4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
49 static void free_swap_count_continuations(struct swap_info_struct
*);
50 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
52 DEFINE_SPINLOCK(swap_lock
);
53 static unsigned int nr_swapfiles
;
54 atomic_long_t nr_swap_pages
;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages
);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages
;
63 static int least_priority
= -1;
65 static const char Bad_file
[] = "Bad swap file entry ";
66 static const char Unused_file
[] = "Unused swap file entry ";
67 static const char Bad_offset
[] = "Bad swap offset entry ";
68 static const char Unused_offset
[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head
);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head
*swap_avail_heads
;
89 static DEFINE_SPINLOCK(swap_avail_lock
);
91 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
93 static DEFINE_MUTEX(swapon_mutex
);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
101 static struct swap_info_struct
*swap_type_to_swap_info(int type
)
103 if (type
>= READ_ONCE(nr_swapfiles
))
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info
[type
]);
110 static inline unsigned char swap_count(unsigned char ent
)
112 return ent
& ~SWAP_HAS_CACHE
; /* may include COUNT_CONTINUED flag */
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
118 * Reclaim the swap entry if there are no more mappings of the
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct
*si
,
127 unsigned long offset
, unsigned long flags
)
129 swp_entry_t entry
= swp_entry(si
->type
, offset
);
133 page
= find_get_page(swap_address_space(entry
), offset
);
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
143 if (trylock_page(page
)) {
144 if ((flags
& TTRS_ANYWAY
) ||
145 ((flags
& TTRS_UNMAPPED
) && !page_mapped(page
)) ||
146 ((flags
& TTRS_FULL
) && mem_cgroup_swap_full(page
)))
147 ret
= try_to_free_swap(page
);
155 * swapon tell device that all the old swap contents can be discarded,
156 * to allow the swap device to optimize its wear-levelling.
158 static int discard_swap(struct swap_info_struct
*si
)
160 struct swap_extent
*se
;
161 sector_t start_block
;
165 /* Do not discard the swap header page! */
166 se
= &si
->first_swap_extent
;
167 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
168 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
170 err
= blkdev_issue_discard(si
->bdev
, start_block
,
171 nr_blocks
, GFP_KERNEL
, 0);
177 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
178 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
179 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
181 err
= blkdev_issue_discard(si
->bdev
, start_block
,
182 nr_blocks
, GFP_KERNEL
, 0);
188 return err
; /* That will often be -EOPNOTSUPP */
192 * swap allocation tell device that a cluster of swap can now be discarded,
193 * to allow the swap device to optimize its wear-levelling.
195 static void discard_swap_cluster(struct swap_info_struct
*si
,
196 pgoff_t start_page
, pgoff_t nr_pages
)
198 struct swap_extent
*se
= si
->curr_swap_extent
;
199 int found_extent
= 0;
202 if (se
->start_page
<= start_page
&&
203 start_page
< se
->start_page
+ se
->nr_pages
) {
204 pgoff_t offset
= start_page
- se
->start_page
;
205 sector_t start_block
= se
->start_block
+ offset
;
206 sector_t nr_blocks
= se
->nr_pages
- offset
;
208 if (nr_blocks
> nr_pages
)
209 nr_blocks
= nr_pages
;
210 start_page
+= nr_blocks
;
211 nr_pages
-= nr_blocks
;
214 si
->curr_swap_extent
= se
;
216 start_block
<<= PAGE_SHIFT
- 9;
217 nr_blocks
<<= PAGE_SHIFT
- 9;
218 if (blkdev_issue_discard(si
->bdev
, start_block
,
219 nr_blocks
, GFP_NOIO
, 0))
223 se
= list_next_entry(se
, list
);
227 #ifdef CONFIG_THP_SWAP
228 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
230 #define swap_entry_size(size) (size)
232 #define SWAPFILE_CLUSTER 256
235 * Define swap_entry_size() as constant to let compiler to optimize
236 * out some code if !CONFIG_THP_SWAP
238 #define swap_entry_size(size) 1
240 #define LATENCY_LIMIT 256
242 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
248 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
253 static inline void cluster_set_count(struct swap_cluster_info
*info
,
259 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
260 unsigned int c
, unsigned int f
)
266 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
271 static inline void cluster_set_next(struct swap_cluster_info
*info
,
277 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
278 unsigned int n
, unsigned int f
)
284 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
286 return info
->flags
& CLUSTER_FLAG_FREE
;
289 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
291 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
294 static inline void cluster_set_null(struct swap_cluster_info
*info
)
296 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
300 static inline bool cluster_is_huge(struct swap_cluster_info
*info
)
302 if (IS_ENABLED(CONFIG_THP_SWAP
))
303 return info
->flags
& CLUSTER_FLAG_HUGE
;
307 static inline void cluster_clear_huge(struct swap_cluster_info
*info
)
309 info
->flags
&= ~CLUSTER_FLAG_HUGE
;
312 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
313 unsigned long offset
)
315 struct swap_cluster_info
*ci
;
317 ci
= si
->cluster_info
;
319 ci
+= offset
/ SWAPFILE_CLUSTER
;
320 spin_lock(&ci
->lock
);
325 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
328 spin_unlock(&ci
->lock
);
332 * Determine the locking method in use for this device. Return
333 * swap_cluster_info if SSD-style cluster-based locking is in place.
335 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
336 struct swap_info_struct
*si
, unsigned long offset
)
338 struct swap_cluster_info
*ci
;
340 /* Try to use fine-grained SSD-style locking if available: */
341 ci
= lock_cluster(si
, offset
);
342 /* Otherwise, fall back to traditional, coarse locking: */
344 spin_lock(&si
->lock
);
349 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
350 struct swap_cluster_info
*ci
)
355 spin_unlock(&si
->lock
);
358 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
360 return cluster_is_null(&list
->head
);
363 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
365 return cluster_next(&list
->head
);
368 static void cluster_list_init(struct swap_cluster_list
*list
)
370 cluster_set_null(&list
->head
);
371 cluster_set_null(&list
->tail
);
374 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
375 struct swap_cluster_info
*ci
,
378 if (cluster_list_empty(list
)) {
379 cluster_set_next_flag(&list
->head
, idx
, 0);
380 cluster_set_next_flag(&list
->tail
, idx
, 0);
382 struct swap_cluster_info
*ci_tail
;
383 unsigned int tail
= cluster_next(&list
->tail
);
386 * Nested cluster lock, but both cluster locks are
387 * only acquired when we held swap_info_struct->lock
390 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
391 cluster_set_next(ci_tail
, idx
);
392 spin_unlock(&ci_tail
->lock
);
393 cluster_set_next_flag(&list
->tail
, idx
, 0);
397 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
398 struct swap_cluster_info
*ci
)
402 idx
= cluster_next(&list
->head
);
403 if (cluster_next(&list
->tail
) == idx
) {
404 cluster_set_null(&list
->head
);
405 cluster_set_null(&list
->tail
);
407 cluster_set_next_flag(&list
->head
,
408 cluster_next(&ci
[idx
]), 0);
413 /* Add a cluster to discard list and schedule it to do discard */
414 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
418 * If scan_swap_map() can't find a free cluster, it will check
419 * si->swap_map directly. To make sure the discarding cluster isn't
420 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
421 * will be cleared after discard
423 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
424 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
426 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
428 schedule_work(&si
->discard_work
);
431 static void __free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
433 struct swap_cluster_info
*ci
= si
->cluster_info
;
435 cluster_set_flag(ci
+ idx
, CLUSTER_FLAG_FREE
);
436 cluster_list_add_tail(&si
->free_clusters
, ci
, idx
);
440 * Doing discard actually. After a cluster discard is finished, the cluster
441 * will be added to free cluster list. caller should hold si->lock.
