sparc64: kern_addr_valid regression
[linux/fpc-iii.git] / lib / radix-tree.c
blob84812a9fb16fbbd1409315ea3752fb9a1e3e39ef
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
45 * Radix tree node cache.
47 static struct kmem_cache *radix_tree_node_cachep;
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
53 * radix_tree_extend).
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58 * Hence:
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
63 * Per-cpu pool of preloaded nodes
65 struct radix_tree_preload {
66 unsigned nr;
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72 static inline struct radix_tree_node *entry_to_node(void *ptr)
74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
77 static inline void *node_to_entry(void *ptr)
79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
82 #define RADIX_TREE_RETRY node_to_entry(NULL)
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
88 void **ptr = node;
89 return (parent->slots <= ptr) &&
90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
92 #else
93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
95 return false;
97 #endif
99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 void **slot)
102 return slot - parent->slots;
105 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 struct radix_tree_node **nodep, unsigned long index)
108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
109 void **entry = rcu_dereference_raw(parent->slots[offset]);
111 #ifdef CONFIG_RADIX_TREE_MULTIORDER
112 if (radix_tree_is_internal_node(entry)) {
113 if (is_sibling_entry(parent, entry)) {
114 void **sibentry = (void **) entry_to_node(entry);
115 offset = get_slot_offset(parent, sibentry);
116 entry = rcu_dereference_raw(*sibentry);
119 #endif
121 *nodep = (void *)entry;
122 return offset;
125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
127 return root->gfp_mask & __GFP_BITS_MASK;
130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
133 __set_bit(offset, node->tags[tag]);
136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
139 __clear_bit(offset, node->tags[tag]);
142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 int offset)
145 return test_bit(offset, node->tags[tag]);
148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
158 static inline void root_tag_clear_all(struct radix_tree_root *root)
160 root->gfp_mask &= __GFP_BITS_MASK;
163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
168 static inline unsigned root_tags_get(struct radix_tree_root *root)
170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
174 * Returns 1 if any slot in the node has this tag set.
175 * Otherwise returns 0.
177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
179 unsigned idx;
180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 if (node->tags[tag][idx])
182 return 1;
184 return 0;
188 * radix_tree_find_next_bit - find the next set bit in a memory region
190 * @addr: The address to base the search on
191 * @size: The bitmap size in bits
192 * @offset: The bitnumber to start searching at
194 * Unrollable variant of find_next_bit() for constant size arrays.
195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196 * Returns next bit offset, or size if nothing found.
198 static __always_inline unsigned long
199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 unsigned long offset)
202 const unsigned long *addr = node->tags[tag];
204 if (offset < RADIX_TREE_MAP_SIZE) {
205 unsigned long tmp;
207 addr += offset / BITS_PER_LONG;
208 tmp = *addr >> (offset % BITS_PER_LONG);
209 if (tmp)
210 return __ffs(tmp) + offset;
211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
212 while (offset < RADIX_TREE_MAP_SIZE) {
213 tmp = *++addr;
214 if (tmp)
215 return __ffs(tmp) + offset;
216 offset += BITS_PER_LONG;
219 return RADIX_TREE_MAP_SIZE;
222 static unsigned int iter_offset(const struct radix_tree_iter *iter)
224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
228 * The maximum index which can be stored in a radix tree
230 static inline unsigned long shift_maxindex(unsigned int shift)
232 return (RADIX_TREE_MAP_SIZE << shift) - 1;
235 static inline unsigned long node_maxindex(struct radix_tree_node *node)
237 return shift_maxindex(node->shift);
240 #ifndef __KERNEL__
241 static void dump_node(struct radix_tree_node *node, unsigned long index)
243 unsigned long i;
245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 node, node->offset, index, index | node_maxindex(node),
247 node->parent,
248 node->tags[0][0], node->tags[1][0], node->tags[2][0],
249 node->shift, node->count, node->exceptional);
251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
252 unsigned long first = index | (i << node->shift);
253 unsigned long last = first | ((1UL << node->shift) - 1);
254 void *entry = node->slots[i];
255 if (!entry)
256 continue;
257 if (entry == RADIX_TREE_RETRY) {
258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 i, first, last, node);
260 } else if (!radix_tree_is_internal_node(entry)) {
261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 entry, i, first, last, node);
263 } else if (is_sibling_entry(node, entry)) {
264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 entry, i, first, last, node,
266 *(void **)entry_to_node(entry));
267 } else {
268 dump_node(entry_to_node(entry), first);
273 /* For debug */
274 static void radix_tree_dump(struct radix_tree_root *root)
276 pr_debug("radix root: %p rnode %p tags %x\n",
277 root, root->rnode,
278 root->gfp_mask >> __GFP_BITS_SHIFT);
279 if (!radix_tree_is_internal_node(root->rnode))
280 return;
281 dump_node(entry_to_node(root->rnode), 0);
283 #endif
286 * This assumes that the caller has performed appropriate preallocation, and
287 * that the caller has pinned this thread of control to the current CPU.
289 static struct radix_tree_node *
290 radix_tree_node_alloc(struct radix_tree_root *root,
291 struct radix_tree_node *parent,
292 unsigned int shift, unsigned int offset,
293 unsigned int count, unsigned int exceptional)
295 struct radix_tree_node *ret = NULL;
296 gfp_t gfp_mask = root_gfp_mask(root);
299 * Preload code isn't irq safe and it doesn't make sense to use
300 * preloading during an interrupt anyway as all the allocations have
301 * to be atomic. So just do normal allocation when in interrupt.
303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
304 struct radix_tree_preload *rtp;
307 * Even if the caller has preloaded, try to allocate from the
308 * cache first for the new node to get accounted to the memory
309 * cgroup.
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_NOWARN);
313 if (ret)
314 goto out;
317 * Provided the caller has preloaded here, we will always
318 * succeed in getting a node here (and never reach
319 * kmem_cache_alloc)
321 rtp = this_cpu_ptr(&radix_tree_preloads);
322 if (rtp->nr) {
323 ret = rtp->nodes;
324 rtp->nodes = ret->private_data;
325 ret->private_data = NULL;
326 rtp->nr--;
329 * Update the allocation stack trace as this is more useful
330 * for debugging.
