv
, trans
->block_rsv
,
5034 delayed_refs_extra
, 1);
5039 void btrfs_evict_inode(struct inode
*inode
)
5041 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5042 struct btrfs_trans_handle
*trans
;
5043 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5044 struct btrfs_block_rsv
*rsv
;
5047 trace_btrfs_inode_evict(inode
);
5054 evict_inode_truncate_pages(inode
);
5056 if (inode
->i_nlink
&&
5057 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5058 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5059 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5062 if (is_bad_inode(inode
))
5065 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5067 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5070 if (inode
->i_nlink
> 0) {
5071 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5072 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5076 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5080 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5083 rsv
->size
= btrfs_calc_metadata_size(fs_info
, 1);
5086 btrfs_i_size_write(BTRFS_I(inode
), 0);
5089 trans
= evict_refill_and_join(root
, rsv
);
5093 trans
->block_rsv
= rsv
;
5095 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5096 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5097 btrfs_end_transaction(trans
);
5098 btrfs_btree_balance_dirty(fs_info
);
5099 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5106 * Errors here aren't a big deal, it just means we leave orphan items in
5107 * the tree. They will be cleaned up on the next mount. If the inode
5108 * number gets reused, cleanup deletes the orphan item without doing
5109 * anything, and unlink reuses the existing orphan item.
5111 * If it turns out that we are dropping too many of these, we might want
5112 * to add a mechanism for retrying these after a commit.
5114 trans
= evict_refill_and_join(root
, rsv
);
5115 if (!IS_ERR(trans
)) {
5116 trans
->block_rsv
= rsv
;
5117 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5118 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5119 btrfs_end_transaction(trans
);
5122 if (!(root
== fs_info
->tree_root
||
5123 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5124 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5127 btrfs_free_block_rsv(fs_info
, rsv
);
5130 * If we didn't successfully delete, the orphan item will still be in
5131 * the tree and we'll retry on the next mount. Again, we might also want
5132 * to retry these periodically in the future.
5134 btrfs_remove_delayed_node(BTRFS_I(inode
));
5139 * Return the key found in the dir entry in the location pointer, fill @type
5140 * with BTRFS_FT_*, and return 0.
5142 * If no dir entries were found, returns -ENOENT.
5143 * If found a corrupted location in dir entry, returns -EUCLEAN.
5145 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5146 struct btrfs_key
*location
, u8
*type
)
5148 const char *name
= dentry
->d_name
.name
;
5149 int namelen
= dentry
->d_name
.len
;
5150 struct btrfs_dir_item
*di
;
5151 struct btrfs_path
*path
;
5152 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5155 path
= btrfs_alloc_path();
5159 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5161 if (IS_ERR_OR_NULL(di
)) {
5162 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5166 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5167 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5168 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5170 btrfs_warn(root
->fs_info
,
5171 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5172 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5173 location
->objectid
, location
->type
, location
->offset
);
5176 *type
= btrfs_dir_type(path
->nodes
[0], di
);
5178 btrfs_free_path(path
);
5183 * when we hit a tree root in a directory, the btrfs part of the inode
5184 * needs to be changed to reflect the root directory of the tree root. This
5185 * is kind of like crossing a mount point.
5187 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5189 struct dentry
*dentry
,
5190 struct btrfs_key
*location
,
5191 struct btrfs_root
**sub_root
)
5193 struct btrfs_path
*path
;
5194 struct btrfs_root
*new_root
;
5195 struct btrfs_root_ref
*ref
;
5196 struct extent_buffer
*leaf
;
5197 struct btrfs_key key
;
5201 path
= btrfs_alloc_path();
5208 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5209 key
.type
= BTRFS_ROOT_REF_KEY
;
5210 key
.offset
= location
->objectid
;
5212 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5219 leaf
= path
->nodes
[0];
5220 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5221 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5222 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5225 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5226 (unsigned long)(ref
+ 1),
5227 dentry
->d_name
.len
);
5231 btrfs_release_path(path
);
5233 new_root
= btrfs_get_fs_root(fs_info
, location
->objectid
, true);
5234 if (IS_ERR(new_root
)) {
5235 err
= PTR_ERR(new_root
);
5239 *sub_root
= new_root
;
5240 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5241 location
->type
= BTRFS_INODE_ITEM_KEY
;
5242 location
->offset
= 0;
5245 btrfs_free_path(path
);
5249 static void inode_tree_add(struct inode
*inode
)
5251 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5252 struct btrfs_inode
*entry
;
5254 struct rb_node
*parent
;
5255 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5256 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5258 if (inode_unhashed(inode
))
5261 spin_lock(&root
->inode_lock
);
5262 p
= &root
->inode_tree
.rb_node
;
5265 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5267 if (ino
< btrfs_ino(entry
))
5268 p
= &parent
->rb_left
;
5269 else if (ino
> btrfs_ino(entry
))
5270 p
= &parent
->rb_right
;
5272 WARN_ON(!(entry
->vfs_inode
.i_state
&
5273 (I_WILL_FREE
| I_FREEING
)));
5274 rb_replace_node(parent
, new, &root
->inode_tree
);
5275 RB_CLEAR_NODE(parent
);
5276 spin_unlock(&root
->inode_lock
);
5280 rb_link_node(new, parent
, p
);
5281 rb_insert_color(new, &root
->inode_tree
);
5282 spin_unlock(&root
->inode_lock
);
5285 static void inode_tree_del(struct inode
*inode
)
5287 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5290 spin_lock(&root
->inode_lock
);
5291 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5292 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5293 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5294 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5296 spin_unlock(&root
->inode_lock
);
5298 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5299 spin_lock(&root
->inode_lock
);
5300 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5301 spin_unlock(&root
->inode_lock
);
5303 btrfs_add_dead_root(root
);
5308 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5310 struct btrfs_iget_args
*args
= p
;
5312 inode
->i_ino
= args
->ino
;
5313 BTRFS_I(inode
)->location
.objectid
= args
->ino
;
5314 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
5315 BTRFS_I(inode
)->location
.offset
= 0;
5316 BTRFS_I(inode
)->root
= btrfs_grab_root(args
->root
);
5317 BUG_ON(args
->root
&& !BTRFS_I(inode
)->root
);
5321 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5323 struct btrfs_iget_args
*args
= opaque
;
5325 return args
->ino
== BTRFS_I(inode
)->location
.objectid
&&
5326 args
->root
== BTRFS_I(inode
)->root
;
5329 static struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 ino
,
5330 struct btrfs_root
*root
)
5332 struct inode
*inode
;
5333 struct btrfs_iget_args args
;
5334 unsigned long hashval
= btrfs_inode_hash(ino
, root
);
5339 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5340 btrfs_init_locked_inode
,
5346 * Get an inode object given its inode number and corresponding root.
5347 * Path can be preallocated to prevent recursing back to iget through
5348 * allocator. NULL is also valid but may require an additional allocation
5351 struct inode
*btrfs_iget_path(struct super_block
*s
, u64 ino
,
5352 struct btrfs_root
*root
, struct btrfs_path
*path
)
5354 struct inode
*inode
;
5356 inode
= btrfs_iget_locked(s
, ino
, root
);
5358 return ERR_PTR(-ENOMEM
);
5360 if (inode
->i_state
& I_NEW
) {
5363 ret
= btrfs_read_locked_inode(inode
, path
);
5365 inode_tree_add(inode
);
5366 unlock_new_inode(inode
);
5370 * ret > 0 can come from btrfs_search_slot called by
5371 * btrfs_read_locked_inode, this means the inode item
5376 inode
= ERR_PTR(ret
);
5383 struct inode
*btrfs_iget(struct super_block
*s
, u64 ino
, struct btrfs_root
*root
)
5385 return btrfs_iget_path(s
, ino
, root
, NULL
);
5388 static struct inode
*new_simple_dir(struct super_block
*s
,
5389 struct btrfs_key
*key
,
5390 struct btrfs_root
*root
)
5392 struct inode
*inode
= new_inode(s
);
5395 return ERR_PTR(-ENOMEM
);
5397 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
5398 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5399 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5401 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5403 * We only need lookup, the rest is read-only and there's no inode
5404 * associated with the dentry
5406 inode
->i_op
= &simple_dir_inode_operations
;
5407 inode
->i_opflags
&= ~IOP_XATTR
;
5408 inode
->i_fop
= &simple_dir_operations
;
5409 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5410 inode
->i_mtime
= current_time(inode
);
5411 inode
->i_atime
= inode
->i_mtime
;
5412 inode
->i_ctime
= inode
->i_mtime
;
5413 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5418 static inline u8
btrfs_inode_type(struct inode
*inode
)
5421 * Compile-time asserts that generic FT_* types still match
5424 BUILD_BUG_ON(BTRFS_FT_UNKNOWN
!= FT_UNKNOWN
);
5425 BUILD_BUG_ON(BTRFS_FT_REG_FILE
!= FT_REG_FILE
);
5426 BUILD_BUG_ON(BTRFS_FT_DIR
!= FT_DIR
);
5427 BUILD_BUG_ON(BTRFS_FT_CHRDEV
!= FT_CHRDEV
);
5428 BUILD_BUG_ON(BTRFS_FT_BLKDEV
!= FT_BLKDEV
);
5429 BUILD_BUG_ON(BTRFS_FT_FIFO
!= FT_FIFO
);
5430 BUILD_BUG_ON(BTRFS_FT_SOCK
!= FT_SOCK
);
5431 BUILD_BUG_ON(BTRFS_FT_SYMLINK
!= FT_SYMLINK
);
5433 return fs_umode_to_ftype(inode
->i_mode
);
5436 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5438 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5439 struct inode
*inode
;
5440 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5441 struct btrfs_root
*sub_root
= root
;
5442 struct btrfs_key location
;
5446 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5447 return ERR_PTR(-ENAMETOOLONG
);
5449 ret
= btrfs_inode_by_name(dir
, dentry
, &location
, &di_type
);
5451 return ERR_PTR(ret
);
5453 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5454 inode
= btrfs_iget(dir
->i_sb
, location
.objectid
, root
);
5458 /* Do extra check against inode mode with di_type */
5459 if (btrfs_inode_type(inode
) != di_type
) {
5461 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5462 inode
->i_mode
, btrfs_inode_type(inode
),
5465 return ERR_PTR(-EUCLEAN
);
5470 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5471 &location
, &sub_root
);
5474 inode
= ERR_PTR(ret
);
5476 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5478 inode
= btrfs_iget(dir
->i_sb
, location
.objectid
, sub_root
);
5480 if (root
!= sub_root
)
5481 btrfs_put_root(sub_root
);
5483 if (!IS_ERR(inode
) && root
!= sub_root
) {
5484 down_read(&fs_info
->cleanup_work_sem
);
5485 if (!sb_rdonly(inode
->i_sb
))
5486 ret
= btrfs_orphan_cleanup(sub_root
);
5487 up_read(&fs_info
->cleanup_work_sem
);
5490 inode
= ERR_PTR(ret
);
5497 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5499 struct btrfs_root
*root
;
5500 struct inode
*inode
= d_inode(dentry
);
5502 if (!inode
&& !IS_ROOT(dentry
))
5503 inode
= d_inode(dentry
->d_parent
);
5506 root
= BTRFS_I(inode
)->root
;
5507 if (btrfs_root_refs(&root
->root_item
) == 0)
5510 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5516 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5519 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5521 if (inode
== ERR_PTR(-ENOENT
))
5523 return d_splice_alias(inode
, dentry
);
5527 * All this infrastructure exists because dir_emit can fault, and we are holding
5528 * the tree lock when doing readdir. For now just allocate a buffer and copy
5529 * our information into that, and then dir_emit from the buffer. This is
5530 * similar to what NFS does, only we don't keep the buffer around in pagecache
5531 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5532 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5535 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5537 struct btrfs_file_private
*private;
5539 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5542 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5543 if (!private->filldir_buf
) {
5547 file
->private_data
= private;
5558 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5561 struct dir_entry
*entry
= addr
;
5562 char *name
= (char *)(entry
+ 1);
5564 ctx
->pos
= get_unaligned(&entry
->offset
);
5565 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5566 get_unaligned(&entry
->ino
),
5567 get_unaligned(&entry
->type
)))
5569 addr
+= sizeof(struct dir_entry
) +
5570 get_unaligned(&entry
->name_len
);
5576 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5578 struct inode
*inode
= file_inode(file
);
5579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5580 struct btrfs_file_private
*private = file
->private_data
;
5581 struct btrfs_dir_item
*di
;
5582 struct btrfs_key key
;
5583 struct btrfs_key found_key
;
5584 struct btrfs_path
*path
;
5586 struct list_head ins_list
;
5587 struct list_head del_list
;
5589 struct extent_buffer
*leaf
;
5596 struct btrfs_key location
;
5598 if (!dir_emit_dots(file
, ctx
))
5601 path
= btrfs_alloc_path();
5605 addr
= private->filldir_buf
;
5606 path
->reada
= READA_FORWARD
;
5608 INIT_LIST_HEAD(&ins_list
);
5609 INIT_LIST_HEAD(&del_list
);
5610 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5613 key
.type
= BTRFS_DIR_INDEX_KEY
;
5614 key
.offset
= ctx
->pos
;
5615 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5617 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5622 struct dir_entry
*entry
;
5624 leaf
= path
->nodes
[0];
5625 slot
= path
->slots
[0];
5626 if (slot
>= btrfs_header_nritems(leaf
)) {
5627 ret
= btrfs_next_leaf(root
, path
);
5635 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5637 if (found_key
.objectid
!= key
.objectid
)
5639 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5641 if (found_key
.offset
< ctx
->pos
)
5643 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5645 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5646 name_len
= btrfs_dir_name_len(leaf
, di
);
5647 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5649 btrfs_release_path(path
);
5650 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5653 addr
= private->filldir_buf
;
5660 put_unaligned(name_len
, &entry
->name_len
);
5661 name_ptr
= (char *)(entry
+ 1);
5662 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5664 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf
, di
)),
5666 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5667 put_unaligned(location
.objectid
, &entry
->ino
);
5668 put_unaligned(found_key
.offset
, &entry
->offset
);
5670 addr
+= sizeof(struct dir_entry
) + name_len
;
5671 total_len
+= sizeof(struct dir_entry
) + name_len
;
5675 btrfs_release_path(path
);
5677 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5681 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5686 * Stop new entries from being returned after we return the last
5689 * New directory entries are assigned a strictly increasing
5690 * offset. This means that new entries created during readdir
5691 * are *guaranteed* to be seen in the future by that readdir.
5692 * This has broken buggy programs which operate on names as
5693 * they're returned by readdir. Until we re-use freed offsets
5694 * we have this hack to stop new entries from being returned
5695 * under the assumption that they'll never reach this huge
5698 * This is being careful not to overflow 32bit loff_t unless the
5699 * last entry requires it because doing so has broken 32bit apps
5702 if (ctx
->pos
>= INT_MAX
)
5703 ctx
->pos
= LLONG_MAX
;
5710 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5711 btrfs_free_path(path
);
5716 * This is somewhat expensive, updating the tree every time the
5717 * inode changes. But, it is most likely to find the inode in cache.
5718 * FIXME, needs more benchmarking...there are no reasons other than performance
5719 * to keep or drop this code.