443 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
445 struct swap_cluster_info
*info
, *ci
;
448 info
= si
->cluster_info
;
450 while (!cluster_list_empty(&si
->discard_clusters
)) {
451 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
452 spin_unlock(&si
->lock
);
454 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
457 spin_lock(&si
->lock
);
458 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
459 __free_cluster(si
, idx
);
460 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
461 0, SWAPFILE_CLUSTER
);
466 static void swap_discard_work(struct work_struct
*work
)
468 struct swap_info_struct
*si
;
470 si
= container_of(work
, struct swap_info_struct
, discard_work
);
472 spin_lock(&si
->lock
);
473 swap_do_scheduled_discard(si
);
474 spin_unlock(&si
->lock
);
477 static void alloc_cluster(struct swap_info_struct
*si
, unsigned long idx
)
479 struct swap_cluster_info
*ci
= si
->cluster_info
;
481 VM_BUG_ON(cluster_list_first(&si
->free_clusters
) != idx
);
482 cluster_list_del_first(&si
->free_clusters
, ci
);
483 cluster_set_count_flag(ci
+ idx
, 0, 0);
486 static void free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
488 struct swap_cluster_info
*ci
= si
->cluster_info
+ idx
;
490 VM_BUG_ON(cluster_count(ci
) != 0);
492 * If the swap is discardable, prepare discard the cluster
493 * instead of free it immediately. The cluster will be freed
496 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
497 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
498 swap_cluster_schedule_discard(si
, idx
);
502 __free_cluster(si
, idx
);
506 * The cluster corresponding to page_nr will be used. The cluster will be
507 * removed from free cluster list and its usage counter will be increased.
509 static void inc_cluster_info_page(struct swap_info_struct
*p
,
510 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
512 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
516 if (cluster_is_free(&cluster_info
[idx
]))
517 alloc_cluster(p
, idx
);
519 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
520 cluster_set_count(&cluster_info
[idx
],
521 cluster_count(&cluster_info
[idx
]) + 1);
525 * The cluster corresponding to page_nr decreases one usage. If the usage
526 * counter becomes 0, which means no page in the cluster is in using, we can
527 * optionally discard the cluster and add it to free cluster list.
529 static void dec_cluster_info_page(struct swap_info_struct
*p
,
530 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
532 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
537 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
538 cluster_set_count(&cluster_info
[idx
],
539 cluster_count(&cluster_info
[idx
]) - 1);
541 if (cluster_count(&cluster_info
[idx
]) == 0)
542 free_cluster(p
, idx
);
546 * It's possible scan_swap_map() uses a free cluster in the middle of free
547 * cluster list. Avoiding such abuse to avoid list corruption.
550 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
551 unsigned long offset
)
553 struct percpu_cluster
*percpu_cluster
;
556 offset
/= SWAPFILE_CLUSTER
;
557 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
558 offset
!= cluster_list_first(&si
->free_clusters
) &&
559 cluster_is_free(&si
->cluster_info
[offset
]);
564 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
565 cluster_set_null(&percpu_cluster
->index
);
570 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
571 * might involve allocating a new cluster for current CPU too.
573 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
574 unsigned long *offset
, unsigned long *scan_base
)
576 struct percpu_cluster
*cluster
;
577 struct swap_cluster_info
*ci
;
579 unsigned long tmp
, max
;
582 cluster
= this_cpu_ptr(si
->percpu_cluster
);
583 if (cluster_is_null(&cluster
->index
)) {
584 if (!cluster_list_empty(&si
->free_clusters
)) {
585 cluster
->index
= si
->free_clusters
.head
;
586 cluster
->next
= cluster_next(&cluster
->index
) *
588 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
590 * we don't have free cluster but have some clusters in
591 * discarding, do discard now and reclaim them
593 swap_do_scheduled_discard(si
);
594 *scan_base
= *offset
= si
->cluster_next
;
603 * Other CPUs can use our cluster if they can't find a free cluster,
604 * check if there is still free entry in the cluster
607 max
= min_t(unsigned long, si
->max
,
608 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
610 cluster_set_null(&cluster
->index
);
613 ci
= lock_cluster(si
, tmp
);
615 if (!si
->swap_map
[tmp
]) {
623 cluster_set_null(&cluster
->index
);
626 cluster
->next
= tmp
+ 1;
632 static void __del_from_avail_list(struct swap_info_struct
*p
)
637 plist_del(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
640 static void del_from_avail_list(struct swap_info_struct
*p
)
642 spin_lock(&swap_avail_lock
);
643 __del_from_avail_list(p
);
644 spin_unlock(&swap_avail_lock
);
647 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
648 unsigned int nr_entries
)
650 unsigned int end
= offset
+ nr_entries
- 1;
652 if (offset
== si
->lowest_bit
)
653 si
->lowest_bit
+= nr_entries
;
654 if (end
== si
->highest_bit
)
655 si
->highest_bit
-= nr_entries
;
656 si
->inuse_pages
+= nr_entries
;
657 if (si
->inuse_pages
== si
->pages
) {
658 si
->lowest_bit
= si
->max
;
660 del_from_avail_list(si
);
664 static void add_to_avail_list(struct swap_info_struct
*p
)
668 spin_lock(&swap_avail_lock
);
670 WARN_ON(!plist_node_empty(&p
->avail_lists
[nid
]));
671 plist_add(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
673 spin_unlock(&swap_avail_lock
);
676 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
677 unsigned int nr_entries
)
679 unsigned long end
= offset
+ nr_entries
- 1;
680 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
682 if (offset
< si
->lowest_bit
)
683 si
->lowest_bit
= offset
;
684 if (end
> si
->highest_bit
) {
685 bool was_full
= !si
->highest_bit
;
687 si
->highest_bit
= end
;
688 if (was_full
&& (si
->flags
& SWP_WRITEOK
))
689 add_to_avail_list(si
);
691 atomic_long_add(nr_entries
, &nr_swap_pages
);
692 si
->inuse_pages
-= nr_entries
;
693 if (si
->flags
& SWP_BLKDEV
)
694 swap_slot_free_notify
=
695 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
697 swap_slot_free_notify
= NULL
;
698 while (offset
<= end
) {
699 frontswap_invalidate_page(si
->type
, offset
);
700 if (swap_slot_free_notify
)
701 swap_slot_free_notify(si
->bdev
, offset
);
706 static int scan_swap_map_slots(struct swap_info_struct
*si
,
707 unsigned char usage
, int nr
,
710 struct swap_cluster_info
*ci
;
711 unsigned long offset
;
712 unsigned long scan_base
;
713 unsigned long last_in_cluster
= 0;
714 int latency_ration
= LATENCY_LIMIT
;
721 * We try to cluster swap pages by allocating them sequentially
722 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
723 * way, however, we resort to first-free allocation, starting
724 * a new cluster. This prevents us from scattering swap pages
725 * all over the entire swap partition, so that we reduce
726 * overall disk seek times between swap pages. -- sct
727 * But we do now try to find an empty cluster. -Andrea
728 * And we let swap pages go all over an SSD partition. Hugh
731 si
->flags
+= SWP_SCANNING
;
732 scan_base
= offset
= si
->cluster_next
;
735 if (si
->cluster_info
) {
736 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
742 if (unlikely(!si
->cluster_nr
--)) {
743 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
744 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
748 spin_unlock(&si
->lock
);
751 * If seek is expensive, start searching for new cluster from
752 * start of partition, to minimize the span of allocated swap.
753 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
754 * case, just handled by scan_swap_map_try_ssd_cluster() above.
756 scan_base
= offset
= si
->lowest_bit
;
757 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
759 /* Locate the first empty (unaligned) cluster */
760 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
761 if (si
->swap_map
[offset
])
762 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
763 else if (offset
== last_in_cluster
) {
764 spin_lock(&si
->lock
);
765 offset
-= SWAPFILE_CLUSTER
- 1;
766 si
->cluster_next
= offset
;
767 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
770 if (unlikely(--latency_ration
< 0)) {
772 latency_ration
= LATENCY_LIMIT
;
777 spin_lock(&si
->lock
);
778 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
782 if (si
->cluster_info
) {
783 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
784 /* take a break if we already got some slots */
787 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
792 if (!(si
->flags
& SWP_WRITEOK
))
794 if (!si
->highest_bit
)
796 if (offset
> si
->highest_bit
)
797 scan_base
= offset
= si
->lowest_bit
;
799 ci
= lock_cluster(si
, offset
);
800 /* reuse swap entry of cache-only swap if not busy. */
801 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
804 spin_unlock(&si
->lock
);
805 swap_was_freed
= __try_to_reclaim_swap(si
, offset
, TTRS_ANYWAY
);
806 spin_lock(&si
->lock
);
807 /* entry was freed successfully, try to use this again */
810 goto scan
; /* check next one */
813 if (si
->swap_map
[offset
]) {
820 si
->swap_map
[offset
] = usage
;
821 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
824 swap_range_alloc(si
, offset
, 1);
825 si
->cluster_next
= offset
+ 1;
826 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
828 /* got enough slots or reach max slots? */
829 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
832 /* search for next available slot */
834 /* time to take a break? */
835 if (unlikely(--latency_ration
< 0)) {
838 spin_unlock(&si
->lock
);
840 spin_lock(&si
->lock
);
841 latency_ration
= LATENCY_LIMIT
;
844 /* try to get more slots in cluster */
845 if (si
->cluster_info
) {
846 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
854 /* non-ssd case, still more slots in cluster? */
855 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
861 si
->flags
-= SWP_SCANNING
;
865 spin_unlock(&si
->lock
);
866 while (++offset
<= si
->highest_bit
) {
867 if (!si
->swap_map
[offset
]) {
868 spin_lock(&si
->lock
);
871 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
872 spin_lock(&si
->lock
);
875 if (unlikely(--latency_ration
< 0)) {
877 latency_ration
= LATENCY_LIMIT
;
880 offset
= si
->lowest_bit
;
881 while (offset
< scan_base
) {
882 if (!si
->swap_map
[offset
]) {
883 spin_lock(&si
->lock
);
886 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
887 spin_lock(&si
->lock
);
890 if (unlikely(--latency_ration
< 0)) {
892 latency_ration
= LATENCY_LIMIT
;
896 spin_lock(&si
->lock
);
899 si
->flags
-= SWP_SCANNING
;
903 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
906 struct swap_cluster_info
*ci
;
907 unsigned long offset
, i
;
911 * Should not even be attempting cluster allocations when huge
912 * page swap is disabled. Warn and fail the allocation.