332 kmemleak_update_trace(ret);
333 goto out;
335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
336 out:
337 BUG_ON(radix_tree_is_internal_node(ret));
338 if (ret) {
339 ret->parent = parent;
340 ret->shift = shift;
341 ret->offset = offset;
342 ret->count = count;
343 ret->exceptional = exceptional;
345 return ret;
348 static void radix_tree_node_rcu_free(struct rcu_head *head)
350 struct radix_tree_node *node =
351 container_of(head, struct radix_tree_node, rcu_head);
354 * Must only free zeroed nodes into the slab. We can be left with
355 * non-NULL entries by radix_tree_free_nodes, so clear the entries
356 * and tags here.
358 memset(node->slots, 0, sizeof(node->slots));
359 memset(node->tags, 0, sizeof(node->tags));
360 INIT_LIST_HEAD(&node->private_list);
362 kmem_cache_free(radix_tree_node_cachep, node);
365 static inline void
366 radix_tree_node_free(struct radix_tree_node *node)
368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
373 * ensure that the addition of a single element in the tree cannot fail. On
374 * success, return zero, with preemption disabled. On error, return -ENOMEM
375 * with preemption not disabled.
377 * To make use of this facility, the radix tree must be initialised without
378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
382 struct radix_tree_preload *rtp;
383 struct radix_tree_node *node;
384 int ret = -ENOMEM;
387 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 * they should never be accounted to any particular memory cgroup.
390 gfp_mask &= ~__GFP_ACCOUNT;
392 preempt_disable();
393 rtp = this_cpu_ptr(&radix_tree_preloads);
394 while (rtp->nr < nr) {
395 preempt_enable();
396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
397 if (node == NULL)
398 goto out;
399 preempt_disable();
400 rtp = this_cpu_ptr(&radix_tree_preloads);
401 if (rtp->nr < nr) {
402 node->private_data = rtp->nodes;
403 rtp->nodes = node;
404 rtp->nr++;
405 } else {
406 kmem_cache_free(radix_tree_node_cachep, node);
409 ret = 0;
410 out:
411 return ret;
415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
416 * ensure that the addition of a single element in the tree cannot fail. On
417 * success, return zero, with preemption disabled. On error, return -ENOMEM
418 * with preemption not disabled.
420 * To make use of this facility, the radix tree must be initialised without
421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
423 int radix_tree_preload(gfp_t gfp_mask)
425 /* Warn on non-sensical use... */
426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
429 EXPORT_SYMBOL(radix_tree_preload);
432 * The same as above function, except we don't guarantee preloading happens.
433 * We do it, if we decide it helps. On success, return zero with preemption
434 * disabled. On error, return -ENOMEM with preemption not disabled.
436 int radix_tree_maybe_preload(gfp_t gfp_mask)
438 if (gfpflags_allow_blocking(gfp_mask))
439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
440 /* Preloading doesn't help anything with this gfp mask, skip it */
441 preempt_disable();
442 return 0;
444 EXPORT_SYMBOL(radix_tree_maybe_preload);
446 #ifdef CONFIG_RADIX_TREE_MULTIORDER
448 * Preload with enough objects to ensure that we can split a single entry
449 * of order @old_order into many entries of size @new_order
451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
452 gfp_t gfp_mask)
454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
456 (new_order / RADIX_TREE_MAP_SHIFT);
457 unsigned nr = 0;
459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
460 BUG_ON(new_order >= old_order);
462 while (layers--)
463 nr = nr * RADIX_TREE_MAP_SIZE + 1;
464 return __radix_tree_preload(gfp_mask, top * nr);
466 #endif
469 * The same as function above, but preload number of nodes required to insert
470 * (1 << order) continuous naturally-aligned elements.
472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
474 unsigned long nr_subtrees;
475 int nr_nodes, subtree_height;
477 /* Preloading doesn't help anything with this gfp mask, skip it */
478 if (!gfpflags_allow_blocking(gfp_mask)) {
479 preempt_disable();
480 return 0;
484 * Calculate number and height of fully populated subtrees it takes to
485 * store (1 << order) elements.
487 nr_subtrees = 1 << order;
488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
489 subtree_height++)
490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
493 * The worst case is zero height tree with a single item at index 0 and
494 * then inserting items starting at ULONG_MAX - (1 << order).
496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
497 * 0-index item.
499 nr_nodes = RADIX_TREE_MAX_PATH;
501 /* Plus branch to fully populated subtrees. */
502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
504 /* Root node is shared. */
505 nr_nodes--;
507 /* Plus nodes required to build subtrees. */
508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
510 return __radix_tree_preload(gfp_mask, nr_nodes);
513 static unsigned radix_tree_load_root(struct radix_tree_root *root,
514 struct radix_tree_node **nodep, unsigned long *maxindex)
516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
518 *nodep = node;
520 if (likely(radix_tree_is_internal_node(node))) {
521 node = entry_to_node(node);
522 *maxindex = node_maxindex(node);
523 return node->shift + RADIX_TREE_MAP_SHIFT;
526 *maxindex = 0;
527 return 0;
531 * Extend a radix tree so it can store key @index.
533 static int radix_tree_extend(struct radix_tree_root *root,
534 unsigned long index, unsigned int shift)
536 struct radix_tree_node *slot;
537 unsigned int maxshift;
538 int tag;
540 /* Figure out what the shift should be. */
541 maxshift = shift;
542 while (index > shift_maxindex(maxshift))
543 maxshift += RADIX_TREE_MAP_SHIFT;
545 slot = root->rnode;
546 if (!slot)
547 goto out;
549 do {
550 struct radix_tree_node *node = radix_tree_node_alloc(root,
551 NULL, shift, 0, 1, 0);
552 if (!node)
553 return -ENOMEM;
555 /* Propagate the aggregated tag info into the new root */
556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
557 if (root_tag_get(root, tag))
558 tag_set(node, tag, 0);
561 BUG_ON(shift > BITS_PER_LONG);
562 if (radix_tree_is_internal_node(slot)) {
563 entry_to_node(slot)->parent = node;
564 } else if (radix_tree_exceptional_entry(slot)) {
565 /* Moving an exceptional root->rnode to a node */
566 node->exceptional = 1;
568 node->slots[0] = slot;
569 slot = node_to_entry(node);
570 rcu_assign_pointer(root->rnode, slot);
571 shift += RADIX_TREE_MAP_SHIFT;
572 } while (shift <= maxshift);
573 out:
574 return maxshift + RADIX_TREE_MAP_SHIFT;
578 * radix_tree_shrink - shrink radix tree to minimum height
579 * @root radix tree root
581 static inline void radix_tree_shrink(struct radix_tree_root *root,
582 radix_tree_update_node_t update_node,
583 void *private)
585 for (;;) {
586 struct radix_tree_node *node = root->rnode;
587 struct radix_tree_node *child;
589 if (!radix_tree_is_internal_node(node))
590 break;
591 node = entry_to_node(node);
594 * The candidate node has more than one child, or its child
595 * is not at the leftmost slot, or the child is a multiorder
596 * entry, we cannot shrink.
