2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
63 #include "ras/ras_event.h"
65 int sysctl_memory_failure_early_kill __read_mostly
= 0;
67 int sysctl_memory_failure_recovery __read_mostly
= 1;
69 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
73 u32 hwpoison_filter_enable
= 0;
74 u32 hwpoison_filter_dev_major
= ~0U;
75 u32 hwpoison_filter_dev_minor
= ~0U;
76 u64 hwpoison_filter_flags_mask
;
77 u64 hwpoison_filter_flags_value
;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
84 static int hwpoison_filter_dev(struct page
*p
)
86 struct address_space
*mapping
;
89 if (hwpoison_filter_dev_major
== ~0U &&
90 hwpoison_filter_dev_minor
== ~0U)
94 * page_mapping() does not accept slab pages.
99 mapping
= page_mapping(p
);
100 if (mapping
== NULL
|| mapping
->host
== NULL
)
103 dev
= mapping
->host
->i_sb
->s_dev
;
104 if (hwpoison_filter_dev_major
!= ~0U &&
105 hwpoison_filter_dev_major
!= MAJOR(dev
))
107 if (hwpoison_filter_dev_minor
!= ~0U &&
108 hwpoison_filter_dev_minor
!= MINOR(dev
))
114 static int hwpoison_filter_flags(struct page
*p
)
116 if (!hwpoison_filter_flags_mask
)
119 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
120 hwpoison_filter_flags_value
)
127 * This allows stress tests to limit test scope to a collection of tasks
128 * by putting them under some memcg. This prevents killing unrelated/important
129 * processes such as /sbin/init. Note that the target task may share clean
130 * pages with init (eg. libc text), which is harmless. If the target task
131 * share _dirty_ pages with another task B, the test scheme must make sure B
132 * is also included in the memcg. At last, due to race conditions this filter
133 * can only guarantee that the page either belongs to the memcg tasks, or is
137 u64 hwpoison_filter_memcg
;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
139 static int hwpoison_filter_task(struct page
*p
)
141 if (!hwpoison_filter_memcg
)
144 if (page_cgroup_ino(p
) != hwpoison_filter_memcg
)
150 static int hwpoison_filter_task(struct page
*p
) { return 0; }
153 int hwpoison_filter(struct page
*p
)
155 if (!hwpoison_filter_enable
)
158 if (hwpoison_filter_dev(p
))
161 if (hwpoison_filter_flags(p
))
164 if (hwpoison_filter_task(p
))
170 int hwpoison_filter(struct page
*p
)
176 EXPORT_SYMBOL_GPL(hwpoison_filter
);
179 * Kill all processes that have a poisoned page mapped and then isolate
183 * Find all processes having the page mapped and kill them.
184 * But we keep a page reference around so that the page is not
185 * actually freed yet.
186 * Then stash the page away
188 * There's no convenient way to get back to mapped processes
189 * from the VMAs. So do a brute-force search over all
192 * Remember that machine checks are not common (or rather
193 * if they are common you have other problems), so this shouldn't
194 * be a performance issue.
196 * Also there are some races possible while we get from the
197 * error detection to actually handle it.
202 struct task_struct
*tsk
;
209 * Send all the processes who have the page mapped a signal.
210 * ``action optional'' if they are not immediately affected by the error
211 * ``action required'' if error happened in current execution context
213 static int kill_proc(struct to_kill
*tk
, unsigned long pfn
, int flags
)
215 struct task_struct
*t
= tk
->tsk
;
216 short addr_lsb
= tk
->size_shift
;
219 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 pfn
, t
->comm
, t
->pid
);
222 if ((flags
& MF_ACTION_REQUIRED
) && t
->mm
== current
->mm
) {
223 ret
= force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)tk
->addr
,
227 * Don't use force here, it's convenient if the signal
228 * can be temporarily blocked.
229 * This could cause a loop when the user sets SIGBUS
230 * to SIG_IGN, but hopefully no one will do that?
232 ret
= send_sig_mceerr(BUS_MCEERR_AO
, (void __user
*)tk
->addr
,
233 addr_lsb
, t
); /* synchronous? */
236 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 t
->comm
, t
->pid
, ret
);
242 * When a unknown page type is encountered drain as many buffers as possible
243 * in the hope to turn the page into a LRU or free page, which we can handle.
245 void shake_page(struct page
*p
, int access
)
254 drain_all_pages(page_zone(p
));
255 if (PageLRU(p
) || is_free_buddy_page(p
))
260 * Only call shrink_node_slabs here (which would also shrink
261 * other caches) if access is not potentially fatal.
264 drop_slab_node(page_to_nid(p
));
266 EXPORT_SYMBOL_GPL(shake_page
);
268 static unsigned long dev_pagemap_mapping_shift(struct page
*page
,
269 struct vm_area_struct
*vma
)
271 unsigned long address
= vma_address(page
, vma
);
278 pgd
= pgd_offset(vma
->vm_mm
, address
);
279 if (!pgd_present(*pgd
))
281 p4d
= p4d_offset(pgd
, address
);
282 if (!p4d_present(*p4d
))
284 pud
= pud_offset(p4d
, address
);
285 if (!pud_present(*pud
))
287 if (pud_devmap(*pud
))
289 pmd
= pmd_offset(pud
, address
);
290 if (!pmd_present(*pmd
))
292 if (pmd_devmap(*pmd
))
294 pte
= pte_offset_map(pmd
, address
);
295 if (!pte_present(*pte
))
297 if (pte_devmap(*pte
))
303 * Failure handling: if we can't find or can't kill a process there's
304 * not much we can do. We just print a message and ignore otherwise.
308 * Schedule a process for later kill.
309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310 * TBD would GFP_NOIO be enough?