914 if (!IS_ENABLED(CONFIG_THP_SWAP
)) {
919 if (cluster_list_empty(&si
->free_clusters
))
922 idx
= cluster_list_first(&si
->free_clusters
);
923 offset
= idx
* SWAPFILE_CLUSTER
;
924 ci
= lock_cluster(si
, offset
);
925 alloc_cluster(si
, idx
);
926 cluster_set_count_flag(ci
, SWAPFILE_CLUSTER
, CLUSTER_FLAG_HUGE
);
928 map
= si
->swap_map
+ offset
;
929 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
930 map
[i
] = SWAP_HAS_CACHE
;
932 swap_range_alloc(si
, offset
, SWAPFILE_CLUSTER
);
933 *slot
= swp_entry(si
->type
, offset
);
938 static void swap_free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
940 unsigned long offset
= idx
* SWAPFILE_CLUSTER
;
941 struct swap_cluster_info
*ci
;
943 ci
= lock_cluster(si
, offset
);
944 memset(si
->swap_map
+ offset
, 0, SWAPFILE_CLUSTER
);
945 cluster_set_count_flag(ci
, 0, 0);
946 free_cluster(si
, idx
);
948 swap_range_free(si
, offset
, SWAPFILE_CLUSTER
);
951 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
957 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
960 return swp_offset(entry
);
966 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[], int entry_size
)
968 unsigned long size
= swap_entry_size(entry_size
);
969 struct swap_info_struct
*si
, *next
;
974 /* Only single cluster request supported */
975 WARN_ON_ONCE(n_goal
> 1 && size
== SWAPFILE_CLUSTER
);
977 avail_pgs
= atomic_long_read(&nr_swap_pages
) / size
;
981 if (n_goal
> SWAP_BATCH
)
984 if (n_goal
> avail_pgs
)
987 atomic_long_sub(n_goal
* size
, &nr_swap_pages
);
989 spin_lock(&swap_avail_lock
);
992 node
= numa_node_id();
993 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
994 /* requeue si to after same-priority siblings */
995 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
996 spin_unlock(&swap_avail_lock
);
997 spin_lock(&si
->lock
);
998 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
999 spin_lock(&swap_avail_lock
);
1000 if (plist_node_empty(&si
->avail_lists
[node
])) {
1001 spin_unlock(&si
->lock
);
1004 WARN(!si
->highest_bit
,
1005 "swap_info %d in list but !highest_bit\n",
1007 WARN(!(si
->flags
& SWP_WRITEOK
),
1008 "swap_info %d in list but !SWP_WRITEOK\n",
1010 __del_from_avail_list(si
);
1011 spin_unlock(&si
->lock
);
1014 if (size
== SWAPFILE_CLUSTER
) {
1015 if (!(si
->flags
& SWP_FS
))
1016 n_ret
= swap_alloc_cluster(si
, swp_entries
);
1018 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
1019 n_goal
, swp_entries
);
1020 spin_unlock(&si
->lock
);
1021 if (n_ret
|| size
== SWAPFILE_CLUSTER
)
1023 pr_debug("scan_swap_map of si %d failed to find offset\n",
1026 spin_lock(&swap_avail_lock
);
1029 * if we got here, it's likely that si was almost full before,
1030 * and since scan_swap_map() can drop the si->lock, multiple
1031 * callers probably all tried to get a page from the same si
1032 * and it filled up before we could get one; or, the si filled
1033 * up between us dropping swap_avail_lock and taking si->lock.
1034 * Since we dropped the swap_avail_lock, the swap_avail_head
1035 * list may have been modified; so if next is still in the
1036 * swap_avail_head list then try it, otherwise start over
1037 * if we have not gotten any slots.
1039 if (plist_node_empty(&next
->avail_lists
[node
]))
1043 spin_unlock(&swap_avail_lock
);
1047 atomic_long_add((long)(n_goal
- n_ret
) * size
,
1053 /* The only caller of this function is now suspend routine */
1054 swp_entry_t
get_swap_page_of_type(int type
)
1056 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1062 spin_lock(&si
->lock
);
1063 if (si
->flags
& SWP_WRITEOK
) {
1064 atomic_long_dec(&nr_swap_pages
);
1065 /* This is called for allocating swap entry, not cache */
1066 offset
= scan_swap_map(si
, 1);
1068 spin_unlock(&si
->lock
);
1069 return swp_entry(type
, offset
);
1071 atomic_long_inc(&nr_swap_pages
);
1073 spin_unlock(&si
->lock
);
1075 return (swp_entry_t
) {0};
1078 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
1080 struct swap_info_struct
*p
;
1081 unsigned long offset
, type
;
1085 type
= swp_type(entry
);
1086 p
= swap_type_to_swap_info(type
);
1089 if (!(p
->flags
& SWP_USED
))
1091 offset
= swp_offset(entry
);
1092 if (offset
>= p
->max
)
1097 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
1100 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
1103 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
1108 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1110 struct swap_info_struct
*p
;
1112 p
= __swap_info_get(entry
);
1115 if (!p
->swap_map
[swp_offset(entry
)])
1120 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
1126 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
1128 struct swap_info_struct
*p
;
1130 p
= _swap_info_get(entry
);
1132 spin_lock(&p
->lock
);
1136 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1137 struct swap_info_struct
*q
)
1139 struct swap_info_struct
*p
;
1141 p
= _swap_info_get(entry
);
1145 spin_unlock(&q
->lock
);
1147 spin_lock(&p
->lock
);
1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct
*p
,
1153 unsigned long offset
,
1154 unsigned char usage
)
1156 unsigned char count
;
1157 unsigned char has_cache
;
1159 count
= p
->swap_map
[offset
];
1161 has_cache
= count
& SWAP_HAS_CACHE
;
1162 count
&= ~SWAP_HAS_CACHE
;
1164 if (usage
== SWAP_HAS_CACHE
) {
1165 VM_BUG_ON(!has_cache
);
1167 } else if (count
== SWAP_MAP_SHMEM
) {
1169 * Or we could insist on shmem.c using a special
1170 * swap_shmem_free() and free_shmem_swap_and_cache()...
1173 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1174 if (count
== COUNT_CONTINUED
) {
1175 if (swap_count_continued(p
, offset
, count
))
1176 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1178 count
= SWAP_MAP_MAX
;
1183 usage
= count
| has_cache
;
1184 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
1189 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
1190 swp_entry_t entry
, unsigned char usage
)
1192 struct swap_cluster_info
*ci
;
1193 unsigned long offset
= swp_offset(entry
);
1195 ci
= lock_cluster_or_swap_info(p
, offset
);
1196 usage
= __swap_entry_free_locked(p
, offset
, usage
);
1197 unlock_cluster_or_swap_info(p
, ci
);
1199 free_swap_slot(entry
);
1204 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1206 struct swap_cluster_info
*ci
;
1207 unsigned long offset
= swp_offset(entry
);
1208 unsigned char count
;
1210 ci
= lock_cluster(p
, offset
);
1211 count
= p
->swap_map
[offset
];
1212 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1213 p
->swap_map
[offset
] = 0;
1214 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1217 mem_cgroup_uncharge_swap(entry
, 1);
1218 swap_range_free(p
, offset
, 1);
1222 * Caller has made sure that the swap device corresponding to entry
1223 * is still around or has not been recycled.
