usb: mtu3: mtu3_debug: Add forward declaration of 'struct ssusb_mtk'
[linux/fpc-iii.git] / fs / btrfs / root-tree.c
blobc89697486366aca0e5b63aab04887e50f1afc429
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "transaction.h"
10 #include "disk-io.h"
11 #include "print-tree.h"
12 #include "qgroup.h"
13 #include "space-info.h"
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23 struct btrfs_root_item *item)
25 u32 len;
26 int need_reset = 0;
28 len = btrfs_item_size_nr(eb, slot);
29 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
30 min_t(u32, len, sizeof(*item)));
31 if (len < sizeof(*item))
32 need_reset = 1;
33 if (!need_reset && btrfs_root_generation(item)
34 != btrfs_root_generation_v2(item)) {
35 if (btrfs_root_generation_v2(item) != 0) {
36 btrfs_warn(eb->fs_info,
37 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
39 need_reset = 1;
41 if (need_reset) {
42 memset(&item->generation_v2, 0,
43 sizeof(*item) - offsetof(struct btrfs_root_item,
44 generation_v2));
46 generate_random_guid(item->uuid);
51 * btrfs_find_root - lookup the root by the key.
52 * root: the root of the root tree
53 * search_key: the key to search
54 * path: the path we search
55 * root_item: the root item of the tree we look for
56 * root_key: the root key of the tree we look for
58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
59 * of the search key, just lookup the root with the highest offset for a
60 * given objectid.
62 * If we find something return 0, otherwise > 0, < 0 on error.
64 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
65 struct btrfs_path *path, struct btrfs_root_item *root_item,
66 struct btrfs_key *root_key)
68 struct btrfs_key found_key;
69 struct extent_buffer *l;
70 int ret;
71 int slot;
73 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
74 if (ret < 0)
75 return ret;
77 if (search_key->offset != -1ULL) { /* the search key is exact */
78 if (ret > 0)
79 goto out;
80 } else {
81 BUG_ON(ret == 0); /* Logical error */
82 if (path->slots[0] == 0)
83 goto out;
84 path->slots[0]--;
85 ret = 0;
88 l = path->nodes[0];
89 slot = path->slots[0];
91 btrfs_item_key_to_cpu(l, &found_key, slot);
92 if (found_key.objectid != search_key->objectid ||
93 found_key.type != BTRFS_ROOT_ITEM_KEY) {
94 ret = 1;
95 goto out;
98 if (root_item)
99 btrfs_read_root_item(l, slot, root_item);
100 if (root_key)
101 memcpy(root_key, &found_key, sizeof(found_key));
102 out:
103 btrfs_release_path(path);
104 return ret;
107 void btrfs_set_root_node(struct btrfs_root_item *item,
108 struct extent_buffer *node)
110 btrfs_set_root_bytenr(item, node->start);
111 btrfs_set_root_level(item, btrfs_header_level(node));
112 btrfs_set_root_generation(item, btrfs_header_generation(node));
116 * copy the data in 'item' into the btree
118 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119 *root, struct btrfs_key *key, struct btrfs_root_item
120 *item)
122 struct btrfs_fs_info *fs_info = root->fs_info;
123 struct btrfs_path *path;
124 struct extent_buffer *l;
125 int ret;
126 int slot;
127 unsigned long ptr;
128 u32 old_len;
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
134 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135 if (ret < 0)
136 goto out;
138 if (ret > 0) {
139 btrfs_crit(fs_info,
140 "unable to find root key (%llu %u %llu) in tree %llu",
141 key->objectid, key->type, key->offset,
142 root->root_key.objectid);
143 ret = -EUCLEAN;
144 btrfs_abort_transaction(trans, ret);
145 goto out;
148 l = path->nodes[0];
149 slot = path->slots[0];
150 ptr = btrfs_item_ptr_offset(l, slot);
151 old_len = btrfs_item_size_nr(l, slot);
154 * If this is the first time we update the root item which originated
155 * from an older kernel, we need to enlarge the item size to make room
156 * for the added fields.
158 if (old_len < sizeof(*item)) {
159 btrfs_release_path(path);
160 ret = btrfs_search_slot(trans, root, key, path,
161 -1, 1);
162 if (ret < 0) {
163 btrfs_abort_transaction(trans, ret);
164 goto out;
167 ret = btrfs_del_item(trans, root, path);
168 if (ret < 0) {
169 btrfs_abort_transaction(trans, ret);
170 goto out;
172 btrfs_release_path(path);
173 ret = btrfs_insert_empty_item(trans, root, path,
174 key, sizeof(*item));
175 if (ret < 0) {
176 btrfs_abort_transaction(trans, ret);
177 goto out;
179 l = path->nodes[0];
180 slot = path->slots[0];
181 ptr = btrfs_item_ptr_offset(l, slot);
185 * Update generation_v2 so at the next mount we know the new root
186 * fields are valid.