5721 static int btrfs_dirty_inode(struct inode
*inode
)
5723 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5724 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5725 struct btrfs_trans_handle
*trans
;
5728 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5731 trans
= btrfs_join_transaction(root
);
5733 return PTR_ERR(trans
);
5735 ret
= btrfs_update_inode(trans
, root
, inode
);
5736 if (ret
&& ret
== -ENOSPC
) {
5737 /* whoops, lets try again with the full transaction */
5738 btrfs_end_transaction(trans
);
5739 trans
= btrfs_start_transaction(root
, 1);
5741 return PTR_ERR(trans
);
5743 ret
= btrfs_update_inode(trans
, root
, inode
);
5745 btrfs_end_transaction(trans
);
5746 if (BTRFS_I(inode
)->delayed_node
)
5747 btrfs_balance_delayed_items(fs_info
);
5753 * This is a copy of file_update_time. We need this so we can return error on
5754 * ENOSPC for updating the inode in the case of file write and mmap writes.
5756 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
5759 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5760 bool dirty
= flags
& ~S_VERSION
;
5762 if (btrfs_root_readonly(root
))
5765 if (flags
& S_VERSION
)
5766 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
5767 if (flags
& S_CTIME
)
5768 inode
->i_ctime
= *now
;
5769 if (flags
& S_MTIME
)
5770 inode
->i_mtime
= *now
;
5771 if (flags
& S_ATIME
)
5772 inode
->i_atime
= *now
;
5773 return dirty
? btrfs_dirty_inode(inode
) : 0;
5777 * find the highest existing sequence number in a directory
5778 * and then set the in-memory index_cnt variable to reflect
5779 * free sequence numbers
5781 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
5783 struct btrfs_root
*root
= inode
->root
;
5784 struct btrfs_key key
, found_key
;
5785 struct btrfs_path
*path
;
5786 struct extent_buffer
*leaf
;
5789 key
.objectid
= btrfs_ino(inode
);
5790 key
.type
= BTRFS_DIR_INDEX_KEY
;
5791 key
.offset
= (u64
)-1;
5793 path
= btrfs_alloc_path();
5797 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5800 /* FIXME: we should be able to handle this */
5806 * MAGIC NUMBER EXPLANATION:
5807 * since we search a directory based on f_pos we have to start at 2
5808 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5809 * else has to start at 2
5811 if (path
->slots
[0] == 0) {
5812 inode
->index_cnt
= 2;
5818 leaf
= path
->nodes
[0];
5819 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5821 if (found_key
.objectid
!= btrfs_ino(inode
) ||
5822 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5823 inode
->index_cnt
= 2;
5827 inode
->index_cnt
= found_key
.offset
+ 1;
5829 btrfs_free_path(path
);
5834 * helper to find a free sequence number in a given directory. This current
5835 * code is very simple, later versions will do smarter things in the btree
5837 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
5841 if (dir
->index_cnt
== (u64
)-1) {
5842 ret
= btrfs_inode_delayed_dir_index_count(dir
);
5844 ret
= btrfs_set_inode_index_count(dir
);
5850 *index
= dir
->index_cnt
;
5856 static int btrfs_insert_inode_locked(struct inode
*inode
)
5858 struct btrfs_iget_args args
;
5860 args
.ino
= BTRFS_I(inode
)->location
.objectid
;
5861 args
.root
= BTRFS_I(inode
)->root
;
5863 return insert_inode_locked4(inode
,
5864 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
5865 btrfs_find_actor
, &args
);
5869 * Inherit flags from the parent inode.
5871 * Currently only the compression flags and the cow flags are inherited.
5873 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
5880 flags
= BTRFS_I(dir
)->flags
;
5882 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
5883 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
5884 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
5885 } else if (flags
& BTRFS_INODE_COMPRESS
) {
5886 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
5887 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
5890 if (flags
& BTRFS_INODE_NODATACOW
) {
5891 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
5892 if (S_ISREG(inode
->i_mode
))
5893 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
5896 btrfs_sync_inode_flags_to_i_flags(inode
);
5899 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
5900 struct btrfs_root
*root
,
5902 const char *name
, int name_len
,
5903 u64 ref_objectid
, u64 objectid
,
5904 umode_t mode
, u64
*index
)
5906 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5907 struct inode
*inode
;
5908 struct btrfs_inode_item
*inode_item
;
5909 struct btrfs_key
*location
;
5910 struct btrfs_path
*path
;
5911 struct btrfs_inode_ref
*ref
;
5912 struct btrfs_key key
[2];
5914 int nitems
= name
? 2 : 1;
5916 unsigned int nofs_flag
;
5919 path
= btrfs_alloc_path();
5921 return ERR_PTR(-ENOMEM
);
5923 nofs_flag
= memalloc_nofs_save();
5924 inode
= new_inode(fs_info
->sb
);
5925 memalloc_nofs_restore(nofs_flag
);
5927 btrfs_free_path(path
);
5928 return ERR_PTR(-ENOMEM
);
5932 * O_TMPFILE, set link count to 0, so that after this point,
5933 * we fill in an inode item with the correct link count.
5936 set_nlink(inode
, 0);
5939 * we have to initialize this early, so we can reclaim the inode
5940 * number if we fail afterwards in this function.
5942 inode
->i_ino
= objectid
;
5945 trace_btrfs_inode_request(dir
);
5947 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
5949 btrfs_free_path(path
);
5951 return ERR_PTR(ret
);
5957 * index_cnt is ignored for everything but a dir,
5958 * btrfs_set_inode_index_count has an explanation for the magic
5961 BTRFS_I(inode
)->index_cnt
= 2;
5962 BTRFS_I(inode
)->dir_index
= *index
;
5963 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
5964 BTRFS_I(inode
)->generation
= trans
->transid
;
5965 inode
->i_generation
= BTRFS_I(inode
)->generation
;
5968 * We could have gotten an inode number from somebody who was fsynced
5969 * and then removed in this same transaction, so let's just set full
5970 * sync since it will be a full sync anyway and this will blow away the
5971 * old info in the log.
5973 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
5975 key
[0].objectid
= objectid
;
5976 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
5979 sizes
[0] = sizeof(struct btrfs_inode_item
);
5983 * Start new inodes with an inode_ref. This is slightly more
5984 * efficient for small numbers of hard links since they will
5985 * be packed into one item. Extended refs will kick in if we
5986 * add more hard links than can fit in the ref item.
5988 key
[1].objectid
= objectid
;
5989 key
[1].type
= BTRFS_INODE_REF_KEY
;
5990 key
[1].offset
= ref_objectid
;
5992 sizes
[1] = name_len
+ sizeof(*ref
);
5995 location
= &BTRFS_I(inode
)->location
;
5996 location
->objectid
= objectid
;
5997 location
->offset
= 0;
5998 location
->type
= BTRFS_INODE_ITEM_KEY
;
6000 ret
= btrfs_insert_inode_locked(inode
);
6006 path
->leave_spinning
= 1;
6007 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6011 inode_init_owner(inode
, dir
, mode
);
6012 inode_set_bytes(inode
, 0);
6014 inode
->i_mtime
= current_time(inode
);
6015 inode
->i_atime
= inode
->i_mtime
;
6016 inode
->i_ctime
= inode
->i_mtime
;
6017 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6019 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6020 struct btrfs_inode_item
);
6021 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6022 sizeof(*inode_item
));
6023 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6026 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6027 struct btrfs_inode_ref
);
6028 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6029 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6030 ptr
= (unsigned long)(ref
+ 1);
6031 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6034 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6035 btrfs_free_path(path
);
6037 btrfs_inherit_iflags(inode
, dir
);
6039 if (S_ISREG(mode
)) {
6040 if (btrfs_test_opt(fs_info
, NODATASUM
))
6041 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6042 if (btrfs_test_opt(fs_info
, NODATACOW
))
6043 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6044 BTRFS_INODE_NODATASUM
;
6047 inode_tree_add(inode
);
6049 trace_btrfs_inode_new(inode
);
6050 btrfs_set_inode_last_trans(trans
, inode
);
6052 btrfs_update_root_times(trans
, root
);
6054 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6057 "error inheriting props for ino %llu (root %llu): %d",
6058 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6063 discard_new_inode(inode
);
6066 BTRFS_I(dir
)->index_cnt
--;
6067 btrfs_free_path(path
);
6068 return ERR_PTR(ret
);
6072 * utility function to add 'inode' into 'parent_inode' with
6073 * a give name and a given sequence number.
6074 * if 'add_backref' is true, also insert a backref from the
6075 * inode to the parent directory.
6077 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6078 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6079 const char *name
, int name_len
, int add_backref
, u64 index
)
6082 struct btrfs_key key
;
6083 struct btrfs_root
*root
= parent_inode
->root
;
6084 u64 ino
= btrfs_ino(inode
);
6085 u64 parent_ino
= btrfs_ino(parent_inode
);
6087 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6088 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6091 key
.type
= BTRFS_INODE_ITEM_KEY
;
6095 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6096 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6097 root
->root_key
.objectid
, parent_ino
,
6098 index
, name
, name_len
);
6099 } else if (add_backref
) {
6100 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6104 /* Nothing to clean up yet */
6108 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
6109 btrfs_inode_type(&inode
->vfs_inode
), index
);
6110 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6113 btrfs_abort_transaction(trans
, ret
);
6117 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6119 inode_inc_iversion(&parent_inode
->vfs_inode
);
6121 * If we are replaying a log tree, we do not want to update the mtime
6122 * and ctime of the parent directory with the current time, since the
6123 * log replay procedure is responsible for setting them to their correct
6124 * values (the ones it had when the fsync was done).
6126 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
)) {
6127 struct timespec64 now
= current_time(&parent_inode
->vfs_inode
);
6129 parent_inode
->vfs_inode
.i_mtime
= now
;
6130 parent_inode
->vfs_inode
.i_ctime
= now
;
6132 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6134 btrfs_abort_transaction(trans
, ret
);
6138 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6141 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6142 root
->root_key
.objectid
, parent_ino
,
6143 &local_index
, name
, name_len
);
6145 btrfs_abort_transaction(trans
, err
);
6146 } else if (add_backref
) {
6150 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6151 ino
, parent_ino
, &local_index
);
6153 btrfs_abort_transaction(trans
, err
);
6156 /* Return the original error code */
6160 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6161 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6162 struct btrfs_inode
*inode
, int backref
, u64 index
)
6164 int err
= btrfs_add_link(trans
, dir
, inode
,
6165 dentry
->d_name
.name
, dentry
->d_name
.len
,
6172 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6173 umode_t mode
, dev_t rdev
)
6175 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6176 struct btrfs_trans_handle
*trans
;
6177 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6178 struct inode
*inode
= NULL
;
6184 * 2 for inode item and ref
6186 * 1 for xattr if selinux is on
6188 trans
= btrfs_start_transaction(root
, 5);
6190 return PTR_ERR(trans
);
6192 err
= btrfs_find_free_ino(root
, &objectid
);
6196 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6197 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6199 if (IS_ERR(inode
)) {
6200 err
= PTR_ERR(inode
);
6206 * If the active LSM wants to access the inode during
6207 * d_instantiate it needs these. Smack checks to see
6208 * if the filesystem supports xattrs by looking at the
6211 inode
->i_op
= &btrfs_special_inode_operations
;
6212 init_special_inode(inode
, inode
->i_mode
, rdev
);
6214 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6218 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6223 btrfs_update_inode(trans
, root
, inode
);
6224 d_instantiate_new(dentry
, inode
);
6227 btrfs_end_transaction(trans
);
6228 btrfs_btree_balance_dirty(fs_info
);
6230 inode_dec_link_count(inode
);
6231 discard_new_inode(inode
);
6236 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6237 umode_t mode
, bool excl
)
6239 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6240 struct btrfs_trans_handle
*trans
;
6241 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6242 struct inode
*inode
= NULL
;
6248 * 2 for inode item and ref
6250 * 1 for xattr if selinux is on
6252 trans
= btrfs_start_transaction(root
, 5);
6254 return PTR_ERR(trans
);
6256 err
= btrfs_find_free_ino(root
, &objectid
);
6260 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6261 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6263 if (IS_ERR(inode
)) {
6264 err
= PTR_ERR(inode
);
6269 * If the active LSM wants to access the inode during
6270 * d_instantiate it needs these. Smack checks to see
6271 * if the filesystem supports xattrs by looking at the
6274 inode
->i_fop
= &btrfs_file_operations
;
6275 inode
->i_op
= &btrfs_file_inode_operations
;
6276 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6278 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6282 err
= btrfs_update_inode(trans
, root
, inode
);
6286 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6291 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6292 d_instantiate_new(dentry
, inode
);
6295 btrfs_end_transaction(trans
);
6297 inode_dec_link_count(inode
);
6298 discard_new_inode(inode
);
6300 btrfs_btree_balance_dirty(fs_info
);
6304 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6305 struct dentry
*dentry
)
6307 struct btrfs_trans_handle
*trans
= NULL
;
6308 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6309 struct inode
*inode
= d_inode(old_dentry
);
6310 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6315 /* do not allow sys_link's with other subvols of the same device */
6316 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6319 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6322 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6327 * 2 items for inode and inode ref
6328 * 2 items for dir items
6329 * 1 item for parent inode
6330 * 1 item for orphan item deletion if O_TMPFILE
6332 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6333 if (IS_ERR(trans
)) {
6334 err
= PTR_ERR(trans
);
6339 /* There are several dir indexes for this inode, clear the cache. */
6340 BTRFS_I(inode
)->dir_index
= 0ULL;
6342 inode_inc_iversion(inode
);
6343 inode
->i_ctime
= current_time(inode
);
6345 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6347 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6353 struct dentry
*parent
= dentry
->d_parent
;
6356 err
= btrfs_update_inode(trans
, root
, inode
);
6359 if (inode
->i_nlink
== 1) {
6361 * If new hard link count is 1, it's a file created
6362 * with open(2) O_TMPFILE flag.
6364 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6368 d_instantiate(dentry
, inode
);
6369 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6371 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6372 err
= btrfs_commit_transaction(trans
);
6379 btrfs_end_transaction(trans
);
6381 inode_dec_link_count(inode
);
6384 btrfs_btree_balance_dirty(fs_info
);
6388 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6390 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6391 struct inode
*inode
= NULL
;
6392 struct btrfs_trans_handle
*trans
;
6393 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6399 * 2 items for inode and ref
6400 * 2 items for dir items
6401 * 1 for xattr if selinux is on
6403 trans
= btrfs_start_transaction(root
, 5);
6405 return PTR_ERR(trans
);
6407 err
= btrfs_find_free_ino(root
, &objectid
);
6411 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6412 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6413 S_IFDIR
| mode
, &index
);
6414 if (IS_ERR(inode
)) {
6415 err
= PTR_ERR(inode
);
6420 /* these must be set before we unlock the inode */
6421 inode
->i_op
= &btrfs_dir_inode_operations
;
6422 inode
->i_fop
= &btrfs_dir_file_operations
;
6424 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6428 btrfs_i_size_write(BTRFS_I(inode
), 0);
6429 err
= btrfs_update_inode(trans
, root
, inode
);
6433 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6434 dentry
->d_name
.name
,
6435 dentry
->d_name
.len
, 0, index
);
6439 d_instantiate_new(dentry
, inode
);
6442 btrfs_end_transaction(trans
);
6444 inode_dec_link_count(inode
);
6445 discard_new_inode(inode
);
6447 btrfs_btree_balance_dirty(fs_info
);
6451 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6453 size_t pg_offset
, u64 extent_offset
,
6454 struct btrfs_file_extent_item
*item
)
6457 struct extent_buffer
*leaf
= path
->nodes
[0];
6460 unsigned long inline_size
;
6464 WARN_ON(pg_offset
!= 0);
6465 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6466 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6467 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6468 btrfs_item_nr(path
->slots
[0]));
6469 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6472 ptr
= btrfs_file_extent_inline_start(item
);
6474 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6476 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6477 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6478 extent_offset
, inline_size
, max_size
);
6481 * decompression code contains a memset to fill in any space between the end
6482 * of the uncompressed data and the end of max_size in case the decompressed
6483 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6484 * the end of an inline extent and the beginning of the next block, so we
6485 * cover that region here.
