Linux 5.1.11
[linux/fpc-iii.git] / kernel / signal.c
blob429f5663edd9fa368eadc331b238b1b6ab677816
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/proc_fs.h>
25 #include <linux/tty.h>
26 #include <linux/binfmts.h>
27 #include <linux/coredump.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/ptrace.h>
31 #include <linux/signal.h>
32 #include <linux/signalfd.h>
33 #include <linux/ratelimit.h>
34 #include <linux/tracehook.h>
35 #include <linux/capability.h>
36 #include <linux/freezer.h>
37 #include <linux/pid_namespace.h>
38 #include <linux/nsproxy.h>
39 #include <linux/user_namespace.h>
40 #include <linux/uprobes.h>
41 #include <linux/compat.h>
42 #include <linux/cn_proc.h>
43 #include <linux/compiler.h>
44 #include <linux/posix-timers.h>
45 #include <linux/livepatch.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/signal.h>
50 #include <asm/param.h>
51 #include <linux/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/siginfo.h>
54 #include <asm/cacheflush.h>
55 #include "audit.h" /* audit_signal_info() */
58 * SLAB caches for signal bits.
61 static struct kmem_cache *sigqueue_cachep;
63 int print_fatal_signals __read_mostly;
65 static void __user *sig_handler(struct task_struct *t, int sig)
67 return t->sighand->action[sig - 1].sa.sa_handler;
70 static inline bool sig_handler_ignored(void __user *handler, int sig)
72 /* Is it explicitly or implicitly ignored? */
73 return handler == SIG_IGN ||
74 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
79 void __user *handler;
81 handler = sig_handler(t, sig);
83 /* SIGKILL and SIGSTOP may not be sent to the global init */
84 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
85 return true;
87 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
88 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
89 return true;
91 return sig_handler_ignored(handler, sig);
94 static bool sig_ignored(struct task_struct *t, int sig, bool force)
97 * Blocked signals are never ignored, since the
98 * signal handler may change by the time it is
99 * unblocked.
101 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
102 return false;
105 * Tracers may want to know about even ignored signal unless it
106 * is SIGKILL which can't be reported anyway but can be ignored
107 * by SIGNAL_UNKILLABLE task.
109 if (t->ptrace && sig != SIGKILL)
110 return false;
112 return sig_task_ignored(t, sig, force);
116 * Re-calculate pending state from the set of locally pending
117 * signals, globally pending signals, and blocked signals.
119 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
121 unsigned long ready;
122 long i;
124 switch (_NSIG_WORDS) {
125 default:
126 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
127 ready |= signal->sig[i] &~ blocked->sig[i];
128 break;
130 case 4: ready = signal->sig[3] &~ blocked->sig[3];
131 ready |= signal->sig[2] &~ blocked->sig[2];
132 ready |= signal->sig[1] &~ blocked->sig[1];
133 ready |= signal->sig[0] &~ blocked->sig[0];
134 break;
136 case 2: ready = signal->sig[1] &~ blocked->sig[1];
137 ready |= signal->sig[0] &~ blocked->sig[0];
138 break;
140 case 1: ready = signal->sig[0] &~ blocked->sig[0];
142 return ready != 0;
145 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
147 static bool recalc_sigpending_tsk(struct task_struct *t)
149 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
150 PENDING(&t->pending, &t->blocked) ||
151 PENDING(&t->signal->shared_pending, &t->blocked)) {
152 set_tsk_thread_flag(t, TIF_SIGPENDING);
153 return true;
157 * We must never clear the flag in another thread, or in current
158 * when it's possible the current syscall is returning -ERESTART*.
159 * So we don't clear it here, and only callers who know they should do.
161 return false;
165 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
166 * This is superfluous when called on current, the wakeup is a harmless no-op.
168 void recalc_sigpending_and_wake(struct task_struct *t)
170 if (recalc_sigpending_tsk(t))
171 signal_wake_up(t, 0);
174 void recalc_sigpending(void)
176 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
177 !klp_patch_pending(current))
178 clear_thread_flag(TIF_SIGPENDING);
181 EXPORT_SYMBOL(recalc_sigpending);
183 void calculate_sigpending(void)
185 /* Have any signals or users of TIF_SIGPENDING been delayed
186 * until after fork?
188 spin_lock_irq(&current->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
190 recalc_sigpending();
191 spin_unlock_irq(&current->sighand->siglock);
194 /* Given the mask, find the first available signal that should be serviced. */
196 #define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
200 int next_signal(struct sigpending *pending, sigset_t *mask)
202 unsigned long i, *s, *m, x;
203 int sig = 0;
205 s = pending->signal.sig;
206 m = mask->sig;
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
212 x = *s &~ *m;
213 if (x) {
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
216 sig = ffz(~x) + 1;
217 return sig;
220 switch (_NSIG_WORDS) {
221 default:
222 for (i = 1; i < _NSIG_WORDS; ++i) {
223 x = *++s &~ *++m;
224 if (!x)
225 continue;
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
227 break;
229 break;
231 case 2:
232 x = s[1] &~ m[1];
233 if (!x)
234 break;
235 sig = ffz(~x) + _NSIG_BPW + 1;
236 break;
238 case 1:
239 /* Nothing to do */
240 break;
243 return sig;
246 static inline void print_dropped_signal(int sig)
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
250 if (!print_fatal_signals)
251 return;
253 if (!__ratelimit(&ratelimit_state))
254 return;
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
261 * task_set_jobctl_pending - set jobctl pending bits
262 * @task: target task
263 * @mask: pending bits to set
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
269 * becomes noop.
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
274 * RETURNS:
275 * %true if @mask is set, %false if made noop because @task was dying.
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 return false;
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
289 task->jobctl |= mask;
290 return true;
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
295 * @task: target task
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
300 * ptracer.
302 * CONTEXT:
303 * Must be called with @task->sighand->siglock held.
305 void task_clear_jobctl_trapping(struct task_struct *task)
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
315 * task_clear_jobctl_pending - clear jobctl pending bits
316 * @task: target task
317 * @mask: pending bits to clear
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
326 * CONTEXT:
327 * Must be called with @task->sighand->siglock held.
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
336 task->jobctl &= ~mask;
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate %SIGNAL_* flags are set.
351 * CONTEXT:
352 * Must be called with @task->sighand->siglock held.
354 * RETURNS:
355 * %true if group stop completion should be notified to the parent, %false
356 * otherwise.
358 static bool task_participate_group_stop(struct task_struct *task)
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
367 if (!consume)
368 return false;
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 return true;
381 return false;
384 void task_join_group_stop(struct task_struct *task)
386 /* Have the new thread join an on-going signal group stop */
387 unsigned long jobctl = current->jobctl;
388 if (jobctl & JOBCTL_STOP_PENDING) {
389 struct signal_struct *sig = current->signal;
390 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
391 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
392 if (task_set_jobctl_pending(task, signr | gstop)) {
393 sig->group_stop_count++;
399 * allocate a new signal queue record
400 * - this may be called without locks if and only if t == current, otherwise an
401 * appropriate lock must be held to stop the target task from exiting
403 static struct sigqueue *
404 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
406 struct sigqueue *q = NULL;
407 struct user_struct *user;
410 * Protect access to @t credentials. This can go away when all
411 * callers hold rcu read lock.
413 rcu_read_lock();
414 user = get_uid(__task_cred(t)->user);
415 atomic_inc(&user->sigpending);
416 rcu_read_unlock();
418 if (override_rlimit ||
419 atomic_read(&user->sigpending) <=
420 task_rlimit(t, RLIMIT_SIGPENDING)) {
421 q = kmem_cache_alloc(sigqueue_cachep, flags);
422 } else {
423 print_dropped_signal(sig);
426 if (unlikely(q == NULL)) {
427 atomic_dec(&user->sigpending);
428 free_uid(user);
429 } else {
430 INIT_LIST_HEAD(&q->list);
431 q->flags = 0;
432 q->user = user;
435 return q;
438 static void __sigqueue_free(struct sigqueue *q)
440 if (q->flags & SIGQUEUE_PREALLOC)
441 return;
442 atomic_dec(&q->user->sigpending);
443 free_uid(q->user);
444 kmem_cache_free(sigqueue_cachep, q);
447 void flush_sigqueue(struct sigpending *queue)
449 struct sigqueue *q;
451 sigemptyset(&queue->signal);
452 while (!list_empty(&queue->list)) {
453 q = list_entry(queue->list.next, struct sigqueue , list);
454 list_del_init(&q->list);
455 __sigqueue_free(q);
460 * Flush all pending signals for this kthread.
462 void flush_signals(struct task_struct *t)
464 unsigned long flags;
466 spin_lock_irqsave(&t->sighand->siglock, flags);
467 clear_tsk_thread_flag(t, TIF_SIGPENDING);
468 flush_sigqueue(&t->pending);
469 flush_sigqueue(&t->signal->shared_pending);
470 spin_unlock_irqrestore(&t->sighand->siglock, flags);
472 EXPORT_SYMBOL(flush_signals);
474 #ifdef CONFIG_POSIX_TIMERS
475 static void __flush_itimer_signals(struct sigpending *pending)
477 sigset_t signal, retain;
478 struct sigqueue *q, *n;
480 signal = pending->signal;
481 sigemptyset(&retain);
483 list_for_each_entry_safe(q, n, &pending->list, list) {
484 int sig = q->info.si_signo;
486 if (likely(q->info.si_code != SI_TIMER)) {
487 sigaddset(&retain, sig);
488 } else {
489 sigdelset(&signal, sig);
490 list_del_init(&q->list);
491 __sigqueue_free(q);
495 sigorsets(&pending->signal, &signal, &retain);
498 void flush_itimer_signals(void)
500 struct task_struct *tsk = current;
501 unsigned long flags;
503 spin_lock_irqsave(&tsk->sighand->siglock, flags);
504 __flush_itimer_signals(&tsk->pending);
505 __flush_itimer_signals(&tsk->signal->shared_pending);
506 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
508 #endif
510 void ignore_signals(struct task_struct *t)
512 int i;
514 for (i = 0; i < _NSIG; ++i)
515 t->sighand->action[i].sa.sa_handler = SIG_IGN;
517 flush_signals(t);
521 * Flush all handlers for a task.
524 void
525 flush_signal_handlers(struct task_struct *t, int force_default)
527 int i;
528 struct k_sigaction *ka = &t->sighand->action[0];
529 for (i = _NSIG ; i != 0 ; i--) {
530 if (force_default || ka->sa.sa_handler != SIG_IGN)
531 ka->sa.sa_handler = SIG_DFL;
532 ka->sa.sa_flags = 0;
533 #ifdef __ARCH_HAS_SA_RESTORER
534 ka->sa.sa_restorer = NULL;
535 #endif
536 sigemptyset(&ka->sa.sa_mask);
537 ka++;
541 bool unhandled_signal(struct task_struct *tsk, int sig)
543 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
544 if (is_global_init(tsk))
545 return true;
547 if (handler != SIG_IGN && handler != SIG_DFL)
548 return false;
550 /* if ptraced, let the tracer determine */
551 return !tsk->ptrace;
554 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
555 bool *resched_timer)
557 struct sigqueue *q, *first = NULL;
560 * Collect the siginfo appropriate to this signal. Check if
561 * there is another siginfo for the same signal.
563 list_for_each_entry(q, &list->list, list) {
564 if (q->info.si_signo == sig) {
565 if (first)
566 goto still_pending;
567 first = q;
571 sigdelset(&list->signal, sig);
573 if (first) {
574 still_pending:
575 list_del_init(&first->list);
576 copy_siginfo(info, &first->info);
578 *resched_timer =
579 (first->flags & SIGQUEUE_PREALLOC) &&
580 (info->si_code == SI_TIMER) &&
581 (info->si_sys_private);
583 __sigqueue_free(first);
584 } else {
586 * Ok, it wasn't in the queue. This must be
587 * a fast-pathed signal or we must have been
588 * out of queue space. So zero out the info.
590 clear_siginfo(info);
591 info->si_signo = sig;
592 info->si_errno = 0;
593 info->si_code = SI_USER;
594 info->si_pid = 0;
595 info->si_uid = 0;
599 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
600 kernel_siginfo_t *info, bool *resched_timer)
602 int sig = next_signal(pending, mask);
604 if (sig)
605 collect_signal(sig, pending, info, resched_timer);
606 return sig;
610 * Dequeue a signal and return the element to the caller, which is
611 * expected to free it.
613 * All callers have to hold the siglock.
615 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
617 bool resched_timer = false;
618 int signr;
620 /* We only dequeue private signals from ourselves, we don't let
621 * signalfd steal them
623 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
624 if (!signr) {
625 signr = __dequeue_signal(&tsk->signal->shared_pending,
626 mask, info, &resched_timer);
627 #ifdef CONFIG_POSIX_TIMERS
629 * itimer signal ?
631 * itimers are process shared and we restart periodic
632 * itimers in the signal delivery path to prevent DoS
633 * attacks in the high resolution timer case. This is
634 * compliant with the old way of self-restarting
635 * itimers, as the SIGALRM is a legacy signal and only
636 * queued once. Changing the restart behaviour to
637 * restart the timer in the signal dequeue path is
638 * reducing the timer noise on heavy loaded !highres
639 * systems too.
641 if (unlikely(signr == SIGALRM)) {
642 struct hrtimer *tmr = &tsk->signal->real_timer;
644 if (!hrtimer_is_queued(tmr) &&
645 tsk->signal->it_real_incr != 0) {
646 hrtimer_forward(tmr, tmr->base->get_time(),
647 tsk->signal->it_real_incr);
648 hrtimer_restart(tmr);
651 #endif
654 recalc_sigpending();
655 if (!signr)
656 return 0;
658 if (unlikely(sig_kernel_stop(signr))) {
660 * Set a marker that we have dequeued a stop signal. Our
661 * caller might release the siglock and then the pending
662 * stop signal it is about to process is no longer in the
663 * pending bitmasks, but must still be cleared by a SIGCONT
664 * (and overruled by a SIGKILL). So those cases clear this
665 * shared flag after we've set it. Note that this flag may
666 * remain set after the signal we return is ignored or
667 * handled. That doesn't matter because its only purpose
668 * is to alert stop-signal processing code when another
669 * processor has come along and cleared the flag.
671 current->jobctl |= JOBCTL_STOP_DEQUEUED;
673 #ifdef CONFIG_POSIX_TIMERS
674 if (resched_timer) {
676 * Release the siglock to ensure proper locking order
677 * of timer locks outside of siglocks. Note, we leave
678 * irqs disabled here, since the posix-timers code is
679 * about to disable them again anyway.