1225 void swap_free(swp_entry_t entry
)
1227 struct swap_info_struct
*p
;
1229 p
= _swap_info_get(entry
);
1231 __swap_entry_free(p
, entry
, 1);
1235 * Called after dropping swapcache to decrease refcnt to swap entries.
1237 void put_swap_page(struct page
*page
, swp_entry_t entry
)
1239 unsigned long offset
= swp_offset(entry
);
1240 unsigned long idx
= offset
/ SWAPFILE_CLUSTER
;
1241 struct swap_cluster_info
*ci
;
1242 struct swap_info_struct
*si
;
1244 unsigned int i
, free_entries
= 0;
1246 int size
= swap_entry_size(hpage_nr_pages(page
));
1248 si
= _swap_info_get(entry
);
1252 ci
= lock_cluster_or_swap_info(si
, offset
);
1253 if (size
== SWAPFILE_CLUSTER
) {
1254 VM_BUG_ON(!cluster_is_huge(ci
));
1255 map
= si
->swap_map
+ offset
;
1256 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1258 VM_BUG_ON(!(val
& SWAP_HAS_CACHE
));
1259 if (val
== SWAP_HAS_CACHE
)
1262 cluster_clear_huge(ci
);
1263 if (free_entries
== SWAPFILE_CLUSTER
) {
1264 unlock_cluster_or_swap_info(si
, ci
);
1265 spin_lock(&si
->lock
);
1266 mem_cgroup_uncharge_swap(entry
, SWAPFILE_CLUSTER
);
1267 swap_free_cluster(si
, idx
);
1268 spin_unlock(&si
->lock
);
1272 for (i
= 0; i
< size
; i
++, entry
.val
++) {
1273 if (!__swap_entry_free_locked(si
, offset
+ i
, SWAP_HAS_CACHE
)) {
1274 unlock_cluster_or_swap_info(si
, ci
);
1275 free_swap_slot(entry
);
1278 lock_cluster_or_swap_info(si
, offset
);
1281 unlock_cluster_or_swap_info(si
, ci
);
1284 #ifdef CONFIG_THP_SWAP
1285 int split_swap_cluster(swp_entry_t entry
)
1287 struct swap_info_struct
*si
;
1288 struct swap_cluster_info
*ci
;
1289 unsigned long offset
= swp_offset(entry
);
1291 si
= _swap_info_get(entry
);
1294 ci
= lock_cluster(si
, offset
);
1295 cluster_clear_huge(ci
);
1301 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1303 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1305 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1308 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1310 struct swap_info_struct
*p
, *prev
;
1320 * Sort swap entries by swap device, so each lock is only taken once.
1321 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1322 * so low that it isn't necessary to optimize further.
1324 if (nr_swapfiles
> 1)
1325 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1326 for (i
= 0; i
< n
; ++i
) {
1327 p
= swap_info_get_cont(entries
[i
], prev
);
1329 swap_entry_free(p
, entries
[i
]);
1333 spin_unlock(&p
->lock
);
1337 * How many references to page are currently swapped out?
1338 * This does not give an exact answer when swap count is continued,
1339 * but does include the high COUNT_CONTINUED flag to allow for that.
1341 int page_swapcount(struct page
*page
)
1344 struct swap_info_struct
*p
;
1345 struct swap_cluster_info
*ci
;
1347 unsigned long offset
;
1349 entry
.val
= page_private(page
);
1350 p
= _swap_info_get(entry
);
1352 offset
= swp_offset(entry
);
1353 ci
= lock_cluster_or_swap_info(p
, offset
);
1354 count
= swap_count(p
->swap_map
[offset
]);
1355 unlock_cluster_or_swap_info(p
, ci
);
1360 int __swap_count(struct swap_info_struct
*si
, swp_entry_t entry
)
1362 pgoff_t offset
= swp_offset(entry
);
1364 return swap_count(si
->swap_map
[offset
]);
1367 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1370 pgoff_t offset
= swp_offset(entry
);
1371 struct swap_cluster_info
*ci
;
1373 ci
= lock_cluster_or_swap_info(si
, offset
);
1374 count
= swap_count(si
->swap_map
[offset
]);
1375 unlock_cluster_or_swap_info(si
, ci
);
1380 * How many references to @entry are currently swapped out?
1381 * This does not give an exact answer when swap count is continued,
1382 * but does include the high COUNT_CONTINUED flag to allow for that.
1384 int __swp_swapcount(swp_entry_t entry
)
1387 struct swap_info_struct
*si
;
1389 si
= __swap_info_get(entry
);
1391 count
= swap_swapcount(si
, entry
);
1396 * How many references to @entry are currently swapped out?
1397 * This considers COUNT_CONTINUED so it returns exact answer.
1399 int swp_swapcount(swp_entry_t entry
)
1401 int count
, tmp_count
, n
;
1402 struct swap_info_struct
*p
;
1403 struct swap_cluster_info
*ci
;
1408 p
= _swap_info_get(entry
);
1412 offset
= swp_offset(entry
);
1414 ci
= lock_cluster_or_swap_info(p
, offset
);
1416 count
= swap_count(p
->swap_map
[offset
]);
1417 if (!(count
& COUNT_CONTINUED
))
1420 count
&= ~COUNT_CONTINUED
;
1421 n
= SWAP_MAP_MAX
+ 1;
1423 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1424 offset
&= ~PAGE_MASK
;
1425 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1428 page
= list_next_entry(page
, lru
);
1429 map
= kmap_atomic(page
);
1430 tmp_count
= map
[offset
];
1433 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1434 n
*= (SWAP_CONT_MAX
+ 1);
1435 } while (tmp_count
& COUNT_CONTINUED
);
1437 unlock_cluster_or_swap_info(p
, ci
);
1441 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1444 struct swap_cluster_info
*ci
;
1445 unsigned char *map
= si
->swap_map
;
1446 unsigned long roffset
= swp_offset(entry
);
1447 unsigned long offset
= round_down(roffset
, SWAPFILE_CLUSTER
);
1451 ci
= lock_cluster_or_swap_info(si
, offset
);
1452 if (!ci
|| !cluster_is_huge(ci
)) {
1453 if (swap_count(map
[roffset
]))
1457 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1458 if (swap_count(map
[offset
+ i
])) {
1464 unlock_cluster_or_swap_info(si
, ci
);
1468 static bool page_swapped(struct page
*page
)
1471 struct swap_info_struct
*si
;
1473 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
)))
1474 return page_swapcount(page
) != 0;
1476 page
= compound_head(page
);
1477 entry
.val
= page_private(page
);
1478 si
= _swap_info_get(entry
);
1480 return swap_page_trans_huge_swapped(si
, entry
);
1484 static int page_trans_huge_map_swapcount(struct page
*page
, int *total_mapcount
,
1485 int *total_swapcount
)
1487 int i
, map_swapcount
, _total_mapcount
, _total_swapcount
;
1488 unsigned long offset
= 0;
1489 struct swap_info_struct
*si
;
1490 struct swap_cluster_info
*ci
= NULL
;
1491 unsigned char *map
= NULL
;
1492 int mapcount
, swapcount
= 0;
1494 /* hugetlbfs shouldn't call it */
1495 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1497 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
))) {
1498 mapcount
= page_trans_huge_mapcount(page
, total_mapcount
);
1499 if (PageSwapCache(page
))
1500 swapcount
= page_swapcount(page
);
1501 if (total_swapcount
)
1502 *total_swapcount
= swapcount
;
1503 return mapcount
+ swapcount
;
1506 page
= compound_head(page
);
1508 _total_mapcount
= _total_swapcount
= map_swapcount
= 0;
1509 if (PageSwapCache(page
)) {
1512 entry
.val
= page_private(page
);
1513 si
= _swap_info_get(entry
);
1516 offset
= swp_offset(entry
);
1520 ci
= lock_cluster(si
, offset
);
1521 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1522 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
1523 _total_mapcount
+= mapcount
;
1525 swapcount
= swap_count(map
[offset
+ i
]);
1526 _total_swapcount
+= swapcount
;
1528 map_swapcount
= max(map_swapcount
, mapcount
+ swapcount
);
1531 if (PageDoubleMap(page
)) {
1533 _total_mapcount
-= HPAGE_PMD_NR
;
1535 mapcount
= compound_mapcount(page
);
1536 map_swapcount
+= mapcount
;
1537 _total_mapcount
+= mapcount
;
1539 *total_mapcount
= _total_mapcount
;
1540 if (total_swapcount
)
1541 *total_swapcount
= _total_swapcount
;
1543 return map_swapcount
;
1547 * We can write to an anon page without COW if there are no other references
1548 * to it. And as a side-effect, free up its swap: because the old content
1549 * on disk will never be read, and seeking back there to write new content
1550 * later would only waste time away from clustering.