312 static void add_to_kill(struct task_struct
*tsk
, struct page
*p
,
313 struct vm_area_struct
*vma
,
314 struct list_head
*to_kill
,
315 struct to_kill
**tkc
)
323 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
325 pr_err("Memory failure: Out of memory while machine check handling\n");
329 tk
->addr
= page_address_in_vma(p
, vma
);
331 if (is_zone_device_page(p
))
332 tk
->size_shift
= dev_pagemap_mapping_shift(p
, vma
);
334 tk
->size_shift
= compound_order(compound_head(p
)) + PAGE_SHIFT
;
337 * In theory we don't have to kill when the page was
338 * munmaped. But it could be also a mremap. Since that's
339 * likely very rare kill anyways just out of paranoia, but use
340 * a SIGKILL because the error is not contained anymore.
342 if (tk
->addr
== -EFAULT
|| tk
->size_shift
== 0) {
343 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 page_to_pfn(p
), tsk
->comm
);
347 get_task_struct(tsk
);
349 list_add_tail(&tk
->nd
, to_kill
);
353 * Kill the processes that have been collected earlier.
355 * Only do anything when DOIT is set, otherwise just free the list
356 * (this is used for clean pages which do not need killing)
357 * Also when FAIL is set do a force kill because something went
360 static void kill_procs(struct list_head
*to_kill
, int forcekill
, bool fail
,
361 unsigned long pfn
, int flags
)
363 struct to_kill
*tk
, *next
;
365 list_for_each_entry_safe (tk
, next
, to_kill
, nd
) {
368 * In case something went wrong with munmapping
369 * make sure the process doesn't catch the
370 * signal and then access the memory. Just kill it.
372 if (fail
|| tk
->addr_valid
== 0) {
373 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
375 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
,
376 tk
->tsk
, PIDTYPE_PID
);
380 * In theory the process could have mapped
381 * something else on the address in-between. We could
382 * check for that, but we need to tell the
385 else if (kill_proc(tk
, pfn
, flags
) < 0)
386 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
387 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
389 put_task_struct(tk
->tsk
);
395 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
396 * on behalf of the thread group. Return task_struct of the (first found)
397 * dedicated thread if found, and return NULL otherwise.
399 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
400 * have to call rcu_read_lock/unlock() in this function.
402 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
404 struct task_struct
*t
;
406 for_each_thread(tsk
, t
)
407 if ((t
->flags
& PF_MCE_PROCESS
) && (t
->flags
& PF_MCE_EARLY
))
413 * Determine whether a given process is "early kill" process which expects
414 * to be signaled when some page under the process is hwpoisoned.
415 * Return task_struct of the dedicated thread (main thread unless explicitly
416 * specified) if the process is "early kill," and otherwise returns NULL.
418 static struct task_struct
*task_early_kill(struct task_struct
*tsk
,
421 struct task_struct
*t
;
426 t
= find_early_kill_thread(tsk
);
429 if (sysctl_memory_failure_early_kill
)
435 * Collect processes when the error hit an anonymous page.
437 static void collect_procs_anon(struct page
*page
, struct list_head
*to_kill
,
438 struct to_kill
**tkc
, int force_early
)
440 struct vm_area_struct
*vma
;
441 struct task_struct
*tsk
;
445 av
= page_lock_anon_vma_read(page
);
446 if (av
== NULL
) /* Not actually mapped anymore */
449 pgoff
= page_to_pgoff(page
);
450 read_lock(&tasklist_lock
);
451 for_each_process (tsk
) {
452 struct anon_vma_chain
*vmac
;
453 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
457 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
460 if (!page_mapped_in_vma(page
, vma
))
462 if (vma
->vm_mm
== t
->mm
)
463 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
466 read_unlock(&tasklist_lock
);
467 page_unlock_anon_vma_read(av
);
471 * Collect processes when the error hit a file mapped page.
473 static void collect_procs_file(struct page
*page
, struct list_head
*to_kill
,
474 struct to_kill
**tkc
, int force_early
)
476 struct vm_area_struct
*vma
;
477 struct task_struct
*tsk
;
478 struct address_space
*mapping
= page
->mapping
;
480 i_mmap_lock_read(mapping
);
481 read_lock(&tasklist_lock
);
482 for_each_process(tsk
) {
483 pgoff_t pgoff
= page_to_pgoff(page
);
484 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
488 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
491 * Send early kill signal to tasks where a vma covers
492 * the page but the corrupted page is not necessarily
493 * mapped it in its pte.
494 * Assume applications who requested early kill want
495 * to be informed of all such data corruptions.
497 if (vma
->vm_mm
== t
->mm
)
498 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
501 read_unlock(&tasklist_lock
);
502 i_mmap_unlock_read(mapping
);
506 * Collect the processes who have the corrupted page mapped to kill.
507 * This is done in two steps for locking reasons.
508 * First preallocate one tokill structure outside the spin locks,
509 * so that we can kill at least one process reasonably reliable.
511 static void collect_procs(struct page
*page
, struct list_head
*tokill
,
519 tk
= kmalloc(sizeof(struct to_kill
), GFP_NOIO
);
523 collect_procs_anon(page
, tokill
, &tk
, force_early
);
525 collect_procs_file(page
, tokill
, &tk
, force_early
);
529 static const char *action_name
[] = {
530 [MF_IGNORED
] = "Ignored",
531 [MF_FAILED
] = "Failed",
532 [MF_DELAYED
] = "Delayed",
533 [MF_RECOVERED
] = "Recovered",
536 static const char * const action_page_types
[] = {
537 [MF_MSG_KERNEL
] = "reserved kernel page",
538 [MF_MSG_KERNEL_HIGH_ORDER
] = "high-order kernel page",
539 [MF_MSG_SLAB
] = "kernel slab page",
540 [MF_MSG_DIFFERENT_COMPOUND
] = "different compound page after locking",
541 [MF_MSG_POISONED_HUGE
] = "huge page already hardware poisoned",
542 [MF_MSG_HUGE
] = "huge page",
543 [MF_MSG_FREE_HUGE
] = "free huge page",
544 [MF_MSG_NON_PMD_HUGE
] = "non-pmd-sized huge page",
545 [MF_MSG_UNMAP_FAILED
] = "unmapping failed page",
546 [MF_MSG_DIRTY_SWAPCACHE
] = "dirty swapcache page",
547 [MF_MSG_CLEAN_SWAPCACHE
] = "clean swapcache page",
548 [MF_MSG_DIRTY_MLOCKED_LRU
] = "dirty mlocked LRU page",
549 [MF_MSG_CLEAN_MLOCKED_LRU
] = "clean mlocked LRU page",
550 [MF_MSG_DIRTY_UNEVICTABLE_LRU
] = "dirty unevictable LRU page",
551 [MF_MSG_CLEAN_UNEVICTABLE_LRU
] = "clean unevictable LRU page",
552 [MF_MSG_DIRTY_LRU
] = "dirty LRU page",
553 [MF_MSG_CLEAN_LRU
] = "clean LRU page",
554 [MF_MSG_TRUNCATED_LRU
] = "already truncated LRU page",
555 [MF_MSG_BUDDY
] = "free buddy page",
556 [MF_MSG_BUDDY_2ND
] = "free buddy page (2nd try)",
557 [MF_MSG_DAX
] = "dax page",
558 [MF_MSG_UNKNOWN
] = "unknown page",
562 * XXX: It is possible that a page is isolated from LRU cache,
563 * and then kept in swap cache or failed to remove from page cache.