681 spin_unlock(&tsk->sighand->siglock);
682 posixtimer_rearm(info);
683 spin_lock(&tsk->sighand->siglock);
685 /* Don't expose the si_sys_private value to userspace */
686 info->si_sys_private = 0;
688 #endif
689 return signr;
691 EXPORT_SYMBOL_GPL(dequeue_signal);
693 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
695 struct task_struct *tsk = current;
696 struct sigpending *pending = &tsk->pending;
697 struct sigqueue *q, *sync = NULL;
700 * Might a synchronous signal be in the queue?
702 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
703 return 0;
706 * Return the first synchronous signal in the queue.
708 list_for_each_entry(q, &pending->list, list) {
709 /* Synchronous signals have a postive si_code */
710 if ((q->info.si_code > SI_USER) &&
711 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
712 sync = q;
713 goto next;
716 return 0;
717 next:
719 * Check if there is another siginfo for the same signal.
721 list_for_each_entry_continue(q, &pending->list, list) {
722 if (q->info.si_signo == sync->info.si_signo)
723 goto still_pending;
726 sigdelset(&pending->signal, sync->info.si_signo);
727 recalc_sigpending();
728 still_pending:
729 list_del_init(&sync->list);
730 copy_siginfo(info, &sync->info);
731 __sigqueue_free(sync);
732 return info->si_signo;
736 * Tell a process that it has a new active signal..
738 * NOTE! we rely on the previous spin_lock to
739 * lock interrupts for us! We can only be called with
740 * "siglock" held, and the local interrupt must
741 * have been disabled when that got acquired!
743 * No need to set need_resched since signal event passing
744 * goes through ->blocked
746 void signal_wake_up_state(struct task_struct *t, unsigned int state)
748 set_tsk_thread_flag(t, TIF_SIGPENDING);
750 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
751 * case. We don't check t->state here because there is a race with it
752 * executing another processor and just now entering stopped state.
753 * By using wake_up_state, we ensure the process will wake up and
754 * handle its death signal.
756 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
757 kick_process(t);
761 * Remove signals in mask from the pending set and queue.
762 * Returns 1 if any signals were found.
764 * All callers must be holding the siglock.
766 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
768 struct sigqueue *q, *n;
769 sigset_t m;
771 sigandsets(&m, mask, &s->signal);
772 if (sigisemptyset(&m))
773 return;
775 sigandnsets(&s->signal, &s->signal, mask);
776 list_for_each_entry_safe(q, n, &s->list, list) {
777 if (sigismember(mask, q->info.si_signo)) {
778 list_del_init(&q->list);
779 __sigqueue_free(q);
784 static inline int is_si_special(const struct kernel_siginfo *info)
786 return info <= SEND_SIG_PRIV;
789 static inline bool si_fromuser(const struct kernel_siginfo *info)
791 return info == SEND_SIG_NOINFO ||
792 (!is_si_special(info) && SI_FROMUSER(info));
796 * called with RCU read lock from check_kill_permission()
798 static bool kill_ok_by_cred(struct task_struct *t)
800 const struct cred *cred = current_cred();
801 const struct cred *tcred = __task_cred(t);
803 return uid_eq(cred->euid, tcred->suid) ||
804 uid_eq(cred->euid, tcred->uid) ||
805 uid_eq(cred->uid, tcred->suid) ||
806 uid_eq(cred->uid, tcred->uid) ||
807 ns_capable(tcred->user_ns, CAP_KILL);
811 * Bad permissions for sending the signal
812 * - the caller must hold the RCU read lock
814 static int check_kill_permission(int sig, struct kernel_siginfo *info,
815 struct task_struct *t)
817 struct pid *sid;
818 int error;
820 if (!valid_signal(sig))
821 return -EINVAL;
823 if (!si_fromuser(info))
824 return 0;
826 error = audit_signal_info(sig, t); /* Let audit system see the signal */
827 if (error)
828 return error;
830 if (!same_thread_group(current, t) &&
831 !kill_ok_by_cred(t)) {
832 switch (sig) {
833 case SIGCONT:
834 sid = task_session(t);
836 * We don't return the error if sid == NULL. The
837 * task was unhashed, the caller must notice this.
839 if (!sid || sid == task_session(current))
840 break;
841 default:
842 return -EPERM;
846 return security_task_kill(t, info, sig, NULL);
850 * ptrace_trap_notify - schedule trap to notify ptracer
851 * @t: tracee wanting to notify tracer
853 * This function schedules sticky ptrace trap which is cleared on the next
854 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
855 * ptracer.
857 * If @t is running, STOP trap will be taken. If trapped for STOP and
858 * ptracer is listening for events, tracee is woken up so that it can
859 * re-trap for the new event. If trapped otherwise, STOP trap will be
860 * eventually taken without returning to userland after the existing traps
861 * are finished by PTRACE_CONT.
863 * CONTEXT:
864 * Must be called with @task->sighand->siglock held.
866 static void ptrace_trap_notify(struct task_struct *t)
868 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
869 assert_spin_locked(&t->sighand->siglock);
871 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
872 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
876 * Handle magic process-wide effects of stop/continue signals. Unlike
877 * the signal actions, these happen immediately at signal-generation
878 * time regardless of blocking, ignoring, or handling. This does the
879 * actual continuing for SIGCONT, but not the actual stopping for stop
880 * signals. The process stop is done as a signal action for SIG_DFL.
882 * Returns true if the signal should be actually delivered, otherwise
883 * it should be dropped.
885 static bool prepare_signal(int sig, struct task_struct *p, bool force)
887 struct signal_struct *signal = p->signal;
888 struct task_struct *t;
889 sigset_t flush;
891 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
892 if (!(signal->flags & SIGNAL_GROUP_EXIT))
893 return sig == SIGKILL;
895 * The process is in the middle of dying, nothing to do.
897 } else if (sig_kernel_stop(sig)) {
899 * This is a stop signal. Remove SIGCONT from all queues.
901 siginitset(&flush, sigmask(SIGCONT));
902 flush_sigqueue_mask(&flush, &signal->shared_pending);
903 for_each_thread(p, t)
904 flush_sigqueue_mask(&flush, &t->pending);
905 } else if (sig == SIGCONT) {
906 unsigned int why;
908 * Remove all stop signals from all queues, wake all threads.
910 siginitset(&flush, SIG_KERNEL_STOP_MASK);
911 flush_sigqueue_mask(&flush, &signal->shared_pending);
912 for_each_thread(p, t) {
913 flush_sigqueue_mask(&flush, &t->pending);
914 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
915 if (likely(!(t->ptrace & PT_SEIZED)))
916 wake_up_state(t, __TASK_STOPPED);
917 else
918 ptrace_trap_notify(t);
922 * Notify the parent with CLD_CONTINUED if we were stopped.
924 * If we were in the middle of a group stop, we pretend it
925 * was already finished, and then continued. Since SIGCHLD
926 * doesn't queue we report only CLD_STOPPED, as if the next
927 * CLD_CONTINUED was dropped.
929 why = 0;
930 if (signal->flags & SIGNAL_STOP_STOPPED)
931 why |= SIGNAL_CLD_CONTINUED;
932 else if (signal->group_stop_count)
933 why |= SIGNAL_CLD_STOPPED;
935 if (why) {
937 * The first thread which returns from do_signal_stop()
938 * will take ->siglock, notice SIGNAL_CLD_MASK, and
939 * notify its parent. See get_signal().
941 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
942 signal->group_stop_count = 0;
943 signal->group_exit_code = 0;
947 return !sig_ignored(p, sig, force);
951 * Test if P wants to take SIG. After we've checked all threads with this,
952 * it's equivalent to finding no threads not blocking SIG. Any threads not
953 * blocking SIG were ruled out because they are not running and already
954 * have pending signals. Such threads will dequeue from the shared queue
955 * as soon as they're available, so putting the signal on the shared queue
956 * will be equivalent to sending it to one such thread.
958 static inline bool wants_signal(int sig, struct task_struct *p)
960 if (sigismember(&p->blocked, sig))
961 return false;
963 if (p->flags & PF_EXITING)
964 return false;
966 if (sig == SIGKILL)
967 return true;
969 if (task_is_stopped_or_traced(p))
970 return false;
972 return task_curr(p) || !signal_pending(p);
975 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
977 struct signal_struct *signal = p->signal;
978 struct task_struct *t;
981 * Now find a thread we can wake up to take the signal off the queue.
983 * If the main thread wants the signal, it gets first crack.
984 * Probably the least surprising to the average bear.
986 if (wants_signal(sig, p))
987 t = p;
988 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
990 * There is just one thread and it does not need to be woken.
991 * It will dequeue unblocked signals before it runs again.
993 return;
994 else {
996 * Otherwise try to find a suitable thread.
998 t = signal->curr_target;
999 while (!wants_signal(sig, t)) {
1000 t = next_thread(t);
1001 if (t == signal->curr_target)
1003 * No thread needs to be woken.
1004 * Any eligible threads will see
1005 * the signal in the queue soon.
1007 return;
1009 signal->curr_target = t;
1013 * Found a killable thread. If the signal will be fatal,
1014 * then start taking the whole group down immediately.
1016 if (sig_fatal(p, sig) &&
1017 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1018 !sigismember(&t->real_blocked, sig) &&
1019 (sig == SIGKILL || !p->ptrace)) {
1021 * This signal will be fatal to the whole group.
1023 if (!sig_kernel_coredump(sig)) {
1025 * Start a group exit and wake everybody up.
1026 * This way we don't have other threads
1027 * running and doing things after a slower
1028 * thread has the fatal signal pending.
1030 signal->flags = SIGNAL_GROUP_EXIT;
1031 signal->group_exit_code = sig;
1032 signal->group_stop_count = 0;
1033 t = p;
1034 do {
1035 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1036 sigaddset(&t->pending.signal, SIGKILL);
1037 signal_wake_up(t, 1);
1038 } while_each_thread(p, t);
1039 return;
1044 * The signal is already in the shared-pending queue.
1045 * Tell the chosen thread to wake up and dequeue it.
1047 signal_wake_up(t, sig == SIGKILL);
1048 return;
1051 static inline bool legacy_queue(struct sigpending *signals, int sig)
1053 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1056 #ifdef CONFIG_USER_NS
1057 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1059 if (current_user_ns() == task_cred_xxx(t, user_ns))
1060 return;
1062 if (SI_FROMKERNEL(info))
1063 return;
1065 rcu_read_lock();
1066 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1067 make_kuid(current_user_ns(), info->si_uid));
1068 rcu_read_unlock();
1070 #else
1071 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1073 return;
1075 #endif
1077 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1078 enum pid_type type, int from_ancestor_ns)
1080 struct sigpending *pending;
1081 struct sigqueue *q;
1082 int override_rlimit;
1083 int ret = 0, result;
1085 assert_spin_locked(&t->sighand->siglock);
1087 result = TRACE_SIGNAL_IGNORED;
1088 if (!prepare_signal(sig, t,
1089 from_ancestor_ns || (info == SEND_SIG_PRIV)))
1090 goto ret;
1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 * Short-circuit ignored signals and support queuing
1095 * exactly one non-rt signal, so that we can get more
1096 * detailed information about the cause of the signal.
1098 result = TRACE_SIGNAL_ALREADY_PENDING;
1099 if (legacy_queue(pending, sig))
1100 goto ret;
1102 result = TRACE_SIGNAL_DELIVERED;
1104 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1107 goto out_set;
1110 * Real-time signals must be queued if sent by sigqueue, or
1111 * some other real-time mechanism. It is implementation
1112 * defined whether kill() does so. We attempt to do so, on
1113 * the principle of least surprise, but since kill is not
1114 * allowed to fail with EAGAIN when low on memory we just
1115 * make sure at least one signal gets delivered and don't
1116 * pass on the info struct.
1118 if (sig < SIGRTMIN)
1119 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1120 else
1121 override_rlimit = 0;
1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1124 if (q) {
1125 list_add_tail(&q->list, &pending->list);
1126 switch ((unsigned long) info) {
1127 case (unsigned long) SEND_SIG_NOINFO:
1128 clear_siginfo(&q->info);
1129 q->info.si_signo = sig;
1130 q->info.si_errno = 0;
1131 q->info.si_code = SI_USER;
1132 q->info.si_pid = task_tgid_nr_ns(current,
1133 task_active_pid_ns(t));
1134 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1135 break;
1136 case (unsigned long) SEND_SIG_PRIV:
1137 clear_siginfo(&q->info);
1138 q->info.si_signo = sig;
1139 q->info.si_errno = 0;
1140 q->info.si_code = SI_KERNEL;
1141 q->info.si_pid = 0;
1142 q->info.si_uid = 0;
1143 break;
1144 default:
1145 copy_siginfo(&q->info, info);
1146 if (from_ancestor_ns)
1147 q->info.si_pid = 0;
1148 break;
1151 userns_fixup_signal_uid(&q->info, t);
1153 } else if (!is_si_special(info)) {
1154 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 * Queue overflow, abort. We may abort if the
1157 * signal was rt and sent by user using something
1158 * other than kill().
1160 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1161 ret = -EAGAIN;
1162 goto ret;
1163 } else {
1165 * This is a silent loss of information. We still
1166 * send the signal, but the *info bits are lost.
1168 result = TRACE_SIGNAL_LOSE_INFO;
1172 out_set:
1173 signalfd_notify(t, sig);
1174 sigaddset(&pending->signal, sig);
1176 /* Let multiprocess signals appear after on-going forks */
1177 if (type > PIDTYPE_TGID) {
1178 struct multiprocess_signals *delayed;
1179 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 sigset_t *signal = &delayed->signal;
1181 /* Can't queue both a stop and a continue signal */
1182 if (sig == SIGCONT)
1183 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 else if (sig_kernel_stop(sig))
1185 sigdelset(signal, SIGCONT);
1186 sigaddset(signal, sig);
1190 complete_signal(sig, t, type);
1191 ret:
1192 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 return ret;
1196 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1197 enum pid_type type)
1199 int from_ancestor_ns = 0;
1201 #ifdef CONFIG_PID_NS
1202 from_ancestor_ns = si_fromuser(info) &&
1203 !task_pid_nr_ns(current, task_active_pid_ns(t));
1204 #endif
1206 return __send_signal(sig, info, t, type, from_ancestor_ns);
1209 static void print_fatal_signal(int signr)
1211 struct pt_regs *regs = signal_pt_regs();
1212 pr_info("potentially unexpected fatal signal %d.\n", signr);
1214 #if defined(__i386__) && !defined(__arch_um__)
1215 pr_info("code at %08lx: ", regs->ip);
1217 int i;
1218 for (i = 0; i < 16; i++) {
1219 unsigned char insn;
1221 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1222 break;
1223 pr_cont("%02x ", insn);
1226 pr_cont("\n");
1227 #endif
1228 preempt_disable();
1229 show_regs(regs);
1230 preempt_enable();
1233 static int __init setup_print_fatal_signals(char *str)
1235 get_option (&str, &print_fatal_signals);
1237 return 1;
1240 __setup("print-fatal-signals=", setup_print_fatal_signals);
1243 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1245 return send_signal(sig, info, p, PIDTYPE_TGID);
1248 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1249 enum pid_type type)
1251 unsigned long flags;
1252 int ret = -ESRCH;
1254 if (lock_task_sighand(p, &flags)) {
1255 ret = send_signal(sig, info, p, type);
1256 unlock_task_sighand(p, &flags);
1259 return ret;
1263 * Force a signal that the process can't ignore: if necessary
1264 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1266 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1267 * since we do not want to have a signal handler that was blocked
1268 * be invoked when user space had explicitly blocked it.