598 if (node->count != 1)
599 break;
600 child = node->slots[0];
601 if (!child)
602 break;
603 if (!radix_tree_is_internal_node(child) && node->shift)
604 break;
606 if (radix_tree_is_internal_node(child))
607 entry_to_node(child)->parent = NULL;
610 * We don't need rcu_assign_pointer(), since we are simply
611 * moving the node from one part of the tree to another: if it
612 * was safe to dereference the old pointer to it
613 * (node->slots[0]), it will be safe to dereference the new
614 * one (root->rnode) as far as dependent read barriers go.
616 root->rnode = child;
619 * We have a dilemma here. The node's slot[0] must not be
620 * NULLed in case there are concurrent lookups expecting to
621 * find the item. However if this was a bottom-level node,
622 * then it may be subject to the slot pointer being visible
623 * to callers dereferencing it. If item corresponding to
624 * slot[0] is subsequently deleted, these callers would expect
625 * their slot to become empty sooner or later.
627 * For example, lockless pagecache will look up a slot, deref
628 * the page pointer, and if the page has 0 refcount it means it
629 * was concurrently deleted from pagecache so try the deref
630 * again. Fortunately there is already a requirement for logic
631 * to retry the entire slot lookup -- the indirect pointer
632 * problem (replacing direct root node with an indirect pointer
633 * also results in a stale slot). So tag the slot as indirect
634 * to force callers to retry.
636 node->count = 0;
637 if (!radix_tree_is_internal_node(child)) {
638 node->slots[0] = RADIX_TREE_RETRY;
639 if (update_node)
640 update_node(node, private);
643 WARN_ON_ONCE(!list_empty(&node->private_list));
644 radix_tree_node_free(node);
648 static void delete_node(struct radix_tree_root *root,
649 struct radix_tree_node *node,
650 radix_tree_update_node_t update_node, void *private)
652 do {
653 struct radix_tree_node *parent;
655 if (node->count) {
656 if (node == entry_to_node(root->rnode))
657 radix_tree_shrink(root, update_node, private);
658 return;
661 parent = node->parent;
662 if (parent) {
663 parent->slots[node->offset] = NULL;
664 parent->count--;
665 } else {
666 root_tag_clear_all(root);
667 root->rnode = NULL;
670 WARN_ON_ONCE(!list_empty(&node->private_list));
671 radix_tree_node_free(node);
673 node = parent;
674 } while (node);
678 * __radix_tree_create - create a slot in a radix tree
679 * @root: radix tree root
680 * @index: index key
681 * @order: index occupies 2^order aligned slots
682 * @nodep: returns node
683 * @slotp: returns slot
685 * Create, if necessary, and return the node and slot for an item
686 * at position @index in the radix tree @root.
688 * Until there is more than one item in the tree, no nodes are
689 * allocated and @root->rnode is used as a direct slot instead of
690 * pointing to a node, in which case *@nodep will be NULL.
692 * Returns -ENOMEM, or 0 for success.
694 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
695 unsigned order, struct radix_tree_node **nodep,
696 void ***slotp)
698 struct radix_tree_node *node = NULL, *child;
699 void **slot = (void **)&root->rnode;
700 unsigned long maxindex;
701 unsigned int shift, offset = 0;
702 unsigned long max = index | ((1UL << order) - 1);
704 shift = radix_tree_load_root(root, &child, &maxindex);
706 /* Make sure the tree is high enough. */
707 if (order > 0 && max == ((1UL << order) - 1))
708 max++;
709 if (max > maxindex) {
710 int error = radix_tree_extend(root, max, shift);
711 if (error < 0)
712 return error;
713 shift = error;
714 child = root->rnode;
717 while (shift > order) {
718 shift -= RADIX_TREE_MAP_SHIFT;
719 if (child == NULL) {
720 /* Have to add a child node. */
721 child = radix_tree_node_alloc(root, node, shift,
722 offset, 0, 0);
723 if (!child)
724 return -ENOMEM;
725 rcu_assign_pointer(*slot, node_to_entry(child));
726 if (node)
727 node->count++;
728 } else if (!radix_tree_is_internal_node(child))
729 break;
731 /* Go a level down */
732 node = entry_to_node(child);
733 offset = radix_tree_descend(node, &child, index);
734 slot = &node->slots[offset];
737 if (nodep)
738 *nodep = node;
739 if (slotp)
740 *slotp = slot;
741 return 0;
744 #ifdef CONFIG_RADIX_TREE_MULTIORDER
746 * Free any nodes below this node. The tree is presumed to not need
747 * shrinking, and any user data in the tree is presumed to not need a
748 * destructor called on it. If we need to add a destructor, we can
749 * add that functionality later. Note that we may not clear tags or
750 * slots from the tree as an RCU walker may still have a pointer into
751 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
752 * but we'll still have to clear those in rcu_free.