1552 * NOTE: total_map_swapcount should not be relied upon by the caller if
1553 * reuse_swap_page() returns false, but it may be always overwritten
1554 * (see the other implementation for CONFIG_SWAP=n).
1556 bool reuse_swap_page(struct page
*page
, int *total_map_swapcount
)
1558 int count
, total_mapcount
, total_swapcount
;
1560 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1561 if (unlikely(PageKsm(page
)))
1563 count
= page_trans_huge_map_swapcount(page
, &total_mapcount
,
1565 if (total_map_swapcount
)
1566 *total_map_swapcount
= total_mapcount
+ total_swapcount
;
1567 if (count
== 1 && PageSwapCache(page
) &&
1568 (likely(!PageTransCompound(page
)) ||
1569 /* The remaining swap count will be freed soon */
1570 total_swapcount
== page_swapcount(page
))) {
1571 if (!PageWriteback(page
)) {
1572 page
= compound_head(page
);
1573 delete_from_swap_cache(page
);
1577 struct swap_info_struct
*p
;
1579 entry
.val
= page_private(page
);
1580 p
= swap_info_get(entry
);
1581 if (p
->flags
& SWP_STABLE_WRITES
) {
1582 spin_unlock(&p
->lock
);
1585 spin_unlock(&p
->lock
);
1593 * If swap is getting full, or if there are no more mappings of this page,
1594 * then try_to_free_swap is called to free its swap space.
1596 int try_to_free_swap(struct page
*page
)
1598 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1600 if (!PageSwapCache(page
))
1602 if (PageWriteback(page
))
1604 if (page_swapped(page
))
1608 * Once hibernation has begun to create its image of memory,
1609 * there's a danger that one of the calls to try_to_free_swap()
1610 * - most probably a call from __try_to_reclaim_swap() while
1611 * hibernation is allocating its own swap pages for the image,
1612 * but conceivably even a call from memory reclaim - will free
1613 * the swap from a page which has already been recorded in the
1614 * image as a clean swapcache page, and then reuse its swap for
1615 * another page of the image. On waking from hibernation, the
1616 * original page might be freed under memory pressure, then
1617 * later read back in from swap, now with the wrong data.
1619 * Hibernation suspends storage while it is writing the image
1620 * to disk so check that here.
1622 if (pm_suspended_storage())
1625 page
= compound_head(page
);
1626 delete_from_swap_cache(page
);
1632 * Free the swap entry like above, but also try to
1633 * free the page cache entry if it is the last user.
1635 int free_swap_and_cache(swp_entry_t entry
)
1637 struct swap_info_struct
*p
;
1638 unsigned char count
;
1640 if (non_swap_entry(entry
))
1643 p
= _swap_info_get(entry
);
1645 count
= __swap_entry_free(p
, entry
, 1);
1646 if (count
== SWAP_HAS_CACHE
&&
1647 !swap_page_trans_huge_swapped(p
, entry
))
1648 __try_to_reclaim_swap(p
, swp_offset(entry
),
1649 TTRS_UNMAPPED
| TTRS_FULL
);
1654 #ifdef CONFIG_HIBERNATION
1656 * Find the swap type that corresponds to given device (if any).
1658 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659 * from 0, in which the swap header is expected to be located.
1661 * This is needed for the suspend to disk (aka swsusp).
1663 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1665 struct block_device
*bdev
= NULL
;
1669 bdev
= bdget(device
);
1671 spin_lock(&swap_lock
);
1672 for (type
= 0; type
< nr_swapfiles
; type
++) {
1673 struct swap_info_struct
*sis
= swap_info
[type
];
1675 if (!(sis
->flags
& SWP_WRITEOK
))
1680 *bdev_p
= bdgrab(sis
->bdev
);
1682 spin_unlock(&swap_lock
);
1685 if (bdev
== sis
->bdev
) {
1686 struct swap_extent
*se
= &sis
->first_swap_extent
;
1688 if (se
->start_block
== offset
) {
1690 *bdev_p
= bdgrab(sis
->bdev
);
1692 spin_unlock(&swap_lock
);
1698 spin_unlock(&swap_lock
);
1706 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1707 * corresponding to given index in swap_info (swap type).
1709 sector_t
swapdev_block(int type
, pgoff_t offset
)
1711 struct block_device
*bdev
;
1712 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1714 if (!si
|| !(si
->flags
& SWP_WRITEOK
))
1716 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1720 * Return either the total number of swap pages of given type, or the number
1721 * of free pages of that type (depending on @free)
1723 * This is needed for software suspend
1725 unsigned int count_swap_pages(int type
, int free
)
1729 spin_lock(&swap_lock
);
1730 if ((unsigned int)type
< nr_swapfiles
) {
1731 struct swap_info_struct
*sis
= swap_info
[type
];
1733 spin_lock(&sis
->lock
);
1734 if (sis
->flags
& SWP_WRITEOK
) {
1737 n
-= sis
->inuse_pages
;
1739 spin_unlock(&sis
->lock
);
1741 spin_unlock(&swap_lock
);
1744 #endif /* CONFIG_HIBERNATION */
1746 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1748 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1752 * No need to decide whether this PTE shares the swap entry with others,
1753 * just let do_wp_page work it out if a write is requested later - to
1754 * force COW, vm_page_prot omits write permission from any private vma.
1756 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1757 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1759 struct page
*swapcache
;
1760 struct mem_cgroup
*memcg
;
1766 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1767 if (unlikely(!page
))
1770 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1776 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1777 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1778 mem_cgroup_cancel_charge(page
, memcg
, false);
1783 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1784 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1786 set_pte_at(vma
->vm_mm
, addr
, pte
,
1787 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1788 if (page
== swapcache
) {
1789 page_add_anon_rmap(page
, vma
, addr
, false);
1790 mem_cgroup_commit_charge(page
, memcg
, true, false);
1791 } else { /* ksm created a completely new copy */
1792 page_add_new_anon_rmap(page
, vma
, addr
, false);
1793 mem_cgroup_commit_charge(page
, memcg
, false, false);
1794 lru_cache_add_active_or_unevictable(page
, vma
);
1798 * Move the page to the active list so it is not
1799 * immediately swapped out again after swapon.