1270 * We don't want to have recursive SIGSEGV's etc, for example,
1271 * that is why we also clear SIGNAL_UNKILLABLE.
1274 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1276 unsigned long int flags;
1277 int ret, blocked, ignored;
1278 struct k_sigaction *action;
1280 spin_lock_irqsave(&t->sighand->siglock, flags);
1281 action = &t->sighand->action[sig-1];
1282 ignored = action->sa.sa_handler == SIG_IGN;
1283 blocked = sigismember(&t->blocked, sig);
1284 if (blocked || ignored) {
1285 action->sa.sa_handler = SIG_DFL;
1286 if (blocked) {
1287 sigdelset(&t->blocked, sig);
1288 recalc_sigpending_and_wake(t);
1292 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1293 * debugging to leave init killable.
1295 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1296 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1297 ret = send_signal(sig, info, t, PIDTYPE_PID);
1298 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1300 return ret;
1304 * Nuke all other threads in the group.
1306 int zap_other_threads(struct task_struct *p)
1308 struct task_struct *t = p;
1309 int count = 0;
1311 p->signal->group_stop_count = 0;
1313 while_each_thread(p, t) {
1314 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1315 count++;
1317 /* Don't bother with already dead threads */
1318 if (t->exit_state)
1319 continue;
1320 sigaddset(&t->pending.signal, SIGKILL);
1321 signal_wake_up(t, 1);
1324 return count;
1327 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1328 unsigned long *flags)
1330 struct sighand_struct *sighand;
1332 rcu_read_lock();
1333 for (;;) {
1334 sighand = rcu_dereference(tsk->sighand);
1335 if (unlikely(sighand == NULL))
1336 break;
1339 * This sighand can be already freed and even reused, but
1340 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1341 * initializes ->siglock: this slab can't go away, it has
1342 * the same object type, ->siglock can't be reinitialized.
1344 * We need to ensure that tsk->sighand is still the same
1345 * after we take the lock, we can race with de_thread() or
1346 * __exit_signal(). In the latter case the next iteration
1347 * must see ->sighand == NULL.
1349 spin_lock_irqsave(&sighand->siglock, *flags);
1350 if (likely(sighand == tsk->sighand))
1351 break;
1352 spin_unlock_irqrestore(&sighand->siglock, *flags);
1354 rcu_read_unlock();
1356 return sighand;
1360 * send signal info to all the members of a group
1362 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1363 struct task_struct *p, enum pid_type type)
1365 int ret;
1367 rcu_read_lock();
1368 ret = check_kill_permission(sig, info, p);
1369 rcu_read_unlock();
1371 if (!ret && sig)
1372 ret = do_send_sig_info(sig, info, p, type);
1374 return ret;
1378 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1379 * control characters do (^C, ^Z etc)
1380 * - the caller must hold at least a readlock on tasklist_lock
1382 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1384 struct task_struct *p = NULL;
1385 int retval, success;
1387 success = 0;
1388 retval = -ESRCH;
1389 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1390 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1391 success |= !err;
1392 retval = err;
1393 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1394 return success ? 0 : retval;
1397 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1399 int error = -ESRCH;
1400 struct task_struct *p;
1402 for (;;) {
1403 rcu_read_lock();
1404 p = pid_task(pid, PIDTYPE_PID);
1405 if (p)
1406 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1407 rcu_read_unlock();
1408 if (likely(!p || error != -ESRCH))
1409 return error;
1412 * The task was unhashed in between, try again. If it
1413 * is dead, pid_task() will return NULL, if we race with
1414 * de_thread() it will find the new leader.
1419 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1421 int error;
1422 rcu_read_lock();
1423 error = kill_pid_info(sig, info, find_vpid(pid));
1424 rcu_read_unlock();
1425 return error;
1428 static inline bool kill_as_cred_perm(const struct cred *cred,
1429 struct task_struct *target)
1431 const struct cred *pcred = __task_cred(target);
1433 return uid_eq(cred->euid, pcred->suid) ||
1434 uid_eq(cred->euid, pcred->uid) ||
1435 uid_eq(cred->uid, pcred->suid) ||
1436 uid_eq(cred->uid, pcred->uid);
1439 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1440 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1441 const struct cred *cred)
1443 int ret = -EINVAL;
1444 struct task_struct *p;
1445 unsigned long flags;
1447 if (!valid_signal(sig))
1448 return ret;
1450 rcu_read_lock();
1451 p = pid_task(pid, PIDTYPE_PID);
1452 if (!p) {
1453 ret = -ESRCH;
1454 goto out_unlock;
1456 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1457 ret = -EPERM;
1458 goto out_unlock;
1460 ret = security_task_kill(p, info, sig, cred);
1461 if (ret)
1462 goto out_unlock;
1464 if (sig) {
1465 if (lock_task_sighand(p, &flags)) {
1466 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1467 unlock_task_sighand(p, &flags);
1468 } else
1469 ret = -ESRCH;
1471 out_unlock:
1472 rcu_read_unlock();
1473 return ret;
1475 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1478 * kill_something_info() interprets pid in interesting ways just like kill(2).
1480 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1481 * is probably wrong. Should make it like BSD or SYSV.
1484 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1486 int ret;
1488 if (pid > 0) {
1489 rcu_read_lock();
1490 ret = kill_pid_info(sig, info, find_vpid(pid));
1491 rcu_read_unlock();
1492 return ret;
1495 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1496 if (pid == INT_MIN)
1497 return -ESRCH;
1499 read_lock(&tasklist_lock);
1500 if (pid != -1) {
1501 ret = __kill_pgrp_info(sig, info,
1502 pid ? find_vpid(-pid) : task_pgrp(current));
1503 } else {
1504 int retval = 0, count = 0;
1505 struct task_struct * p;
1507 for_each_process(p) {
1508 if (task_pid_vnr(p) > 1 &&
1509 !same_thread_group(p, current)) {
1510 int err = group_send_sig_info(sig, info, p,
1511 PIDTYPE_MAX);
1512 ++count;
1513 if (err != -EPERM)
1514 retval = err;
1517 ret = count ? retval : -ESRCH;
1519 read_unlock(&tasklist_lock);
1521 return ret;
1525 * These are for backward compatibility with the rest of the kernel source.
1528 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1531 * Make sure legacy kernel users don't send in bad values
1532 * (normal paths check this in check_kill_permission).
1534 if (!valid_signal(sig))
1535 return -EINVAL;
1537 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1539 EXPORT_SYMBOL(send_sig_info);
1541 #define __si_special(priv) \
1542 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1545 send_sig(int sig, struct task_struct *p, int priv)
1547 return send_sig_info(sig, __si_special(priv), p);
1549 EXPORT_SYMBOL(send_sig);
1551 void force_sig(int sig, struct task_struct *p)
1553 force_sig_info(sig, SEND_SIG_PRIV, p);
1555 EXPORT_SYMBOL(force_sig);
1558 * When things go south during signal handling, we
1559 * will force a SIGSEGV. And if the signal that caused
1560 * the problem was already a SIGSEGV, we'll want to
1561 * make sure we don't even try to deliver the signal..
1563 void force_sigsegv(int sig, struct task_struct *p)
1565 if (sig == SIGSEGV) {
1566 unsigned long flags;
1567 spin_lock_irqsave(&p->sighand->siglock, flags);
1568 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1569 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1571 force_sig(SIGSEGV, p);
1574 int force_sig_fault(int sig, int code, void __user *addr
1575 ___ARCH_SI_TRAPNO(int trapno)
1576 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1577 , struct task_struct *t)
1579 struct kernel_siginfo info;
1581 clear_siginfo(&info);
1582 info.si_signo = sig;
1583 info.si_errno = 0;
1584 info.si_code = code;
1585 info.si_addr = addr;
1586 #ifdef __ARCH_SI_TRAPNO
1587 info.si_trapno = trapno;
1588 #endif
1589 #ifdef __ia64__
1590 info.si_imm = imm;
1591 info.si_flags = flags;
1592 info.si_isr = isr;
1593 #endif
1594 return force_sig_info(info.si_signo, &info, t);
1597 int send_sig_fault(int sig, int code, void __user *addr
1598 ___ARCH_SI_TRAPNO(int trapno)
1599 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1600 , struct task_struct *t)
1602 struct kernel_siginfo info;
1604 clear_siginfo(&info);
1605 info.si_signo = sig;
1606 info.si_errno = 0;
1607 info.si_code = code;
1608 info.si_addr = addr;
1609 #ifdef __ARCH_SI_TRAPNO
1610 info.si_trapno = trapno;
1611 #endif
1612 #ifdef __ia64__
1613 info.si_imm = imm;
1614 info.si_flags = flags;
1615 info.si_isr = isr;
1616 #endif
1617 return send_sig_info(info.si_signo, &info, t);
1620 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1622 struct kernel_siginfo info;
1624 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1625 clear_siginfo(&info);
1626 info.si_signo = SIGBUS;
1627 info.si_errno = 0;
1628 info.si_code = code;
1629 info.si_addr = addr;
1630 info.si_addr_lsb = lsb;
1631 return force_sig_info(info.si_signo, &info, t);
1634 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1636 struct kernel_siginfo info;
1638 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1639 clear_siginfo(&info);
1640 info.si_signo = SIGBUS;
1641 info.si_errno = 0;
1642 info.si_code = code;
1643 info.si_addr = addr;
1644 info.si_addr_lsb = lsb;
1645 return send_sig_info(info.si_signo, &info, t);
1647 EXPORT_SYMBOL(send_sig_mceerr);
1649 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1651 struct kernel_siginfo info;
1653 clear_siginfo(&info);
1654 info.si_signo = SIGSEGV;
1655 info.si_errno = 0;
1656 info.si_code = SEGV_BNDERR;
1657 info.si_addr = addr;
1658 info.si_lower = lower;
1659 info.si_upper = upper;
1660 return force_sig_info(info.si_signo, &info, current);
1663 #ifdef SEGV_PKUERR
1664 int force_sig_pkuerr(void __user *addr, u32 pkey)
1666 struct kernel_siginfo info;
1668 clear_siginfo(&info);
1669 info.si_signo = SIGSEGV;
1670 info.si_errno = 0;
1671 info.si_code = SEGV_PKUERR;
1672 info.si_addr = addr;
1673 info.si_pkey = pkey;
1674 return force_sig_info(info.si_signo, &info, current);
1676 #endif
1678 /* For the crazy architectures that include trap information in
1679 * the errno field, instead of an actual errno value.
1681 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1683 struct kernel_siginfo info;
1685 clear_siginfo(&info);
1686 info.si_signo = SIGTRAP;
1687 info.si_errno = errno;
1688 info.si_code = TRAP_HWBKPT;
1689 info.si_addr = addr;
1690 return force_sig_info(info.si_signo, &info, current);
1693 int kill_pgrp(struct pid *pid, int sig, int priv)
1695 int ret;
1697 read_lock(&tasklist_lock);
1698 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1699 read_unlock(&tasklist_lock);
1701 return ret;
1703 EXPORT_SYMBOL(kill_pgrp);
1705 int kill_pid(struct pid *pid, int sig, int priv)
1707 return kill_pid_info(sig, __si_special(priv), pid);
1709 EXPORT_SYMBOL(kill_pid);
1712 * These functions support sending signals using preallocated sigqueue
1713 * structures. This is needed "because realtime applications cannot
1714 * afford to lose notifications of asynchronous events, like timer
1715 * expirations or I/O completions". In the case of POSIX Timers
1716 * we allocate the sigqueue structure from the timer_create. If this
1717 * allocation fails we are able to report the failure to the application
1718 * with an EAGAIN error.
1720 struct sigqueue *sigqueue_alloc(void)
1722 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1724 if (q)
1725 q->flags |= SIGQUEUE_PREALLOC;
1727 return q;
1730 void sigqueue_free(struct sigqueue *q)
1732 unsigned long flags;
1733 spinlock_t *lock = &current->sighand->siglock;
1735 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1737 * We must hold ->siglock while testing q->list
1738 * to serialize with collect_signal() or with
1739 * __exit_signal()->flush_sigqueue().
1741 spin_lock_irqsave(lock, flags);
1742 q->flags &= ~SIGQUEUE_PREALLOC;
1744 * If it is queued it will be freed when dequeued,
1745 * like the "regular" sigqueue.
1747 if (!list_empty(&q->list))
1748 q = NULL;
1749 spin_unlock_irqrestore(lock, flags);
1751 if (q)
1752 __sigqueue_free(q);
1755 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1757 int sig = q->info.si_signo;
1758 struct sigpending *pending;
1759 struct task_struct *t;
1760 unsigned long flags;
1761 int ret, result;
1763 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1765 ret = -1;
1766 rcu_read_lock();
1767 t = pid_task(pid, type);
1768 if (!t || !likely(lock_task_sighand(t, &flags)))
1769 goto ret;
1771 ret = 1; /* the signal is ignored */
1772 result = TRACE_SIGNAL_IGNORED;
1773 if (!prepare_signal(sig, t, false))
1774 goto out;
1776 ret = 0;
1777 if (unlikely(!list_empty(&q->list))) {
1779 * If an SI_TIMER entry is already queue just increment
1780 * the overrun count.
1782 BUG_ON(q->info.si_code != SI_TIMER);
1783 q->info.si_overrun++;
1784 result = TRACE_SIGNAL_ALREADY_PENDING;
1785 goto out;
1787 q->info.si_overrun = 0;
1789 signalfd_notify(t, sig);
1790 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1791 list_add_tail(&q->list, &pending->list);
1792 sigaddset(&pending->signal, sig);
1793 complete_signal(sig, t, type);
1794 result = TRACE_SIGNAL_DELIVERED;
1795 out:
1796 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1797 unlock_task_sighand(t, &flags);
1798 ret:
1799 rcu_read_unlock();
1800 return ret;
1804 * Let a parent know about the death of a child.