6488 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6489 char *map
= kmap(page
);
6490 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6498 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6499 * @inode: file to search in
6500 * @page: page to read extent data into if the extent is inline
6501 * @pg_offset: offset into @page to copy to
6502 * @start: file offset
6503 * @len: length of range starting at @start
6505 * This returns the first &struct extent_map which overlaps with the given
6506 * range, reading it from the B-tree and caching it if necessary. Note that
6507 * there may be more extents which overlap the given range after the returned
6510 * If @page is not NULL and the extent is inline, this also reads the extent
6511 * data directly into the page and marks the extent up to date in the io_tree.
6513 * Return: ERR_PTR on error, non-NULL extent_map on success.
6515 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6516 struct page
*page
, size_t pg_offset
,
6519 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6522 u64 extent_start
= 0;
6524 u64 objectid
= btrfs_ino(inode
);
6525 int extent_type
= -1;
6526 struct btrfs_path
*path
= NULL
;
6527 struct btrfs_root
*root
= inode
->root
;
6528 struct btrfs_file_extent_item
*item
;
6529 struct extent_buffer
*leaf
;
6530 struct btrfs_key found_key
;
6531 struct extent_map
*em
= NULL
;
6532 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6533 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6535 read_lock(&em_tree
->lock
);
6536 em
= lookup_extent_mapping(em_tree
, start
, len
);
6537 read_unlock(&em_tree
->lock
);
6540 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6541 free_extent_map(em
);
6542 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6543 free_extent_map(em
);
6547 em
= alloc_extent_map();
6552 em
->start
= EXTENT_MAP_HOLE
;
6553 em
->orig_start
= EXTENT_MAP_HOLE
;
6555 em
->block_len
= (u64
)-1;
6557 path
= btrfs_alloc_path();
6563 /* Chances are we'll be called again, so go ahead and do readahead */
6564 path
->reada
= READA_FORWARD
;
6567 * Unless we're going to uncompress the inline extent, no sleep would
6570 path
->leave_spinning
= 1;
6572 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6576 } else if (ret
> 0) {
6577 if (path
->slots
[0] == 0)
6582 leaf
= path
->nodes
[0];
6583 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6584 struct btrfs_file_extent_item
);
6585 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6586 if (found_key
.objectid
!= objectid
||
6587 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6589 * If we backup past the first extent we want to move forward
6590 * and see if there is an extent in front of us, otherwise we'll
6591 * say there is a hole for our whole search range which can
6598 extent_type
= btrfs_file_extent_type(leaf
, item
);
6599 extent_start
= found_key
.offset
;
6600 extent_end
= btrfs_file_extent_end(path
);
6601 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6602 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6603 /* Only regular file could have regular/prealloc extent */
6604 if (!S_ISREG(inode
->vfs_inode
.i_mode
)) {
6607 "regular/prealloc extent found for non-regular inode %llu",
6611 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6613 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6614 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6619 if (start
>= extent_end
) {
6621 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6622 ret
= btrfs_next_leaf(root
, path
);
6626 } else if (ret
> 0) {
6629 leaf
= path
->nodes
[0];
6631 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6632 if (found_key
.objectid
!= objectid
||
6633 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6635 if (start
+ len
<= found_key
.offset
)
6637 if (start
> found_key
.offset
)
6640 /* New extent overlaps with existing one */
6642 em
->orig_start
= start
;
6643 em
->len
= found_key
.offset
- start
;
6644 em
->block_start
= EXTENT_MAP_HOLE
;
6648 btrfs_extent_item_to_extent_map(inode
, path
, item
, !page
, em
);
6650 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6651 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6653 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6657 size_t extent_offset
;
6663 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6664 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6665 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6666 size
- extent_offset
);
6667 em
->start
= extent_start
+ extent_offset
;
6668 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6669 em
->orig_block_len
= em
->len
;
6670 em
->orig_start
= em
->start
;
6671 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6673 btrfs_set_path_blocking(path
);
6674 if (!PageUptodate(page
)) {
6675 if (btrfs_file_extent_compression(leaf
, item
) !=
6676 BTRFS_COMPRESS_NONE
) {
6677 ret
= uncompress_inline(path
, page
, pg_offset
,
6678 extent_offset
, item
);
6685 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6687 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6688 memset(map
+ pg_offset
+ copy_size
, 0,
6689 PAGE_SIZE
- pg_offset
-
6694 flush_dcache_page(page
);
6696 set_extent_uptodate(io_tree
, em
->start
,
6697 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6702 em
->orig_start
= start
;
6704 em
->block_start
= EXTENT_MAP_HOLE
;
6706 btrfs_release_path(path
);
6707 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6709 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6710 em
->start
, em
->len
, start
, len
);
6716 write_lock(&em_tree
->lock
);
6717 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6718 write_unlock(&em_tree
->lock
);
6720 btrfs_free_path(path
);
6722 trace_btrfs_get_extent(root
, inode
, em
);
6725 free_extent_map(em
);
6726 return ERR_PTR(err
);
6728 BUG_ON(!em
); /* Error is always set */
6732 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
6735 struct extent_map
*em
;
6736 struct extent_map
*hole_em
= NULL
;
6737 u64 delalloc_start
= start
;
6743 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
);
6747 * If our em maps to:
6749 * - a pre-alloc extent,
6750 * there might actually be delalloc bytes behind it.
6752 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6753 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6758 /* check to see if we've wrapped (len == -1 or similar) */
6767 /* ok, we didn't find anything, lets look for delalloc */
6768 delalloc_len
= count_range_bits(&inode
->io_tree
, &delalloc_start
,
6769 end
, len
, EXTENT_DELALLOC
, 1);
6770 delalloc_end
= delalloc_start
+ delalloc_len
;
6771 if (delalloc_end
< delalloc_start
)
6772 delalloc_end
= (u64
)-1;
6775 * We didn't find anything useful, return the original results from
6778 if (delalloc_start
> end
|| delalloc_end
<= start
) {
6785 * Adjust the delalloc_start to make sure it doesn't go backwards from
6786 * the start they passed in
6788 delalloc_start
= max(start
, delalloc_start
);
6789 delalloc_len
= delalloc_end
- delalloc_start
;
6791 if (delalloc_len
> 0) {
6794 const u64 hole_end
= extent_map_end(hole_em
);
6796 em
= alloc_extent_map();
6804 * When btrfs_get_extent can't find anything it returns one
6807 * Make sure what it found really fits our range, and adjust to
6808 * make sure it is based on the start from the caller
6810 if (hole_end
<= start
|| hole_em
->start
> end
) {
6811 free_extent_map(hole_em
);
6814 hole_start
= max(hole_em
->start
, start
);
6815 hole_len
= hole_end
- hole_start
;
6818 if (hole_em
&& delalloc_start
> hole_start
) {
6820 * Our hole starts before our delalloc, so we have to
6821 * return just the parts of the hole that go until the
6824 em
->len
= min(hole_len
, delalloc_start
- hole_start
);
6825 em
->start
= hole_start
;
6826 em
->orig_start
= hole_start
;
6828 * Don't adjust block start at all, it is fixed at
6831 em
->block_start
= hole_em
->block_start
;
6832 em
->block_len
= hole_len
;
6833 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
6834 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
6837 * Hole is out of passed range or it starts after
6840 em
->start
= delalloc_start
;
6841 em
->len
= delalloc_len
;
6842 em
->orig_start
= delalloc_start
;
6843 em
->block_start
= EXTENT_MAP_DELALLOC
;
6844 em
->block_len
= delalloc_len
;
6851 free_extent_map(hole_em
);
6853 free_extent_map(em
);
6854 return ERR_PTR(err
);
6859 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
6862 const u64 orig_start
,
6863 const u64 block_start
,
6864 const u64 block_len
,
6865 const u64 orig_block_len
,
6866 const u64 ram_bytes
,
6869 struct extent_map
*em
= NULL
;
6872 if (type
!= BTRFS_ORDERED_NOCOW
) {
6873 em
= create_io_em(inode
, start
, len
, orig_start
,
6874 block_start
, block_len
, orig_block_len
,
6876 BTRFS_COMPRESS_NONE
, /* compress_type */
6881 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
6882 len
, block_len
, type
);
6885 free_extent_map(em
);
6886 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
6887 start
+ len
- 1, 0);
6896 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
6899 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6900 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6901 struct extent_map
*em
;
6902 struct btrfs_key ins
;
6906 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
6907 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
6908 0, alloc_hint
, &ins
, 1, 1);
6910 return ERR_PTR(ret
);
6912 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
6913 ins
.objectid
, ins
.offset
, ins
.offset
,
6914 ins
.offset
, BTRFS_ORDERED_REGULAR
);
6915 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
6917 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
6924 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6925 * block must be cow'd
6927 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
6928 u64
*orig_start
, u64
*orig_block_len
,
6931 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6932 struct btrfs_path
*path
;
6934 struct extent_buffer
*leaf
;
6935 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6936 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6937 struct btrfs_file_extent_item
*fi
;
6938 struct btrfs_key key
;
6945 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
6947 path
= btrfs_alloc_path();
6951 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
6952 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
6956 slot
= path
->slots
[0];
6959 /* can't find the item, must cow */
6966 leaf
= path
->nodes
[0];
6967 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6968 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
6969 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6970 /* not our file or wrong item type, must cow */
6974 if (key
.offset
> offset
) {
6975 /* Wrong offset, must cow */
6979 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
6980 found_type
= btrfs_file_extent_type(leaf
, fi
);
6981 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
6982 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
6983 /* not a regular extent, must cow */
6987 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
6990 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
6991 if (extent_end
<= offset
)
6994 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
6995 if (disk_bytenr
== 0)
6998 if (btrfs_file_extent_compression(leaf
, fi
) ||
6999 btrfs_file_extent_encryption(leaf
, fi
) ||
7000 btrfs_file_extent_other_encoding(leaf
, fi
))
7004 * Do the same check as in btrfs_cross_ref_exist but without the
7005 * unnecessary search.
7007 if (btrfs_file_extent_generation(leaf
, fi
) <=
7008 btrfs_root_last_snapshot(&root
->root_item
))
7011 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7014 *orig_start
= key
.offset
- backref_offset
;
7015 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7016 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7019 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7022 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7023 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7026 range_end
= round_up(offset
+ num_bytes
,
7027 root
->fs_info
->sectorsize
) - 1;
7028 ret
= test_range_bit(io_tree
, offset
, range_end
,
7029 EXTENT_DELALLOC
, 0, NULL
);
7036 btrfs_release_path(path
);
7039 * look for other files referencing this extent, if we
7040 * find any we must cow
7043 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7044 key
.offset
- backref_offset
, disk_bytenr
);
7051 * adjust disk_bytenr and num_bytes to cover just the bytes
7052 * in this extent we are about to write. If there
7053 * are any csums in that range we have to cow in order
7054 * to keep the csums correct
7056 disk_bytenr
+= backref_offset
;
7057 disk_bytenr
+= offset
- key
.offset
;
7058 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7061 * all of the above have passed, it is safe to overwrite this extent
7067 btrfs_free_path(path
);
7071 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7072 struct extent_state
**cached_state
, int writing
)
7074 struct btrfs_ordered_extent
*ordered
;
7078 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7081 * We're concerned with the entire range that we're going to be
7082 * doing DIO to, so we need to make sure there's no ordered
7083 * extents in this range.
7085 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7086 lockend
- lockstart
+ 1);
7089 * We need to make sure there are no buffered pages in this
7090 * range either, we could have raced between the invalidate in
7091 * generic_file_direct_write and locking the extent. The
7092 * invalidate needs to happen so that reads after a write do not
7096 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7097 lockstart
, lockend
)))
7100 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7105 * If we are doing a DIO read and the ordered extent we
7106 * found is for a buffered write, we can not wait for it
7107 * to complete and retry, because if we do so we can
7108 * deadlock with concurrent buffered writes on page
7109 * locks. This happens only if our DIO read covers more
7110 * than one extent map, if at this point has already
7111 * created an ordered extent for a previous extent map
7112 * and locked its range in the inode's io tree, and a
7113 * concurrent write against that previous extent map's
7114 * range and this range started (we unlock the ranges
7115 * in the io tree only when the bios complete and
7116 * buffered writes always lock pages before attempting
7117 * to lock range in the io tree).
7120 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7121 btrfs_start_ordered_extent(inode
, ordered
, 1);
7124 btrfs_put_ordered_extent(ordered
);
7127 * We could trigger writeback for this range (and wait
7128 * for it to complete) and then invalidate the pages for
7129 * this range (through invalidate_inode_pages2_range()),
7130 * but that can lead us to a deadlock with a concurrent
7131 * call to readahead (a buffered read or a defrag call
7132 * triggered a readahead) on a page lock due to an
7133 * ordered dio extent we created before but did not have
7134 * yet a corresponding bio submitted (whence it can not
7135 * complete), which makes readahead wait for that
7136 * ordered extent to complete while holding a lock on
7151 /* The callers of this must take lock_extent() */
7152 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7153 u64 orig_start
, u64 block_start
,
7154 u64 block_len
, u64 orig_block_len
,
7155 u64 ram_bytes
, int compress_type
,
7158 struct extent_map_tree
*em_tree
;
7159 struct extent_map
*em
;
7162 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7163 type
== BTRFS_ORDERED_COMPRESSED
||
7164 type
== BTRFS_ORDERED_NOCOW
||
7165 type
== BTRFS_ORDERED_REGULAR
);
7167 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7168 em
= alloc_extent_map();
7170 return ERR_PTR(-ENOMEM
);
7173 em
->orig_start
= orig_start
;
7175 em
->block_len
= block_len
;
7176 em
->block_start
= block_start
;
7177 em
->orig_block_len
= orig_block_len
;
7178 em
->ram_bytes
= ram_bytes
;
7179 em
->generation
= -1;
7180 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7181 if (type
== BTRFS_ORDERED_PREALLOC
) {
7182 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7183 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7184 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7185 em
->compress_type
= compress_type
;
7189 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7190 em
->start
+ em
->len
- 1, 0);
7191 write_lock(&em_tree
->lock
);
7192 ret
= add_extent_mapping(em_tree
, em
, 1);
7193 write_unlock(&em_tree
->lock
);
7195 * The caller has taken lock_extent(), who could race with us
7198 } while (ret
== -EEXIST
);
7201 free_extent_map(em
);
7202 return ERR_PTR(ret
);
7205 /* em got 2 refs now, callers needs to do free_extent_map once. */
7210 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7211 struct buffer_head
*bh_result
,
7212 struct inode
*inode
,
7215 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7217 if (em
->block_start
== EXTENT_MAP_HOLE
||
7218 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7221 len
= min(len
, em
->len
- (start
- em
->start
));
7223 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7225 bh_result
->b_size
= len
;
7226 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7227 set_buffer_mapped(bh_result
);
7232 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7233 struct buffer_head
*bh_result
,
7234 struct inode
*inode
,
7235 struct btrfs_dio_data
*dio_data
,
7238 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7239 struct extent_map
*em
= *map
;
7243 * We don't allocate a new extent in the following cases
7245 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7247 * 2) The extent is marked as PREALLOC. We're good to go here and can
7248 * just use the extent.