1801 activate_page(page
);
1803 pte_unmap_unlock(pte
, ptl
);
1805 if (page
!= swapcache
) {
1812 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1813 unsigned long addr
, unsigned long end
,
1814 unsigned int type
, bool frontswap
,
1815 unsigned long *fs_pages_to_unuse
)
1820 struct swap_info_struct
*si
;
1821 unsigned long offset
;
1823 volatile unsigned char *swap_map
;
1825 si
= swap_info
[type
];
1826 pte
= pte_offset_map(pmd
, addr
);
1828 struct vm_fault vmf
;
1830 if (!is_swap_pte(*pte
))
1833 entry
= pte_to_swp_entry(*pte
);
1834 if (swp_type(entry
) != type
)
1837 offset
= swp_offset(entry
);
1838 if (frontswap
&& !frontswap_test(si
, offset
))
1842 swap_map
= &si
->swap_map
[offset
];
1846 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
, &vmf
);
1848 if (*swap_map
== 0 || *swap_map
== SWAP_MAP_BAD
)
1854 wait_on_page_writeback(page
);
1855 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1862 try_to_free_swap(page
);
1866 if (*fs_pages_to_unuse
&& !--(*fs_pages_to_unuse
)) {
1867 ret
= FRONTSWAP_PAGES_UNUSED
;
1871 pte
= pte_offset_map(pmd
, addr
);
1872 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1880 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1881 unsigned long addr
, unsigned long end
,
1882 unsigned int type
, bool frontswap
,
1883 unsigned long *fs_pages_to_unuse
)
1889 pmd
= pmd_offset(pud
, addr
);
1892 next
= pmd_addr_end(addr
, end
);
1893 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1895 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, type
,
1896 frontswap
, fs_pages_to_unuse
);
1899 } while (pmd
++, addr
= next
, addr
!= end
);
1903 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1904 unsigned long addr
, unsigned long end
,
1905 unsigned int type
, bool frontswap
,
1906 unsigned long *fs_pages_to_unuse
)
1912 pud
= pud_offset(p4d
, addr
);
1914 next
= pud_addr_end(addr
, end
);
1915 if (pud_none_or_clear_bad(pud
))
1917 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, type
,
1918 frontswap
, fs_pages_to_unuse
);
1921 } while (pud
++, addr
= next
, addr
!= end
);
1925 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1926 unsigned long addr
, unsigned long end
,
1927 unsigned int type
, bool frontswap
,
1928 unsigned long *fs_pages_to_unuse
)
1934 p4d
= p4d_offset(pgd
, addr
);
1936 next
= p4d_addr_end(addr
, end
);
1937 if (p4d_none_or_clear_bad(p4d
))
1939 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, type
,
1940 frontswap
, fs_pages_to_unuse
);
1943 } while (p4d
++, addr
= next
, addr
!= end
);
1947 static int unuse_vma(struct vm_area_struct
*vma
, unsigned int type
,
1948 bool frontswap
, unsigned long *fs_pages_to_unuse
)
1951 unsigned long addr
, end
, next
;
1954 addr
= vma
->vm_start
;
1957 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1959 next
= pgd_addr_end(addr
, end
);
1960 if (pgd_none_or_clear_bad(pgd
))
1962 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, type
,
1963 frontswap
, fs_pages_to_unuse
);
1966 } while (pgd
++, addr
= next
, addr
!= end
);
1970 static int unuse_mm(struct mm_struct
*mm
, unsigned int type
,
1971 bool frontswap
, unsigned long *fs_pages_to_unuse
)
1973 struct vm_area_struct
*vma
;
1976 down_read(&mm
->mmap_sem
);
1977 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1978 if (vma
->anon_vma
) {
1979 ret
= unuse_vma(vma
, type
, frontswap
,
1986 up_read(&mm
->mmap_sem
);
1991 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1992 * from current position to next entry still in use. Return 0
1993 * if there are no inuse entries after prev till end of the map.
1995 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1996 unsigned int prev
, bool frontswap
)
1999 unsigned char count
;
2002 * No need for swap_lock here: we're just looking
2003 * for whether an entry is in use, not modifying it; false
2004 * hits are okay, and sys_swapoff() has already prevented new
2005 * allocations from this area (while holding swap_lock).
2007 for (i
= prev
+ 1; i
< si
->max
; i
++) {
2008 count
= READ_ONCE(si
->swap_map
[i
]);
2009 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
2010 if (!frontswap
|| frontswap_test(si
, i
))
2012 if ((i
% LATENCY_LIMIT
) == 0)
2023 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2024 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2026 int try_to_unuse(unsigned int type
, bool frontswap
,
2027 unsigned long pages_to_unuse
)
2029 struct mm_struct
*prev_mm
;
2030 struct mm_struct
*mm
;
2031 struct list_head
*p
;
2033 struct swap_info_struct
*si
= swap_info
[type
];
2038 if (!si
->inuse_pages
)
2045 retval
= shmem_unuse(type
, frontswap
, &pages_to_unuse
);
2052 spin_lock(&mmlist_lock
);
2053 p
= &init_mm
.mmlist
;
2054 while (si
->inuse_pages
&&
2055 !signal_pending(current
) &&
2056 (p
= p
->next
) != &init_mm
.mmlist
) {
2058 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2059 if (!mmget_not_zero(mm
))
2061 spin_unlock(&mmlist_lock
);
2064 retval
= unuse_mm(mm
, type
, frontswap
, &pages_to_unuse
);
2072 * Make sure that we aren't completely killing
2073 * interactive performance.
2076 spin_lock(&mmlist_lock
);
2078 spin_unlock(&mmlist_lock
);
2083 while (si
->inuse_pages
&&
2084 !signal_pending(current
) &&
2085 (i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
2087 entry
= swp_entry(type
, i
);
2088 page
= find_get_page(swap_address_space(entry
), i
);
2093 * It is conceivable that a racing task removed this page from
2094 * swap cache just before we acquired the page lock. The page
2095 * might even be back in swap cache on another swap area. But
2096 * that is okay, try_to_free_swap() only removes stale pages.
2099 wait_on_page_writeback(page
);
2100 try_to_free_swap(page
);
2105 * For frontswap, we just need to unuse pages_to_unuse, if
2106 * it was specified. Need not check frontswap again here as
2107 * we already zeroed out pages_to_unuse if not frontswap.
2109 if (pages_to_unuse
&& --pages_to_unuse
== 0)
2114 * Lets check again to see if there are still swap entries in the map.
2115 * If yes, we would need to do retry the unuse logic again.
2116 * Under global memory pressure, swap entries can be reinserted back
2117 * into process space after the mmlist loop above passes over them.
2119 * Limit the number of retries? No: when mmget_not_zero() above fails,
2120 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2121 * at its own independent pace; and even shmem_writepage() could have
2122 * been preempted after get_swap_page(), temporarily hiding that swap.
2123 * It's easy and robust (though cpu-intensive) just to keep retrying.
2125 if (si
->inuse_pages
) {
2126 if (!signal_pending(current
))
2131 return (retval
== FRONTSWAP_PAGES_UNUSED
) ? 0 : retval
;
2135 * After a successful try_to_unuse, if no swap is now in use, we know
2136 * we can empty the mmlist. swap_lock must be held on entry and exit.
2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138 * added to the mmlist just after page_duplicate - before would be racy.
2140 static void drain_mmlist(void)
2142 struct list_head
*p
, *next
;
2145 for (type
= 0; type
< nr_swapfiles
; type
++)
2146 if (swap_info
[type
]->inuse_pages
)
2148 spin_lock(&mmlist_lock
);
2149 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2151 spin_unlock(&mmlist_lock
);
2155 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2156 * corresponds to page offset for the specified swap entry.
2157 * Note that the type of this function is sector_t, but it returns page offset
2158 * into the bdev, not sector offset.
2160 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
2162 struct swap_info_struct
*sis
;
2163 struct swap_extent
*start_se
;
2164 struct swap_extent
*se
;
2167 sis
= swp_swap_info(entry
);
2170 offset
= swp_offset(entry
);
2171 start_se
= sis
->curr_swap_extent
;
2175 if (se
->start_page
<= offset
&&
2176 offset
< (se
->start_page
+ se
->nr_pages
)) {
2177 return se
->start_block
+ (offset
- se
->start_page
);
2179 se
= list_next_entry(se
, list
);
2180 sis
->curr_swap_extent
= se
;
2181 BUG_ON(se
== start_se
); /* It *must* be present */
2186 * Returns the page offset into bdev for the specified page's swap entry.
2188 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
2191 entry
.val
= page_private(page
);
2192 return map_swap_entry(entry
, bdev
);
2196 * Free all of a swapdev's extent information
2198 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2200 while (!list_empty(&sis
->first_swap_extent
.list
)) {
2201 struct swap_extent
*se
;
2203 se
= list_first_entry(&sis
->first_swap_extent
.list
,
2204 struct swap_extent
, list
);
2205 list_del(&se
->list
);
2209 if (sis
->flags
& SWP_ACTIVATED
) {
2210 struct file
*swap_file
= sis
->swap_file
;
2211 struct address_space
*mapping
= swap_file
->f_mapping
;
2213 sis
->flags
&= ~SWP_ACTIVATED
;
2214 if (mapping
->a_ops
->swap_deactivate
)
2215 mapping
->a_ops
->swap_deactivate(swap_file
);
2220 * Add a block range (and the corresponding page range) into this swapdev's
2221 * extent list. The extent list is kept sorted in page order.
2223 * This function rather assumes that it is called in ascending page order.
2226 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2227 unsigned long nr_pages
, sector_t start_block
)
2229 struct swap_extent
*se
;
2230 struct swap_extent
*new_se
;
2231 struct list_head
*lh
;
2233 if (start_page
== 0) {
2234 se
= &sis
->first_swap_extent
;
2235 sis
->curr_swap_extent
= se
;
2237 se
->nr_pages
= nr_pages
;
2238 se
->start_block
= start_block
;
2241 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2242 se
= list_entry(lh
, struct swap_extent
, list
);
2243 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2244 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2246 se
->nr_pages
+= nr_pages
;
2252 * No merge. Insert a new extent, preserving ordering.