1805 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1807 * Returns true if our parent ignored us and so we've switched to
1808 * self-reaping.
1810 bool do_notify_parent(struct task_struct *tsk, int sig)
1812 struct kernel_siginfo info;
1813 unsigned long flags;
1814 struct sighand_struct *psig;
1815 bool autoreap = false;
1816 u64 utime, stime;
1818 BUG_ON(sig == -1);
1820 /* do_notify_parent_cldstop should have been called instead. */
1821 BUG_ON(task_is_stopped_or_traced(tsk));
1823 BUG_ON(!tsk->ptrace &&
1824 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1826 if (sig != SIGCHLD) {
1828 * This is only possible if parent == real_parent.
1829 * Check if it has changed security domain.
1831 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1832 sig = SIGCHLD;
1835 clear_siginfo(&info);
1836 info.si_signo = sig;
1837 info.si_errno = 0;
1839 * We are under tasklist_lock here so our parent is tied to
1840 * us and cannot change.
1842 * task_active_pid_ns will always return the same pid namespace
1843 * until a task passes through release_task.
1845 * write_lock() currently calls preempt_disable() which is the
1846 * same as rcu_read_lock(), but according to Oleg, this is not
1847 * correct to rely on this
1849 rcu_read_lock();
1850 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1851 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1852 task_uid(tsk));
1853 rcu_read_unlock();
1855 task_cputime(tsk, &utime, &stime);
1856 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1857 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1859 info.si_status = tsk->exit_code & 0x7f;
1860 if (tsk->exit_code & 0x80)
1861 info.si_code = CLD_DUMPED;
1862 else if (tsk->exit_code & 0x7f)
1863 info.si_code = CLD_KILLED;
1864 else {
1865 info.si_code = CLD_EXITED;
1866 info.si_status = tsk->exit_code >> 8;
1869 psig = tsk->parent->sighand;
1870 spin_lock_irqsave(&psig->siglock, flags);
1871 if (!tsk->ptrace && sig == SIGCHLD &&
1872 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1873 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1875 * We are exiting and our parent doesn't care. POSIX.1
1876 * defines special semantics for setting SIGCHLD to SIG_IGN
1877 * or setting the SA_NOCLDWAIT flag: we should be reaped
1878 * automatically and not left for our parent's wait4 call.
1879 * Rather than having the parent do it as a magic kind of
1880 * signal handler, we just set this to tell do_exit that we
1881 * can be cleaned up without becoming a zombie. Note that
1882 * we still call __wake_up_parent in this case, because a
1883 * blocked sys_wait4 might now return -ECHILD.
1885 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1886 * is implementation-defined: we do (if you don't want
1887 * it, just use SIG_IGN instead).
1889 autoreap = true;
1890 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1891 sig = 0;
1893 if (valid_signal(sig) && sig)
1894 __group_send_sig_info(sig, &info, tsk->parent);
1895 __wake_up_parent(tsk, tsk->parent);
1896 spin_unlock_irqrestore(&psig->siglock, flags);
1898 return autoreap;
1902 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1903 * @tsk: task reporting the state change
1904 * @for_ptracer: the notification is for ptracer
1905 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1907 * Notify @tsk's parent that the stopped/continued state has changed. If
1908 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1909 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1911 * CONTEXT:
1912 * Must be called with tasklist_lock at least read locked.
1914 static void do_notify_parent_cldstop(struct task_struct *tsk,
1915 bool for_ptracer, int why)
1917 struct kernel_siginfo info;
1918 unsigned long flags;
1919 struct task_struct *parent;
1920 struct sighand_struct *sighand;
1921 u64 utime, stime;
1923 if (for_ptracer) {
1924 parent = tsk->parent;
1925 } else {
1926 tsk = tsk->group_leader;
1927 parent = tsk->real_parent;
1930 clear_siginfo(&info);
1931 info.si_signo = SIGCHLD;
1932 info.si_errno = 0;
1934 * see comment in do_notify_parent() about the following 4 lines
1936 rcu_read_lock();
1937 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1938 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1939 rcu_read_unlock();
1941 task_cputime(tsk, &utime, &stime);
1942 info.si_utime = nsec_to_clock_t(utime);
1943 info.si_stime = nsec_to_clock_t(stime);
1945 info.si_code = why;
1946 switch (why) {
1947 case CLD_CONTINUED:
1948 info.si_status = SIGCONT;
1949 break;
1950 case CLD_STOPPED:
1951 info.si_status = tsk->signal->group_exit_code & 0x7f;
1952 break;
1953 case CLD_TRAPPED:
1954 info.si_status = tsk->exit_code & 0x7f;
1955 break;
1956 default:
1957 BUG();
1960 sighand = parent->sighand;
1961 spin_lock_irqsave(&sighand->siglock, flags);
1962 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1963 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1964 __group_send_sig_info(SIGCHLD, &info, parent);
1966 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1968 __wake_up_parent(tsk, parent);
1969 spin_unlock_irqrestore(&sighand->siglock, flags);
1972 static inline bool may_ptrace_stop(void)
1974 if (!likely(current->ptrace))
1975 return false;
1977 * Are we in the middle of do_coredump?
1978 * If so and our tracer is also part of the coredump stopping
1979 * is a deadlock situation, and pointless because our tracer
1980 * is dead so don't allow us to stop.
1981 * If SIGKILL was already sent before the caller unlocked
1982 * ->siglock we must see ->core_state != NULL. Otherwise it
1983 * is safe to enter schedule().
1985 * This is almost outdated, a task with the pending SIGKILL can't
1986 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1987 * after SIGKILL was already dequeued.
1989 if (unlikely(current->mm->core_state) &&
1990 unlikely(current->mm == current->parent->mm))
1991 return false;
1993 return true;
1997 * Return non-zero if there is a SIGKILL that should be waking us up.
1998 * Called with the siglock held.
2000 static bool sigkill_pending(struct task_struct *tsk)
2002 return sigismember(&tsk->pending.signal, SIGKILL) ||
2003 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2007 * This must be called with current->sighand->siglock held.
2009 * This should be the path for all ptrace stops.
2010 * We always set current->last_siginfo while stopped here.
2011 * That makes it a way to test a stopped process for
2012 * being ptrace-stopped vs being job-control-stopped.
2014 * If we actually decide not to stop at all because the tracer
2015 * is gone, we keep current->exit_code unless clear_code.
2017 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2018 __releases(&current->sighand->siglock)
2019 __acquires(&current->sighand->siglock)
2021 bool gstop_done = false;
2023 if (arch_ptrace_stop_needed(exit_code, info)) {
2025 * The arch code has something special to do before a
2026 * ptrace stop. This is allowed to block, e.g. for faults
2027 * on user stack pages. We can't keep the siglock while
2028 * calling arch_ptrace_stop, so we must release it now.
2029 * To preserve proper semantics, we must do this before
2030 * any signal bookkeeping like checking group_stop_count.
2031 * Meanwhile, a SIGKILL could come in before we retake the
2032 * siglock. That must prevent us from sleeping in TASK_TRACED.
2033 * So after regaining the lock, we must check for SIGKILL.
2035 spin_unlock_irq(&current->sighand->siglock);
2036 arch_ptrace_stop(exit_code, info);
2037 spin_lock_irq(&current->sighand->siglock);
2038 if (sigkill_pending(current))
2039 return;
2042 set_special_state(TASK_TRACED);
2045 * We're committing to trapping. TRACED should be visible before
2046 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2047 * Also, transition to TRACED and updates to ->jobctl should be
2048 * atomic with respect to siglock and should be done after the arch
2049 * hook as siglock is released and regrabbed across it.
2051 * TRACER TRACEE
2053 * ptrace_attach()
2054 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2055 * do_wait()
2056 * set_current_state() smp_wmb();
2057 * ptrace_do_wait()
2058 * wait_task_stopped()
2059 * task_stopped_code()
2060 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2062 smp_wmb();
2064 current->last_siginfo = info;
2065 current->exit_code = exit_code;
2068 * If @why is CLD_STOPPED, we're trapping to participate in a group
2069 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2070 * across siglock relocks since INTERRUPT was scheduled, PENDING
2071 * could be clear now. We act as if SIGCONT is received after
2072 * TASK_TRACED is entered - ignore it.
2074 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2075 gstop_done = task_participate_group_stop(current);
2077 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2078 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2079 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2080 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2082 /* entering a trap, clear TRAPPING */
2083 task_clear_jobctl_trapping(current);
2085 spin_unlock_irq(&current->sighand->siglock);
2086 read_lock(&tasklist_lock);
2087 if (may_ptrace_stop()) {
2089 * Notify parents of the stop.
2091 * While ptraced, there are two parents - the ptracer and
2092 * the real_parent of the group_leader. The ptracer should
2093 * know about every stop while the real parent is only
2094 * interested in the completion of group stop. The states
2095 * for the two don't interact with each other. Notify
2096 * separately unless they're gonna be duplicates.
2098 do_notify_parent_cldstop(current, true, why);
2099 if (gstop_done && ptrace_reparented(current))
2100 do_notify_parent_cldstop(current, false, why);
2103 * Don't want to allow preemption here, because
2104 * sys_ptrace() needs this task to be inactive.
2106 * XXX: implement read_unlock_no_resched().
2108 preempt_disable();
2109 read_unlock(&tasklist_lock);
2110 preempt_enable_no_resched();
2111 freezable_schedule();
2112 } else {
2114 * By the time we got the lock, our tracer went away.
2115 * Don't drop the lock yet, another tracer may come.
2117 * If @gstop_done, the ptracer went away between group stop
2118 * completion and here. During detach, it would have set
2119 * JOBCTL_STOP_PENDING on us and we'll re-enter
2120 * TASK_STOPPED in do_signal_stop() on return, so notifying
2121 * the real parent of the group stop completion is enough.
2123 if (gstop_done)
2124 do_notify_parent_cldstop(current, false, why);
2126 /* tasklist protects us from ptrace_freeze_traced() */
2127 __set_current_state(TASK_RUNNING);
2128 if (clear_code)
2129 current->exit_code = 0;
2130 read_unlock(&tasklist_lock);
2134 * We are back. Now reacquire the siglock before touching
2135 * last_siginfo, so that we are sure to have synchronized with
2136 * any signal-sending on another CPU that wants to examine it.
2138 spin_lock_irq(&current->sighand->siglock);
2139 current->last_siginfo = NULL;
2141 /* LISTENING can be set only during STOP traps, clear it */
2142 current->jobctl &= ~JOBCTL_LISTENING;
2145 * Queued signals ignored us while we were stopped for tracing.
2146 * So check for any that we should take before resuming user mode.
2147 * This sets TIF_SIGPENDING, but never clears it.
2149 recalc_sigpending_tsk(current);
2152 static void ptrace_do_notify(int signr, int exit_code, int why)
2154 kernel_siginfo_t info;
2156 clear_siginfo(&info);
2157 info.si_signo = signr;
2158 info.si_code = exit_code;
2159 info.si_pid = task_pid_vnr(current);
2160 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2162 /* Let the debugger run. */
2163 ptrace_stop(exit_code, why, 1, &info);
2166 void ptrace_notify(int exit_code)
2168 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2169 if (unlikely(current->task_works))
2170 task_work_run();
2172 spin_lock_irq(&current->sighand->siglock);
2173 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2174 spin_unlock_irq(&current->sighand->siglock);
2178 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2179 * @signr: signr causing group stop if initiating
2181 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2182 * and participate in it. If already set, participate in the existing
2183 * group stop. If participated in a group stop (and thus slept), %true is
2184 * returned with siglock released.
2186 * If ptraced, this function doesn't handle stop itself. Instead,
2187 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2188 * untouched. The caller must ensure that INTERRUPT trap handling takes
2189 * places afterwards.
2191 * CONTEXT:
2192 * Must be called with @current->sighand->siglock held, which is released
2193 * on %true return.
2195 * RETURNS:
2196 * %false if group stop is already cancelled or ptrace trap is scheduled.
2197 * %true if participated in group stop.
2199 static bool do_signal_stop(int signr)
2200 __releases(&current->sighand->siglock)
2202 struct signal_struct *sig = current->signal;
2204 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2205 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2206 struct task_struct *t;
2208 /* signr will be recorded in task->jobctl for retries */
2209 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2211 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2212 unlikely(signal_group_exit(sig)))
2213 return false;
2215 * There is no group stop already in progress. We must
2216 * initiate one now.
2218 * While ptraced, a task may be resumed while group stop is
2219 * still in effect and then receive a stop signal and
2220 * initiate another group stop. This deviates from the
2221 * usual behavior as two consecutive stop signals can't
2222 * cause two group stops when !ptraced. That is why we
2223 * also check !task_is_stopped(t) below.
2225 * The condition can be distinguished by testing whether
2226 * SIGNAL_STOP_STOPPED is already set. Don't generate
2227 * group_exit_code in such case.
2229 * This is not necessary for SIGNAL_STOP_CONTINUED because
2230 * an intervening stop signal is required to cause two
2231 * continued events regardless of ptrace.
2233 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2234 sig->group_exit_code = signr;
2236 sig->group_stop_count = 0;
2238 if (task_set_jobctl_pending(current, signr | gstop))
2239 sig->group_stop_count++;
2241 t = current;
2242 while_each_thread(current, t) {
2244 * Setting state to TASK_STOPPED for a group
2245 * stop is always done with the siglock held,
2246 * so this check has no races.
2248 if (!task_is_stopped(t) &&
2249 task_set_jobctl_pending(t, signr | gstop)) {
2250 sig->group_stop_count++;
2251 if (likely(!(t->ptrace & PT_SEIZED)))
2252 signal_wake_up(t, 0);
2253 else
2254 ptrace_trap_notify(t);
2259 if (likely(!current->ptrace)) {
2260 int notify = 0;
2263 * If there are no other threads in the group, or if there
2264 * is a group stop in progress and we are the last to stop,
2265 * report to the parent.
2267 if (task_participate_group_stop(current))
2268 notify = CLD_STOPPED;
2270 set_special_state(TASK_STOPPED);
2271 spin_unlock_irq(&current->sighand->siglock);
2274 * Notify the parent of the group stop completion. Because
2275 * we're not holding either the siglock or tasklist_lock
2276 * here, ptracer may attach inbetween; however, this is for
2277 * group stop and should always be delivered to the real
2278 * parent of the group leader. The new ptracer will get
2279 * its notification when this task transitions into
2280 * TASK_TRACED.