754 static void radix_tree_free_nodes(struct radix_tree_node *node)
756 unsigned offset = 0;
757 struct radix_tree_node *child = entry_to_node(node);
759 for (;;) {
760 void *entry = child->slots[offset];
761 if (radix_tree_is_internal_node(entry) &&
762 !is_sibling_entry(child, entry)) {
763 child = entry_to_node(entry);
764 offset = 0;
765 continue;
767 offset++;
768 while (offset == RADIX_TREE_MAP_SIZE) {
769 struct radix_tree_node *old = child;
770 offset = child->offset + 1;
771 child = child->parent;
772 WARN_ON_ONCE(!list_empty(&old->private_list));
773 radix_tree_node_free(old);
774 if (old == entry_to_node(node))
775 return;
780 static inline int insert_entries(struct radix_tree_node *node, void **slot,
781 void *item, unsigned order, bool replace)
783 struct radix_tree_node *child;
784 unsigned i, n, tag, offset, tags = 0;
786 if (node) {
787 if (order > node->shift)
788 n = 1 << (order - node->shift);
789 else
790 n = 1;
791 offset = get_slot_offset(node, slot);
792 } else {
793 n = 1;
794 offset = 0;
797 if (n > 1) {
798 offset = offset & ~(n - 1);
799 slot = &node->slots[offset];
801 child = node_to_entry(slot);
803 for (i = 0; i < n; i++) {
804 if (slot[i]) {
805 if (replace) {
806 node->count--;
807 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
808 if (tag_get(node, tag, offset + i))
809 tags |= 1 << tag;
810 } else
811 return -EEXIST;
815 for (i = 0; i < n; i++) {
816 struct radix_tree_node *old = slot[i];
817 if (i) {
818 rcu_assign_pointer(slot[i], child);
819 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
820 if (tags & (1 << tag))
821 tag_clear(node, tag, offset + i);
822 } else {
823 rcu_assign_pointer(slot[i], item);
824 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
825 if (tags & (1 << tag))
826 tag_set(node, tag, offset);
828 if (radix_tree_is_internal_node(old) &&
829 !is_sibling_entry(node, old) &&
830 (old != RADIX_TREE_RETRY))
831 radix_tree_free_nodes(old);
832 if (radix_tree_exceptional_entry(old))
833 node->exceptional--;
835 if (node) {
836 node->count += n;
837 if (radix_tree_exceptional_entry(item))
838 node->exceptional += n;
840 return n;
842 #else
843 static inline int insert_entries(struct radix_tree_node *node, void **slot,
844 void *item, unsigned order, bool replace)
846 if (*slot)
847 return -EEXIST;
848 rcu_assign_pointer(*slot, item);
849 if (node) {
850 node->count++;
851 if (radix_tree_exceptional_entry(item))
852 node->exceptional++;
854 return 1;
856 #endif
859 * __radix_tree_insert - insert into a radix tree
860 * @root: radix tree root
861 * @index: index key
862 * @order: key covers the 2^order indices around index
863 * @item: item to insert
865 * Insert an item into the radix tree at position @index.
867 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
868 unsigned order, void *item)
870 struct radix_tree_node *node;
871 void **slot;
872 int error;
874 BUG_ON(radix_tree_is_internal_node(item));
876 error = __radix_tree_create(root, index, order, &node, &slot);
877 if (error)
878 return error;
880 error = insert_entries(node, slot, item, order, false);
881 if (error < 0)
882 return error;
884 if (node) {
885 unsigned offset = get_slot_offset(node, slot);
886 BUG_ON(tag_get(node, 0, offset));
887 BUG_ON(tag_get(node, 1, offset));
888 BUG_ON(tag_get(node, 2, offset));
889 } else {
890 BUG_ON(root_tags_get(root));
893 return 0;
895 EXPORT_SYMBOL(__radix_tree_insert);
898 * __radix_tree_lookup - lookup an item in a radix tree
899 * @root: radix tree root
900 * @index: index key
901 * @nodep: returns node
902 * @slotp: returns slot
904 * Lookup and return the item at position @index in the radix
905 * tree @root.
907 * Until there is more than one item in the tree, no nodes are
908 * allocated and @root->rnode is used as a direct slot instead of
909 * pointing to a node, in which case *@nodep will be NULL.
911 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
912 struct radix_tree_node **nodep, void ***slotp)
914 struct radix_tree_node *node, *parent;
915 unsigned long maxindex;
916 void **slot;
918 restart:
919 parent = NULL;
920 slot = (void **)&root->rnode;
921 radix_tree_load_root(root, &node, &maxindex);
922 if (index > maxindex)
923 return NULL;
925 while (radix_tree_is_internal_node(node)) {
926 unsigned offset;
928 if (node == RADIX_TREE_RETRY)
929 goto restart;
930 parent = entry_to_node(node);
931 offset = radix_tree_descend(parent, &node, index);
932 slot = parent->slots + offset;
935 if (nodep)
936 *nodep = parent;
937 if (slotp)
938 *slotp = slot;
939 return node;
943 * radix_tree_lookup_slot - lookup a slot in a radix tree
944 * @root: radix tree root
945 * @index: index key
947 * Returns: the slot corresponding to the position @index in the
948 * radix tree @root. This is useful for update-if-exists operations.
950 * This function can be called under rcu_read_lock iff the slot is not
951 * modified by radix_tree_replace_slot, otherwise it must be called
952 * exclusive from other writers. Any dereference of the slot must be done
953 * using radix_tree_deref_slot.
955 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
957 void **slot;
959 if (!__radix_tree_lookup(root, index, NULL, &slot))
960 return NULL;
961 return slot;
963 EXPORT_SYMBOL(radix_tree_lookup_slot);
966 * radix_tree_lookup - perform lookup operation on a radix tree
967 * @root: radix tree root
968 * @index: index key
970 * Lookup the item at the position @index in the radix tree @root.
972 * This function can be called under rcu_read_lock, however the caller
973 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
974 * them safely). No RCU barriers are required to access or modify the
975 * returned item, however.