564 * The page count will stop it from being freed by unpoison.
565 * Stress tests should be aware of this memory leak problem.
567 static int delete_from_lru_cache(struct page
*p
)
569 if (!isolate_lru_page(p
)) {
571 * Clear sensible page flags, so that the buddy system won't
572 * complain when the page is unpoison-and-freed.
575 ClearPageUnevictable(p
);
578 * Poisoned page might never drop its ref count to 0 so we have
579 * to uncharge it manually from its memcg.
581 mem_cgroup_uncharge(p
);
584 * drop the page count elevated by isolate_lru_page()
592 static int truncate_error_page(struct page
*p
, unsigned long pfn
,
593 struct address_space
*mapping
)
597 if (mapping
->a_ops
->error_remove_page
) {
598 int err
= mapping
->a_ops
->error_remove_page(mapping
, p
);
601 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
603 } else if (page_has_private(p
) &&
604 !try_to_release_page(p
, GFP_NOIO
)) {
605 pr_info("Memory failure: %#lx: failed to release buffers\n",
612 * If the file system doesn't support it just invalidate
613 * This fails on dirty or anything with private pages
615 if (invalidate_inode_page(p
))
618 pr_info("Memory failure: %#lx: Failed to invalidate\n",
626 * Error hit kernel page.
627 * Do nothing, try to be lucky and not touch this instead. For a few cases we
628 * could be more sophisticated.
630 static int me_kernel(struct page
*p
, unsigned long pfn
)
636 * Page in unknown state. Do nothing.
638 static int me_unknown(struct page
*p
, unsigned long pfn
)
640 pr_err("Memory failure: %#lx: Unknown page state\n", pfn
);
645 * Clean (or cleaned) page cache page.
647 static int me_pagecache_clean(struct page
*p
, unsigned long pfn
)
649 struct address_space
*mapping
;
651 delete_from_lru_cache(p
);
654 * For anonymous pages we're done the only reference left
655 * should be the one m_f() holds.
661 * Now truncate the page in the page cache. This is really
662 * more like a "temporary hole punch"
663 * Don't do this for block devices when someone else
664 * has a reference, because it could be file system metadata
665 * and that's not safe to truncate.
667 mapping
= page_mapping(p
);
670 * Page has been teared down in the meanwhile
676 * Truncation is a bit tricky. Enable it per file system for now.
678 * Open: to take i_mutex or not for this? Right now we don't.
680 return truncate_error_page(p
, pfn
, mapping
);
684 * Dirty pagecache page
685 * Issues: when the error hit a hole page the error is not properly
688 static int me_pagecache_dirty(struct page
*p
, unsigned long pfn
)
690 struct address_space
*mapping
= page_mapping(p
);
693 /* TBD: print more information about the file. */
696 * IO error will be reported by write(), fsync(), etc.
697 * who check the mapping.
698 * This way the application knows that something went
699 * wrong with its dirty file data.
701 * There's one open issue:
703 * The EIO will be only reported on the next IO
704 * operation and then cleared through the IO map.
705 * Normally Linux has two mechanisms to pass IO error
706 * first through the AS_EIO flag in the address space
707 * and then through the PageError flag in the page.
708 * Since we drop pages on memory failure handling the
709 * only mechanism open to use is through AS_AIO.
711 * This has the disadvantage that it gets cleared on
712 * the first operation that returns an error, while
713 * the PageError bit is more sticky and only cleared
714 * when the page is reread or dropped. If an
715 * application assumes it will always get error on
716 * fsync, but does other operations on the fd before
717 * and the page is dropped between then the error
718 * will not be properly reported.
720 * This can already happen even without hwpoisoned
721 * pages: first on metadata IO errors (which only
722 * report through AS_EIO) or when the page is dropped
725 * So right now we assume that the application DTRT on
726 * the first EIO, but we're not worse than other parts
729 mapping_set_error(mapping
, -EIO
);
732 return me_pagecache_clean(p
, pfn
);
736 * Clean and dirty swap cache.
738 * Dirty swap cache page is tricky to handle. The page could live both in page
739 * cache and swap cache(ie. page is freshly swapped in). So it could be
740 * referenced concurrently by 2 types of PTEs:
741 * normal PTEs and swap PTEs. We try to handle them consistently by calling
742 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
744 * - clear dirty bit to prevent IO
746 * - but keep in the swap cache, so that when we return to it on
747 * a later page fault, we know the application is accessing
748 * corrupted data and shall be killed (we installed simple
749 * interception code in do_swap_page to catch it).
751 * Clean swap cache pages can be directly isolated. A later page fault will
752 * bring in the known good data from disk.