2282 if (notify) {
2283 read_lock(&tasklist_lock);
2284 do_notify_parent_cldstop(current, false, notify);
2285 read_unlock(&tasklist_lock);
2288 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2289 freezable_schedule();
2290 return true;
2291 } else {
2293 * While ptraced, group stop is handled by STOP trap.
2294 * Schedule it and let the caller deal with it.
2296 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2297 return false;
2302 * do_jobctl_trap - take care of ptrace jobctl traps
2304 * When PT_SEIZED, it's used for both group stop and explicit
2305 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2306 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2307 * the stop signal; otherwise, %SIGTRAP.
2309 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2310 * number as exit_code and no siginfo.
2312 * CONTEXT:
2313 * Must be called with @current->sighand->siglock held, which may be
2314 * released and re-acquired before returning with intervening sleep.
2316 static void do_jobctl_trap(void)
2318 struct signal_struct *signal = current->signal;
2319 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2321 if (current->ptrace & PT_SEIZED) {
2322 if (!signal->group_stop_count &&
2323 !(signal->flags & SIGNAL_STOP_STOPPED))
2324 signr = SIGTRAP;
2325 WARN_ON_ONCE(!signr);
2326 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2327 CLD_STOPPED);
2328 } else {
2329 WARN_ON_ONCE(!signr);
2330 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2331 current->exit_code = 0;
2335 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2338 * We do not check sig_kernel_stop(signr) but set this marker
2339 * unconditionally because we do not know whether debugger will
2340 * change signr. This flag has no meaning unless we are going
2341 * to stop after return from ptrace_stop(). In this case it will
2342 * be checked in do_signal_stop(), we should only stop if it was
2343 * not cleared by SIGCONT while we were sleeping. See also the
2344 * comment in dequeue_signal().
2346 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2347 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2349 /* We're back. Did the debugger cancel the sig? */
2350 signr = current->exit_code;
2351 if (signr == 0)
2352 return signr;
2354 current->exit_code = 0;
2357 * Update the siginfo structure if the signal has
2358 * changed. If the debugger wanted something
2359 * specific in the siginfo structure then it should
2360 * have updated *info via PTRACE_SETSIGINFO.
2362 if (signr != info->si_signo) {
2363 clear_siginfo(info);
2364 info->si_signo = signr;
2365 info->si_errno = 0;
2366 info->si_code = SI_USER;
2367 rcu_read_lock();
2368 info->si_pid = task_pid_vnr(current->parent);
2369 info->si_uid = from_kuid_munged(current_user_ns(),
2370 task_uid(current->parent));
2371 rcu_read_unlock();
2374 /* If the (new) signal is now blocked, requeue it. */
2375 if (sigismember(&current->blocked, signr)) {
2376 send_signal(signr, info, current, PIDTYPE_PID);
2377 signr = 0;
2380 return signr;
2383 bool get_signal(struct ksignal *ksig)
2385 struct sighand_struct *sighand = current->sighand;
2386 struct signal_struct *signal = current->signal;
2387 int signr;
2389 if (unlikely(current->task_works))
2390 task_work_run();
2392 if (unlikely(uprobe_deny_signal()))
2393 return false;
2396 * Do this once, we can't return to user-mode if freezing() == T.
2397 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2398 * thus do not need another check after return.
2400 try_to_freeze();
2402 relock:
2403 spin_lock_irq(&sighand->siglock);
2405 * Every stopped thread goes here after wakeup. Check to see if
2406 * we should notify the parent, prepare_signal(SIGCONT) encodes
2407 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2409 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2410 int why;
2412 if (signal->flags & SIGNAL_CLD_CONTINUED)
2413 why = CLD_CONTINUED;
2414 else
2415 why = CLD_STOPPED;
2417 signal->flags &= ~SIGNAL_CLD_MASK;
2419 spin_unlock_irq(&sighand->siglock);
2422 * Notify the parent that we're continuing. This event is
2423 * always per-process and doesn't make whole lot of sense
2424 * for ptracers, who shouldn't consume the state via
2425 * wait(2) either, but, for backward compatibility, notify
2426 * the ptracer of the group leader too unless it's gonna be
2427 * a duplicate.
2429 read_lock(&tasklist_lock);
2430 do_notify_parent_cldstop(current, false, why);
2432 if (ptrace_reparented(current->group_leader))
2433 do_notify_parent_cldstop(current->group_leader,
2434 true, why);
2435 read_unlock(&tasklist_lock);
2437 goto relock;
2440 /* Has this task already been marked for death? */
2441 if (signal_group_exit(signal)) {
2442 ksig->info.si_signo = signr = SIGKILL;
2443 sigdelset(&current->pending.signal, SIGKILL);
2444 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2445 &sighand->action[SIGKILL - 1]);
2446 recalc_sigpending();
2447 goto fatal;
2450 for (;;) {
2451 struct k_sigaction *ka;
2453 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2454 do_signal_stop(0))
2455 goto relock;
2457 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2458 do_jobctl_trap();
2459 spin_unlock_irq(&sighand->siglock);
2460 goto relock;
2464 * Signals generated by the execution of an instruction
2465 * need to be delivered before any other pending signals
2466 * so that the instruction pointer in the signal stack
2467 * frame points to the faulting instruction.
2469 signr = dequeue_synchronous_signal(&ksig->info);
2470 if (!signr)
2471 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2473 if (!signr)
2474 break; /* will return 0 */
2476 if (unlikely(current->ptrace) && signr != SIGKILL) {
2477 signr = ptrace_signal(signr, &ksig->info);
2478 if (!signr)
2479 continue;
2482 ka = &sighand->action[signr-1];
2484 /* Trace actually delivered signals. */
2485 trace_signal_deliver(signr, &ksig->info, ka);
2487 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2488 continue;
2489 if (ka->sa.sa_handler != SIG_DFL) {
2490 /* Run the handler. */
2491 ksig->ka = *ka;
2493 if (ka->sa.sa_flags & SA_ONESHOT)
2494 ka->sa.sa_handler = SIG_DFL;
2496 break; /* will return non-zero "signr" value */
2500 * Now we are doing the default action for this signal.
2502 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2503 continue;
2506 * Global init gets no signals it doesn't want.
2507 * Container-init gets no signals it doesn't want from same
2508 * container.
2510 * Note that if global/container-init sees a sig_kernel_only()
2511 * signal here, the signal must have been generated internally
2512 * or must have come from an ancestor namespace. In either
2513 * case, the signal cannot be dropped.
2515 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2516 !sig_kernel_only(signr))
2517 continue;
2519 if (sig_kernel_stop(signr)) {
2521 * The default action is to stop all threads in
2522 * the thread group. The job control signals
2523 * do nothing in an orphaned pgrp, but SIGSTOP
2524 * always works. Note that siglock needs to be
2525 * dropped during the call to is_orphaned_pgrp()
2526 * because of lock ordering with tasklist_lock.
2527 * This allows an intervening SIGCONT to be posted.
2528 * We need to check for that and bail out if necessary.
2530 if (signr != SIGSTOP) {
2531 spin_unlock_irq(&sighand->siglock);
2533 /* signals can be posted during this window */
2535 if (is_current_pgrp_orphaned())
2536 goto relock;
2538 spin_lock_irq(&sighand->siglock);
2541 if (likely(do_signal_stop(ksig->info.si_signo))) {
2542 /* It released the siglock. */
2543 goto relock;
2547 * We didn't actually stop, due to a race
2548 * with SIGCONT or something like that.
2550 continue;
2553 fatal:
2554 spin_unlock_irq(&sighand->siglock);
2557 * Anything else is fatal, maybe with a core dump.
2559 current->flags |= PF_SIGNALED;
2561 if (sig_kernel_coredump(signr)) {
2562 if (print_fatal_signals)
2563 print_fatal_signal(ksig->info.si_signo);
2564 proc_coredump_connector(current);
2566 * If it was able to dump core, this kills all
2567 * other threads in the group and synchronizes with
2568 * their demise. If we lost the race with another
2569 * thread getting here, it set group_exit_code
2570 * first and our do_group_exit call below will use
2571 * that value and ignore the one we pass it.
2573 do_coredump(&ksig->info);
2577 * Death signals, no core dump.
2579 do_group_exit(ksig->info.si_signo);
2580 /* NOTREACHED */
2582 spin_unlock_irq(&sighand->siglock);
2584 ksig->sig = signr;
2585 return ksig->sig > 0;
2589 * signal_delivered -
2590 * @ksig: kernel signal struct
2591 * @stepping: nonzero if debugger single-step or block-step in use
2593 * This function should be called when a signal has successfully been
2594 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2595 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2596 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2598 static void signal_delivered(struct ksignal *ksig, int stepping)
2600 sigset_t blocked;
2602 /* A signal was successfully delivered, and the
2603 saved sigmask was stored on the signal frame,
2604 and will be restored by sigreturn. So we can
2605 simply clear the restore sigmask flag. */
2606 clear_restore_sigmask();
2608 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2609 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2610 sigaddset(&blocked, ksig->sig);
2611 set_current_blocked(&blocked);
2612 tracehook_signal_handler(stepping);
2615 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2617 if (failed)
2618 force_sigsegv(ksig->sig, current);
2619 else
2620 signal_delivered(ksig, stepping);
2624 * It could be that complete_signal() picked us to notify about the
2625 * group-wide signal. Other threads should be notified now to take
2626 * the shared signals in @which since we will not.
2628 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2630 sigset_t retarget;
2631 struct task_struct *t;
2633 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2634 if (sigisemptyset(&retarget))
2635 return;
2637 t = tsk;
2638 while_each_thread(tsk, t) {
2639 if (t->flags & PF_EXITING)
2640 continue;
2642 if (!has_pending_signals(&retarget, &t->blocked))
2643 continue;
2644 /* Remove the signals this thread can handle. */
2645 sigandsets(&retarget, &retarget, &t->blocked);
2647 if (!signal_pending(t))
2648 signal_wake_up(t, 0);
2650 if (sigisemptyset(&retarget))
2651 break;
2655 void exit_signals(struct task_struct *tsk)
2657 int group_stop = 0;
2658 sigset_t unblocked;
2661 * @tsk is about to have PF_EXITING set - lock out users which
2662 * expect stable threadgroup.
2664 cgroup_threadgroup_change_begin(tsk);
2666 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2667 tsk->flags |= PF_EXITING;
2668 cgroup_threadgroup_change_end(tsk);
2669 return;
2672 spin_lock_irq(&tsk->sighand->siglock);
2674 * From now this task is not visible for group-wide signals,
2675 * see wants_signal(), do_signal_stop().
2677 tsk->flags |= PF_EXITING;
2679 cgroup_threadgroup_change_end(tsk);
2681 if (!signal_pending(tsk))
2682 goto out;
2684 unblocked = tsk->blocked;
2685 signotset(&unblocked);
2686 retarget_shared_pending(tsk, &unblocked);
2688 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2689 task_participate_group_stop(tsk))
2690 group_stop = CLD_STOPPED;
2691 out:
2692 spin_unlock_irq(&tsk->sighand->siglock);
2695 * If group stop has completed, deliver the notification. This
2696 * should always go to the real parent of the group leader.
2698 if (unlikely(group_stop)) {
2699 read_lock(&tasklist_lock);
2700 do_notify_parent_cldstop(tsk, false, group_stop);
2701 read_unlock(&tasklist_lock);
2706 * System call entry points.
2710 * sys_restart_syscall - restart a system call
2712 SYSCALL_DEFINE0(restart_syscall)
2714 struct restart_block *restart = &current->restart_block;
2715 return restart->fn(restart);
2718 long do_no_restart_syscall(struct restart_block *param)
2720 return -EINTR;
2723 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2725 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2726 sigset_t newblocked;
2727 /* A set of now blocked but previously unblocked signals. */
2728 sigandnsets(&newblocked, newset, &current->blocked);
2729 retarget_shared_pending(tsk, &newblocked);
2731 tsk->blocked = *newset;
2732 recalc_sigpending();
2736 * set_current_blocked - change current->blocked mask
2737 * @newset: new mask
2739 * It is wrong to change ->blocked directly, this helper should be used
2740 * to ensure the process can't miss a shared signal we are going to block.
2742 void set_current_blocked(sigset_t *newset)
2744 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2745 __set_current_blocked(newset);
2748 void __set_current_blocked(const sigset_t *newset)
2750 struct task_struct *tsk = current;
2753 * In case the signal mask hasn't changed, there is nothing we need
2754 * to do. The current->blocked shouldn't be modified by other task.
2756 if (sigequalsets(&tsk->blocked, newset))
2757 return;
2759 spin_lock_irq(&tsk->sighand->siglock);
2760 __set_task_blocked(tsk, newset);
2761 spin_unlock_irq(&tsk->sighand->siglock);
2765 * This is also useful for kernel threads that want to temporarily
2766 * (or permanently) block certain signals.
2768 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2769 * interface happily blocks "unblockable" signals like SIGKILL
2770 * and friends.
2772 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2774 struct task_struct *tsk = current;
2775 sigset_t newset;
2777 /* Lockless, only current can change ->blocked, never from irq */
2778 if (oldset)
2779 *oldset = tsk->blocked;
2781 switch (how) {
2782 case SIG_BLOCK:
2783 sigorsets(&newset, &tsk->blocked, set);
2784 break;
2785 case SIG_UNBLOCK:
2786 sigandnsets(&newset, &tsk->blocked, set);
2787 break;
2788 case SIG_SETMASK:
2789 newset = *set;
2790 break;
2791 default:
2792 return -EINVAL;
2795 __set_current_blocked(&newset);
2796 return 0;
2798 EXPORT_SYMBOL(sigprocmask);
2801 * The api helps set app-provided sigmasks.
2803 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2804 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2806 int set_user_sigmask(const sigset_t __user *usigmask, sigset_t *set,
2807 sigset_t *oldset, size_t sigsetsize)
2809 if (!usigmask)
2810 return 0;
2812 if (sigsetsize != sizeof(sigset_t))
2813 return -EINVAL;
2814 if (copy_from_user(set, usigmask, sizeof(sigset_t)))
2815 return -EFAULT;
2817 *oldset = current->blocked;
2818 set_current_blocked(set);
2820 return 0;
2822 EXPORT_SYMBOL(set_user_sigmask);
2824 #ifdef CONFIG_COMPAT
2825 int set_compat_user_sigmask(const compat_sigset_t __user *usigmask,
2826 sigset_t *set, sigset_t *oldset,
2827 size_t sigsetsize)
2829 if (!usigmask)
2830 return 0;
2832 if (sigsetsize != sizeof(compat_sigset_t))
2833 return -EINVAL;
2834 if (get_compat_sigset(set, usigmask))
2835 return -EFAULT;
2837 *oldset = current->blocked;
2838 set_current_blocked(set);
2840 return 0;
2842 EXPORT_SYMBOL(set_compat_user_sigmask);
2843 #endif
2846 * restore_user_sigmask:
2847 * usigmask: sigmask passed in from userland.