977 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
979 return __radix_tree_lookup(root, index, NULL, NULL);
981 EXPORT_SYMBOL(radix_tree_lookup);
983 static inline int slot_count(struct radix_tree_node *node,
984 void **slot)
986 int n = 1;
987 #ifdef CONFIG_RADIX_TREE_MULTIORDER
988 void *ptr = node_to_entry(slot);
989 unsigned offset = get_slot_offset(node, slot);
990 int i;
992 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
993 if (node->slots[offset + i] != ptr)
994 break;
995 n++;
997 #endif
998 return n;
1001 static void replace_slot(struct radix_tree_root *root,
1002 struct radix_tree_node *node,
1003 void **slot, void *item,
1004 bool warn_typeswitch)
1006 void *old = rcu_dereference_raw(*slot);
1007 int count, exceptional;
1009 WARN_ON_ONCE(radix_tree_is_internal_node(item));
1011 count = !!item - !!old;
1012 exceptional = !!radix_tree_exceptional_entry(item) -
1013 !!radix_tree_exceptional_entry(old);
1015 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1017 if (node) {
1018 node->count += count;
1019 if (exceptional) {
1020 exceptional *= slot_count(node, slot);
1021 node->exceptional += exceptional;
1025 rcu_assign_pointer(*slot, item);
1028 static inline void delete_sibling_entries(struct radix_tree_node *node,
1029 void **slot)
1031 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1032 bool exceptional = radix_tree_exceptional_entry(*slot);
1033 void *ptr = node_to_entry(slot);
1034 unsigned offset = get_slot_offset(node, slot);
1035 int i;
1037 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038 if (node->slots[offset + i] != ptr)
1039 break;
1040 node->slots[offset + i] = NULL;
1041 node->count--;
1042 if (exceptional)
1043 node->exceptional--;
1045 #endif
1049 * __radix_tree_replace - replace item in a slot
1050 * @root: radix tree root
1051 * @node: pointer to tree node
1052 * @slot: pointer to slot in @node
1053 * @item: new item to store in the slot.
1054 * @update_node: callback for changing leaf nodes
1055 * @private: private data to pass to @update_node
1057 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1058 * across slot lookup and replacement.
1060 void __radix_tree_replace(struct radix_tree_root *root,
1061 struct radix_tree_node *node,
1062 void **slot, void *item,
1063 radix_tree_update_node_t update_node, void *private)
1065 if (!item)
1066 delete_sibling_entries(node, slot);
1068 * This function supports replacing exceptional entries and
1069 * deleting entries, but that needs accounting against the
1070 * node unless the slot is root->rnode.
1072 replace_slot(root, node, slot, item,
1073 !node && slot != (void **)&root->rnode);
1075 if (!node)
1076 return;
1078 if (update_node)
1079 update_node(node, private);
1081 delete_node(root, node, update_node, private);
1085 * radix_tree_replace_slot - replace item in a slot
1086 * @root: radix tree root
1087 * @slot: pointer to slot
1088 * @item: new item to store in the slot.
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1092 * across slot lookup and replacement.
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1100 void radix_tree_replace_slot(struct radix_tree_root *root,
1101 void **slot, void *item)
1103 replace_slot(root, NULL, slot, item, true);
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root: radix tree root
1109 * @slot: pointer to slot
1110 * @item: new item to store in the slot.
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1115 void radix_tree_iter_replace(struct radix_tree_root *root,
1116 const struct radix_tree_iter *iter, void **slot, void *item)
1118 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1121 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1127 * @item: new entry
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1131 * this call.
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1136 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1137 unsigned order, void *item)
1139 struct radix_tree_node *node;
1140 void **slot;
1141 int error;
1143 BUG_ON(radix_tree_is_internal_node(item));
1145 error = __radix_tree_create(root, index, order, &node, &slot);
1146 if (!error)
1147 error = insert_entries(node, slot, item, order, true);
1148 if (error > 0)
1149 error = 0;
1151 return error;
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order. After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1165 * The tags from this entry are replicated to all the new entries.
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1171 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1172 unsigned order)
1174 struct radix_tree_node *parent, *node, *child;
1175 void **slot;
1176 unsigned int offset, end;
1177 unsigned n, tag, tags = 0;
1179 if (!__radix_tree_lookup(root, index, &parent, &slot))
1180 return -ENOENT;
1181 if (!parent)
1182 return -ENOENT;
1184 offset = get_slot_offset(parent, slot);
1186 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1187 if (tag_get(parent, tag, offset))
1188 tags |= 1 << tag;
1190 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1191 if (!is_sibling_entry(parent, parent->slots[end]))
1192 break;
1193 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194 if (tags & (1 << tag))
1195 tag_set(parent, tag, end);
1196 /* rcu_assign_pointer ensures tags are set before RETRY */
1197 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1199 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1200 parent->exceptional -= (end - offset);
1202 if (order == parent->shift)
1203 return 0;
1204 if (order > parent->shift) {
1205 while (offset < end)
1206 offset += insert_entries(parent, &parent->slots[offset],
1207 RADIX_TREE_RETRY, order, true);
1208 return 0;
1211 node = parent;
1213 for (;;) {
1214 if (node->shift > order) {
1215 child = radix_tree_node_alloc(root, node,
1216 node->shift - RADIX_TREE_MAP_SHIFT,
1217 offset, 0, 0);
1218 if (!child)
1219 goto nomem;
1220 if (node != parent) {
1221 node->count++;
1222 node->slots[offset] = node_to_entry(child);
1223 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1224 if (tags & (1 << tag))
1225 tag_set(node, tag, offset);
1228 node = child;
1229 offset = 0;
1230 continue;
1233 n = insert_entries(node, &node->slots[offset],
1234 RADIX_TREE_RETRY, order, false);
1235 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1237 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238 if (tags & (1 << tag))
1239 tag_set(node, tag, offset);
1240 offset += n;
1242 while (offset == RADIX_TREE_MAP_SIZE) {
1243 if (node == parent)
1244 break;
1245 offset = node->offset;
1246 child = node;
1247 node = node->parent;
1248 rcu_assign_pointer(node->slots[offset],
1249 node_to_entry(child));
1250 offset++;
1252 if ((node == parent) && (offset == end))
1253 return 0;
1256 nomem:
1257 /* Shouldn't happen; did user forget to preload? */
1258 /* TODO: free all the allocated nodes */
1259 WARN_ON(1);
1260 return -ENOMEM;
1262 #endif
1265 * radix_tree_tag_set - set a tag on a radix tree node
1266 * @root: radix tree root
1267 * @index: index key
1268 * @tag: tag index
1270 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 * corresponding to @index in the radix tree. From
1272 * the root all the way down to the leaf node.
1274 * Returns the address of the tagged item. Setting a tag on a not-present
1275 * item is a bug.