2254 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2257 new_se
->start_page
= start_page
;
2258 new_se
->nr_pages
= nr_pages
;
2259 new_se
->start_block
= start_block
;
2261 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2264 EXPORT_SYMBOL_GPL(add_swap_extent
);
2267 * A `swap extent' is a simple thing which maps a contiguous range of pages
2268 * onto a contiguous range of disk blocks. An ordered list of swap extents
2269 * is built at swapon time and is then used at swap_writepage/swap_readpage
2270 * time for locating where on disk a page belongs.
2272 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2273 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2274 * swap files identically.
2276 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2277 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2278 * swapfiles are handled *identically* after swapon time.
2280 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2281 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2282 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2283 * requirements, they are simply tossed out - we will never use those blocks
2286 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2287 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2288 * which will scribble on the fs.
2290 * The amount of disk space which a single swap extent represents varies.
2291 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2292 * extents in the list. To avoid much list walking, we cache the previous
2293 * search location in `curr_swap_extent', and start new searches from there.
2294 * This is extremely effective. The average number of iterations in
2295 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2297 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2299 struct file
*swap_file
= sis
->swap_file
;
2300 struct address_space
*mapping
= swap_file
->f_mapping
;
2301 struct inode
*inode
= mapping
->host
;
2304 if (S_ISBLK(inode
->i_mode
)) {
2305 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2310 if (mapping
->a_ops
->swap_activate
) {
2311 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2313 sis
->flags
|= SWP_ACTIVATED
;
2315 sis
->flags
|= SWP_FS
;
2316 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2322 return generic_swapfile_activate(sis
, swap_file
, span
);
2325 static int swap_node(struct swap_info_struct
*p
)
2327 struct block_device
*bdev
;
2332 bdev
= p
->swap_file
->f_inode
->i_sb
->s_bdev
;
2334 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2337 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2338 unsigned char *swap_map
,
2339 struct swap_cluster_info
*cluster_info
)
2346 p
->prio
= --least_priority
;
2348 * the plist prio is negated because plist ordering is
2349 * low-to-high, while swap ordering is high-to-low
2351 p
->list
.prio
= -p
->prio
;
2354 p
->avail_lists
[i
].prio
= -p
->prio
;
2356 if (swap_node(p
) == i
)
2357 p
->avail_lists
[i
].prio
= 1;
2359 p
->avail_lists
[i
].prio
= -p
->prio
;
2362 p
->swap_map
= swap_map
;
2363 p
->cluster_info
= cluster_info
;
2364 p
->flags
|= SWP_WRITEOK
;
2365 atomic_long_add(p
->pages
, &nr_swap_pages
);
2366 total_swap_pages
+= p
->pages
;
2368 assert_spin_locked(&swap_lock
);
2370 * both lists are plists, and thus priority ordered.
2371 * swap_active_head needs to be priority ordered for swapoff(),
2372 * which on removal of any swap_info_struct with an auto-assigned
2373 * (i.e. negative) priority increments the auto-assigned priority
2374 * of any lower-priority swap_info_structs.
2375 * swap_avail_head needs to be priority ordered for get_swap_page(),
2376 * which allocates swap pages from the highest available priority
2379 plist_add(&p
->list
, &swap_active_head
);
2380 add_to_avail_list(p
);
2383 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2384 unsigned char *swap_map
,
2385 struct swap_cluster_info
*cluster_info
,
2386 unsigned long *frontswap_map
)
2388 frontswap_init(p
->type
, frontswap_map
);
2389 spin_lock(&swap_lock
);
2390 spin_lock(&p
->lock
);
2391 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2392 spin_unlock(&p
->lock
);
2393 spin_unlock(&swap_lock
);
2396 static void reinsert_swap_info(struct swap_info_struct
*p
)
2398 spin_lock(&swap_lock
);
2399 spin_lock(&p
->lock
);
2400 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2401 spin_unlock(&p
->lock
);
2402 spin_unlock(&swap_lock
);
2405 bool has_usable_swap(void)
2409 spin_lock(&swap_lock
);
2410 if (plist_head_empty(&swap_active_head
))
2412 spin_unlock(&swap_lock
);
2416 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2418 struct swap_info_struct
*p
= NULL
;
2419 unsigned char *swap_map
;
2420 struct swap_cluster_info
*cluster_info
;
2421 unsigned long *frontswap_map
;
2422 struct file
*swap_file
, *victim
;
2423 struct address_space
*mapping
;
2424 struct inode
*inode
;
2425 struct filename
*pathname
;
2427 unsigned int old_block_size
;
2429 if (!capable(CAP_SYS_ADMIN
))
2432 BUG_ON(!current
->mm
);
2434 pathname
= getname(specialfile
);
2435 if (IS_ERR(pathname
))
2436 return PTR_ERR(pathname
);
2438 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2439 err
= PTR_ERR(victim
);
2443 mapping
= victim
->f_mapping
;
2444 spin_lock(&swap_lock
);
2445 plist_for_each_entry(p
, &swap_active_head
, list
) {
2446 if (p
->flags
& SWP_WRITEOK
) {
2447 if (p
->swap_file
->f_mapping
== mapping
) {
2455 spin_unlock(&swap_lock
);
2458 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2459 vm_unacct_memory(p
->pages
);
2462 spin_unlock(&swap_lock
);
2465 del_from_avail_list(p
);
2466 spin_lock(&p
->lock
);
2468 struct swap_info_struct
*si
= p
;
2471 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2474 for_each_node(nid
) {
2475 if (si
->avail_lists
[nid
].prio
!= 1)
2476 si
->avail_lists
[nid
].prio
--;
2481 plist_del(&p
->list
, &swap_active_head
);
2482 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2483 total_swap_pages
-= p
->pages
;
2484 p
->flags
&= ~SWP_WRITEOK
;
2485 spin_unlock(&p
->lock
);
2486 spin_unlock(&swap_lock
);
2488 disable_swap_slots_cache_lock();
2490 set_current_oom_origin();
2491 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2492 clear_current_oom_origin();
2495 /* re-insert swap space back into swap_list */
2496 reinsert_swap_info(p
);
2497 reenable_swap_slots_cache_unlock();
2501 reenable_swap_slots_cache_unlock();
2503 flush_work(&p
->discard_work
);
2505 destroy_swap_extents(p
);
2506 if (p
->flags
& SWP_CONTINUED
)
2507 free_swap_count_continuations(p
);
2509 if (!p
->bdev
|| !blk_queue_nonrot(bdev_get_queue(p
->bdev
)))
2510 atomic_dec(&nr_rotate_swap
);
2512 mutex_lock(&swapon_mutex
);
2513 spin_lock(&swap_lock
);
2514 spin_lock(&p
->lock
);
2517 /* wait for anyone still in scan_swap_map */
2518 p
->highest_bit
= 0; /* cuts scans short */
2519 while (p
->flags
>= SWP_SCANNING
) {
2520 spin_unlock(&p
->lock
);
2521 spin_unlock(&swap_lock
);
2522 schedule_timeout_uninterruptible(1);
2523 spin_lock(&swap_lock
);
2524 spin_lock(&p
->lock
);
2527 swap_file
= p
->swap_file
;
2528 old_block_size
= p
->old_block_size
;
2529 p
->swap_file
= NULL
;
2531 swap_map
= p
->swap_map
;
2533 cluster_info
= p
->cluster_info
;
2534 p
->cluster_info
= NULL
;
2535 frontswap_map
= frontswap_map_get(p
);
2536 spin_unlock(&p
->lock
);
2537 spin_unlock(&swap_lock
);
2538 frontswap_invalidate_area(p
->type
);
2539 frontswap_map_set(p
, NULL
);
2540 mutex_unlock(&swapon_mutex
);
2541 free_percpu(p
->percpu_cluster
);
2542 p
->percpu_cluster
= NULL
;
2544 kvfree(cluster_info
);
2545 kvfree(frontswap_map
);
2546 /* Destroy swap account information */
2547 swap_cgroup_swapoff(p
->type
);
2548 exit_swap_address_space(p
->type
);
2550 inode
= mapping
->host
;
2551 if (S_ISBLK(inode
->i_mode
)) {
2552 struct block_device
*bdev
= I_BDEV(inode
);
2553 set_blocksize(bdev
, old_block_size
);
2554 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2557 inode
->i_flags
&= ~S_SWAPFILE
;
2558 inode_unlock(inode
);
2560 filp_close(swap_file
, NULL
);
2563 * Clear the SWP_USED flag after all resources are freed so that swapon
2564 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2565 * not hold p->lock after we cleared its SWP_WRITEOK.