754 static int me_swapcache_dirty(struct page
*p
, unsigned long pfn
)
757 /* Trigger EIO in shmem: */
758 ClearPageUptodate(p
);
760 if (!delete_from_lru_cache(p
))
766 static int me_swapcache_clean(struct page
*p
, unsigned long pfn
)
768 delete_from_swap_cache(p
);
770 if (!delete_from_lru_cache(p
))
777 * Huge pages. Needs work.
779 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
780 * To narrow down kill region to one page, we need to break up pmd.
782 static int me_huge_page(struct page
*p
, unsigned long pfn
)
785 struct page
*hpage
= compound_head(p
);
786 struct address_space
*mapping
;
788 if (!PageHuge(hpage
))
791 mapping
= page_mapping(hpage
);
793 res
= truncate_error_page(hpage
, pfn
, mapping
);
797 * migration entry prevents later access on error anonymous
798 * hugepage, so we can free and dissolve it into buddy to
799 * save healthy subpages.
803 dissolve_free_huge_page(p
);
812 * Various page states we can handle.
814 * A page state is defined by its current page->flags bits.
815 * The table matches them in order and calls the right handler.
817 * This is quite tricky because we can access page at any time
818 * in its live cycle, so all accesses have to be extremely careful.
820 * This is not complete. More states could be added.
821 * For any missing state don't attempt recovery.
824 #define dirty (1UL << PG_dirty)
825 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
826 #define unevict (1UL << PG_unevictable)
827 #define mlock (1UL << PG_mlocked)
828 #define writeback (1UL << PG_writeback)
829 #define lru (1UL << PG_lru)
830 #define head (1UL << PG_head)
831 #define slab (1UL << PG_slab)
832 #define reserved (1UL << PG_reserved)
834 static struct page_state
{
837 enum mf_action_page_type type
;
838 int (*action
)(struct page
*p
, unsigned long pfn
);
840 { reserved
, reserved
, MF_MSG_KERNEL
, me_kernel
},
842 * free pages are specially detected outside this table:
843 * PG_buddy pages only make a small fraction of all free pages.
847 * Could in theory check if slab page is free or if we can drop
848 * currently unused objects without touching them. But just
849 * treat it as standard kernel for now.
851 { slab
, slab
, MF_MSG_SLAB
, me_kernel
},
853 { head
, head
, MF_MSG_HUGE
, me_huge_page
},
855 { sc
|dirty
, sc
|dirty
, MF_MSG_DIRTY_SWAPCACHE
, me_swapcache_dirty
},
856 { sc
|dirty
, sc
, MF_MSG_CLEAN_SWAPCACHE
, me_swapcache_clean
},
858 { mlock
|dirty
, mlock
|dirty
, MF_MSG_DIRTY_MLOCKED_LRU
, me_pagecache_dirty
},
859 { mlock
|dirty
, mlock
, MF_MSG_CLEAN_MLOCKED_LRU
, me_pagecache_clean
},
861 { unevict
|dirty
, unevict
|dirty
, MF_MSG_DIRTY_UNEVICTABLE_LRU
, me_pagecache_dirty
},
862 { unevict
|dirty
, unevict
, MF_MSG_CLEAN_UNEVICTABLE_LRU
, me_pagecache_clean
},
864 { lru
|dirty
, lru
|dirty
, MF_MSG_DIRTY_LRU
, me_pagecache_dirty
},
865 { lru
|dirty
, lru
, MF_MSG_CLEAN_LRU
, me_pagecache_clean
},
868 * Catchall entry: must be at end.
870 { 0, 0, MF_MSG_UNKNOWN
, me_unknown
},
884 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
885 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
887 static void action_result(unsigned long pfn
, enum mf_action_page_type type
,
888 enum mf_result result
)
890 trace_memory_failure_event(pfn
, type
, result
);
892 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
893 pfn
, action_page_types
[type
], action_name
[result
]);
896 static int page_action(struct page_state
*ps
, struct page
*p
,
902 result
= ps
->action(p
, pfn
);
904 count
= page_count(p
) - 1;
905 if (ps
->action
== me_swapcache_dirty
&& result
== MF_DELAYED
)
908 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
909 pfn
, action_page_types
[ps
->type
], count
);
912 action_result(pfn
, ps
->type
, result
);
914 /* Could do more checks here if page looks ok */
916 * Could adjust zone counters here to correct for the missing page.
919 return (result
== MF_RECOVERED
|| result
== MF_DELAYED
) ? 0 : -EBUSY
;
923 * get_hwpoison_page() - Get refcount for memory error handling:
924 * @page: raw error page (hit by memory error)
926 * Return: return 0 if failed to grab the refcount, otherwise true (some
929 int get_hwpoison_page(struct page
*page
)
931 struct page
*head
= compound_head(page
);
933 if (!PageHuge(head
) && PageTransHuge(head
)) {
935 * Non anonymous thp exists only in allocation/free time. We
936 * can't handle such a case correctly, so let's give it up.
937 * This should be better than triggering BUG_ON when kernel
938 * tries to touch the "partially handled" page.
940 if (!PageAnon(head
)) {
941 pr_err("Memory failure: %#lx: non anonymous thp\n",
947 if (get_page_unless_zero(head
)) {
948 if (head
== compound_head(page
))
951 pr_info("Memory failure: %#lx cannot catch tail\n",
958 EXPORT_SYMBOL_GPL(get_hwpoison_page
);
961 * Do all that is necessary to remove user space mappings. Unmap
962 * the pages and send SIGBUS to the processes if the data was dirty.
964 static bool hwpoison_user_mappings(struct page
*p
, unsigned long pfn
,
965 int flags
, struct page
**hpagep
)
967 enum ttu_flags ttu
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
968 struct address_space
*mapping
;
971 int kill
= 1, forcekill
;
972 struct page
*hpage
= *hpagep
;
973 bool mlocked
= PageMlocked(hpage
);
976 * Here we are interested only in user-mapped pages, so skip any
977 * other types of pages.
979 if (PageReserved(p
) || PageSlab(p
))
981 if (!(PageLRU(hpage
) || PageHuge(p
)))
985 * This check implies we don't kill processes if their pages
986 * are in the swap cache early. Those are always late kills.