7251 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7252 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7253 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7255 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7257 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7258 type
= BTRFS_ORDERED_PREALLOC
;
7260 type
= BTRFS_ORDERED_NOCOW
;
7261 len
= min(len
, em
->len
- (start
- em
->start
));
7262 block_start
= em
->block_start
+ (start
- em
->start
);
7264 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7265 &orig_block_len
, &ram_bytes
) == 1 &&
7266 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7267 struct extent_map
*em2
;
7269 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7270 orig_start
, block_start
,
7271 len
, orig_block_len
,
7273 btrfs_dec_nocow_writers(fs_info
, block_start
);
7274 if (type
== BTRFS_ORDERED_PREALLOC
) {
7275 free_extent_map(em
);
7279 if (em2
&& IS_ERR(em2
)) {
7284 * For inode marked NODATACOW or extent marked PREALLOC,
7285 * use the existing or preallocated extent, so does not
7286 * need to adjust btrfs_space_info's bytes_may_use.
7288 btrfs_free_reserved_data_space_noquota(inode
, start
,
7294 /* this will cow the extent */
7295 len
= bh_result
->b_size
;
7296 free_extent_map(em
);
7297 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7303 len
= min(len
, em
->len
- (start
- em
->start
));
7306 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7308 bh_result
->b_size
= len
;
7309 bh_result
->b_bdev
= fs_info
->fs_devices
->latest_bdev
;
7310 set_buffer_mapped(bh_result
);
7312 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7313 set_buffer_new(bh_result
);
7316 * Need to update the i_size under the extent lock so buffered
7317 * readers will get the updated i_size when we unlock.
7319 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7320 i_size_write(inode
, start
+ len
);
7322 WARN_ON(dio_data
->reserve
< len
);
7323 dio_data
->reserve
-= len
;
7324 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7325 current
->journal_info
= dio_data
;
7330 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7331 struct buffer_head
*bh_result
, int create
)
7333 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7334 struct extent_map
*em
;
7335 struct extent_state
*cached_state
= NULL
;
7336 struct btrfs_dio_data
*dio_data
= NULL
;
7337 u64 start
= iblock
<< inode
->i_blkbits
;
7338 u64 lockstart
, lockend
;
7339 u64 len
= bh_result
->b_size
;
7343 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7346 lockend
= start
+ len
- 1;
7348 if (current
->journal_info
) {
7350 * Need to pull our outstanding extents and set journal_info to NULL so
7351 * that anything that needs to check if there's a transaction doesn't get
7354 dio_data
= current
->journal_info
;
7355 current
->journal_info
= NULL
;
7359 * If this errors out it's because we couldn't invalidate pagecache for
7360 * this range and we need to fallback to buffered.
7362 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7368 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
7375 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7376 * io. INLINE is special, and we could probably kludge it in here, but
7377 * it's still buffered so for safety lets just fall back to the generic
7380 * For COMPRESSED we _have_ to read the entire extent in so we can
7381 * decompress it, so there will be buffering required no matter what we
7382 * do, so go ahead and fallback to buffered.
7384 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7385 * to buffered IO. Don't blame me, this is the price we pay for using
7388 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7389 em
->block_start
== EXTENT_MAP_INLINE
) {
7390 free_extent_map(em
);
7396 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7397 dio_data
, start
, len
);
7401 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
7402 lockend
, &cached_state
);
7404 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7406 /* Can be negative only if we read from a hole */
7409 free_extent_map(em
);
7413 * We need to unlock only the end area that we aren't using.
7414 * The rest is going to be unlocked by the endio routine.
7416 lockstart
= start
+ bh_result
->b_size
;
7417 if (lockstart
< lockend
) {
7418 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7419 lockstart
, lockend
, &cached_state
);
7421 free_extent_state(cached_state
);
7425 free_extent_map(em
);
7430 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7434 current
->journal_info
= dio_data
;
7438 static void btrfs_dio_private_put(struct btrfs_dio_private
*dip
)
7441 * This implies a barrier so that stores to dio_bio->bi_status before
7442 * this and loads of dio_bio->bi_status after this are fully ordered.
7444 if (!refcount_dec_and_test(&dip
->refs
))
7447 if (bio_op(dip
->dio_bio
) == REQ_OP_WRITE
) {
7448 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
7450 !dip
->dio_bio
->bi_status
);
7452 unlock_extent(&BTRFS_I(dip
->inode
)->io_tree
,
7453 dip
->logical_offset
,
7454 dip
->logical_offset
+ dip
->bytes
- 1);
7457 dio_end_io(dip
->dio_bio
);
7461 static blk_status_t
submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7463 unsigned long bio_flags
)
7465 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7466 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7469 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7471 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7475 refcount_inc(&dip
->refs
);
7476 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
7478 refcount_dec(&dip
->refs
);
7482 static blk_status_t
btrfs_check_read_dio_bio(struct inode
*inode
,
7483 struct btrfs_io_bio
*io_bio
,
7484 const bool uptodate
)
7486 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7487 const u32 sectorsize
= fs_info
->sectorsize
;
7488 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7489 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7490 const bool csum
= !(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
);
7491 struct bio_vec bvec
;
7492 struct bvec_iter iter
;
7493 u64 start
= io_bio
->logical
;
7495 blk_status_t err
= BLK_STS_OK
;
7497 __bio_for_each_segment(bvec
, &io_bio
->bio
, iter
, io_bio
->iter
) {
7498 unsigned int i
, nr_sectors
, pgoff
;
7500 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7501 pgoff
= bvec
.bv_offset
;
7502 for (i
= 0; i
< nr_sectors
; i
++) {
7503 ASSERT(pgoff
< PAGE_SIZE
);
7505 (!csum
|| !check_data_csum(inode
, io_bio
, icsum
,
7506 bvec
.bv_page
, pgoff
,
7507 start
, sectorsize
))) {
7508 clean_io_failure(fs_info
, failure_tree
, io_tree
,
7509 start
, bvec
.bv_page
,
7510 btrfs_ino(BTRFS_I(inode
)),
7513 blk_status_t status
;
7515 status
= btrfs_submit_read_repair(inode
,
7517 start
- io_bio
->logical
,
7518 bvec
.bv_page
, pgoff
,
7520 start
+ sectorsize
- 1,
7522 submit_dio_repair_bio
);
7526 start
+= sectorsize
;
7528 pgoff
+= sectorsize
;
7534 static void __endio_write_update_ordered(struct inode
*inode
,
7535 const u64 offset
, const u64 bytes
,
7536 const bool uptodate
)
7538 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7539 struct btrfs_ordered_extent
*ordered
= NULL
;
7540 struct btrfs_workqueue
*wq
;
7541 u64 ordered_offset
= offset
;
7542 u64 ordered_bytes
= bytes
;
7545 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
7546 wq
= fs_info
->endio_freespace_worker
;
7548 wq
= fs_info
->endio_write_workers
;
7550 while (ordered_offset
< offset
+ bytes
) {
7551 last_offset
= ordered_offset
;
7552 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7556 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
,
7558 btrfs_queue_work(wq
, &ordered
->work
);
7561 * If btrfs_dec_test_ordered_pending does not find any ordered
7562 * extent in the range, we can exit.
7564 if (ordered_offset
== last_offset
)
7567 * Our bio might span multiple ordered extents. In this case
7568 * we keep going until we have accounted the whole dio.
7570 if (ordered_offset
< offset
+ bytes
) {
7571 ordered_bytes
= offset
+ bytes
- ordered_offset
;
7577 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
7578 struct bio
*bio
, u64 offset
)
7580 struct inode
*inode
= private_data
;
7582 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
7583 BUG_ON(ret
); /* -ENOMEM */
7587 static void btrfs_end_dio_bio(struct bio
*bio
)
7589 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7590 blk_status_t err
= bio
->bi_status
;
7593 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7594 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7595 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
7597 (unsigned long long)bio
->bi_iter
.bi_sector
,
7598 bio
->bi_iter
.bi_size
, err
);
7600 if (bio_op(bio
) == REQ_OP_READ
) {
7601 err
= btrfs_check_read_dio_bio(dip
->inode
, btrfs_io_bio(bio
),
7606 dip
->dio_bio
->bi_status
= err
;
7609 btrfs_dio_private_put(dip
);
7612 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
7613 struct inode
*inode
, u64 file_offset
, int async_submit
)
7615 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7616 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7617 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
7620 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7622 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7625 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7630 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
7633 if (write
&& async_submit
) {
7634 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
7636 btrfs_submit_bio_start_direct_io
);
7640 * If we aren't doing async submit, calculate the csum of the
7643 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
7649 csum_offset
= file_offset
- dip
->logical_offset
;
7650 csum_offset
>>= inode
->i_sb
->s_blocksize_bits
;
7651 csum_offset
*= btrfs_super_csum_size(fs_info
->super_copy
);
7652 btrfs_io_bio(bio
)->csum
= dip
->csums
+ csum_offset
;
7655 ret
= btrfs_map_bio(fs_info
, bio
, 0);
7661 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7662 * or ordered extents whether or not we submit any bios.
7664 static struct btrfs_dio_private
*btrfs_create_dio_private(struct bio
*dio_bio
,
7665 struct inode
*inode
,
7668 const bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
7669 const bool csum
= !(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
);
7671 struct btrfs_dio_private
*dip
;
7673 dip_size
= sizeof(*dip
);
7674 if (!write
&& csum
) {
7675 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7676 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
7679 nblocks
= dio_bio
->bi_iter
.bi_size
>> inode
->i_sb
->s_blocksize_bits
;
7680 dip_size
+= csum_size
* nblocks
;
7683 dip
= kzalloc(dip_size
, GFP_NOFS
);
7688 dip
->logical_offset
= file_offset
;
7689 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
7690 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
7691 dip
->dio_bio
= dio_bio
;
7692 refcount_set(&dip
->refs
, 1);
7695 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
7698 * Setting range start and end to the same value means that
7699 * no cleanup will happen in btrfs_direct_IO
7701 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
7703 dio_data
->unsubmitted_oe_range_start
=
7704 dio_data
->unsubmitted_oe_range_end
;
7709 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
7712 const bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
7713 const bool csum
= !(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
);
7714 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7715 const bool raid56
= (btrfs_data_alloc_profile(fs_info
) &
7716 BTRFS_BLOCK_GROUP_RAID56_MASK
);
7717 struct btrfs_dio_private
*dip
;
7720 int async_submit
= 0;
7722 int clone_offset
= 0;
7725 blk_status_t status
;
7726 struct btrfs_io_geometry geom
;
7728 dip
= btrfs_create_dio_private(dio_bio
, inode
, file_offset
);
7731 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
7732 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
7734 dio_bio
->bi_status
= BLK_STS_RESOURCE
;
7735 dio_end_io(dio_bio
);
7739 if (!write
&& csum
) {
7741 * Load the csums up front to reduce csum tree searches and
7742 * contention when submitting bios.
7744 status
= btrfs_lookup_bio_sums(inode
, dio_bio
, file_offset
,
7746 if (status
!= BLK_STS_OK
)
7750 start_sector
= dio_bio
->bi_iter
.bi_sector
;
7751 submit_len
= dio_bio
->bi_iter
.bi_size
;
7754 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(dio_bio
),
7755 start_sector
<< 9, submit_len
,
7758 status
= errno_to_blk_status(ret
);
7761 ASSERT(geom
.len
<= INT_MAX
);
7763 clone_len
= min_t(int, submit_len
, geom
.len
);
7766 * This will never fail as it's passing GPF_NOFS and
7767 * the allocation is backed by btrfs_bioset.
7769 bio
= btrfs_bio_clone_partial(dio_bio
, clone_offset
, clone_len
);
7770 bio
->bi_private
= dip
;
7771 bio
->bi_end_io
= btrfs_end_dio_bio
;
7772 btrfs_io_bio(bio
)->logical
= file_offset
;
7774 ASSERT(submit_len
>= clone_len
);
7775 submit_len
-= clone_len
;
7778 * Increase the count before we submit the bio so we know
7779 * the end IO handler won't happen before we increase the
7780 * count. Otherwise, the dip might get freed before we're
7781 * done setting it up.
7783 * We transfer the initial reference to the last bio, so we
7784 * don't need to increment the reference count for the last one.
7786 if (submit_len
> 0) {
7787 refcount_inc(&dip
->refs
);
7789 * If we are submitting more than one bio, submit them
7790 * all asynchronously. The exception is RAID 5 or 6, as
7791 * asynchronous checksums make it difficult to collect
7792 * full stripe writes.
7798 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
7803 refcount_dec(&dip
->refs
);
7807 clone_offset
+= clone_len
;
7808 start_sector
+= clone_len
>> 9;
7809 file_offset
+= clone_len
;
7810 } while (submit_len
> 0);
7814 dip
->dio_bio
->bi_status
= status
;
7815 btrfs_dio_private_put(dip
);
7818 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
7819 const struct iov_iter
*iter
, loff_t offset
)
7823 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
7824 ssize_t retval
= -EINVAL
;
7826 if (offset
& blocksize_mask
)
7829 if (iov_iter_alignment(iter
) & blocksize_mask
)
7832 /* If this is a write we don't need to check anymore */
7833 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
7836 * Check to make sure we don't have duplicate iov_base's in this
7837 * iovec, if so return EINVAL, otherwise we'll get csum errors
7838 * when reading back.
7840 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
7841 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
7842 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
7851 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
7853 struct file
*file
= iocb
->ki_filp
;
7854 struct inode
*inode
= file
->f_mapping
->host
;
7855 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7856 struct btrfs_dio_data dio_data
= { 0 };
7857 struct extent_changeset
*data_reserved
= NULL
;
7858 loff_t offset
= iocb
->ki_pos
;
7862 bool relock
= false;
7865 if (check_direct_IO(fs_info
, iter
, offset
))
7868 inode_dio_begin(inode
);
7871 * The generic stuff only does filemap_write_and_wait_range, which
7872 * isn't enough if we've written compressed pages to this area, so
7873 * we need to flush the dirty pages again to make absolutely sure
7874 * that any outstanding dirty pages are on disk.
7876 count
= iov_iter_count(iter
);
7877 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
7878 &BTRFS_I(inode
)->runtime_flags
))
7879 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
7880 offset
+ count
- 1);
7882 if (iov_iter_rw(iter
) == WRITE
) {
7884 * If the write DIO is beyond the EOF, we need update
7885 * the isize, but it is protected by i_mutex. So we can
7886 * not unlock the i_mutex at this case.
7888 if (offset
+ count
<= inode
->i_size
) {
7889 dio_data
.overwrite
= 1;
7890 inode_unlock(inode
);
7893 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
7899 * We need to know how many extents we reserved so that we can
7900 * do the accounting properly if we go over the number we
7901 * originally calculated. Abuse current->journal_info for this.