1277 void *radix_tree_tag_set(struct radix_tree_root *root,
1278 unsigned long index, unsigned int tag)
1280 struct radix_tree_node *node, *parent;
1281 unsigned long maxindex;
1283 radix_tree_load_root(root, &node, &maxindex);
1284 BUG_ON(index > maxindex);
1286 while (radix_tree_is_internal_node(node)) {
1287 unsigned offset;
1289 parent = entry_to_node(node);
1290 offset = radix_tree_descend(parent, &node, index);
1291 BUG_ON(!node);
1293 if (!tag_get(parent, tag, offset))
1294 tag_set(parent, tag, offset);
1297 /* set the root's tag bit */
1298 if (!root_tag_get(root, tag))
1299 root_tag_set(root, tag);
1301 return node;
1303 EXPORT_SYMBOL(radix_tree_tag_set);
1305 static void node_tag_clear(struct radix_tree_root *root,
1306 struct radix_tree_node *node,
1307 unsigned int tag, unsigned int offset)
1309 while (node) {
1310 if (!tag_get(node, tag, offset))
1311 return;
1312 tag_clear(node, tag, offset);
1313 if (any_tag_set(node, tag))
1314 return;
1316 offset = node->offset;
1317 node = node->parent;
1320 /* clear the root's tag bit */
1321 if (root_tag_get(root, tag))
1322 root_tag_clear(root, tag);
1325 static void node_tag_set(struct radix_tree_root *root,
1326 struct radix_tree_node *node,
1327 unsigned int tag, unsigned int offset)
1329 while (node) {
1330 if (tag_get(node, tag, offset))
1331 return;
1332 tag_set(node, tag, offset);
1333 offset = node->offset;
1334 node = node->parent;
1337 if (!root_tag_get(root, tag))
1338 root_tag_set(root, tag);
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root: radix tree root
1344 * @iter: iterator state
1345 * @tag: tag to set
1347 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1348 const struct radix_tree_iter *iter, unsigned int tag)
1350 node_tag_set(root, iter->node, tag, iter_offset(iter));
1354 * radix_tree_tag_clear - clear a tag on a radix tree node
1355 * @root: radix tree root
1356 * @index: index key
1357 * @tag: tag index
1359 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 * corresponding to @index in the radix tree. If this causes
1361 * the leaf node to have no tags set then clear the tag in the
1362 * next-to-leaf node, etc.
1364 * Returns the address of the tagged item on success, else NULL. ie:
1365 * has the same return value and semantics as radix_tree_lookup().
1367 void *radix_tree_tag_clear(struct radix_tree_root *root,
1368 unsigned long index, unsigned int tag)
1370 struct radix_tree_node *node, *parent;
1371 unsigned long maxindex;
1372 int uninitialized_var(offset);
1374 radix_tree_load_root(root, &node, &maxindex);
1375 if (index > maxindex)
1376 return NULL;
1378 parent = NULL;
1380 while (radix_tree_is_internal_node(node)) {
1381 parent = entry_to_node(node);
1382 offset = radix_tree_descend(parent, &node, index);
1385 if (node)
1386 node_tag_clear(root, parent, tag, offset);
1388 return node;
1390 EXPORT_SYMBOL(radix_tree_tag_clear);
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root: radix tree root
1395 * @index: index key
1396 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1398 * Return values:
1400 * 0: tag not present or not set
1401 * 1: tag set
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1405 * from concurrency.
1407 int radix_tree_tag_get(struct radix_tree_root *root,
1408 unsigned long index, unsigned int tag)
1410 struct radix_tree_node *node, *parent;
1411 unsigned long maxindex;
1413 if (!root_tag_get(root, tag))
1414 return 0;
1416 radix_tree_load_root(root, &node, &maxindex);
1417 if (index > maxindex)
1418 return 0;
1419 if (node == NULL)
1420 return 0;
1422 while (radix_tree_is_internal_node(node)) {
1423 unsigned offset;
1425 parent = entry_to_node(node);
1426 offset = radix_tree_descend(parent, &node, index);
1428 if (!node)
1429 return 0;
1430 if (!tag_get(parent, tag, offset))
1431 return 0;
1432 if (node == RADIX_TREE_RETRY)
1433 break;
1436 return 1;
1438 EXPORT_SYMBOL(radix_tree_tag_get);
1440 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1441 unsigned int shift)
1443 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1444 iter->shift = shift;
1445 #endif
1448 /* Construct iter->tags bit-mask from node->tags[tag] array */
1449 static void set_iter_tags(struct radix_tree_iter *iter,
1450 struct radix_tree_node *node, unsigned offset,
1451 unsigned tag)
1453 unsigned tag_long = offset / BITS_PER_LONG;
1454 unsigned tag_bit = offset % BITS_PER_LONG;
1456 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1458 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1460 /* Pick tags from next element */
1461 if (tag_bit)
1462 iter->tags |= node->tags[tag][tag_long + 1] <<
1463 (BITS_PER_LONG - tag_bit);
1464 /* Clip chunk size, here only BITS_PER_LONG tags */
1465 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1469 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1470 static void **skip_siblings(struct radix_tree_node **nodep,
1471 void **slot, struct radix_tree_iter *iter)
1473 void *sib = node_to_entry(slot - 1);
1475 while (iter->index < iter->next_index) {
1476 *nodep = rcu_dereference_raw(*slot);
1477 if (*nodep && *nodep != sib)
1478 return slot;
1479 slot++;
1480 iter->index = __radix_tree_iter_add(iter, 1);
1481 iter->tags >>= 1;
1484 *nodep = NULL;
1485 return NULL;
1488 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1489 unsigned flags)
1491 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1492 struct radix_tree_node *node = rcu_dereference_raw(*slot);
1494 slot = skip_siblings(&node, slot, iter);
1496 while (radix_tree_is_internal_node(node)) {
1497 unsigned offset;
1498 unsigned long next_index;
1500 if (node == RADIX_TREE_RETRY)
1501 return slot;
1502 node = entry_to_node(node);
1503 iter->node = node;
1504 iter->shift = node->shift;
1506 if (flags & RADIX_TREE_ITER_TAGGED) {
1507 offset = radix_tree_find_next_bit(node, tag, 0);
1508 if (offset == RADIX_TREE_MAP_SIZE)
1509 return NULL;
1510 slot = &node->slots[offset];
1511 iter->index = __radix_tree_iter_add(iter, offset);
1512 set_iter_tags(iter, node, offset, tag);
1513 node = rcu_dereference_raw(*slot);
1514 } else {
1515 offset = 0;
1516 slot = &node->slots[0];
1517 for (;;) {
1518 node = rcu_dereference_raw(*slot);
1519 if (node)
1520 break;
1521 slot++;
1522 offset++;
1523 if (offset == RADIX_TREE_MAP_SIZE)
1524 return NULL;
1526 iter->index = __radix_tree_iter_add(iter, offset);
1528 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1529 goto none;
1530 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1531 if (next_index < iter->next_index)
1532 iter->next_index = next_index;
1535 return slot;
1536 none:
1537 iter->next_index = 0;
1538 return NULL;
1540 EXPORT_SYMBOL(__radix_tree_next_slot);
1541 #else
1542 static void **skip_siblings(struct radix_tree_node **nodep,
1543 void **slot, struct radix_tree_iter *iter)
1545 return slot;
1547 #endif
1549 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1551 struct radix_tree_node *node;
1553 slot++;
1554 iter->index = __radix_tree_iter_add(iter, 1);
1555 node = rcu_dereference_raw(*slot);
1556 skip_siblings(&node, slot, iter);
1557 iter->next_index = iter->index;
1558 iter->tags = 0;
1559 return NULL;
1561 EXPORT_SYMBOL(radix_tree_iter_resume);
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
1566 * @root: radix tree root
1567 * @iter: iterator state
1568 * @flags: RADIX_TREE_ITER_* flags and tag index
1569 * Returns: pointer to chunk first slot, or NULL if iteration is over
1571 void **radix_tree_next_chunk(struct radix_tree_root *root,
1572 struct radix_tree_iter *iter, unsigned flags)
1574 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1575 struct radix_tree_node *node, *child;
1576 unsigned long index, offset, maxindex;
1578 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1579 return NULL;
1582 * Catch next_index overflow after ~0UL. iter->index never overflows
1583 * during iterating; it can be zero only at the beginning.