2848 * sigsaved: saved sigmask when the syscall started and changed the sigmask to
2849 * usigmask.
2851 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2852 * epoll_pwait where a new sigmask is passed in from userland for the syscalls.
2854 void restore_user_sigmask(const void __user *usigmask, sigset_t *sigsaved)
2857 if (!usigmask)
2858 return;
2860 * When signals are pending, do not restore them here.
2861 * Restoring sigmask here can lead to delivering signals that the above
2862 * syscalls are intended to block because of the sigmask passed in.
2864 if (signal_pending(current)) {
2865 current->saved_sigmask = *sigsaved;
2866 set_restore_sigmask();
2867 return;
2871 * This is needed because the fast syscall return path does not restore
2872 * saved_sigmask when signals are not pending.
2874 set_current_blocked(sigsaved);
2876 EXPORT_SYMBOL(restore_user_sigmask);
2879 * sys_rt_sigprocmask - change the list of currently blocked signals
2880 * @how: whether to add, remove, or set signals
2881 * @nset: stores pending signals
2882 * @oset: previous value of signal mask if non-null
2883 * @sigsetsize: size of sigset_t type
2885 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2886 sigset_t __user *, oset, size_t, sigsetsize)
2888 sigset_t old_set, new_set;
2889 int error;
2891 /* XXX: Don't preclude handling different sized sigset_t's. */
2892 if (sigsetsize != sizeof(sigset_t))
2893 return -EINVAL;
2895 old_set = current->blocked;
2897 if (nset) {
2898 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2899 return -EFAULT;
2900 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2902 error = sigprocmask(how, &new_set, NULL);
2903 if (error)
2904 return error;
2907 if (oset) {
2908 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2909 return -EFAULT;
2912 return 0;
2915 #ifdef CONFIG_COMPAT
2916 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2917 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2919 sigset_t old_set = current->blocked;
2921 /* XXX: Don't preclude handling different sized sigset_t's. */
2922 if (sigsetsize != sizeof(sigset_t))
2923 return -EINVAL;
2925 if (nset) {
2926 sigset_t new_set;
2927 int error;
2928 if (get_compat_sigset(&new_set, nset))
2929 return -EFAULT;
2930 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2932 error = sigprocmask(how, &new_set, NULL);
2933 if (error)
2934 return error;
2936 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2938 #endif
2940 static void do_sigpending(sigset_t *set)
2942 spin_lock_irq(&current->sighand->siglock);
2943 sigorsets(set, &current->pending.signal,
2944 &current->signal->shared_pending.signal);
2945 spin_unlock_irq(&current->sighand->siglock);
2947 /* Outside the lock because only this thread touches it. */
2948 sigandsets(set, &current->blocked, set);
2952 * sys_rt_sigpending - examine a pending signal that has been raised
2953 * while blocked
2954 * @uset: stores pending signals
2955 * @sigsetsize: size of sigset_t type or larger
2957 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2959 sigset_t set;
2961 if (sigsetsize > sizeof(*uset))
2962 return -EINVAL;
2964 do_sigpending(&set);
2966 if (copy_to_user(uset, &set, sigsetsize))
2967 return -EFAULT;
2969 return 0;
2972 #ifdef CONFIG_COMPAT
2973 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2974 compat_size_t, sigsetsize)
2976 sigset_t set;
2978 if (sigsetsize > sizeof(*uset))
2979 return -EINVAL;
2981 do_sigpending(&set);
2983 return put_compat_sigset(uset, &set, sigsetsize);
2985 #endif
2987 static const struct {
2988 unsigned char limit, layout;
2989 } sig_sicodes[] = {
2990 [SIGILL] = { NSIGILL, SIL_FAULT },
2991 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2992 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2993 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2994 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2995 #if defined(SIGEMT)
2996 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2997 #endif
2998 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2999 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3000 [SIGSYS] = { NSIGSYS, SIL_SYS },
3003 static bool known_siginfo_layout(unsigned sig, int si_code)
3005 if (si_code == SI_KERNEL)
3006 return true;
3007 else if ((si_code > SI_USER)) {
3008 if (sig_specific_sicodes(sig)) {
3009 if (si_code <= sig_sicodes[sig].limit)
3010 return true;
3012 else if (si_code <= NSIGPOLL)
3013 return true;
3015 else if (si_code >= SI_DETHREAD)
3016 return true;
3017 else if (si_code == SI_ASYNCNL)
3018 return true;
3019 return false;
3022 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3024 enum siginfo_layout layout = SIL_KILL;
3025 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3026 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3027 (si_code <= sig_sicodes[sig].limit)) {
3028 layout = sig_sicodes[sig].layout;
3029 /* Handle the exceptions */
3030 if ((sig == SIGBUS) &&
3031 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3032 layout = SIL_FAULT_MCEERR;
3033 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3034 layout = SIL_FAULT_BNDERR;
3035 #ifdef SEGV_PKUERR
3036 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3037 layout = SIL_FAULT_PKUERR;
3038 #endif
3040 else if (si_code <= NSIGPOLL)
3041 layout = SIL_POLL;
3042 } else {
3043 if (si_code == SI_TIMER)
3044 layout = SIL_TIMER;
3045 else if (si_code == SI_SIGIO)
3046 layout = SIL_POLL;
3047 else if (si_code < 0)
3048 layout = SIL_RT;
3050 return layout;
3053 static inline char __user *si_expansion(const siginfo_t __user *info)
3055 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3058 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3060 char __user *expansion = si_expansion(to);
3061 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3062 return -EFAULT;
3063 if (clear_user(expansion, SI_EXPANSION_SIZE))
3064 return -EFAULT;
3065 return 0;
3068 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3069 const siginfo_t __user *from)
3071 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3072 char __user *expansion = si_expansion(from);
3073 char buf[SI_EXPANSION_SIZE];
3074 int i;
3076 * An unknown si_code might need more than
3077 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3078 * extra bytes are 0. This guarantees copy_siginfo_to_user
3079 * will return this data to userspace exactly.
3081 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3082 return -EFAULT;
3083 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3084 if (buf[i] != 0)
3085 return -E2BIG;
3088 return 0;
3091 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3092 const siginfo_t __user *from)
3094 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3095 return -EFAULT;
3096 to->si_signo = signo;
3097 return post_copy_siginfo_from_user(to, from);
3100 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3102 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3103 return -EFAULT;
3104 return post_copy_siginfo_from_user(to, from);
3107 #ifdef CONFIG_COMPAT
3108 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3109 const struct kernel_siginfo *from)
3110 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3112 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3114 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3115 const struct kernel_siginfo *from, bool x32_ABI)
3116 #endif
3118 struct compat_siginfo new;
3119 memset(&new, 0, sizeof(new));
3121 new.si_signo = from->si_signo;
3122 new.si_errno = from->si_errno;
3123 new.si_code = from->si_code;
3124 switch(siginfo_layout(from->si_signo, from->si_code)) {
3125 case SIL_KILL:
3126 new.si_pid = from->si_pid;
3127 new.si_uid = from->si_uid;
3128 break;
3129 case SIL_TIMER:
3130 new.si_tid = from->si_tid;
3131 new.si_overrun = from->si_overrun;
3132 new.si_int = from->si_int;
3133 break;
3134 case SIL_POLL:
3135 new.si_band = from->si_band;
3136 new.si_fd = from->si_fd;
3137 break;
3138 case SIL_FAULT:
3139 new.si_addr = ptr_to_compat(from->si_addr);
3140 #ifdef __ARCH_SI_TRAPNO
3141 new.si_trapno = from->si_trapno;
3142 #endif
3143 break;
3144 case SIL_FAULT_MCEERR:
3145 new.si_addr = ptr_to_compat(from->si_addr);
3146 #ifdef __ARCH_SI_TRAPNO
3147 new.si_trapno = from->si_trapno;
3148 #endif
3149 new.si_addr_lsb = from->si_addr_lsb;
3150 break;
3151 case SIL_FAULT_BNDERR:
3152 new.si_addr = ptr_to_compat(from->si_addr);
3153 #ifdef __ARCH_SI_TRAPNO
3154 new.si_trapno = from->si_trapno;
3155 #endif
3156 new.si_lower = ptr_to_compat(from->si_lower);
3157 new.si_upper = ptr_to_compat(from->si_upper);
3158 break;
3159 case SIL_FAULT_PKUERR:
3160 new.si_addr = ptr_to_compat(from->si_addr);
3161 #ifdef __ARCH_SI_TRAPNO
3162 new.si_trapno = from->si_trapno;
3163 #endif
3164 new.si_pkey = from->si_pkey;
3165 break;
3166 case SIL_CHLD:
3167 new.si_pid = from->si_pid;
3168 new.si_uid = from->si_uid;
3169 new.si_status = from->si_status;
3170 #ifdef CONFIG_X86_X32_ABI
3171 if (x32_ABI) {
3172 new._sifields._sigchld_x32._utime = from->si_utime;
3173 new._sifields._sigchld_x32._stime = from->si_stime;
3174 } else
3175 #endif
3177 new.si_utime = from->si_utime;
3178 new.si_stime = from->si_stime;
3180 break;
3181 case SIL_RT:
3182 new.si_pid = from->si_pid;
3183 new.si_uid = from->si_uid;
3184 new.si_int = from->si_int;
3185 break;
3186 case SIL_SYS:
3187 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3188 new.si_syscall = from->si_syscall;
3189 new.si_arch = from->si_arch;
3190 break;
3193 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3194 return -EFAULT;
3196 return 0;
3199 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3200 const struct compat_siginfo *from)
3202 clear_siginfo(to);
3203 to->si_signo = from->si_signo;
3204 to->si_errno = from->si_errno;
3205 to->si_code = from->si_code;
3206 switch(siginfo_layout(from->si_signo, from->si_code)) {
3207 case SIL_KILL:
3208 to->si_pid = from->si_pid;
3209 to->si_uid = from->si_uid;
3210 break;
3211 case SIL_TIMER:
3212 to->si_tid = from->si_tid;
3213 to->si_overrun = from->si_overrun;
3214 to->si_int = from->si_int;
3215 break;
3216 case SIL_POLL:
3217 to->si_band = from->si_band;
3218 to->si_fd = from->si_fd;
3219 break;
3220 case SIL_FAULT:
3221 to->si_addr = compat_ptr(from->si_addr);
3222 #ifdef __ARCH_SI_TRAPNO
3223 to->si_trapno = from->si_trapno;
3224 #endif
3225 break;
3226 case SIL_FAULT_MCEERR:
3227 to->si_addr = compat_ptr(from->si_addr);
3228 #ifdef __ARCH_SI_TRAPNO
3229 to->si_trapno = from->si_trapno;
3230 #endif
3231 to->si_addr_lsb = from->si_addr_lsb;
3232 break;
3233 case SIL_FAULT_BNDERR:
3234 to->si_addr = compat_ptr(from->si_addr);
3235 #ifdef __ARCH_SI_TRAPNO
3236 to->si_trapno = from->si_trapno;
3237 #endif
3238 to->si_lower = compat_ptr(from->si_lower);
3239 to->si_upper = compat_ptr(from->si_upper);
3240 break;
3241 case SIL_FAULT_PKUERR:
3242 to->si_addr = compat_ptr(from->si_addr);
3243 #ifdef __ARCH_SI_TRAPNO
3244 to->si_trapno = from->si_trapno;
3245 #endif
3246 to->si_pkey = from->si_pkey;
3247 break;
3248 case SIL_CHLD:
3249 to->si_pid = from->si_pid;
3250 to->si_uid = from->si_uid;
3251 to->si_status = from->si_status;
3252 #ifdef CONFIG_X86_X32_ABI
3253 if (in_x32_syscall()) {
3254 to->si_utime = from->_sifields._sigchld_x32._utime;
3255 to->si_stime = from->_sifields._sigchld_x32._stime;
3256 } else
3257 #endif
3259 to->si_utime = from->si_utime;
3260 to->si_stime = from->si_stime;
3262 break;
3263 case SIL_RT:
3264 to->si_pid = from->si_pid;
3265 to->si_uid = from->si_uid;
3266 to->si_int = from->si_int;
3267 break;
3268 case SIL_SYS:
3269 to->si_call_addr = compat_ptr(from->si_call_addr);
3270 to->si_syscall = from->si_syscall;
3271 to->si_arch = from->si_arch;
3272 break;
3274 return 0;
3277 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3278 const struct compat_siginfo __user *ufrom)
3280 struct compat_siginfo from;
3282 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3283 return -EFAULT;
3285 from.si_signo = signo;
3286 return post_copy_siginfo_from_user32(to, &from);
3289 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3290 const struct compat_siginfo __user *ufrom)
3292 struct compat_siginfo from;
3294 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3295 return -EFAULT;
3297 return post_copy_siginfo_from_user32(to, &from);
3299 #endif /* CONFIG_COMPAT */
3302 * do_sigtimedwait - wait for queued signals specified in @which
3303 * @which: queued signals to wait for
3304 * @info: if non-null, the signal's siginfo is returned here
3305 * @ts: upper bound on process time suspension
3307 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3308 const struct timespec64 *ts)
3310 ktime_t *to = NULL, timeout = KTIME_MAX;
3311 struct task_struct *tsk = current;
3312 sigset_t mask = *which;
3313 int sig, ret = 0;
3315 if (ts) {
3316 if (!timespec64_valid(ts))
3317 return -EINVAL;
3318 timeout = timespec64_to_ktime(*ts);
3319 to = &timeout;
3323 * Invert the set of allowed signals to get those we want to block.
3325 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3326 signotset(&mask);
3328 spin_lock_irq(&tsk->sighand->siglock);
3329 sig = dequeue_signal(tsk, &mask, info);
3330 if (!sig && timeout) {
3332 * None ready, temporarily unblock those we're interested
3333 * while we are sleeping in so that we'll be awakened when
3334 * they arrive. Unblocking is always fine, we can avoid
3335 * set_current_blocked().