7903 dio_data
.reserve
= round_up(count
,
7904 fs_info
->sectorsize
);
7905 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
7906 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
7907 current
->journal_info
= &dio_data
;
7908 down_read(&BTRFS_I(inode
)->dio_sem
);
7909 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
7910 &BTRFS_I(inode
)->runtime_flags
)) {
7911 inode_dio_end(inode
);
7912 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
7916 ret
= __blockdev_direct_IO(iocb
, inode
,
7917 fs_info
->fs_devices
->latest_bdev
,
7918 iter
, btrfs_get_blocks_direct
, NULL
,
7919 btrfs_submit_direct
, flags
);
7920 if (iov_iter_rw(iter
) == WRITE
) {
7921 up_read(&BTRFS_I(inode
)->dio_sem
);
7922 current
->journal_info
= NULL
;
7923 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
7924 if (dio_data
.reserve
)
7925 btrfs_delalloc_release_space(inode
, data_reserved
,
7926 offset
, dio_data
.reserve
, true);
7928 * On error we might have left some ordered extents
7929 * without submitting corresponding bios for them, so
7930 * cleanup them up to avoid other tasks getting them
7931 * and waiting for them to complete forever.
7933 if (dio_data
.unsubmitted_oe_range_start
<
7934 dio_data
.unsubmitted_oe_range_end
)
7935 __endio_write_update_ordered(inode
,
7936 dio_data
.unsubmitted_oe_range_start
,
7937 dio_data
.unsubmitted_oe_range_end
-
7938 dio_data
.unsubmitted_oe_range_start
,
7940 } else if (ret
>= 0 && (size_t)ret
< count
)
7941 btrfs_delalloc_release_space(inode
, data_reserved
,
7942 offset
, count
- (size_t)ret
, true);
7943 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
7947 inode_dio_end(inode
);
7951 extent_changeset_free(data_reserved
);
7955 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
7956 __u64 start
, __u64 len
)
7960 ret
= fiemap_prep(inode
, fieinfo
, start
, &len
, 0);
7964 return extent_fiemap(inode
, fieinfo
, start
, len
);
7967 int btrfs_readpage(struct file
*file
, struct page
*page
)
7969 return extent_read_full_page(page
, btrfs_get_extent
, 0);
7972 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
7974 struct inode
*inode
= page
->mapping
->host
;
7977 if (current
->flags
& PF_MEMALLOC
) {
7978 redirty_page_for_writepage(wbc
, page
);
7984 * If we are under memory pressure we will call this directly from the
7985 * VM, we need to make sure we have the inode referenced for the ordered
7986 * extent. If not just return like we didn't do anything.
7988 if (!igrab(inode
)) {
7989 redirty_page_for_writepage(wbc
, page
);
7990 return AOP_WRITEPAGE_ACTIVATE
;
7992 ret
= extent_write_full_page(page
, wbc
);
7993 btrfs_add_delayed_iput(inode
);
7997 static int btrfs_writepages(struct address_space
*mapping
,
7998 struct writeback_control
*wbc
)
8000 return extent_writepages(mapping
, wbc
);
8003 static void btrfs_readahead(struct readahead_control
*rac
)
8005 extent_readahead(rac
);
8008 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8010 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8012 detach_page_private(page
);
8016 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8018 if (PageWriteback(page
) || PageDirty(page
))
8020 return __btrfs_releasepage(page
, gfp_flags
);
8023 #ifdef CONFIG_MIGRATION
8024 static int btrfs_migratepage(struct address_space
*mapping
,
8025 struct page
*newpage
, struct page
*page
,
8026 enum migrate_mode mode
)
8030 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
8031 if (ret
!= MIGRATEPAGE_SUCCESS
)
8034 if (page_has_private(page
))
8035 attach_page_private(newpage
, detach_page_private(page
));
8037 if (PagePrivate2(page
)) {
8038 ClearPagePrivate2(page
);
8039 SetPagePrivate2(newpage
);
8042 if (mode
!= MIGRATE_SYNC_NO_COPY
)
8043 migrate_page_copy(newpage
, page
);
8045 migrate_page_states(newpage
, page
);
8046 return MIGRATEPAGE_SUCCESS
;
8050 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8051 unsigned int length
)
8053 struct inode
*inode
= page
->mapping
->host
;
8054 struct extent_io_tree
*tree
;
8055 struct btrfs_ordered_extent
*ordered
;
8056 struct extent_state
*cached_state
= NULL
;
8057 u64 page_start
= page_offset(page
);
8058 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8061 int inode_evicting
= inode
->i_state
& I_FREEING
;
8064 * we have the page locked, so new writeback can't start,
8065 * and the dirty bit won't be cleared while we are here.
8067 * Wait for IO on this page so that we can safely clear
8068 * the PagePrivate2 bit and do ordered accounting
8070 wait_on_page_writeback(page
);
8072 tree
= &BTRFS_I(inode
)->io_tree
;
8074 btrfs_releasepage(page
, GFP_NOFS
);
8078 if (!inode_evicting
)
8079 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8082 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8083 page_end
- start
+ 1);
8086 ordered
->file_offset
+ ordered
->num_bytes
- 1);
8088 * IO on this page will never be started, so we need
8089 * to account for any ordered extents now
8091 if (!inode_evicting
)
8092 clear_extent_bit(tree
, start
, end
,
8093 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8094 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8095 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8097 * whoever cleared the private bit is responsible
8098 * for the finish_ordered_io
8100 if (TestClearPagePrivate2(page
)) {
8101 struct btrfs_ordered_inode_tree
*tree
;
8104 tree
= &BTRFS_I(inode
)->ordered_tree
;
8106 spin_lock_irq(&tree
->lock
);
8107 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8108 new_len
= start
- ordered
->file_offset
;
8109 if (new_len
< ordered
->truncated_len
)
8110 ordered
->truncated_len
= new_len
;
8111 spin_unlock_irq(&tree
->lock
);
8113 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8115 end
- start
+ 1, 1))
8116 btrfs_finish_ordered_io(ordered
);
8118 btrfs_put_ordered_extent(ordered
);
8119 if (!inode_evicting
) {
8120 cached_state
= NULL
;
8121 lock_extent_bits(tree
, start
, end
,
8126 if (start
< page_end
)
8131 * Qgroup reserved space handler
8132 * Page here will be either
8133 * 1) Already written to disk
8134 * In this case, its reserved space is released from data rsv map
8135 * and will be freed by delayed_ref handler finally.
8136 * So even we call qgroup_free_data(), it won't decrease reserved
8138 * 2) Not written to disk
8139 * This means the reserved space should be freed here. However,
8140 * if a truncate invalidates the page (by clearing PageDirty)
8141 * and the page is accounted for while allocating extent
8142 * in btrfs_check_data_free_space() we let delayed_ref to
8143 * free the entire extent.
8145 if (PageDirty(page
))
8146 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8147 if (!inode_evicting
) {
8148 clear_extent_bit(tree
, page_start
, page_end
, EXTENT_LOCKED
|
8149 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8150 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8153 __btrfs_releasepage(page
, GFP_NOFS
);
8156 ClearPageChecked(page
);
8157 detach_page_private(page
);
8161 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8162 * called from a page fault handler when a page is first dirtied. Hence we must
8163 * be careful to check for EOF conditions here. We set the page up correctly
8164 * for a written page which means we get ENOSPC checking when writing into
8165 * holes and correct delalloc and unwritten extent mapping on filesystems that
8166 * support these features.
8168 * We are not allowed to take the i_mutex here so we have to play games to
8169 * protect against truncate races as the page could now be beyond EOF. Because
8170 * truncate_setsize() writes the inode size before removing pages, once we have
8171 * the page lock we can determine safely if the page is beyond EOF. If it is not
8172 * beyond EOF, then the page is guaranteed safe against truncation until we
8175 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8177 struct page
*page
= vmf
->page
;
8178 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8179 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8180 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8181 struct btrfs_ordered_extent
*ordered
;
8182 struct extent_state
*cached_state
= NULL
;
8183 struct extent_changeset
*data_reserved
= NULL
;
8185 unsigned long zero_start
;
8195 reserved_space
= PAGE_SIZE
;
8197 sb_start_pagefault(inode
->i_sb
);
8198 page_start
= page_offset(page
);
8199 page_end
= page_start
+ PAGE_SIZE
- 1;
8203 * Reserving delalloc space after obtaining the page lock can lead to
8204 * deadlock. For example, if a dirty page is locked by this function
8205 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8206 * dirty page write out, then the btrfs_writepage() function could
8207 * end up waiting indefinitely to get a lock on the page currently
8208 * being processed by btrfs_page_mkwrite() function.
8210 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8213 ret2
= file_update_time(vmf
->vma
->vm_file
);
8217 ret
= vmf_error(ret2
);
8223 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8226 size
= i_size_read(inode
);
8228 if ((page
->mapping
!= inode
->i_mapping
) ||
8229 (page_start
>= size
)) {
8230 /* page got truncated out from underneath us */
8233 wait_on_page_writeback(page
);
8235 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8236 set_page_extent_mapped(page
);
8239 * we can't set the delalloc bits if there are pending ordered
8240 * extents. Drop our locks and wait for them to finish
8242 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8245 unlock_extent_cached(io_tree
, page_start
, page_end
,
8248 btrfs_start_ordered_extent(inode
, ordered
, 1);
8249 btrfs_put_ordered_extent(ordered
);
8253 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8254 reserved_space
= round_up(size
- page_start
,
8255 fs_info
->sectorsize
);
8256 if (reserved_space
< PAGE_SIZE
) {
8257 end
= page_start
+ reserved_space
- 1;
8258 btrfs_delalloc_release_space(inode
, data_reserved
,
8259 page_start
, PAGE_SIZE
- reserved_space
,
8265 * page_mkwrite gets called when the page is firstly dirtied after it's
8266 * faulted in, but write(2) could also dirty a page and set delalloc
8267 * bits, thus in this case for space account reason, we still need to
8268 * clear any delalloc bits within this page range since we have to
8269 * reserve data&meta space before lock_page() (see above comments).
8271 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8272 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8273 EXTENT_DEFRAG
, 0, 0, &cached_state
);
8275 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8278 unlock_extent_cached(io_tree
, page_start
, page_end
,
8280 ret
= VM_FAULT_SIGBUS
;
8284 /* page is wholly or partially inside EOF */
8285 if (page_start
+ PAGE_SIZE
> size
)
8286 zero_start
= offset_in_page(size
);
8288 zero_start
= PAGE_SIZE
;
8290 if (zero_start
!= PAGE_SIZE
) {
8292 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8293 flush_dcache_page(page
);
8296 ClearPageChecked(page
);
8297 set_page_dirty(page
);
8298 SetPageUptodate(page
);
8300 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8301 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8302 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8304 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8306 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8307 sb_end_pagefault(inode
->i_sb
);
8308 extent_changeset_free(data_reserved
);
8309 return VM_FAULT_LOCKED
;
8314 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8315 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8316 reserved_space
, (ret
!= 0));
8318 sb_end_pagefault(inode
->i_sb
);
8319 extent_changeset_free(data_reserved
);
8323 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8325 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8327 struct btrfs_block_rsv
*rsv
;
8329 struct btrfs_trans_handle
*trans
;
8330 u64 mask
= fs_info
->sectorsize
- 1;
8331 u64 min_size
= btrfs_calc_metadata_size(fs_info
, 1);
8333 if (!skip_writeback
) {
8334 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8341 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8342 * things going on here:
8344 * 1) We need to reserve space to update our inode.
8346 * 2) We need to have something to cache all the space that is going to
8347 * be free'd up by the truncate operation, but also have some slack
8348 * space reserved in case it uses space during the truncate (thank you
8349 * very much snapshotting).
8351 * And we need these to be separate. The fact is we can use a lot of
8352 * space doing the truncate, and we have no earthly idea how much space
8353 * we will use, so we need the truncate reservation to be separate so it
8354 * doesn't end up using space reserved for updating the inode. We also
8355 * need to be able to stop the transaction and start a new one, which
8356 * means we need to be able to update the inode several times, and we
8357 * have no idea of knowing how many times that will be, so we can't just
8358 * reserve 1 item for the entirety of the operation, so that has to be
8359 * done separately as well.
8361 * So that leaves us with
8363 * 1) rsv - for the truncate reservation, which we will steal from the
8364 * transaction reservation.
8365 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8366 * updating the inode.
8368 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
8371 rsv
->size
= min_size
;
8375 * 1 for the truncate slack space
8376 * 1 for updating the inode.
8378 trans
= btrfs_start_transaction(root
, 2);
8379 if (IS_ERR(trans
)) {
8380 ret
= PTR_ERR(trans
);
8384 /* Migrate the slack space for the truncate to our reserve */
8385 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
8390 * So if we truncate and then write and fsync we normally would just
8391 * write the extents that changed, which is a problem if we need to
8392 * first truncate that entire inode. So set this flag so we write out
8393 * all of the extents in the inode to the sync log so we're completely
8396 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8397 trans
->block_rsv
= rsv
;
8400 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
8402 BTRFS_EXTENT_DATA_KEY
);
8403 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8404 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
8407 ret
= btrfs_update_inode(trans
, root
, inode
);
8411 btrfs_end_transaction(trans
);
8412 btrfs_btree_balance_dirty(fs_info
);
8414 trans
= btrfs_start_transaction(root
, 2);
8415 if (IS_ERR(trans
)) {
8416 ret
= PTR_ERR(trans
);
8421 btrfs_block_rsv_release(fs_info
, rsv
, -1, NULL
);
8422 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
8423 rsv
, min_size
, false);
8424 BUG_ON(ret
); /* shouldn't happen */
8425 trans
->block_rsv
= rsv
;
8429 * We can't call btrfs_truncate_block inside a trans handle as we could
8430 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8431 * we've truncated everything except the last little bit, and can do
8432 * btrfs_truncate_block and then update the disk_i_size.
8434 if (ret
== NEED_TRUNCATE_BLOCK
) {
8435 btrfs_end_transaction(trans
);
8436 btrfs_btree_balance_dirty(fs_info
);
8438 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
8441 trans
= btrfs_start_transaction(root
, 1);
8442 if (IS_ERR(trans
)) {
8443 ret
= PTR_ERR(trans
);
8446 btrfs_inode_safe_disk_i_size_write(inode
, 0);
8452 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8453 ret2
= btrfs_update_inode(trans
, root
, inode
);
8457 ret2
= btrfs_end_transaction(trans
);
8460 btrfs_btree_balance_dirty(fs_info
);
8463 btrfs_free_block_rsv(fs_info
, rsv
);
8469 * create a new subvolume directory/inode (helper for the ioctl).