988 if (!page_mapped(hpage
))
992 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn
);
996 if (PageSwapCache(p
)) {
997 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
999 ttu
|= TTU_IGNORE_HWPOISON
;
1003 * Propagate the dirty bit from PTEs to struct page first, because we
1004 * need this to decide if we should kill or just drop the page.
1005 * XXX: the dirty test could be racy: set_page_dirty() may not always
1006 * be called inside page lock (it's recommended but not enforced).
1008 mapping
= page_mapping(hpage
);
1009 if (!(flags
& MF_MUST_KILL
) && !PageDirty(hpage
) && mapping
&&
1010 mapping_cap_writeback_dirty(mapping
)) {
1011 if (page_mkclean(hpage
)) {
1012 SetPageDirty(hpage
);
1015 ttu
|= TTU_IGNORE_HWPOISON
;
1016 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1022 * First collect all the processes that have the page
1023 * mapped in dirty form. This has to be done before try_to_unmap,
1024 * because ttu takes the rmap data structures down.
1026 * Error handling: We ignore errors here because
1027 * there's nothing that can be done.
1030 collect_procs(hpage
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1032 unmap_success
= try_to_unmap(hpage
, ttu
);
1034 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1035 pfn
, page_mapcount(hpage
));
1038 * try_to_unmap() might put mlocked page in lru cache, so call
1039 * shake_page() again to ensure that it's flushed.
1042 shake_page(hpage
, 0);
1045 * Now that the dirty bit has been propagated to the
1046 * struct page and all unmaps done we can decide if
1047 * killing is needed or not. Only kill when the page
1048 * was dirty or the process is not restartable,
1049 * otherwise the tokill list is merely
1050 * freed. When there was a problem unmapping earlier
1051 * use a more force-full uncatchable kill to prevent
1052 * any accesses to the poisoned memory.
1054 forcekill
= PageDirty(hpage
) || (flags
& MF_MUST_KILL
);
1055 kill_procs(&tokill
, forcekill
, !unmap_success
, pfn
, flags
);
1057 return unmap_success
;
1060 static int identify_page_state(unsigned long pfn
, struct page
*p
,
1061 unsigned long page_flags
)
1063 struct page_state
*ps
;
1066 * The first check uses the current page flags which may not have any
1067 * relevant information. The second check with the saved page flags is
1068 * carried out only if the first check can't determine the page status.
1070 for (ps
= error_states
;; ps
++)
1071 if ((p
->flags
& ps
->mask
) == ps
->res
)
1074 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1077 for (ps
= error_states
;; ps
++)
1078 if ((page_flags
& ps
->mask
) == ps
->res
)
1080 return page_action(ps
, p
, pfn
);
1083 static int memory_failure_hugetlb(unsigned long pfn
, int flags
)
1085 struct page
*p
= pfn_to_page(pfn
);
1086 struct page
*head
= compound_head(p
);
1088 unsigned long page_flags
;
1090 if (TestSetPageHWPoison(head
)) {
1091 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1096 num_poisoned_pages_inc();
1098 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1100 * Check "filter hit" and "race with other subpage."
1103 if (PageHWPoison(head
)) {
1104 if ((hwpoison_filter(p
) && TestClearPageHWPoison(p
))
1105 || (p
!= head
&& TestSetPageHWPoison(head
))) {
1106 num_poisoned_pages_dec();
1112 dissolve_free_huge_page(p
);
1113 action_result(pfn
, MF_MSG_FREE_HUGE
, MF_DELAYED
);
1118 page_flags
= head
->flags
;
1120 if (!PageHWPoison(head
)) {
1121 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1122 num_poisoned_pages_dec();
1124 put_hwpoison_page(head
);
1129 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1130 * simply disable it. In order to make it work properly, we need
1132 * - conversion of a pud that maps an error hugetlb into hwpoison
1133 * entry properly works, and
1134 * - other mm code walking over page table is aware of pud-aligned
1137 if (huge_page_size(page_hstate(head
)) > PMD_SIZE
) {
1138 action_result(pfn
, MF_MSG_NON_PMD_HUGE
, MF_IGNORED
);
1143 if (!hwpoison_user_mappings(p
, pfn
, flags
, &head
)) {
1144 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1149 res
= identify_page_state(pfn
, p
, page_flags
);
1155 static int memory_failure_dev_pagemap(unsigned long pfn
, int flags
,
1156 struct dev_pagemap
*pgmap
)
1158 struct page
*page
= pfn_to_page(pfn
);
1159 const bool unmap_success
= true;
1160 unsigned long size
= 0;
1168 * Prevent the inode from being freed while we are interrogating
1169 * the address_space, typically this would be handled by
1170 * lock_page(), but dax pages do not use the page lock. This
1171 * also prevents changes to the mapping of this pfn until
1172 * poison signaling is complete.
1174 cookie
= dax_lock_page(page
);
1178 if (hwpoison_filter(page
)) {
1183 switch (pgmap
->type
) {
1184 case MEMORY_DEVICE_PRIVATE
:
1185 case MEMORY_DEVICE_PUBLIC
:
1187 * TODO: Handle HMM pages which may need coordination
1188 * with device-side memory.
1196 * Use this flag as an indication that the dax page has been
1197 * remapped UC to prevent speculative consumption of poison.
1199 SetPageHWPoison(page
);
1202 * Unlike System-RAM there is no possibility to swap in a
1203 * different physical page at a given virtual address, so all
1204 * userspace consumption of ZONE_DEVICE memory necessitates
1205 * SIGBUS (i.e. MF_MUST_KILL)
1207 flags
|= MF_ACTION_REQUIRED
| MF_MUST_KILL
;
1208 collect_procs(page
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1210 list_for_each_entry(tk
, &tokill
, nd
)
1212 size
= max(size
, 1UL << tk
->size_shift
);
1215 * Unmap the largest mapping to avoid breaking up
1216 * device-dax mappings which are constant size. The
1217 * actual size of the mapping being torn down is
1218 * communicated in siginfo, see kill_proc()
1220 start
= (page
->index
<< PAGE_SHIFT
) & ~(size
- 1);
1221 unmap_mapping_range(page
->mapping
, start
, start
+ size
, 0);
1223 kill_procs(&tokill
, flags
& MF_MUST_KILL
, !unmap_success
, pfn
, flags
);
1226 dax_unlock_page(page
, cookie
);
1228 /* drop pgmap ref acquired in caller */
1229 put_dev_pagemap(pgmap
);
1230 action_result(pfn
, MF_MSG_DAX
, rc
? MF_FAILED
: MF_RECOVERED
);
1235 * memory_failure - Handle memory failure of a page.