188 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
190 write_extent_buffer(l, item, ptr, sizeof(*item));
191 btrfs_mark_buffer_dirty(path->nodes[0]);
192 out:
193 btrfs_free_path(path);
194 return ret;
197 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
198 const struct btrfs_key *key, struct btrfs_root_item *item)
201 * Make sure generation v1 and v2 match. See update_root for details.
203 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
204 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
209 struct btrfs_root *tree_root = fs_info->tree_root;
210 struct extent_buffer *leaf;
211 struct btrfs_path *path;
212 struct btrfs_key key;
213 struct btrfs_root *root;
214 int err = 0;
215 int ret;
217 path = btrfs_alloc_path();
218 if (!path)
219 return -ENOMEM;
221 key.objectid = BTRFS_ORPHAN_OBJECTID;
222 key.type = BTRFS_ORPHAN_ITEM_KEY;
223 key.offset = 0;
225 while (1) {
226 u64 root_objectid;
228 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
229 if (ret < 0) {
230 err = ret;
231 break;
234 leaf = path->nodes[0];
235 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
236 ret = btrfs_next_leaf(tree_root, path);
237 if (ret < 0)
238 err = ret;
239 if (ret != 0)
240 break;
241 leaf = path->nodes[0];
244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
245 btrfs_release_path(path);
247 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
248 key.type != BTRFS_ORPHAN_ITEM_KEY)
249 break;
251 root_objectid = key.offset;
252 key.offset++;
254 root = btrfs_get_fs_root(fs_info, root_objectid, false);
255 err = PTR_ERR_OR_ZERO(root);
256 if (err && err != -ENOENT) {
257 break;
258 } else if (err == -ENOENT) {
259 struct btrfs_trans_handle *trans;
261 btrfs_release_path(path);
263 trans = btrfs_join_transaction(tree_root);
264 if (IS_ERR(trans)) {
265 err = PTR_ERR(trans);
266 btrfs_handle_fs_error(fs_info, err,
267 "Failed to start trans to delete orphan item");
268 break;
270 err = btrfs_del_orphan_item(trans, tree_root,
271 root_objectid);
272 btrfs_end_transaction(trans);
273 if (err) {
274 btrfs_handle_fs_error(fs_info, err,
275 "Failed to delete root orphan item");
276 break;
278 continue;
281 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
282 if (btrfs_root_refs(&root->root_item) == 0) {
283 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
284 btrfs_add_dead_root(root);
286 btrfs_put_root(root);
289 btrfs_free_path(path);
290 return err;
293 /* drop the root item for 'key' from the tree root */
294 int btrfs_del_root(struct btrfs_trans_handle *trans,
295 const struct btrfs_key *key)
297 struct btrfs_root *root = trans->fs_info->tree_root;
298 struct btrfs_path *path;
299 int ret;
301 path = btrfs_alloc_path();
302 if (!path)
303 return -ENOMEM;
304 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
305 if (ret < 0)
306 goto out;
308 BUG_ON(ret != 0);
310 ret = btrfs_del_item(trans, root, path);
311 out:
312 btrfs_free_path(path);
313 return ret;
316 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
317 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
318 int name_len)
321 struct btrfs_root *tree_root = trans->fs_info->tree_root;
322 struct btrfs_path *path;
323 struct btrfs_root_ref *ref;
324 struct extent_buffer *leaf;
325 struct btrfs_key key;
326 unsigned long ptr;
327 int err = 0;
328 int ret;
330 path = btrfs_alloc_path();
331 if (!path)
332 return -ENOMEM;
334 key.objectid = root_id;
335 key.type = BTRFS_ROOT_BACKREF_KEY;
336 key.offset = ref_id;
337 again:
338 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
339 BUG_ON(ret < 0);
340 if (ret == 0) {
341 leaf = path->nodes[0];
342 ref = btrfs_item_ptr(leaf, path->slots[0],
343 struct btrfs_root_ref);
344 ptr = (unsigned long)(ref + 1);
345 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
346 (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
347 memcmp_extent_buffer(leaf, name, ptr, name_len)) {
348 err = -ENOENT;
349 goto out;
351 *sequence = btrfs_root_ref_sequence(leaf, ref);
353 ret = btrfs_del_item(trans, tree_root, path);
354 if (ret) {
355 err = ret;
356 goto out;
358 } else
359 err = -ENOENT;
361 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
362 btrfs_release_path(path);
363 key.objectid = ref_id;
364 key.type = BTRFS_ROOT_REF_KEY;
365 key.offset = root_id;
366 goto again;
369 out:
370 btrfs_free_path(path);
371 return err;
375 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
376 * or BTRFS_ROOT_BACKREF_KEY.