8471 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8472 struct btrfs_root
*new_root
,
8473 struct btrfs_root
*parent_root
,
8476 struct inode
*inode
;
8480 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8481 new_dirid
, new_dirid
,
8482 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8485 return PTR_ERR(inode
);
8486 inode
->i_op
= &btrfs_dir_inode_operations
;
8487 inode
->i_fop
= &btrfs_dir_file_operations
;
8489 set_nlink(inode
, 1);
8490 btrfs_i_size_write(BTRFS_I(inode
), 0);
8491 unlock_new_inode(inode
);
8493 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8495 btrfs_err(new_root
->fs_info
,
8496 "error inheriting subvolume %llu properties: %d",
8497 new_root
->root_key
.objectid
, err
);
8499 err
= btrfs_update_inode(trans
, new_root
, inode
);
8505 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8507 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
8508 struct btrfs_inode
*ei
;
8509 struct inode
*inode
;
8511 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
8518 ei
->last_sub_trans
= 0;
8519 ei
->logged_trans
= 0;
8520 ei
->delalloc_bytes
= 0;
8521 ei
->new_delalloc_bytes
= 0;
8522 ei
->defrag_bytes
= 0;
8523 ei
->disk_i_size
= 0;
8526 ei
->index_cnt
= (u64
)-1;
8528 ei
->last_unlink_trans
= 0;
8529 ei
->last_log_commit
= 0;
8531 spin_lock_init(&ei
->lock
);
8532 ei
->outstanding_extents
= 0;
8533 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
8534 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
8535 BTRFS_BLOCK_RSV_DELALLOC
);
8536 ei
->runtime_flags
= 0;
8537 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
8538 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
8540 ei
->delayed_node
= NULL
;
8542 ei
->i_otime
.tv_sec
= 0;
8543 ei
->i_otime
.tv_nsec
= 0;
8545 inode
= &ei
->vfs_inode
;
8546 extent_map_tree_init(&ei
->extent_tree
);
8547 extent_io_tree_init(fs_info
, &ei
->io_tree
, IO_TREE_INODE_IO
, inode
);
8548 extent_io_tree_init(fs_info
, &ei
->io_failure_tree
,
8549 IO_TREE_INODE_IO_FAILURE
, inode
);
8550 extent_io_tree_init(fs_info
, &ei
->file_extent_tree
,
8551 IO_TREE_INODE_FILE_EXTENT
, inode
);
8552 ei
->io_tree
.track_uptodate
= true;
8553 ei
->io_failure_tree
.track_uptodate
= true;
8554 atomic_set(&ei
->sync_writers
, 0);
8555 mutex_init(&ei
->log_mutex
);
8556 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8557 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8558 INIT_LIST_HEAD(&ei
->delayed_iput
);
8559 RB_CLEAR_NODE(&ei
->rb_node
);
8560 init_rwsem(&ei
->dio_sem
);
8565 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8566 void btrfs_test_destroy_inode(struct inode
*inode
)
8568 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8569 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8573 void btrfs_free_inode(struct inode
*inode
)
8575 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8578 void btrfs_destroy_inode(struct inode
*inode
)
8580 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8581 struct btrfs_ordered_extent
*ordered
;
8582 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8584 WARN_ON(!hlist_empty(&inode
->i_dentry
));
8585 WARN_ON(inode
->i_data
.nrpages
);
8586 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
8587 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
8588 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
8589 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
8590 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
8591 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
8592 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
8595 * This can happen where we create an inode, but somebody else also
8596 * created the same inode and we need to destroy the one we already
8603 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8608 "found ordered extent %llu %llu on inode cleanup",
8609 ordered
->file_offset
, ordered
->num_bytes
);
8610 btrfs_remove_ordered_extent(inode
, ordered
);
8611 btrfs_put_ordered_extent(ordered
);
8612 btrfs_put_ordered_extent(ordered
);
8615 btrfs_qgroup_check_reserved_leak(inode
);
8616 inode_tree_del(inode
);
8617 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8618 btrfs_inode_clear_file_extent_range(BTRFS_I(inode
), 0, (u64
)-1);
8619 btrfs_put_root(BTRFS_I(inode
)->root
);
8622 int btrfs_drop_inode(struct inode
*inode
)
8624 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8629 /* the snap/subvol tree is on deleting */
8630 if (btrfs_root_refs(&root
->root_item
) == 0)
8633 return generic_drop_inode(inode
);
8636 static void init_once(void *foo
)
8638 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8640 inode_init_once(&ei
->vfs_inode
);
8643 void __cold
btrfs_destroy_cachep(void)
8646 * Make sure all delayed rcu free inodes are flushed before we
8650 kmem_cache_destroy(btrfs_inode_cachep
);
8651 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8652 kmem_cache_destroy(btrfs_path_cachep
);
8653 kmem_cache_destroy(btrfs_free_space_cachep
);
8654 kmem_cache_destroy(btrfs_free_space_bitmap_cachep
);
8657 int __init
btrfs_init_cachep(void)
8659 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8660 sizeof(struct btrfs_inode
), 0,
8661 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
8663 if (!btrfs_inode_cachep
)
8666 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8667 sizeof(struct btrfs_trans_handle
), 0,
8668 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
8669 if (!btrfs_trans_handle_cachep
)
8672 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8673 sizeof(struct btrfs_path
), 0,
8674 SLAB_MEM_SPREAD
, NULL
);
8675 if (!btrfs_path_cachep
)
8678 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8679 sizeof(struct btrfs_free_space
), 0,
8680 SLAB_MEM_SPREAD
, NULL
);
8681 if (!btrfs_free_space_cachep
)
8684 btrfs_free_space_bitmap_cachep
= kmem_cache_create("btrfs_free_space_bitmap",
8685 PAGE_SIZE
, PAGE_SIZE
,
8686 SLAB_RED_ZONE
, NULL
);
8687 if (!btrfs_free_space_bitmap_cachep
)
8692 btrfs_destroy_cachep();
8696 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
8697 u32 request_mask
, unsigned int flags
)
8700 struct inode
*inode
= d_inode(path
->dentry
);
8701 u32 blocksize
= inode
->i_sb
->s_blocksize
;
8702 u32 bi_flags
= BTRFS_I(inode
)->flags
;
8704 stat
->result_mask
|= STATX_BTIME
;
8705 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
8706 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
8707 if (bi_flags
& BTRFS_INODE_APPEND
)
8708 stat
->attributes
|= STATX_ATTR_APPEND
;
8709 if (bi_flags
& BTRFS_INODE_COMPRESS
)
8710 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
8711 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
8712 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
8713 if (bi_flags
& BTRFS_INODE_NODUMP
)
8714 stat
->attributes
|= STATX_ATTR_NODUMP
;
8716 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
8717 STATX_ATTR_COMPRESSED
|
8718 STATX_ATTR_IMMUTABLE
|
8721 generic_fillattr(inode
, stat
);
8722 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
8724 spin_lock(&BTRFS_I(inode
)->lock
);
8725 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
8726 spin_unlock(&BTRFS_I(inode
)->lock
);
8727 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
8728 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
8732 static int btrfs_rename_exchange(struct inode
*old_dir
,
8733 struct dentry
*old_dentry
,
8734 struct inode
*new_dir
,
8735 struct dentry
*new_dentry
)
8737 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
8738 struct btrfs_trans_handle
*trans
;
8739 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
8740 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
8741 struct inode
*new_inode
= new_dentry
->d_inode
;
8742 struct inode
*old_inode
= old_dentry
->d_inode
;
8743 struct timespec64 ctime
= current_time(old_inode
);
8744 struct dentry
*parent
;
8745 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
8746 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
8750 bool root_log_pinned
= false;
8751 bool dest_log_pinned
= false;
8752 struct btrfs_log_ctx ctx_root
;
8753 struct btrfs_log_ctx ctx_dest
;
8754 bool sync_log_root
= false;
8755 bool sync_log_dest
= false;
8756 bool commit_transaction
= false;
8758 /* we only allow rename subvolume link between subvolumes */
8759 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8762 btrfs_init_log_ctx(&ctx_root
, old_inode
);
8763 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
8765 /* close the race window with snapshot create/destroy ioctl */
8766 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
||
8767 new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8768 down_read(&fs_info
->subvol_sem
);
8771 * We want to reserve the absolute worst case amount of items. So if
8772 * both inodes are subvols and we need to unlink them then that would
8773 * require 4 item modifications, but if they are both normal inodes it
8774 * would require 5 item modifications, so we'll assume their normal
8775 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8776 * should cover the worst case number of items we'll modify.
8778 trans
= btrfs_start_transaction(root
, 12);
8779 if (IS_ERR(trans
)) {
8780 ret
= PTR_ERR(trans
);
8785 btrfs_record_root_in_trans(trans
, dest
);
8788 * We need to find a free sequence number both in the source and
8789 * in the destination directory for the exchange.
8791 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
8794 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
8798 BTRFS_I(old_inode
)->dir_index
= 0ULL;
8799 BTRFS_I(new_inode
)->dir_index
= 0ULL;
8801 /* Reference for the source. */
8802 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8803 /* force full log commit if subvolume involved. */
8804 btrfs_set_log_full_commit(trans
);
8806 btrfs_pin_log_trans(root
);
8807 root_log_pinned
= true;
8808 ret
= btrfs_insert_inode_ref(trans
, dest
,
8809 new_dentry
->d_name
.name
,
8810 new_dentry
->d_name
.len
,
8812 btrfs_ino(BTRFS_I(new_dir
)),
8818 /* And now for the dest. */
8819 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8820 /* force full log commit if subvolume involved. */
8821 btrfs_set_log_full_commit(trans
);
8823 btrfs_pin_log_trans(dest
);
8824 dest_log_pinned
= true;
8825 ret
= btrfs_insert_inode_ref(trans
, root
,
8826 old_dentry
->d_name
.name
,
8827 old_dentry
->d_name
.len
,
8829 btrfs_ino(BTRFS_I(old_dir
)),
8835 /* Update inode version and ctime/mtime. */
8836 inode_inc_iversion(old_dir
);
8837 inode_inc_iversion(new_dir
);
8838 inode_inc_iversion(old_inode
);
8839 inode_inc_iversion(new_inode
);
8840 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
8841 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
8842 old_inode
->i_ctime
= ctime
;
8843 new_inode
->i_ctime
= ctime
;
8845 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
8846 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
8847 BTRFS_I(old_inode
), 1);
8848 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
8849 BTRFS_I(new_inode
), 1);
8852 /* src is a subvolume */
8853 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8854 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
8855 } else { /* src is an inode */
8856 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
8857 BTRFS_I(old_dentry
->d_inode
),
8858 old_dentry
->d_name
.name
,
8859 old_dentry
->d_name
.len
);
8861 ret
= btrfs_update_inode(trans
, root
, old_inode
);
8864 btrfs_abort_transaction(trans
, ret
);
8868 /* dest is a subvolume */
8869 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8870 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
8871 } else { /* dest is an inode */
8872 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
8873 BTRFS_I(new_dentry
->d_inode
),
8874 new_dentry
->d_name
.name
,
8875 new_dentry
->d_name
.len
);
8877 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
8880 btrfs_abort_transaction(trans
, ret
);
8884 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
8885 new_dentry
->d_name
.name
,
8886 new_dentry
->d_name
.len
, 0, old_idx
);
8888 btrfs_abort_transaction(trans
, ret
);
8892 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
8893 old_dentry
->d_name
.name
,
8894 old_dentry
->d_name
.len
, 0, new_idx
);
8896 btrfs_abort_transaction(trans
, ret
);
8900 if (old_inode
->i_nlink
== 1)
8901 BTRFS_I(old_inode
)->dir_index
= old_idx
;
8902 if (new_inode
->i_nlink
== 1)
8903 BTRFS_I(new_inode
)->dir_index
= new_idx
;
8905 if (root_log_pinned
) {
8906 parent
= new_dentry
->d_parent
;
8907 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
8908 BTRFS_I(old_dir
), parent
,
8910 if (ret
== BTRFS_NEED_LOG_SYNC
)
8911 sync_log_root
= true;
8912 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
8913 commit_transaction
= true;
8915 btrfs_end_log_trans(root
);
8916 root_log_pinned
= false;
8918 if (dest_log_pinned
) {
8919 if (!commit_transaction
) {
8920 parent
= old_dentry
->d_parent
;
8921 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
8922 BTRFS_I(new_dir
), parent
,
8924 if (ret
== BTRFS_NEED_LOG_SYNC
)
8925 sync_log_dest
= true;
8926 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
8927 commit_transaction
= true;
8930 btrfs_end_log_trans(dest
);
8931 dest_log_pinned
= false;
8935 * If we have pinned a log and an error happened, we unpin tasks
8936 * trying to sync the log and force them to fallback to a transaction
8937 * commit if the log currently contains any of the inodes involved in
8938 * this rename operation (to ensure we do not persist a log with an
8939 * inconsistent state for any of these inodes or leading to any
8940 * inconsistencies when replayed). If the transaction was aborted, the
8941 * abortion reason is propagated to userspace when attempting to commit
8942 * the transaction. If the log does not contain any of these inodes, we
8943 * allow the tasks to sync it.
8945 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
8946 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
8947 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
8948 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
8950 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
8951 btrfs_set_log_full_commit(trans
);
8953 if (root_log_pinned
) {
8954 btrfs_end_log_trans(root
);
8955 root_log_pinned
= false;
8957 if (dest_log_pinned
) {
8958 btrfs_end_log_trans(dest
);
8959 dest_log_pinned
= false;
8962 if (!ret
&& sync_log_root
&& !commit_transaction
) {
8963 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
8966 commit_transaction
= true;
8968 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
8969 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
8972 commit_transaction
= true;
8974 if (commit_transaction
) {
8976 * We may have set commit_transaction when logging the new name
8977 * in the destination root, in which case we left the source
8978 * root context in the list of log contextes. So make sure we
8979 * remove it to avoid invalid memory accesses, since the context
8980 * was allocated in our stack frame.
8982 if (sync_log_root
) {
8983 mutex_lock(&root
->log_mutex
);
8984 list_del_init(&ctx_root
.list
);
8985 mutex_unlock(&root
->log_mutex
);
8987 ret
= btrfs_commit_transaction(trans
);
8991 ret2
= btrfs_end_transaction(trans
);
8992 ret
= ret
? ret
: ret2
;
8995 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
||
8996 old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8997 up_read(&fs_info
->subvol_sem
);
8999 ASSERT(list_empty(&ctx_root
.list
));
9000 ASSERT(list_empty(&ctx_dest
.list
));
9005 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9006 struct btrfs_root
*root
,
9008 struct dentry
*dentry
)
9011 struct inode
*inode
;
9015 ret
= btrfs_find_free_ino(root
, &objectid
);
9019 inode
= btrfs_new_inode(trans
, root
, dir
,
9020 dentry
->d_name
.name
,
9022 btrfs_ino(BTRFS_I(dir
)),
9024 S_IFCHR
| WHITEOUT_MODE
,
9027 if (IS_ERR(inode
)) {
9028 ret
= PTR_ERR(inode
);
9032 inode
->i_op
= &btrfs_special_inode_operations
;
9033 init_special_inode(inode
, inode
->i_mode
,
9036 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9041 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9042 BTRFS_I(inode
), 0, index
);
9046 ret
= btrfs_update_inode(trans
, root
, inode
);
9048 unlock_new_inode(inode
);
9050 inode_dec_link_count(inode
);
9056 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9057 struct inode
*new_dir
, struct dentry
*new_dentry
,
9060 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9061 struct btrfs_trans_handle
*trans
;
9062 unsigned int trans_num_items
;
9063 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9064 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9065 struct inode
*new_inode
= d_inode(new_dentry
);
9066 struct inode
*old_inode
= d_inode(old_dentry
);
9069 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9070 bool log_pinned
= false;
9071 struct btrfs_log_ctx ctx
;
9072 bool sync_log
= false;
9073 bool commit_transaction
= false;
9075 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9078 /* we only allow rename subvolume link between subvolumes */
9079 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9082 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9083 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9086 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9087 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9091 /* check for collisions, even if the name isn't there */
9092 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9093 new_dentry
->d_name
.name
,
9094 new_dentry
->d_name
.len
);
9097 if (ret
== -EEXIST
) {
9099 * eexist without a new_inode */
9100 if (WARN_ON(!new_inode
)) {
9104 /* maybe -EOVERFLOW */
9111 * we're using rename to replace one file with another. Start IO on it
9112 * now so we don't add too much work to the end of the transaction
9114 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9115 filemap_flush(old_inode
->i_mapping
);
9117 /* close the racy window with snapshot create/destroy ioctl */
9118 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9119 down_read(&fs_info
->subvol_sem
);
9121 * We want to reserve the absolute worst case amount of items. So if
9122 * both inodes are subvols and we need to unlink them then that would
9123 * require 4 item modifications, but if they are both normal inodes it
9124 * would require 5 item modifications, so we'll assume they are normal
9125 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9126 * should cover the worst case number of items we'll modify.