1236 * @pfn: Page Number of the corrupted page
1237 * @flags: fine tune action taken
1239 * This function is called by the low level machine check code
1240 * of an architecture when it detects hardware memory corruption
1241 * of a page. It tries its best to recover, which includes
1242 * dropping pages, killing processes etc.
1244 * The function is primarily of use for corruptions that
1245 * happen outside the current execution context (e.g. when
1246 * detected by a background scrubber)
1248 * Must run in process context (e.g. a work queue) with interrupts
1249 * enabled and no spinlocks hold.
1251 int memory_failure(unsigned long pfn
, int flags
)
1255 struct page
*orig_head
;
1256 struct dev_pagemap
*pgmap
;
1258 unsigned long page_flags
;
1260 if (!sysctl_memory_failure_recovery
)
1261 panic("Memory failure on page %lx", pfn
);
1263 if (!pfn_valid(pfn
)) {
1264 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1269 pgmap
= get_dev_pagemap(pfn
, NULL
);
1271 return memory_failure_dev_pagemap(pfn
, flags
, pgmap
);
1273 p
= pfn_to_page(pfn
);
1275 return memory_failure_hugetlb(pfn
, flags
);
1276 if (TestSetPageHWPoison(p
)) {
1277 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1282 orig_head
= hpage
= compound_head(p
);
1283 num_poisoned_pages_inc();
1286 * We need/can do nothing about count=0 pages.
1287 * 1) it's a free page, and therefore in safe hand:
1288 * prep_new_page() will be the gate keeper.
1289 * 2) it's part of a non-compound high order page.
1290 * Implies some kernel user: cannot stop them from
1291 * R/W the page; let's pray that the page has been
1292 * used and will be freed some time later.
1293 * In fact it's dangerous to directly bump up page count from 0,
1294 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1296 if (!(flags
& MF_COUNT_INCREASED
) && !get_hwpoison_page(p
)) {
1297 if (is_free_buddy_page(p
)) {
1298 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1301 action_result(pfn
, MF_MSG_KERNEL_HIGH_ORDER
, MF_IGNORED
);
1306 if (PageTransHuge(hpage
)) {
1308 if (!PageAnon(p
) || unlikely(split_huge_page(p
))) {
1311 pr_err("Memory failure: %#lx: non anonymous thp\n",
1314 pr_err("Memory failure: %#lx: thp split failed\n",
1316 if (TestClearPageHWPoison(p
))
1317 num_poisoned_pages_dec();
1318 put_hwpoison_page(p
);
1322 VM_BUG_ON_PAGE(!page_count(p
), p
);
1323 hpage
= compound_head(p
);
1327 * We ignore non-LRU pages for good reasons.
1328 * - PG_locked is only well defined for LRU pages and a few others
1329 * - to avoid races with __SetPageLocked()
1330 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1331 * The check (unnecessarily) ignores LRU pages being isolated and
1332 * walked by the page reclaim code, however that's not a big loss.
1335 /* shake_page could have turned it free. */
1336 if (!PageLRU(p
) && is_free_buddy_page(p
)) {
1337 if (flags
& MF_COUNT_INCREASED
)
1338 action_result(pfn
, MF_MSG_BUDDY
, MF_DELAYED
);
1340 action_result(pfn
, MF_MSG_BUDDY_2ND
, MF_DELAYED
);
1347 * The page could have changed compound pages during the locking.
1348 * If this happens just bail out.
1350 if (PageCompound(p
) && compound_head(p
) != orig_head
) {
1351 action_result(pfn
, MF_MSG_DIFFERENT_COMPOUND
, MF_IGNORED
);
1357 * We use page flags to determine what action should be taken, but
1358 * the flags can be modified by the error containment action. One
1359 * example is an mlocked page, where PG_mlocked is cleared by
1360 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1361 * correctly, we save a copy of the page flags at this time.
1364 page_flags
= hpage
->flags
;
1366 page_flags
= p
->flags
;
1369 * unpoison always clear PG_hwpoison inside page lock
1371 if (!PageHWPoison(p
)) {
1372 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn
);
1373 num_poisoned_pages_dec();
1375 put_hwpoison_page(p
);
1378 if (hwpoison_filter(p
)) {
1379 if (TestClearPageHWPoison(p
))
1380 num_poisoned_pages_dec();
1382 put_hwpoison_page(p
);
1386 if (!PageTransTail(p
) && !PageLRU(p
))
1387 goto identify_page_state
;
1390 * It's very difficult to mess with pages currently under IO
1391 * and in many cases impossible, so we just avoid it here.
1393 wait_on_page_writeback(p
);
1396 * Now take care of user space mappings.
1397 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1399 * When the raw error page is thp tail page, hpage points to the raw
1400 * page after thp split.
1402 if (!hwpoison_user_mappings(p
, pfn
, flags
, &hpage
)) {
1403 action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_IGNORED
);
1409 * Torn down by someone else?
1411 if (PageLRU(p
) && !PageSwapCache(p
) && p
->mapping
== NULL
) {
1412 action_result(pfn
, MF_MSG_TRUNCATED_LRU
, MF_IGNORED
);
1417 identify_page_state
:
1418 res
= identify_page_state(pfn
, p
, page_flags
);
1423 EXPORT_SYMBOL_GPL(memory_failure
);
1425 #define MEMORY_FAILURE_FIFO_ORDER 4
1426 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1428 struct memory_failure_entry
{
1433 struct memory_failure_cpu
{
1434 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
1435 MEMORY_FAILURE_FIFO_SIZE
);
1437 struct work_struct work
;
1440 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
1443 * memory_failure_queue - Schedule handling memory failure of a page.