1584 * And we cannot overflow iter->next_index in a single step,
1585 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1587 * This condition also used by radix_tree_next_slot() to stop
1588 * contiguous iterating, and forbid switching to the next chunk.
1590 index = iter->next_index;
1591 if (!index && iter->index)
1592 return NULL;
1594 restart:
1595 radix_tree_load_root(root, &child, &maxindex);
1596 if (index > maxindex)
1597 return NULL;
1598 if (!child)
1599 return NULL;
1601 if (!radix_tree_is_internal_node(child)) {
1602 /* Single-slot tree */
1603 iter->index = index;
1604 iter->next_index = maxindex + 1;
1605 iter->tags = 1;
1606 iter->node = NULL;
1607 __set_iter_shift(iter, 0);
1608 return (void **)&root->rnode;
1611 do {
1612 node = entry_to_node(child);
1613 offset = radix_tree_descend(node, &child, index);
1615 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1616 !tag_get(node, tag, offset) : !child) {
1617 /* Hole detected */
1618 if (flags & RADIX_TREE_ITER_CONTIG)
1619 return NULL;
1621 if (flags & RADIX_TREE_ITER_TAGGED)
1622 offset = radix_tree_find_next_bit(node, tag,
1623 offset + 1);
1624 else
1625 while (++offset < RADIX_TREE_MAP_SIZE) {
1626 void *slot = node->slots[offset];
1627 if (is_sibling_entry(node, slot))
1628 continue;
1629 if (slot)
1630 break;
1632 index &= ~node_maxindex(node);
1633 index += offset << node->shift;
1634 /* Overflow after ~0UL */
1635 if (!index)
1636 return NULL;
1637 if (offset == RADIX_TREE_MAP_SIZE)
1638 goto restart;
1639 child = rcu_dereference_raw(node->slots[offset]);
1642 if (!child)
1643 goto restart;
1644 if (child == RADIX_TREE_RETRY)
1645 break;
1646 } while (radix_tree_is_internal_node(child));
1648 /* Update the iterator state */
1649 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1650 iter->next_index = (index | node_maxindex(node)) + 1;
1651 iter->node = node;
1652 __set_iter_shift(iter, node->shift);
1654 if (flags & RADIX_TREE_ITER_TAGGED)
1655 set_iter_tags(iter, node, offset, tag);
1657 return node->slots + offset;
1659 EXPORT_SYMBOL(radix_tree_next_chunk);
1662 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 * @root: radix tree root
1664 * @results: where the results of the lookup are placed
1665 * @first_index: start the lookup from this key
1666 * @max_items: place up to this many items at *results
1668 * Performs an index-ascending scan of the tree for present items. Places
1669 * them at *@results and returns the number of items which were placed at
1670 * *@results.
1672 * The implementation is naive.
1674 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 * rcu_read_lock. In this case, rather than the returned results being
1676 * an atomic snapshot of the tree at a single point in time, the
1677 * semantics of an RCU protected gang lookup are as though multiple
1678 * radix_tree_lookups have been issued in individual locks, and results
1679 * stored in 'results'.
1681 unsigned int
1682 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1683 unsigned long first_index, unsigned int max_items)
1685 struct radix_tree_iter iter;
1686 void **slot;
1687 unsigned int ret = 0;
1689 if (unlikely(!max_items))
1690 return 0;
1692 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1693 results[ret] = rcu_dereference_raw(*slot);
1694 if (!results[ret])
1695 continue;
1696 if (radix_tree_is_internal_node(results[ret])) {
1697 slot = radix_tree_iter_retry(&iter);
1698 continue;
1700 if (++ret == max_items)
1701 break;
1704 return ret;
1706 EXPORT_SYMBOL(radix_tree_gang_lookup);
1709 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 * @root: radix tree root
1711 * @results: where the results of the lookup are placed
1712 * @indices: where their indices should be placed (but usually NULL)
1713 * @first_index: start the lookup from this key
1714 * @max_items: place up to this many items at *results
1716 * Performs an index-ascending scan of the tree for present items. Places
1717 * their slots at *@results and returns the number of items which were
1718 * placed at *@results.
1720 * The implementation is naive.
1722 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 * protection, radix_tree_deref_slot may fail requiring a retry.
1726 unsigned int
1727 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1728 void ***results, unsigned long *indices,
1729 unsigned long first_index, unsigned int max_items)
1731 struct radix_tree_iter iter;
1732 void **slot;
1733 unsigned int ret = 0;
1735 if (unlikely(!max_items))
1736 return 0;
1738 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1739 results[ret] = slot;
1740 if (indices)
1741 indices[ret] = iter.index;
1742 if (++ret == max_items)
1743 break;
1746 return ret;
1748 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1751 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1752 * based on a tag
1753 * @root: radix tree root
1754 * @results: where the results of the lookup are placed
1755 * @first_index: start the lookup from this key
1756 * @max_items: place up to this many items at *results
1757 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1759 * Performs an index-ascending scan of the tree for present items which
1760 * have the tag indexed by @tag set. Places the items at *@results and
1761 * returns the number of items which were placed at *@results.