9127 * If our rename has the whiteout flag, we need more 5 units for the
9128 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9129 * when selinux is enabled).
9131 trans_num_items
= 11;
9132 if (flags
& RENAME_WHITEOUT
)
9133 trans_num_items
+= 5;
9134 trans
= btrfs_start_transaction(root
, trans_num_items
);
9135 if (IS_ERR(trans
)) {
9136 ret
= PTR_ERR(trans
);
9141 btrfs_record_root_in_trans(trans
, dest
);
9143 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9147 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9148 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9149 /* force full log commit if subvolume involved. */
9150 btrfs_set_log_full_commit(trans
);
9152 btrfs_pin_log_trans(root
);
9154 ret
= btrfs_insert_inode_ref(trans
, dest
,
9155 new_dentry
->d_name
.name
,
9156 new_dentry
->d_name
.len
,
9158 btrfs_ino(BTRFS_I(new_dir
)), index
);
9163 inode_inc_iversion(old_dir
);
9164 inode_inc_iversion(new_dir
);
9165 inode_inc_iversion(old_inode
);
9166 old_dir
->i_ctime
= old_dir
->i_mtime
=
9167 new_dir
->i_ctime
= new_dir
->i_mtime
=
9168 old_inode
->i_ctime
= current_time(old_dir
);
9170 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9171 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9172 BTRFS_I(old_inode
), 1);
9174 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9175 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9177 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9178 BTRFS_I(d_inode(old_dentry
)),
9179 old_dentry
->d_name
.name
,
9180 old_dentry
->d_name
.len
);
9182 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9185 btrfs_abort_transaction(trans
, ret
);
9190 inode_inc_iversion(new_inode
);
9191 new_inode
->i_ctime
= current_time(new_inode
);
9192 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9193 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9194 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9195 BUG_ON(new_inode
->i_nlink
== 0);
9197 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9198 BTRFS_I(d_inode(new_dentry
)),
9199 new_dentry
->d_name
.name
,
9200 new_dentry
->d_name
.len
);
9202 if (!ret
&& new_inode
->i_nlink
== 0)
9203 ret
= btrfs_orphan_add(trans
,
9204 BTRFS_I(d_inode(new_dentry
)));
9206 btrfs_abort_transaction(trans
, ret
);
9211 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9212 new_dentry
->d_name
.name
,
9213 new_dentry
->d_name
.len
, 0, index
);
9215 btrfs_abort_transaction(trans
, ret
);
9219 if (old_inode
->i_nlink
== 1)
9220 BTRFS_I(old_inode
)->dir_index
= index
;
9223 struct dentry
*parent
= new_dentry
->d_parent
;
9225 btrfs_init_log_ctx(&ctx
, old_inode
);
9226 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9227 BTRFS_I(old_dir
), parent
,
9229 if (ret
== BTRFS_NEED_LOG_SYNC
)
9231 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9232 commit_transaction
= true;
9234 btrfs_end_log_trans(root
);
9238 if (flags
& RENAME_WHITEOUT
) {
9239 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9243 btrfs_abort_transaction(trans
, ret
);
9249 * If we have pinned the log and an error happened, we unpin tasks
9250 * trying to sync the log and force them to fallback to a transaction
9251 * commit if the log currently contains any of the inodes involved in
9252 * this rename operation (to ensure we do not persist a log with an
9253 * inconsistent state for any of these inodes or leading to any
9254 * inconsistencies when replayed). If the transaction was aborted, the
9255 * abortion reason is propagated to userspace when attempting to commit
9256 * the transaction. If the log does not contain any of these inodes, we
9257 * allow the tasks to sync it.
9259 if (ret
&& log_pinned
) {
9260 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9261 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9262 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9264 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9265 btrfs_set_log_full_commit(trans
);
9267 btrfs_end_log_trans(root
);
9270 if (!ret
&& sync_log
) {
9271 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
9273 commit_transaction
= true;
9274 } else if (sync_log
) {
9275 mutex_lock(&root
->log_mutex
);
9276 list_del(&ctx
.list
);
9277 mutex_unlock(&root
->log_mutex
);
9279 if (commit_transaction
) {
9280 ret
= btrfs_commit_transaction(trans
);
9284 ret2
= btrfs_end_transaction(trans
);
9285 ret
= ret
? ret
: ret2
;
9288 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9289 up_read(&fs_info
->subvol_sem
);
9294 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9295 struct inode
*new_dir
, struct dentry
*new_dentry
,
9298 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9301 if (flags
& RENAME_EXCHANGE
)
9302 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9305 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9308 struct btrfs_delalloc_work
{
9309 struct inode
*inode
;
9310 struct completion completion
;
9311 struct list_head list
;
9312 struct btrfs_work work
;
9315 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9317 struct btrfs_delalloc_work
*delalloc_work
;
9318 struct inode
*inode
;
9320 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9322 inode
= delalloc_work
->inode
;
9323 filemap_flush(inode
->i_mapping
);
9324 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9325 &BTRFS_I(inode
)->runtime_flags
))
9326 filemap_flush(inode
->i_mapping
);
9329 complete(&delalloc_work
->completion
);
9332 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9334 struct btrfs_delalloc_work
*work
;
9336 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9340 init_completion(&work
->completion
);
9341 INIT_LIST_HEAD(&work
->list
);
9342 work
->inode
= inode
;
9343 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
9349 * some fairly slow code that needs optimization. This walks the list
9350 * of all the inodes with pending delalloc and forces them to disk.
9352 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
, bool snapshot
)
9354 struct btrfs_inode
*binode
;
9355 struct inode
*inode
;
9356 struct btrfs_delalloc_work
*work
, *next
;
9357 struct list_head works
;
9358 struct list_head splice
;
9361 INIT_LIST_HEAD(&works
);
9362 INIT_LIST_HEAD(&splice
);
9364 mutex_lock(&root
->delalloc_mutex
);
9365 spin_lock(&root
->delalloc_lock
);
9366 list_splice_init(&root
->delalloc_inodes
, &splice
);
9367 while (!list_empty(&splice
)) {
9368 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9371 list_move_tail(&binode
->delalloc_inodes
,
9372 &root
->delalloc_inodes
);
9373 inode
= igrab(&binode
->vfs_inode
);
9375 cond_resched_lock(&root
->delalloc_lock
);
9378 spin_unlock(&root
->delalloc_lock
);
9381 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
9382 &binode
->runtime_flags
);
9383 work
= btrfs_alloc_delalloc_work(inode
);
9389 list_add_tail(&work
->list
, &works
);
9390 btrfs_queue_work(root
->fs_info
->flush_workers
,
9393 if (nr
!= -1 && ret
>= nr
)
9396 spin_lock(&root
->delalloc_lock
);
9398 spin_unlock(&root
->delalloc_lock
);
9401 list_for_each_entry_safe(work
, next
, &works
, list
) {
9402 list_del_init(&work
->list
);
9403 wait_for_completion(&work
->completion
);
9407 if (!list_empty(&splice
)) {
9408 spin_lock(&root
->delalloc_lock
);
9409 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9410 spin_unlock(&root
->delalloc_lock
);
9412 mutex_unlock(&root
->delalloc_mutex
);
9416 int btrfs_start_delalloc_snapshot(struct btrfs_root
*root
)
9418 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9421 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9424 ret
= start_delalloc_inodes(root
, -1, true);
9430 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
9432 struct btrfs_root
*root
;
9433 struct list_head splice
;
9436 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9439 INIT_LIST_HEAD(&splice
);
9441 mutex_lock(&fs_info
->delalloc_root_mutex
);
9442 spin_lock(&fs_info
->delalloc_root_lock
);
9443 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9444 while (!list_empty(&splice
) && nr
) {
9445 root
= list_first_entry(&splice
, struct btrfs_root
,
9447 root
= btrfs_grab_root(root
);
9449 list_move_tail(&root
->delalloc_root
,
9450 &fs_info
->delalloc_roots
);
9451 spin_unlock(&fs_info
->delalloc_root_lock
);
9453 ret
= start_delalloc_inodes(root
, nr
, false);
9454 btrfs_put_root(root
);
9462 spin_lock(&fs_info
->delalloc_root_lock
);
9464 spin_unlock(&fs_info
->delalloc_root_lock
);
9468 if (!list_empty(&splice
)) {
9469 spin_lock(&fs_info
->delalloc_root_lock
);
9470 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9471 spin_unlock(&fs_info
->delalloc_root_lock
);
9473 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9477 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9478 const char *symname
)
9480 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9481 struct btrfs_trans_handle
*trans
;
9482 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9483 struct btrfs_path
*path
;
9484 struct btrfs_key key
;
9485 struct inode
*inode
= NULL
;
9492 struct btrfs_file_extent_item
*ei
;
9493 struct extent_buffer
*leaf
;
9495 name_len
= strlen(symname
);
9496 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
9497 return -ENAMETOOLONG
;
9500 * 2 items for inode item and ref
9501 * 2 items for dir items
9502 * 1 item for updating parent inode item
9503 * 1 item for the inline extent item
9504 * 1 item for xattr if selinux is on
9506 trans
= btrfs_start_transaction(root
, 7);
9508 return PTR_ERR(trans
);
9510 err
= btrfs_find_free_ino(root
, &objectid
);
9514 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9515 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
9516 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
9517 if (IS_ERR(inode
)) {
9518 err
= PTR_ERR(inode
);
9524 * If the active LSM wants to access the inode during
9525 * d_instantiate it needs these. Smack checks to see
9526 * if the filesystem supports xattrs by looking at the
9529 inode
->i_fop
= &btrfs_file_operations
;
9530 inode
->i_op
= &btrfs_file_inode_operations
;
9531 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9532 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9534 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9538 path
= btrfs_alloc_path();
9543 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
9545 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9546 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9547 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9550 btrfs_free_path(path
);
9553 leaf
= path
->nodes
[0];
9554 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9555 struct btrfs_file_extent_item
);
9556 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9557 btrfs_set_file_extent_type(leaf
, ei
,
9558 BTRFS_FILE_EXTENT_INLINE
);
9559 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9560 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9561 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9562 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9564 ptr
= btrfs_file_extent_inline_start(ei
);
9565 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9566 btrfs_mark_buffer_dirty(leaf
);
9567 btrfs_free_path(path
);
9569 inode
->i_op
= &btrfs_symlink_inode_operations
;
9570 inode_nohighmem(inode
);
9571 inode_set_bytes(inode
, name_len
);
9572 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
9573 err
= btrfs_update_inode(trans
, root
, inode
);
9575 * Last step, add directory indexes for our symlink inode. This is the
9576 * last step to avoid extra cleanup of these indexes if an error happens
9580 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9581 BTRFS_I(inode
), 0, index
);
9585 d_instantiate_new(dentry
, inode
);
9588 btrfs_end_transaction(trans
);
9590 inode_dec_link_count(inode
);
9591 discard_new_inode(inode
);
9593 btrfs_btree_balance_dirty(fs_info
);
9597 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9598 u64 start
, u64 num_bytes
, u64 min_size
,
9599 loff_t actual_len
, u64
*alloc_hint
,
9600 struct btrfs_trans_handle
*trans
)
9602 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9603 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9604 struct extent_map
*em
;
9605 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9606 struct btrfs_key ins
;
9607 u64 cur_offset
= start
;
9608 u64 clear_offset
= start
;
9611 u64 last_alloc
= (u64
)-1;
9613 bool own_trans
= true;
9614 u64 end
= start
+ num_bytes
- 1;
9618 while (num_bytes
> 0) {
9620 trans
= btrfs_start_transaction(root
, 3);
9621 if (IS_ERR(trans
)) {
9622 ret
= PTR_ERR(trans
);
9627 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
9628 cur_bytes
= max(cur_bytes
, min_size
);
9630 * If we are severely fragmented we could end up with really
9631 * small allocations, so if the allocator is returning small
9632 * chunks lets make its job easier by only searching for those
9635 cur_bytes
= min(cur_bytes
, last_alloc
);
9636 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
9637 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
9640 btrfs_end_transaction(trans
);
9645 * We've reserved this space, and thus converted it from
9646 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9647 * from here on out we will only need to clear our reservation
9648 * for the remaining unreserved area, so advance our
9649 * clear_offset by our extent size.
9651 clear_offset
+= ins
.offset
;
9652 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
9654 last_alloc
= ins
.offset
;
9655 ret
= insert_reserved_file_extent(trans
, inode
,
9656 cur_offset
, ins
.objectid
,
9657 ins
.offset
, ins
.offset
,
9658 ins
.offset
, 0, 0, 0,
9659 BTRFS_FILE_EXTENT_PREALLOC
);
9661 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
9663 btrfs_abort_transaction(trans
, ret
);
9665 btrfs_end_transaction(trans
);
9669 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9670 cur_offset
+ ins
.offset
-1, 0);
9672 em
= alloc_extent_map();
9674 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9675 &BTRFS_I(inode
)->runtime_flags
);
9679 em
->start
= cur_offset
;
9680 em
->orig_start
= cur_offset
;
9681 em
->len
= ins
.offset
;
9682 em
->block_start
= ins
.objectid
;
9683 em
->block_len
= ins
.offset
;
9684 em
->orig_block_len
= ins
.offset
;
9685 em
->ram_bytes
= ins
.offset
;
9686 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9687 em
->generation
= trans
->transid
;
9690 write_lock(&em_tree
->lock
);
9691 ret
= add_extent_mapping(em_tree
, em
, 1);
9692 write_unlock(&em_tree
->lock
);
9695 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9696 cur_offset
+ ins
.offset
- 1,
9699 free_extent_map(em
);
9701 num_bytes
-= ins
.offset
;
9702 cur_offset
+= ins
.offset
;
9703 *alloc_hint
= ins
.objectid
+ ins
.offset
;
9705 inode_inc_iversion(inode
);
9706 inode
->i_ctime
= current_time(inode
);
9707 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
9708 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
9709 (actual_len
> inode
->i_size
) &&
9710 (cur_offset
> inode
->i_size
)) {
9711 if (cur_offset
> actual_len
)
9712 i_size
= actual_len
;
9714 i_size
= cur_offset
;
9715 i_size_write(inode
, i_size
);
9716 btrfs_inode_safe_disk_i_size_write(inode
, 0);
9719 ret
= btrfs_update_inode(trans
, root
, inode
);
9722 btrfs_abort_transaction(trans
, ret
);
9724 btrfs_end_transaction(trans
);
9729 btrfs_end_transaction(trans
);
9731 if (clear_offset
< end
)
9732 btrfs_free_reserved_data_space(inode
, NULL
, clear_offset
,
9733 end
- clear_offset
+ 1);
9737 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9738 u64 start
, u64 num_bytes
, u64 min_size
,
9739 loff_t actual_len
, u64
*alloc_hint
)
9741 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9742 min_size
, actual_len
, alloc_hint
,
9746 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
9747 struct btrfs_trans_handle
*trans
, int mode
,
9748 u64 start
, u64 num_bytes
, u64 min_size
,
9749 loff_t actual_len
, u64
*alloc_hint
)
9751 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9752 min_size
, actual_len
, alloc_hint
, trans
);
9755 static int btrfs_set_page_dirty(struct page
*page
)
9757 return __set_page_dirty_nobuffers(page
);
9760 static int btrfs_permission(struct inode
*inode
, int mask
)
9762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9763 umode_t mode
= inode
->i_mode
;
9765 if (mask
& MAY_WRITE
&&
9766 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
9767 if (btrfs_root_readonly(root
))
9769 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
9772 return generic_permission(inode
, mask
);
9775 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
9777 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9778 struct btrfs_trans_handle
*trans
;
9779 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9780 struct inode
*inode
= NULL
;
9786 * 5 units required for adding orphan entry
9788 trans
= btrfs_start_transaction(root
, 5);
9790 return PTR_ERR(trans
);
9792 ret
= btrfs_find_free_ino(root
, &objectid
);
9796 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
9797 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
9798 if (IS_ERR(inode
)) {
9799 ret
= PTR_ERR(inode
);
9804 inode
->i_fop
= &btrfs_file_operations
;
9805 inode
->i_op
= &btrfs_file_inode_operations
;
9807 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9808 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
9810 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
9814 ret
= btrfs_update_inode(trans
, root
, inode
);
9817 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
9822 * We set number of links to 0 in btrfs_new_inode(), and here we set
9823 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9826 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9828 set_nlink(inode
, 1);
9829 d_tmpfile(dentry
, inode
);
9830 unlock_new_inode(inode
);
9831 mark_inode_dirty(inode
);
9833 btrfs_end_transaction(trans
);
9835 discard_new_inode(inode
);
9836 btrfs_btree_balance_dirty(fs_info
);
9840 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
9842 struct inode
*inode
= tree
->private_data
;
9843 unsigned long index
= start
>> PAGE_SHIFT
;
9844 unsigned long end_index
= end
>> PAGE_SHIFT
;
9847 while (index
<= end_index
) {
9848 page
= find_get_page(inode
->i_mapping
, index
);
9849 ASSERT(page
); /* Pages should be in the extent_io_tree */
9850 set_page_writeback(page
);
9858 * Add an entry indicating a block group or device which is pinned by a
9859 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9860 * negative errno on failure.