3337 tsk->real_blocked = tsk->blocked;
3338 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3339 recalc_sigpending();
3340 spin_unlock_irq(&tsk->sighand->siglock);
3342 __set_current_state(TASK_INTERRUPTIBLE);
3343 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3344 HRTIMER_MODE_REL);
3345 spin_lock_irq(&tsk->sighand->siglock);
3346 __set_task_blocked(tsk, &tsk->real_blocked);
3347 sigemptyset(&tsk->real_blocked);
3348 sig = dequeue_signal(tsk, &mask, info);
3350 spin_unlock_irq(&tsk->sighand->siglock);
3352 if (sig)
3353 return sig;
3354 return ret ? -EINTR : -EAGAIN;
3358 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3359 * in @uthese
3360 * @uthese: queued signals to wait for
3361 * @uinfo: if non-null, the signal's siginfo is returned here
3362 * @uts: upper bound on process time suspension
3363 * @sigsetsize: size of sigset_t type
3365 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3366 siginfo_t __user *, uinfo,
3367 const struct __kernel_timespec __user *, uts,
3368 size_t, sigsetsize)
3370 sigset_t these;
3371 struct timespec64 ts;
3372 kernel_siginfo_t info;
3373 int ret;
3375 /* XXX: Don't preclude handling different sized sigset_t's. */
3376 if (sigsetsize != sizeof(sigset_t))
3377 return -EINVAL;
3379 if (copy_from_user(&these, uthese, sizeof(these)))
3380 return -EFAULT;
3382 if (uts) {
3383 if (get_timespec64(&ts, uts))
3384 return -EFAULT;
3387 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3389 if (ret > 0 && uinfo) {
3390 if (copy_siginfo_to_user(uinfo, &info))
3391 ret = -EFAULT;
3394 return ret;
3397 #ifdef CONFIG_COMPAT_32BIT_TIME
3398 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3399 siginfo_t __user *, uinfo,
3400 const struct old_timespec32 __user *, uts,
3401 size_t, sigsetsize)
3403 sigset_t these;
3404 struct timespec64 ts;
3405 kernel_siginfo_t info;
3406 int ret;
3408 if (sigsetsize != sizeof(sigset_t))
3409 return -EINVAL;
3411 if (copy_from_user(&these, uthese, sizeof(these)))
3412 return -EFAULT;
3414 if (uts) {
3415 if (get_old_timespec32(&ts, uts))
3416 return -EFAULT;
3419 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3421 if (ret > 0 && uinfo) {
3422 if (copy_siginfo_to_user(uinfo, &info))
3423 ret = -EFAULT;
3426 return ret;
3428 #endif
3430 #ifdef CONFIG_COMPAT
3431 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3432 struct compat_siginfo __user *, uinfo,
3433 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3435 sigset_t s;
3436 struct timespec64 t;
3437 kernel_siginfo_t info;
3438 long ret;
3440 if (sigsetsize != sizeof(sigset_t))
3441 return -EINVAL;
3443 if (get_compat_sigset(&s, uthese))
3444 return -EFAULT;
3446 if (uts) {
3447 if (get_timespec64(&t, uts))
3448 return -EFAULT;
3451 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3453 if (ret > 0 && uinfo) {
3454 if (copy_siginfo_to_user32(uinfo, &info))
3455 ret = -EFAULT;
3458 return ret;
3461 #ifdef CONFIG_COMPAT_32BIT_TIME
3462 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3463 struct compat_siginfo __user *, uinfo,
3464 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3466 sigset_t s;
3467 struct timespec64 t;
3468 kernel_siginfo_t info;
3469 long ret;
3471 if (sigsetsize != sizeof(sigset_t))
3472 return -EINVAL;
3474 if (get_compat_sigset(&s, uthese))
3475 return -EFAULT;
3477 if (uts) {
3478 if (get_old_timespec32(&t, uts))
3479 return -EFAULT;
3482 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3484 if (ret > 0 && uinfo) {
3485 if (copy_siginfo_to_user32(uinfo, &info))
3486 ret = -EFAULT;
3489 return ret;
3491 #endif
3492 #endif
3494 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3496 clear_siginfo(info);
3497 info->si_signo = sig;
3498 info->si_errno = 0;
3499 info->si_code = SI_USER;
3500 info->si_pid = task_tgid_vnr(current);
3501 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3505 * sys_kill - send a signal to a process
3506 * @pid: the PID of the process
3507 * @sig: signal to be sent
3509 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3511 struct kernel_siginfo info;
3513 prepare_kill_siginfo(sig, &info);
3515 return kill_something_info(sig, &info, pid);
3518 #ifdef CONFIG_PROC_FS
3520 * Verify that the signaler and signalee either are in the same pid namespace
3521 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3522 * namespace.
3524 static bool access_pidfd_pidns(struct pid *pid)
3526 struct pid_namespace *active = task_active_pid_ns(current);
3527 struct pid_namespace *p = ns_of_pid(pid);
3529 for (;;) {
3530 if (!p)
3531 return false;
3532 if (p == active)
3533 break;
3534 p = p->parent;
3537 return true;
3540 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3542 #ifdef CONFIG_COMPAT
3544 * Avoid hooking up compat syscalls and instead handle necessary
3545 * conversions here. Note, this is a stop-gap measure and should not be
3546 * considered a generic solution.
3548 if (in_compat_syscall())
3549 return copy_siginfo_from_user32(
3550 kinfo, (struct compat_siginfo __user *)info);
3551 #endif
3552 return copy_siginfo_from_user(kinfo, info);
3556 * sys_pidfd_send_signal - send a signal to a process through a task file
3557 * descriptor
3558 * @pidfd: the file descriptor of the process
3559 * @sig: signal to be sent
3560 * @info: the signal info
3561 * @flags: future flags to be passed
3563 * The syscall currently only signals via PIDTYPE_PID which covers
3564 * kill(<positive-pid>, <signal>. It does not signal threads or process
3565 * groups.
3566 * In order to extend the syscall to threads and process groups the @flags
3567 * argument should be used. In essence, the @flags argument will determine
3568 * what is signaled and not the file descriptor itself. Put in other words,
3569 * grouping is a property of the flags argument not a property of the file
3570 * descriptor.
3572 * Return: 0 on success, negative errno on failure
3574 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3575 siginfo_t __user *, info, unsigned int, flags)
3577 int ret;
3578 struct fd f;
3579 struct pid *pid;
3580 kernel_siginfo_t kinfo;
3582 /* Enforce flags be set to 0 until we add an extension. */
3583 if (flags)
3584 return -EINVAL;
3586 f = fdget(pidfd);
3587 if (!f.file)
3588 return -EBADF;
3590 /* Is this a pidfd? */
3591 pid = tgid_pidfd_to_pid(f.file);
3592 if (IS_ERR(pid)) {
3593 ret = PTR_ERR(pid);
3594 goto err;
3597 ret = -EINVAL;
3598 if (!access_pidfd_pidns(pid))
3599 goto err;
3601 if (info) {
3602 ret = copy_siginfo_from_user_any(&kinfo, info);
3603 if (unlikely(ret))
3604 goto err;
3606 ret = -EINVAL;
3607 if (unlikely(sig != kinfo.si_signo))
3608 goto err;
3610 /* Only allow sending arbitrary signals to yourself. */
3611 ret = -EPERM;
3612 if ((task_pid(current) != pid) &&
3613 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3614 goto err;
3615 } else {
3616 prepare_kill_siginfo(sig, &kinfo);
3619 ret = kill_pid_info(sig, &kinfo, pid);
3621 err:
3622 fdput(f);
3623 return ret;
3625 #endif /* CONFIG_PROC_FS */
3627 static int
3628 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3630 struct task_struct *p;
3631 int error = -ESRCH;
3633 rcu_read_lock();
3634 p = find_task_by_vpid(pid);
3635 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3636 error = check_kill_permission(sig, info, p);
3638 * The null signal is a permissions and process existence
3639 * probe. No signal is actually delivered.
3641 if (!error && sig) {
3642 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3644 * If lock_task_sighand() failed we pretend the task
3645 * dies after receiving the signal. The window is tiny,
3646 * and the signal is private anyway.
3648 if (unlikely(error == -ESRCH))
3649 error = 0;
3652 rcu_read_unlock();
3654 return error;
3657 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3659 struct kernel_siginfo info;
3661 clear_siginfo(&info);
3662 info.si_signo = sig;
3663 info.si_errno = 0;
3664 info.si_code = SI_TKILL;
3665 info.si_pid = task_tgid_vnr(current);
3666 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3668 return do_send_specific(tgid, pid, sig, &info);
3672 * sys_tgkill - send signal to one specific thread
3673 * @tgid: the thread group ID of the thread
3674 * @pid: the PID of the thread
3675 * @sig: signal to be sent
3677 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3678 * exists but it's not belonging to the target process anymore. This
3679 * method solves the problem of threads exiting and PIDs getting reused.
3681 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3683 /* This is only valid for single tasks */
3684 if (pid <= 0 || tgid <= 0)
3685 return -EINVAL;
3687 return do_tkill(tgid, pid, sig);
3691 * sys_tkill - send signal to one specific task
3692 * @pid: the PID of the task
3693 * @sig: signal to be sent
3695 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3697 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3699 /* This is only valid for single tasks */
3700 if (pid <= 0)
3701 return -EINVAL;
3703 return do_tkill(0, pid, sig);
3706 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3708 /* Not even root can pretend to send signals from the kernel.
3709 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3711 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3712 (task_pid_vnr(current) != pid))
3713 return -EPERM;
3715 /* POSIX.1b doesn't mention process groups. */
3716 return kill_proc_info(sig, info, pid);
3720 * sys_rt_sigqueueinfo - send signal information to a signal
3721 * @pid: the PID of the thread
3722 * @sig: signal to be sent
3723 * @uinfo: signal info to be sent
3725 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3726 siginfo_t __user *, uinfo)
3728 kernel_siginfo_t info;
3729 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3730 if (unlikely(ret))
3731 return ret;
3732 return do_rt_sigqueueinfo(pid, sig, &info);
3735 #ifdef CONFIG_COMPAT
3736 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3737 compat_pid_t, pid,
3738 int, sig,
3739 struct compat_siginfo __user *, uinfo)
3741 kernel_siginfo_t info;
3742 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3743 if (unlikely(ret))
3744 return ret;
3745 return do_rt_sigqueueinfo(pid, sig, &info);
3747 #endif
3749 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3751 /* This is only valid for single tasks */
3752 if (pid <= 0 || tgid <= 0)
3753 return -EINVAL;
3755 /* Not even root can pretend to send signals from the kernel.
3756 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3758 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3759 (task_pid_vnr(current) != pid))
3760 return -EPERM;
3762 return do_send_specific(tgid, pid, sig, info);
3765 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3766 siginfo_t __user *, uinfo)
3768 kernel_siginfo_t info;
3769 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3770 if (unlikely(ret))
3771 return ret;
3772 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3775 #ifdef CONFIG_COMPAT
3776 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3777 compat_pid_t, tgid,
3778 compat_pid_t, pid,
3779 int, sig,
3780 struct compat_siginfo __user *, uinfo)
3782 kernel_siginfo_t info;
3783 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3784 if (unlikely(ret))
3785 return ret;
3786 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3788 #endif
3791 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3793 void kernel_sigaction(int sig, __sighandler_t action)
3795 spin_lock_irq(&current->sighand->siglock);
3796 current->sighand->action[sig - 1].sa.sa_handler = action;
3797 if (action == SIG_IGN) {
3798 sigset_t mask;
3800 sigemptyset(&mask);
3801 sigaddset(&mask, sig);
3803 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3804 flush_sigqueue_mask(&mask, &current->pending);
3805 recalc_sigpending();
3807 spin_unlock_irq(&current->sighand->siglock);
3809 EXPORT_SYMBOL(kernel_sigaction);
3811 void __weak sigaction_compat_abi(struct k_sigaction *act,
3812 struct k_sigaction *oact)
3816 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3818 struct task_struct *p = current, *t;
3819 struct k_sigaction *k;
3820 sigset_t mask;
3822 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3823 return -EINVAL;
3825 k = &p->sighand->action[sig-1];
3827 spin_lock_irq(&p->sighand->siglock);
3828 if (oact)
3829 *oact = *k;
3831 sigaction_compat_abi(act, oact);
3833 if (act) {
3834 sigdelsetmask(&act->sa.sa_mask,
3835 sigmask(SIGKILL) | sigmask(SIGSTOP));
3836 *k = *act;
3838 * POSIX 3.3.1.3:
3839 * "Setting a signal action to SIG_IGN for a signal that is
3840 * pending shall cause the pending signal to be discarded,
3841 * whether or not it is blocked."