1763 unsigned int
1764 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1765 unsigned long first_index, unsigned int max_items,
1766 unsigned int tag)
1768 struct radix_tree_iter iter;
1769 void **slot;
1770 unsigned int ret = 0;
1772 if (unlikely(!max_items))
1773 return 0;
1775 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1776 results[ret] = rcu_dereference_raw(*slot);
1777 if (!results[ret])
1778 continue;
1779 if (radix_tree_is_internal_node(results[ret])) {
1780 slot = radix_tree_iter_retry(&iter);
1781 continue;
1783 if (++ret == max_items)
1784 break;
1787 return ret;
1789 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1792 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 * radix tree based on a tag
1794 * @root: radix tree root
1795 * @results: where the results of the lookup are placed
1796 * @first_index: start the lookup from this key
1797 * @max_items: place up to this many items at *results
1798 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1800 * Performs an index-ascending scan of the tree for present items which
1801 * have the tag indexed by @tag set. Places the slots at *@results and
1802 * returns the number of slots which were placed at *@results.
1804 unsigned int
1805 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1806 unsigned long first_index, unsigned int max_items,
1807 unsigned int tag)
1809 struct radix_tree_iter iter;
1810 void **slot;
1811 unsigned int ret = 0;
1813 if (unlikely(!max_items))
1814 return 0;
1816 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1817 results[ret] = slot;
1818 if (++ret == max_items)
1819 break;
1822 return ret;
1824 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1827 * __radix_tree_delete_node - try to free node after clearing a slot
1828 * @root: radix tree root
1829 * @node: node containing @index
1830 * @update_node: callback for changing leaf nodes
1831 * @private: private data to pass to @update_node
1833 * After clearing the slot at @index in @node from radix tree
1834 * rooted at @root, call this function to attempt freeing the
1835 * node and shrinking the tree.
1837 void __radix_tree_delete_node(struct radix_tree_root *root,
1838 struct radix_tree_node *node,
1839 radix_tree_update_node_t update_node,
1840 void *private)
1842 delete_node(root, node, update_node, private);
1846 * radix_tree_delete_item - delete an item from a radix tree
1847 * @root: radix tree root
1848 * @index: index key
1849 * @item: expected item
1851 * Remove @item at @index from the radix tree rooted at @root.
1853 * Returns the address of the deleted item, or NULL if it was not present
1854 * or the entry at the given @index was not @item.
1856 void *radix_tree_delete_item(struct radix_tree_root *root,
1857 unsigned long index, void *item)
1859 struct radix_tree_node *node;
1860 unsigned int offset;
1861 void **slot;
1862 void *entry;
1863 int tag;
1865 entry = __radix_tree_lookup(root, index, &node, &slot);
1866 if (!entry)
1867 return NULL;
1869 if (item && entry != item)
1870 return NULL;
1872 if (!node) {
1873 root_tag_clear_all(root);
1874 root->rnode = NULL;
1875 return entry;
1878 offset = get_slot_offset(node, slot);
1880 /* Clear all tags associated with the item to be deleted. */
1881 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1882 node_tag_clear(root, node, tag, offset);
1884 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1886 return entry;
1888 EXPORT_SYMBOL(radix_tree_delete_item);
1891 * radix_tree_delete - delete an item from a radix tree
1892 * @root: radix tree root
1893 * @index: index key
1895 * Remove the item at @index from the radix tree rooted at @root.
1897 * Returns the address of the deleted item, or NULL if it was not present.
1899 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1901 return radix_tree_delete_item(root, index, NULL);
1903 EXPORT_SYMBOL(radix_tree_delete);
1905 void radix_tree_clear_tags(struct radix_tree_root *root,
1906 struct radix_tree_node *node,
1907 void **slot)
1909 if (node) {
1910 unsigned int tag, offset = get_slot_offset(node, slot);
1911 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1912 node_tag_clear(root, node, tag, offset);
1913 } else {
1914 /* Clear root node tags */
1915 root->gfp_mask &= __GFP_BITS_MASK;
1920 * radix_tree_tagged - test whether any items in the tree are tagged
1921 * @root: radix tree root
1922 * @tag: tag to test
1924 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1926 return root_tag_get(root, tag);
1928 EXPORT_SYMBOL(radix_tree_tagged);
1930 static void
1931 radix_tree_node_ctor(void *arg)
1933 struct radix_tree_node *node = arg;
1935 memset(node, 0, sizeof(*node));
1936 INIT_LIST_HEAD(&node->private_list);
1939 static __init unsigned long __maxindex(unsigned int height)
1941 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1942 int shift = RADIX_TREE_INDEX_BITS - width;
1944 if (shift < 0)
1945 return ~0UL;
1946 if (shift >= BITS_PER_LONG)
1947 return 0UL;
1948 return ~0UL >> shift;
1951 static __init void radix_tree_init_maxnodes(void)
1953 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1954 unsigned int i, j;
1956 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1957 height_to_maxindex[i] = __maxindex(i);
1958 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1959 for (j = i; j > 0; j--)
1960 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1964 static int radix_tree_cpu_dead(unsigned int cpu)
1966 struct radix_tree_preload *rtp;
1967 struct radix_tree_node *node;
1969 /* Free per-cpu pool of preloaded nodes */
1970 rtp = &per_cpu(radix_tree_preloads, cpu);
1971 while (rtp->nr) {
1972 node = rtp->nodes;
1973 rtp->nodes = node->private_data;
1974 kmem_cache_free(radix_tree_node_cachep, node);
1975 rtp->nr--;
1977 return 0;
1980 void __init radix_tree_init(void)
1982 int ret;
1983 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1984 sizeof(struct radix_tree_node), 0,
1985 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1986 radix_tree_node_ctor);
1987 radix_tree_init_maxnodes();
1988 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1989 NULL, radix_tree_cpu_dead);
1990 WARN_ON(ret < 0);