378 * The dirid, sequence, name and name_len refer to the directory entry
379 * that is referencing the root.
381 * For a forward ref, the root_id is the id of the tree referencing
382 * the root and ref_id is the id of the subvol or snapshot.
384 * For a back ref the root_id is the id of the subvol or snapshot and
385 * ref_id is the id of the tree referencing it.
387 * Will return 0, -ENOMEM, or anything from the CoW path
389 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
390 u64 ref_id, u64 dirid, u64 sequence, const char *name,
391 int name_len)
393 struct btrfs_root *tree_root = trans->fs_info->tree_root;
394 struct btrfs_key key;
395 int ret;
396 struct btrfs_path *path;
397 struct btrfs_root_ref *ref;
398 struct extent_buffer *leaf;
399 unsigned long ptr;
401 path = btrfs_alloc_path();
402 if (!path)
403 return -ENOMEM;
405 key.objectid = root_id;
406 key.type = BTRFS_ROOT_BACKREF_KEY;
407 key.offset = ref_id;
408 again:
409 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
410 sizeof(*ref) + name_len);
411 if (ret) {
412 btrfs_abort_transaction(trans, ret);
413 btrfs_free_path(path);
414 return ret;
417 leaf = path->nodes[0];
418 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
419 btrfs_set_root_ref_dirid(leaf, ref, dirid);
420 btrfs_set_root_ref_sequence(leaf, ref, sequence);
421 btrfs_set_root_ref_name_len(leaf, ref, name_len);
422 ptr = (unsigned long)(ref + 1);
423 write_extent_buffer(leaf, name, ptr, name_len);
424 btrfs_mark_buffer_dirty(leaf);
426 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
427 btrfs_release_path(path);
428 key.objectid = ref_id;
429 key.type = BTRFS_ROOT_REF_KEY;
430 key.offset = root_id;
431 goto again;
434 btrfs_free_path(path);
435 return 0;
439 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
440 * for subvolumes. To work around this problem, we steal a bit from
441 * root_item->inode_item->flags, and use it to indicate if those fields
442 * have been properly initialized.
444 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
446 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
448 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
449 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
450 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
451 btrfs_set_root_flags(root_item, 0);
452 btrfs_set_root_limit(root_item, 0);
456 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
457 struct btrfs_root *root)
459 struct btrfs_root_item *item = &root->root_item;
460 struct timespec64 ct;
462 ktime_get_real_ts64(&ct);
463 spin_lock(&root->root_item_lock);
464 btrfs_set_root_ctransid(item, trans->transid);
465 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
466 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
467 spin_unlock(&root->root_item_lock);
471 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
472 * root: the root of the parent directory
473 * rsv: block reservation
474 * items: the number of items that we need do reservation
475 * use_global_rsv: allow fallback to the global block reservation
477 * This function is used to reserve the space for snapshot/subvolume
478 * creation and deletion. Those operations are different with the
479 * common file/directory operations, they change two fs/file trees
480 * and root tree, the number of items that the qgroup reserves is
481 * different with the free space reservation. So we can not use
482 * the space reservation mechanism in start_transaction().
484 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
485 struct btrfs_block_rsv *rsv, int items,
486 bool use_global_rsv)
488 u64 qgroup_num_bytes = 0;
489 u64 num_bytes;
490 int ret;
491 struct btrfs_fs_info *fs_info = root->fs_info;
492 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
494 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
495 /* One for parent inode, two for dir entries */
496 qgroup_num_bytes = 3 * fs_info->nodesize;
497 ret = btrfs_qgroup_reserve_meta_prealloc(root,
498 qgroup_num_bytes, true);
499 if (ret)
500 return ret;
503 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
504 rsv->space_info = btrfs_find_space_info(fs_info,
505 BTRFS_BLOCK_GROUP_METADATA);
506 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
507 BTRFS_RESERVE_FLUSH_ALL);
509 if (ret == -ENOSPC && use_global_rsv)
510 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
512 if (ret && qgroup_num_bytes)
513 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
515 return ret;
518 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
519 struct btrfs_block_rsv *rsv)
521 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);