3843 * "Setting a signal action to SIG_DFL for a signal that is
3844 * pending and whose default action is to ignore the signal
3845 * (for example, SIGCHLD), shall cause the pending signal to
3846 * be discarded, whether or not it is blocked"
3848 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3849 sigemptyset(&mask);
3850 sigaddset(&mask, sig);
3851 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3852 for_each_thread(p, t)
3853 flush_sigqueue_mask(&mask, &t->pending);
3857 spin_unlock_irq(&p->sighand->siglock);
3858 return 0;
3861 static int
3862 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3863 size_t min_ss_size)
3865 struct task_struct *t = current;
3867 if (oss) {
3868 memset(oss, 0, sizeof(stack_t));
3869 oss->ss_sp = (void __user *) t->sas_ss_sp;
3870 oss->ss_size = t->sas_ss_size;
3871 oss->ss_flags = sas_ss_flags(sp) |
3872 (current->sas_ss_flags & SS_FLAG_BITS);
3875 if (ss) {
3876 void __user *ss_sp = ss->ss_sp;
3877 size_t ss_size = ss->ss_size;
3878 unsigned ss_flags = ss->ss_flags;
3879 int ss_mode;
3881 if (unlikely(on_sig_stack(sp)))
3882 return -EPERM;
3884 ss_mode = ss_flags & ~SS_FLAG_BITS;
3885 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3886 ss_mode != 0))
3887 return -EINVAL;
3889 if (ss_mode == SS_DISABLE) {
3890 ss_size = 0;
3891 ss_sp = NULL;
3892 } else {
3893 if (unlikely(ss_size < min_ss_size))
3894 return -ENOMEM;
3897 t->sas_ss_sp = (unsigned long) ss_sp;
3898 t->sas_ss_size = ss_size;
3899 t->sas_ss_flags = ss_flags;
3901 return 0;
3904 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3906 stack_t new, old;
3907 int err;
3908 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3909 return -EFAULT;
3910 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3911 current_user_stack_pointer(),
3912 MINSIGSTKSZ);
3913 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3914 err = -EFAULT;
3915 return err;
3918 int restore_altstack(const stack_t __user *uss)
3920 stack_t new;
3921 if (copy_from_user(&new, uss, sizeof(stack_t)))
3922 return -EFAULT;
3923 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3924 MINSIGSTKSZ);
3925 /* squash all but EFAULT for now */
3926 return 0;
3929 int __save_altstack(stack_t __user *uss, unsigned long sp)
3931 struct task_struct *t = current;
3932 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3933 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3934 __put_user(t->sas_ss_size, &uss->ss_size);
3935 if (err)
3936 return err;
3937 if (t->sas_ss_flags & SS_AUTODISARM)
3938 sas_ss_reset(t);
3939 return 0;
3942 #ifdef CONFIG_COMPAT
3943 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3944 compat_stack_t __user *uoss_ptr)
3946 stack_t uss, uoss;
3947 int ret;
3949 if (uss_ptr) {
3950 compat_stack_t uss32;
3951 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3952 return -EFAULT;
3953 uss.ss_sp = compat_ptr(uss32.ss_sp);
3954 uss.ss_flags = uss32.ss_flags;
3955 uss.ss_size = uss32.ss_size;
3957 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3958 compat_user_stack_pointer(),
3959 COMPAT_MINSIGSTKSZ);
3960 if (ret >= 0 && uoss_ptr) {
3961 compat_stack_t old;
3962 memset(&old, 0, sizeof(old));
3963 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3964 old.ss_flags = uoss.ss_flags;
3965 old.ss_size = uoss.ss_size;
3966 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3967 ret = -EFAULT;
3969 return ret;
3972 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3973 const compat_stack_t __user *, uss_ptr,
3974 compat_stack_t __user *, uoss_ptr)
3976 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3979 int compat_restore_altstack(const compat_stack_t __user *uss)
3981 int err = do_compat_sigaltstack(uss, NULL);
3982 /* squash all but -EFAULT for now */
3983 return err == -EFAULT ? err : 0;
3986 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3988 int err;
3989 struct task_struct *t = current;
3990 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3991 &uss->ss_sp) |
3992 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3993 __put_user(t->sas_ss_size, &uss->ss_size);
3994 if (err)
3995 return err;
3996 if (t->sas_ss_flags & SS_AUTODISARM)
3997 sas_ss_reset(t);
3998 return 0;
4000 #endif
4002 #ifdef __ARCH_WANT_SYS_SIGPENDING
4005 * sys_sigpending - examine pending signals
4006 * @uset: where mask of pending signal is returned
4008 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4010 sigset_t set;
4012 if (sizeof(old_sigset_t) > sizeof(*uset))
4013 return -EINVAL;
4015 do_sigpending(&set);
4017 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4018 return -EFAULT;
4020 return 0;
4023 #ifdef CONFIG_COMPAT
4024 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4026 sigset_t set;
4028 do_sigpending(&set);
4030 return put_user(set.sig[0], set32);
4032 #endif
4034 #endif
4036 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4038 * sys_sigprocmask - examine and change blocked signals
4039 * @how: whether to add, remove, or set signals
4040 * @nset: signals to add or remove (if non-null)
4041 * @oset: previous value of signal mask if non-null
4043 * Some platforms have their own version with special arguments;
4044 * others support only sys_rt_sigprocmask.
4047 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4048 old_sigset_t __user *, oset)
4050 old_sigset_t old_set, new_set;
4051 sigset_t new_blocked;
4053 old_set = current->blocked.sig[0];
4055 if (nset) {
4056 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4057 return -EFAULT;
4059 new_blocked = current->blocked;
4061 switch (how) {
4062 case SIG_BLOCK:
4063 sigaddsetmask(&new_blocked, new_set);
4064 break;
4065 case SIG_UNBLOCK:
4066 sigdelsetmask(&new_blocked, new_set);
4067 break;
4068 case SIG_SETMASK:
4069 new_blocked.sig[0] = new_set;
4070 break;
4071 default:
4072 return -EINVAL;
4075 set_current_blocked(&new_blocked);
4078 if (oset) {
4079 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4080 return -EFAULT;
4083 return 0;
4085 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4087 #ifndef CONFIG_ODD_RT_SIGACTION
4089 * sys_rt_sigaction - alter an action taken by a process
4090 * @sig: signal to be sent
4091 * @act: new sigaction
4092 * @oact: used to save the previous sigaction
4093 * @sigsetsize: size of sigset_t type
4095 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4096 const struct sigaction __user *, act,
4097 struct sigaction __user *, oact,
4098 size_t, sigsetsize)
4100 struct k_sigaction new_sa, old_sa;
4101 int ret;
4103 /* XXX: Don't preclude handling different sized sigset_t's. */
4104 if (sigsetsize != sizeof(sigset_t))
4105 return -EINVAL;
4107 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4108 return -EFAULT;
4110 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4111 if (ret)
4112 return ret;
4114 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4115 return -EFAULT;
4117 return 0;
4119 #ifdef CONFIG_COMPAT
4120 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4121 const struct compat_sigaction __user *, act,
4122 struct compat_sigaction __user *, oact,
4123 compat_size_t, sigsetsize)
4125 struct k_sigaction new_ka, old_ka;
4126 #ifdef __ARCH_HAS_SA_RESTORER
4127 compat_uptr_t restorer;
4128 #endif
4129 int ret;
4131 /* XXX: Don't preclude handling different sized sigset_t's. */
4132 if (sigsetsize != sizeof(compat_sigset_t))
4133 return -EINVAL;
4135 if (act) {
4136 compat_uptr_t handler;
4137 ret = get_user(handler, &act->sa_handler);
4138 new_ka.sa.sa_handler = compat_ptr(handler);
4139 #ifdef __ARCH_HAS_SA_RESTORER
4140 ret |= get_user(restorer, &act->sa_restorer);
4141 new_ka.sa.sa_restorer = compat_ptr(restorer);
4142 #endif
4143 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4144 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4145 if (ret)
4146 return -EFAULT;
4149 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4150 if (!ret && oact) {
4151 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4152 &oact->sa_handler);
4153 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4154 sizeof(oact->sa_mask));
4155 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4156 #ifdef __ARCH_HAS_SA_RESTORER
4157 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4158 &oact->sa_restorer);
4159 #endif
4161 return ret;
4163 #endif
4164 #endif /* !CONFIG_ODD_RT_SIGACTION */
4166 #ifdef CONFIG_OLD_SIGACTION
4167 SYSCALL_DEFINE3(sigaction, int, sig,
4168 const struct old_sigaction __user *, act,
4169 struct old_sigaction __user *, oact)
4171 struct k_sigaction new_ka, old_ka;
4172 int ret;
4174 if (act) {
4175 old_sigset_t mask;
4176 if (!access_ok(act, sizeof(*act)) ||
4177 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4178 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4179 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4180 __get_user(mask, &act->sa_mask))
4181 return -EFAULT;
4182 #ifdef __ARCH_HAS_KA_RESTORER
4183 new_ka.ka_restorer = NULL;
4184 #endif
4185 siginitset(&new_ka.sa.sa_mask, mask);
4188 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4190 if (!ret && oact) {
4191 if (!access_ok(oact, sizeof(*oact)) ||
4192 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4193 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4194 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4195 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4196 return -EFAULT;
4199 return ret;
4201 #endif
4202 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4203 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4204 const struct compat_old_sigaction __user *, act,
4205 struct compat_old_sigaction __user *, oact)
4207 struct k_sigaction new_ka, old_ka;
4208 int ret;
4209 compat_old_sigset_t mask;
4210 compat_uptr_t handler, restorer;
4212 if (act) {
4213 if (!access_ok(act, sizeof(*act)) ||
4214 __get_user(handler, &act->sa_handler) ||
4215 __get_user(restorer, &act->sa_restorer) ||
4216 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4217 __get_user(mask, &act->sa_mask))
4218 return -EFAULT;
4220 #ifdef __ARCH_HAS_KA_RESTORER
4221 new_ka.ka_restorer = NULL;
4222 #endif
4223 new_ka.sa.sa_handler = compat_ptr(handler);
4224 new_ka.sa.sa_restorer = compat_ptr(restorer);
4225 siginitset(&new_ka.sa.sa_mask, mask);
4228 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4230 if (!ret && oact) {
4231 if (!access_ok(oact, sizeof(*oact)) ||
4232 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4233 &oact->sa_handler) ||
4234 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4235 &oact->sa_restorer) ||
4236 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4237 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4238 return -EFAULT;
4240 return ret;
4242 #endif
4244 #ifdef CONFIG_SGETMASK_SYSCALL
4247 * For backwards compatibility. Functionality superseded by sigprocmask.
4249 SYSCALL_DEFINE0(sgetmask)
4251 /* SMP safe */
4252 return current->blocked.sig[0];
4255 SYSCALL_DEFINE1(ssetmask, int, newmask)
4257 int old = current->blocked.sig[0];
4258 sigset_t newset;
4260 siginitset(&newset, newmask);
4261 set_current_blocked(&newset);
4263 return old;
4265 #endif /* CONFIG_SGETMASK_SYSCALL */
4267 #ifdef __ARCH_WANT_SYS_SIGNAL
4269 * For backwards compatibility. Functionality superseded by sigaction.
4271 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4273 struct k_sigaction new_sa, old_sa;
4274 int ret;
4276 new_sa.sa.sa_handler = handler;
4277 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4278 sigemptyset(&new_sa.sa.sa_mask);
4280 ret = do_sigaction(sig, &new_sa, &old_sa);
4282 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4284 #endif /* __ARCH_WANT_SYS_SIGNAL */
4286 #ifdef __ARCH_WANT_SYS_PAUSE
4288 SYSCALL_DEFINE0(pause)
4290 while (!signal_pending(current)) {
4291 __set_current_state(TASK_INTERRUPTIBLE);
4292 schedule();
4294 return -ERESTARTNOHAND;
4297 #endif
4299 static int sigsuspend(sigset_t *set)
4301 current->saved_sigmask = current->blocked;
4302 set_current_blocked(set);
4304 while (!signal_pending(current)) {
4305 __set_current_state(TASK_INTERRUPTIBLE);
4306 schedule();
4308 set_restore_sigmask();
4309 return -ERESTARTNOHAND;
4313 * sys_rt_sigsuspend - replace the signal mask for a value with the
4314 * @unewset value until a signal is received
4315 * @unewset: new signal mask value
4316 * @sigsetsize: size of sigset_t type
4318 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4320 sigset_t newset;
4322 /* XXX: Don't preclude handling different sized sigset_t's. */
4323 if (sigsetsize != sizeof(sigset_t))
4324 return -EINVAL;
4326 if (copy_from_user(&newset, unewset, sizeof(newset)))
4327 return -EFAULT;
4328 return sigsuspend(&newset);
4331 #ifdef CONFIG_COMPAT
4332 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4334 sigset_t newset;
4336 /* XXX: Don't preclude handling different sized sigset_t's. */
4337 if (sigsetsize != sizeof(sigset_t))
4338 return -EINVAL;
4340 if (get_compat_sigset(&newset, unewset))
4341 return -EFAULT;
4342 return sigsuspend(&newset);
4344 #endif
4346 #ifdef CONFIG_OLD_SIGSUSPEND
4347 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4349 sigset_t blocked;
4350 siginitset(&blocked, mask);
4351 return sigsuspend(&blocked);
4353 #endif
4354 #ifdef CONFIG_OLD_SIGSUSPEND3
4355 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4357 sigset_t blocked;
4358 siginitset(&blocked, mask);
4359 return sigsuspend(&blocked);
4361 #endif
4363 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4365 return NULL;
4368 static inline void siginfo_buildtime_checks(void)
4370 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4372 /* Verify the offsets in the two siginfos match */
4373 #define CHECK_OFFSET(field) \
4374 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4376 /* kill */
4377 CHECK_OFFSET(si_pid);
4378 CHECK_OFFSET(si_uid);
4380 /* timer */
4381 CHECK_OFFSET(si_tid);
4382 CHECK_OFFSET(si_overrun);
4383 CHECK_OFFSET(si_value);
4385 /* rt */
4386 CHECK_OFFSET(si_pid);
4387 CHECK_OFFSET(si_uid);
4388 CHECK_OFFSET(si_value);
4390 /* sigchld */
4391 CHECK_OFFSET(si_pid);
4392 CHECK_OFFSET(si_uid);
4393 CHECK_OFFSET(si_status);
4394 CHECK_OFFSET(si_utime);
4395 CHECK_OFFSET(si_stime);
4397 /* sigfault */
4398 CHECK_OFFSET(si_addr);
4399 CHECK_OFFSET(si_addr_lsb);
4400 CHECK_OFFSET(si_lower);
4401 CHECK_OFFSET(si_upper);
4402 CHECK_OFFSET(si_pkey);
4404 /* sigpoll */
4405 CHECK_OFFSET(si_band);
4406 CHECK_OFFSET(si_fd);
4408 /* sigsys */
4409 CHECK_OFFSET(si_call_addr);
4410 CHECK_OFFSET(si_syscall);
4411 CHECK_OFFSET(si_arch);
4412 #undef CHECK_OFFSET
4415 void __init signals_init(void)
4417 siginfo_buildtime_checks();
4419 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4422 #ifdef CONFIG_KGDB_KDB
4423 #include <linux/kdb.h>
4425 * kdb_send_sig - Allows kdb to send signals without exposing
4426 * signal internals. This function checks if the required locks are
4427 * available before calling the main signal code, to avoid kdb
4428 * deadlocks.
4430 void kdb_send_sig(struct task_struct *t, int sig)
4432 static struct task_struct *kdb_prev_t;
4433 int new_t, ret;
4434 if (!spin_trylock(&t->sighand->siglock)) {
4435 kdb_printf("Can't do kill command now.\n"
4436 "The sigmask lock is held somewhere else in "
4437 "kernel, try again later\n");
4438 return;
4440 new_t = kdb_prev_t != t;
4441 kdb_prev_t = t;
4442 if (t->state != TASK_RUNNING && new_t) {
4443 spin_unlock(&t->sighand->siglock);
4444 kdb_printf("Process is not RUNNING, sending a signal from "
4445 "kdb risks deadlock\n"
4446 "on the run queue locks. "
4447 "The signal has _not_ been sent.\n"
4448 "Reissue the kill command if you want to risk "
4449 "the deadlock.\n");
4450 return;
4452 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4453 spin_unlock(&t->sighand->siglock);
4454 if (ret)
4455 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4456 sig, t->pid);
4457 else
4458 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4460 #endif /* CONFIG_KGDB_KDB */