1444 * @pfn: Page Number of the corrupted page
1445 * @flags: Flags for memory failure handling
1447 * This function is called by the low level hardware error handler
1448 * when it detects hardware memory corruption of a page. It schedules
1449 * the recovering of error page, including dropping pages, killing
1452 * The function is primarily of use for corruptions that
1453 * happen outside the current execution context (e.g. when
1454 * detected by a background scrubber)
1456 * Can run in IRQ context.
1458 void memory_failure_queue(unsigned long pfn
, int flags
)
1460 struct memory_failure_cpu
*mf_cpu
;
1461 unsigned long proc_flags
;
1462 struct memory_failure_entry entry
= {
1467 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
1468 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1469 if (kfifo_put(&mf_cpu
->fifo
, entry
))
1470 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
1472 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1474 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1475 put_cpu_var(memory_failure_cpu
);
1477 EXPORT_SYMBOL_GPL(memory_failure_queue
);
1479 static void memory_failure_work_func(struct work_struct
*work
)
1481 struct memory_failure_cpu
*mf_cpu
;
1482 struct memory_failure_entry entry
= { 0, };
1483 unsigned long proc_flags
;
1486 mf_cpu
= this_cpu_ptr(&memory_failure_cpu
);
1488 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1489 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
1490 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1493 if (entry
.flags
& MF_SOFT_OFFLINE
)
1494 soft_offline_page(pfn_to_page(entry
.pfn
), entry
.flags
);
1496 memory_failure(entry
.pfn
, entry
.flags
);
1500 static int __init
memory_failure_init(void)
1502 struct memory_failure_cpu
*mf_cpu
;
1505 for_each_possible_cpu(cpu
) {
1506 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1507 spin_lock_init(&mf_cpu
->lock
);
1508 INIT_KFIFO(mf_cpu
->fifo
);
1509 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
1514 core_initcall(memory_failure_init
);
1516 #define unpoison_pr_info(fmt, pfn, rs) \
1518 if (__ratelimit(rs)) \
1519 pr_info(fmt, pfn); \
1523 * unpoison_memory - Unpoison a previously poisoned page
1524 * @pfn: Page number of the to be unpoisoned page
1526 * Software-unpoison a page that has been poisoned by
1527 * memory_failure() earlier.
1529 * This is only done on the software-level, so it only works
1530 * for linux injected failures, not real hardware failures
1532 * Returns 0 for success, otherwise -errno.
1534 int unpoison_memory(unsigned long pfn
)
1539 static DEFINE_RATELIMIT_STATE(unpoison_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1540 DEFAULT_RATELIMIT_BURST
);
1542 if (!pfn_valid(pfn
))
1545 p
= pfn_to_page(pfn
);
1546 page
= compound_head(p
);
1548 if (!PageHWPoison(p
)) {
1549 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1554 if (page_count(page
) > 1) {
1555 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1560 if (page_mapped(page
)) {
1561 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1566 if (page_mapping(page
)) {
1567 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1573 * unpoison_memory() can encounter thp only when the thp is being
1574 * worked by memory_failure() and the page lock is not held yet.
1575 * In such case, we yield to memory_failure() and make unpoison fail.
1577 if (!PageHuge(page
) && PageTransHuge(page
)) {
1578 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1583 if (!get_hwpoison_page(p
)) {
1584 if (TestClearPageHWPoison(p
))
1585 num_poisoned_pages_dec();
1586 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1593 * This test is racy because PG_hwpoison is set outside of page lock.
1594 * That's acceptable because that won't trigger kernel panic. Instead,
1595 * the PG_hwpoison page will be caught and isolated on the entrance to
1596 * the free buddy page pool.
1598 if (TestClearPageHWPoison(page
)) {
1599 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1601 num_poisoned_pages_dec();
1606 put_hwpoison_page(page
);
1607 if (freeit
&& !(pfn
== my_zero_pfn(0) && page_count(p
) == 1))
1608 put_hwpoison_page(page
);
1612 EXPORT_SYMBOL(unpoison_memory
);
1614 static struct page
*new_page(struct page
*p
, unsigned long private)
1616 int nid
= page_to_nid(p
);
1618 return new_page_nodemask(p
, nid
, &node_states
[N_MEMORY
]);
1622 * Safely get reference count of an arbitrary page.
1623 * Returns 0 for a free page, -EIO for a zero refcount page
1624 * that is not free, and 1 for any other page type.
1625 * For 1 the page is returned with increased page count, otherwise not.
1627 static int __get_any_page(struct page
*p
, unsigned long pfn
, int flags
)
1631 if (flags
& MF_COUNT_INCREASED
)
1635 * When the target page is a free hugepage, just remove it
1636 * from free hugepage list.
1638 if (!get_hwpoison_page(p
)) {
1640 pr_info("%s: %#lx free huge page\n", __func__
, pfn
);
1642 } else if (is_free_buddy_page(p
)) {
1643 pr_info("%s: %#lx free buddy page\n", __func__
, pfn
);
1646 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1647 __func__
, pfn
, p
->flags
);
1651 /* Not a free page */
1657 static int get_any_page(struct page
*page
, unsigned long pfn
, int flags
)
1659 int ret
= __get_any_page(page
, pfn
, flags
);
1661 if (ret
== 1 && !PageHuge(page
) &&
1662 !PageLRU(page
) && !__PageMovable(page
)) {
1666 put_hwpoison_page(page
);
1667 shake_page(page
, 1);
1672 ret
= __get_any_page(page
, pfn
, 0);
1673 if (ret
== 1 && !PageLRU(page
)) {
1674 /* Drop page reference which is from __get_any_page() */
1675 put_hwpoison_page(page
);
1676 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1677 pfn
, page
->flags
, &page
->flags
);
1684 static int soft_offline_huge_page(struct page
*page
, int flags
)
1687 unsigned long pfn
= page_to_pfn(page
);
1688 struct page
*hpage
= compound_head(page
);
1689 LIST_HEAD(pagelist
);
1692 * This double-check of PageHWPoison is to avoid the race with
1693 * memory_failure(). See also comment in __soft_offline_page().