9862 static int btrfs_add_swapfile_pin(struct inode
*inode
, void *ptr
,
9863 bool is_block_group
)
9865 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
9866 struct btrfs_swapfile_pin
*sp
, *entry
;
9868 struct rb_node
*parent
= NULL
;
9870 sp
= kmalloc(sizeof(*sp
), GFP_NOFS
);
9875 sp
->is_block_group
= is_block_group
;
9877 spin_lock(&fs_info
->swapfile_pins_lock
);
9878 p
= &fs_info
->swapfile_pins
.rb_node
;
9881 entry
= rb_entry(parent
, struct btrfs_swapfile_pin
, node
);
9882 if (sp
->ptr
< entry
->ptr
||
9883 (sp
->ptr
== entry
->ptr
&& sp
->inode
< entry
->inode
)) {
9885 } else if (sp
->ptr
> entry
->ptr
||
9886 (sp
->ptr
== entry
->ptr
&& sp
->inode
> entry
->inode
)) {
9887 p
= &(*p
)->rb_right
;
9889 spin_unlock(&fs_info
->swapfile_pins_lock
);
9894 rb_link_node(&sp
->node
, parent
, p
);
9895 rb_insert_color(&sp
->node
, &fs_info
->swapfile_pins
);
9896 spin_unlock(&fs_info
->swapfile_pins_lock
);
9900 /* Free all of the entries pinned by this swapfile. */
9901 static void btrfs_free_swapfile_pins(struct inode
*inode
)
9903 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
9904 struct btrfs_swapfile_pin
*sp
;
9905 struct rb_node
*node
, *next
;
9907 spin_lock(&fs_info
->swapfile_pins_lock
);
9908 node
= rb_first(&fs_info
->swapfile_pins
);
9910 next
= rb_next(node
);
9911 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
9912 if (sp
->inode
== inode
) {
9913 rb_erase(&sp
->node
, &fs_info
->swapfile_pins
);
9914 if (sp
->is_block_group
)
9915 btrfs_put_block_group(sp
->ptr
);
9920 spin_unlock(&fs_info
->swapfile_pins_lock
);
9923 struct btrfs_swap_info
{
9929 unsigned long nr_pages
;
9933 static int btrfs_add_swap_extent(struct swap_info_struct
*sis
,
9934 struct btrfs_swap_info
*bsi
)
9936 unsigned long nr_pages
;
9937 u64 first_ppage
, first_ppage_reported
, next_ppage
;
9940 first_ppage
= ALIGN(bsi
->block_start
, PAGE_SIZE
) >> PAGE_SHIFT
;
9941 next_ppage
= ALIGN_DOWN(bsi
->block_start
+ bsi
->block_len
,
9942 PAGE_SIZE
) >> PAGE_SHIFT
;
9944 if (first_ppage
>= next_ppage
)
9946 nr_pages
= next_ppage
- first_ppage
;
9948 first_ppage_reported
= first_ppage
;
9949 if (bsi
->start
== 0)
9950 first_ppage_reported
++;
9951 if (bsi
->lowest_ppage
> first_ppage_reported
)
9952 bsi
->lowest_ppage
= first_ppage_reported
;
9953 if (bsi
->highest_ppage
< (next_ppage
- 1))
9954 bsi
->highest_ppage
= next_ppage
- 1;
9956 ret
= add_swap_extent(sis
, bsi
->nr_pages
, nr_pages
, first_ppage
);
9959 bsi
->nr_extents
+= ret
;
9960 bsi
->nr_pages
+= nr_pages
;
9964 static void btrfs_swap_deactivate(struct file
*file
)
9966 struct inode
*inode
= file_inode(file
);
9968 btrfs_free_swapfile_pins(inode
);
9969 atomic_dec(&BTRFS_I(inode
)->root
->nr_swapfiles
);
9972 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
9975 struct inode
*inode
= file_inode(file
);
9976 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
9977 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
9978 struct extent_state
*cached_state
= NULL
;
9979 struct extent_map
*em
= NULL
;
9980 struct btrfs_device
*device
= NULL
;
9981 struct btrfs_swap_info bsi
= {
9982 .lowest_ppage
= (sector_t
)-1ULL,
9989 * If the swap file was just created, make sure delalloc is done. If the
9990 * file changes again after this, the user is doing something stupid and
9991 * we don't really care.
9993 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
9998 * The inode is locked, so these flags won't change after we check them.
10000 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
) {
10001 btrfs_warn(fs_info
, "swapfile must not be compressed");
10004 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)) {
10005 btrfs_warn(fs_info
, "swapfile must not be copy-on-write");
10008 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
10009 btrfs_warn(fs_info
, "swapfile must not be checksummed");
10014 * Balance or device remove/replace/resize can move stuff around from
10015 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10016 * concurrently while we are mapping the swap extents, and
10017 * fs_info->swapfile_pins prevents them from running while the swap file
10018 * is active and moving the extents. Note that this also prevents a
10019 * concurrent device add which isn't actually necessary, but it's not
10020 * really worth the trouble to allow it.
10022 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
10023 btrfs_warn(fs_info
,
10024 "cannot activate swapfile while exclusive operation is running");
10028 * Snapshots can create extents which require COW even if NODATACOW is
10029 * set. We use this counter to prevent snapshots. We must increment it
10030 * before walking the extents because we don't want a concurrent
10031 * snapshot to run after we've already checked the extents.
10033 atomic_inc(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10035 isize
= ALIGN_DOWN(inode
->i_size
, fs_info
->sectorsize
);
10037 lock_extent_bits(io_tree
, 0, isize
- 1, &cached_state
);
10039 while (start
< isize
) {
10040 u64 logical_block_start
, physical_block_start
;
10041 struct btrfs_block_group
*bg
;
10042 u64 len
= isize
- start
;
10044 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
10050 if (em
->block_start
== EXTENT_MAP_HOLE
) {
10051 btrfs_warn(fs_info
, "swapfile must not have holes");
10055 if (em
->block_start
== EXTENT_MAP_INLINE
) {
10057 * It's unlikely we'll ever actually find ourselves
10058 * here, as a file small enough to fit inline won't be
10059 * big enough to store more than the swap header, but in
10060 * case something changes in the future, let's catch it
10061 * here rather than later.
10063 btrfs_warn(fs_info
, "swapfile must not be inline");
10067 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
10068 btrfs_warn(fs_info
, "swapfile must not be compressed");
10073 logical_block_start
= em
->block_start
+ (start
- em
->start
);
10074 len
= min(len
, em
->len
- (start
- em
->start
));
10075 free_extent_map(em
);
10078 ret
= can_nocow_extent(inode
, start
, &len
, NULL
, NULL
, NULL
);
10084 btrfs_warn(fs_info
,
10085 "swapfile must not be copy-on-write");
10090 em
= btrfs_get_chunk_map(fs_info
, logical_block_start
, len
);
10096 if (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
10097 btrfs_warn(fs_info
,
10098 "swapfile must have single data profile");
10103 if (device
== NULL
) {
10104 device
= em
->map_lookup
->stripes
[0].dev
;
10105 ret
= btrfs_add_swapfile_pin(inode
, device
, false);
10110 } else if (device
!= em
->map_lookup
->stripes
[0].dev
) {
10111 btrfs_warn(fs_info
, "swapfile must be on one device");
10116 physical_block_start
= (em
->map_lookup
->stripes
[0].physical
+
10117 (logical_block_start
- em
->start
));
10118 len
= min(len
, em
->len
- (logical_block_start
- em
->start
));
10119 free_extent_map(em
);
10122 bg
= btrfs_lookup_block_group(fs_info
, logical_block_start
);
10124 btrfs_warn(fs_info
,
10125 "could not find block group containing swapfile");
10130 ret
= btrfs_add_swapfile_pin(inode
, bg
, true);
10132 btrfs_put_block_group(bg
);
10139 if (bsi
.block_len
&&
10140 bsi
.block_start
+ bsi
.block_len
== physical_block_start
) {
10141 bsi
.block_len
+= len
;
10143 if (bsi
.block_len
) {
10144 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10149 bsi
.block_start
= physical_block_start
;
10150 bsi
.block_len
= len
;
10157 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10160 if (!IS_ERR_OR_NULL(em
))
10161 free_extent_map(em
);
10163 unlock_extent_cached(io_tree
, 0, isize
- 1, &cached_state
);
10166 btrfs_swap_deactivate(file
);
10168 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
10174 sis
->bdev
= device
->bdev
;
10175 *span
= bsi
.highest_ppage
- bsi
.lowest_ppage
+ 1;
10176 sis
->max
= bsi
.nr_pages
;
10177 sis
->pages
= bsi
.nr_pages
- 1;
10178 sis
->highest_bit
= bsi
.nr_pages
- 1;
10179 return bsi
.nr_extents
;
10182 static void btrfs_swap_deactivate(struct file
*file
)
10186 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10189 return -EOPNOTSUPP
;
10193 static const struct inode_operations btrfs_dir_inode_operations
= {
10194 .getattr
= btrfs_getattr
,
10195 .lookup
= btrfs_lookup
,
10196 .create
= btrfs_create
,
10197 .unlink
= btrfs_unlink
,
10198 .link
= btrfs_link
,
10199 .mkdir
= btrfs_mkdir
,
10200 .rmdir
= btrfs_rmdir
,
10201 .rename
= btrfs_rename2
,
10202 .symlink
= btrfs_symlink
,
10203 .setattr
= btrfs_setattr
,
10204 .mknod
= btrfs_mknod
,
10205 .listxattr
= btrfs_listxattr
,
10206 .permission
= btrfs_permission
,
10207 .get_acl
= btrfs_get_acl
,
10208 .set_acl
= btrfs_set_acl
,
10209 .update_time
= btrfs_update_time
,
10210 .tmpfile
= btrfs_tmpfile
,
10213 static const struct file_operations btrfs_dir_file_operations
= {
10214 .llseek
= generic_file_llseek
,
10215 .read
= generic_read_dir
,
10216 .iterate_shared
= btrfs_real_readdir
,
10217 .open
= btrfs_opendir
,
10218 .unlocked_ioctl
= btrfs_ioctl
,
10219 #ifdef CONFIG_COMPAT
10220 .compat_ioctl
= btrfs_compat_ioctl
,
10222 .release
= btrfs_release_file
,
10223 .fsync
= btrfs_sync_file
,
10226 static const struct extent_io_ops btrfs_extent_io_ops
= {
10227 /* mandatory callbacks */
10228 .submit_bio_hook
= btrfs_submit_bio_hook
,
10229 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10233 * btrfs doesn't support the bmap operation because swapfiles
10234 * use bmap to make a mapping of extents in the file. They assume
10235 * these extents won't change over the life of the file and they
10236 * use the bmap result to do IO directly to the drive.
10238 * the btrfs bmap call would return logical addresses that aren't
10239 * suitable for IO and they also will change frequently as COW
10240 * operations happen. So, swapfile + btrfs == corruption.
10242 * For now we're avoiding this by dropping bmap.
10244 static const struct address_space_operations btrfs_aops
= {
10245 .readpage
= btrfs_readpage
,
10246 .writepage
= btrfs_writepage
,
10247 .writepages
= btrfs_writepages
,
10248 .readahead
= btrfs_readahead
,
10249 .direct_IO
= btrfs_direct_IO
,
10250 .invalidatepage
= btrfs_invalidatepage
,
10251 .releasepage
= btrfs_releasepage
,
10252 #ifdef CONFIG_MIGRATION
10253 .migratepage
= btrfs_migratepage
,
10255 .set_page_dirty
= btrfs_set_page_dirty
,
10256 .error_remove_page
= generic_error_remove_page
,
10257 .swap_activate
= btrfs_swap_activate
,
10258 .swap_deactivate
= btrfs_swap_deactivate
,
10261 static const struct inode_operations btrfs_file_inode_operations
= {
10262 .getattr
= btrfs_getattr
,
10263 .setattr
= btrfs_setattr
,
10264 .listxattr
= btrfs_listxattr
,
10265 .permission
= btrfs_permission
,
10266 .fiemap
= btrfs_fiemap
,
10267 .get_acl
= btrfs_get_acl
,
10268 .set_acl
= btrfs_set_acl
,
10269 .update_time
= btrfs_update_time
,
10271 static const struct inode_operations btrfs_special_inode_operations
= {
10272 .getattr
= btrfs_getattr
,
10273 .setattr
= btrfs_setattr
,
10274 .permission
= btrfs_permission
,
10275 .listxattr
= btrfs_listxattr
,
10276 .get_acl
= btrfs_get_acl
,
10277 .set_acl
= btrfs_set_acl
,
10278 .update_time
= btrfs_update_time
,
10280 static const struct inode_operations btrfs_symlink_inode_operations
= {
10281 .get_link
= page_get_link
,
10282 .getattr
= btrfs_getattr
,
10283 .setattr
= btrfs_setattr
,
10284 .permission
= btrfs_permission
,
10285 .listxattr
= btrfs_listxattr
,
10286 .update_time
= btrfs_update_time
,
10289 const struct dentry_operations btrfs_dentry_operations
= {
10290 .d_delete
= btrfs_dentry_delete
,