1696 if (PageHWPoison(hpage
)) {
1698 put_hwpoison_page(hpage
);
1699 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn
);
1704 ret
= isolate_huge_page(hpage
, &pagelist
);
1706 * get_any_page() and isolate_huge_page() takes a refcount each,
1707 * so need to drop one here.
1709 put_hwpoison_page(hpage
);
1711 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn
);
1715 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1716 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1718 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1719 pfn
, ret
, page
->flags
, &page
->flags
);
1720 if (!list_empty(&pagelist
))
1721 putback_movable_pages(&pagelist
);
1726 * We set PG_hwpoison only when the migration source hugepage
1727 * was successfully dissolved, because otherwise hwpoisoned
1728 * hugepage remains on free hugepage list, then userspace will
1729 * find it as SIGBUS by allocation failure. That's not expected
1730 * in soft-offlining.
1732 ret
= dissolve_free_huge_page(page
);
1734 if (set_hwpoison_free_buddy_page(page
))
1735 num_poisoned_pages_inc();
1741 static int __soft_offline_page(struct page
*page
, int flags
)
1744 unsigned long pfn
= page_to_pfn(page
);
1747 * Check PageHWPoison again inside page lock because PageHWPoison
1748 * is set by memory_failure() outside page lock. Note that
1749 * memory_failure() also double-checks PageHWPoison inside page lock,
1750 * so there's no race between soft_offline_page() and memory_failure().
1753 wait_on_page_writeback(page
);
1754 if (PageHWPoison(page
)) {
1756 put_hwpoison_page(page
);
1757 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1761 * Try to invalidate first. This should work for
1762 * non dirty unmapped page cache pages.
1764 ret
= invalidate_inode_page(page
);
1767 * RED-PEN would be better to keep it isolated here, but we
1768 * would need to fix isolation locking first.
1771 put_hwpoison_page(page
);
1772 pr_info("soft_offline: %#lx: invalidated\n", pfn
);
1773 SetPageHWPoison(page
);
1774 num_poisoned_pages_inc();
1779 * Simple invalidation didn't work.
1780 * Try to migrate to a new page instead. migrate.c
1781 * handles a large number of cases for us.
1784 ret
= isolate_lru_page(page
);
1786 ret
= isolate_movable_page(page
, ISOLATE_UNEVICTABLE
);
1788 * Drop page reference which is came from get_any_page()
1789 * successful isolate_lru_page() already took another one.
1791 put_hwpoison_page(page
);
1793 LIST_HEAD(pagelist
);
1795 * After isolated lru page, the PageLRU will be cleared,
1796 * so use !__PageMovable instead for LRU page's mapping
1797 * cannot have PAGE_MAPPING_MOVABLE.
1799 if (!__PageMovable(page
))
1800 inc_node_page_state(page
, NR_ISOLATED_ANON
+
1801 page_is_file_cache(page
));
1802 list_add(&page
->lru
, &pagelist
);
1803 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1804 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1806 if (!list_empty(&pagelist
))
1807 putback_movable_pages(&pagelist
);
1809 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1810 pfn
, ret
, page
->flags
, &page
->flags
);
1815 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1816 pfn
, ret
, page_count(page
), page
->flags
, &page
->flags
);
1821 static int soft_offline_in_use_page(struct page
*page
, int flags
)
1825 struct page
*hpage
= compound_head(page
);
1827 if (!PageHuge(page
) && PageTransHuge(hpage
)) {
1829 if (!PageAnon(page
) || unlikely(split_huge_page(page
))) {
1831 if (!PageAnon(page
))
1832 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page
));
1834 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page
));
1835 put_hwpoison_page(page
);
1842 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1843 * to free list immediately (not via pcplist) when released after
1844 * successful page migration. Otherwise we can't guarantee that the
1845 * page is really free after put_page() returns, so
1846 * set_hwpoison_free_buddy_page() highly likely fails.
1848 mt
= get_pageblock_migratetype(page
);
1849 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
1851 ret
= soft_offline_huge_page(page
, flags
);
1853 ret
= __soft_offline_page(page
, flags
);
1854 set_pageblock_migratetype(page
, mt
);
1858 static int soft_offline_free_page(struct page
*page
)
1861 struct page
*head
= compound_head(page
);
1864 rc
= dissolve_free_huge_page(page
);
1866 if (set_hwpoison_free_buddy_page(page
))
1867 num_poisoned_pages_inc();
1875 * soft_offline_page - Soft offline a page.
1876 * @page: page to offline
1877 * @flags: flags. Same as memory_failure().
1879 * Returns 0 on success, otherwise negated errno.
1881 * Soft offline a page, by migration or invalidation,
1882 * without killing anything. This is for the case when
1883 * a page is not corrupted yet (so it's still valid to access),
1884 * but has had a number of corrected errors and is better taken
1887 * The actual policy on when to do that is maintained by
1890 * This should never impact any application or cause data loss,
1891 * however it might take some time.
1893 * This is not a 100% solution for all memory, but tries to be
1894 * ``good enough'' for the majority of memory.
1896 int soft_offline_page(struct page
*page
, int flags
)
1899 unsigned long pfn
= page_to_pfn(page
);
1901 if (is_zone_device_page(page
)) {
1902 pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1904 if (flags
& MF_COUNT_INCREASED
)
1909 if (PageHWPoison(page
)) {
1910 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1911 if (flags
& MF_COUNT_INCREASED
)
1912 put_hwpoison_page(page
);
1917 ret
= get_any_page(page
, pfn
, flags
);
1921 ret
= soft_offline_in_use_page(page
, flags
);
1923 ret
= soft_offline_free_page(page
);