2567 spin_lock(&swap_lock
);
2569 spin_unlock(&swap_lock
);
2572 atomic_inc(&proc_poll_event
);
2573 wake_up_interruptible(&proc_poll_wait
);
2576 filp_close(victim
, NULL
);
2582 #ifdef CONFIG_PROC_FS
2583 static __poll_t
swaps_poll(struct file
*file
, poll_table
*wait
)
2585 struct seq_file
*seq
= file
->private_data
;
2587 poll_wait(file
, &proc_poll_wait
, wait
);
2589 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2590 seq
->poll_event
= atomic_read(&proc_poll_event
);
2591 return EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLPRI
;
2594 return EPOLLIN
| EPOLLRDNORM
;
2598 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2600 struct swap_info_struct
*si
;
2604 mutex_lock(&swapon_mutex
);
2607 return SEQ_START_TOKEN
;
2609 for (type
= 0; (si
= swap_type_to_swap_info(type
)); type
++) {
2610 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2619 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2621 struct swap_info_struct
*si
= v
;
2624 if (v
== SEQ_START_TOKEN
)
2627 type
= si
->type
+ 1;
2629 for (; (si
= swap_type_to_swap_info(type
)); type
++) {
2630 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2639 static void swap_stop(struct seq_file
*swap
, void *v
)
2641 mutex_unlock(&swapon_mutex
);
2644 static int swap_show(struct seq_file
*swap
, void *v
)
2646 struct swap_info_struct
*si
= v
;
2650 if (si
== SEQ_START_TOKEN
) {
2651 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2655 file
= si
->swap_file
;
2656 len
= seq_file_path(swap
, file
, " \t\n\\");
2657 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2658 len
< 40 ? 40 - len
: 1, " ",
2659 S_ISBLK(file_inode(file
)->i_mode
) ?
2660 "partition" : "file\t",
2661 si
->pages
<< (PAGE_SHIFT
- 10),
2662 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2667 static const struct seq_operations swaps_op
= {
2668 .start
= swap_start
,
2674 static int swaps_open(struct inode
*inode
, struct file
*file
)
2676 struct seq_file
*seq
;
2679 ret
= seq_open(file
, &swaps_op
);
2683 seq
= file
->private_data
;
2684 seq
->poll_event
= atomic_read(&proc_poll_event
);
2688 static const struct file_operations proc_swaps_operations
= {
2691 .llseek
= seq_lseek
,
2692 .release
= seq_release
,
2696 static int __init
procswaps_init(void)
2698 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2701 __initcall(procswaps_init
);
2702 #endif /* CONFIG_PROC_FS */
2704 #ifdef MAX_SWAPFILES_CHECK
2705 static int __init
max_swapfiles_check(void)
2707 MAX_SWAPFILES_CHECK();
2710 late_initcall(max_swapfiles_check
);
2713 static struct swap_info_struct
*alloc_swap_info(void)
2715 struct swap_info_struct
*p
;
2719 p
= kvzalloc(struct_size(p
, avail_lists
, nr_node_ids
), GFP_KERNEL
);
2721 return ERR_PTR(-ENOMEM
);
2723 spin_lock(&swap_lock
);
2724 for (type
= 0; type
< nr_swapfiles
; type
++) {
2725 if (!(swap_info
[type
]->flags
& SWP_USED
))
2728 if (type
>= MAX_SWAPFILES
) {
2729 spin_unlock(&swap_lock
);
2731 return ERR_PTR(-EPERM
);
2733 if (type
>= nr_swapfiles
) {
2735 WRITE_ONCE(swap_info
[type
], p
);
2737 * Write swap_info[type] before nr_swapfiles, in case a
2738 * racing procfs swap_start() or swap_next() is reading them.
2739 * (We never shrink nr_swapfiles, we never free this entry.)
2742 WRITE_ONCE(nr_swapfiles
, nr_swapfiles
+ 1);
2745 p
= swap_info
[type
];
2747 * Do not memset this entry: a racing procfs swap_next()
2748 * would be relying on p->type to remain valid.
2751 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2752 plist_node_init(&p
->list
, 0);
2754 plist_node_init(&p
->avail_lists
[i
], 0);
2755 p
->flags
= SWP_USED
;
2756 spin_unlock(&swap_lock
);
2757 spin_lock_init(&p
->lock
);
2758 spin_lock_init(&p
->cont_lock
);
2763 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2767 if (S_ISBLK(inode
->i_mode
)) {
2768 p
->bdev
= bdgrab(I_BDEV(inode
));
2769 error
= blkdev_get(p
->bdev
,
2770 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2775 p
->old_block_size
= block_size(p
->bdev
);
2776 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2779 p
->flags
|= SWP_BLKDEV
;
2780 } else if (S_ISREG(inode
->i_mode
)) {
2781 p
->bdev
= inode
->i_sb
->s_bdev
;
2783 if (IS_SWAPFILE(inode
))
2793 * Find out how many pages are allowed for a single swap device. There
2794 * are two limiting factors:
2795 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2796 * 2) the number of bits in the swap pte, as defined by the different
2799 * In order to find the largest possible bit mask, a swap entry with
2800 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2801 * decoded to a swp_entry_t again, and finally the swap offset is
2804 * This will mask all the bits from the initial ~0UL mask that can't
2805 * be encoded in either the swp_entry_t or the architecture definition
2808 unsigned long generic_max_swapfile_size(void)
2810 return swp_offset(pte_to_swp_entry(
2811 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2814 /* Can be overridden by an architecture for additional checks. */
2815 __weak
unsigned long max_swapfile_size(void)
2817 return generic_max_swapfile_size();
2820 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2821 union swap_header
*swap_header
,
2822 struct inode
*inode
)
2825 unsigned long maxpages
;
2826 unsigned long swapfilepages
;
2827 unsigned long last_page
;
2829 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2830 pr_err("Unable to find swap-space signature\n");
2834 /* swap partition endianess hack... */
2835 if (swab32(swap_header
->info
.version
) == 1) {
2836 swab32s(&swap_header
->info
.version
);
2837 swab32s(&swap_header
->info
.last_page
);
2838 swab32s(&swap_header
->info
.nr_badpages
);
2839 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2841 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2842 swab32s(&swap_header
->info
.badpages
[i
]);
2844 /* Check the swap header's sub-version */
2845 if (swap_header
->info
.version
!= 1) {
2846 pr_warn("Unable to handle swap header version %d\n",
2847 swap_header
->info
.version
);
2852 p
->cluster_next
= 1;
2855 maxpages
= max_swapfile_size();
2856 last_page
= swap_header
->info
.last_page
;
2858 pr_warn("Empty swap-file\n");
2861 if (last_page
> maxpages
) {
2862 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2863 maxpages
<< (PAGE_SHIFT
- 10),
2864 last_page
<< (PAGE_SHIFT
- 10));
2866 if (maxpages
> last_page
) {
2867 maxpages
= last_page
+ 1;
2868 /* p->max is an unsigned int: don't overflow it */
2869 if ((unsigned int)maxpages
== 0)
2870 maxpages
= UINT_MAX
;
2872 p
->highest_bit
= maxpages
- 1;
2876 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2877 if (swapfilepages
&& maxpages
> swapfilepages
) {
2878 pr_warn("Swap area shorter than signature indicates\n");
2881 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2883 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2889 #define SWAP_CLUSTER_INFO_COLS \
2890 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2891 #define SWAP_CLUSTER_SPACE_COLS \
2892 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2893 #define SWAP_CLUSTER_COLS \
2894 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2897 union swap_header
*swap_header
,
2898 unsigned char *swap_map
,
2899 struct swap_cluster_info
*cluster_info
,
2900 unsigned long maxpages
,
2904 unsigned int nr_good_pages
;
2906 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2907 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
2908 unsigned long i
, idx
;
2910 nr_good_pages
= maxpages
- 1; /* omit header page */
2912 cluster_list_init(&p
->free_clusters
);
2913 cluster_list_init(&p
->discard_clusters
);
2915 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2916 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2917 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2919 if (page_nr
< maxpages
) {
2920 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2923 * Haven't marked the cluster free yet, no list
2924 * operation involved
2926 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2930 /* Haven't marked the cluster free yet, no list operation involved */
2931 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2932 inc_cluster_info_page(p
, cluster_info
, i
);
2934 if (nr_good_pages
) {
2935 swap_map
[0] = SWAP_MAP_BAD
;
2937 * Not mark the cluster free yet, no list
2938 * operation involved
2940 inc_cluster_info_page(p
, cluster_info
, 0);
2942 p
->pages
= nr_good_pages
;
2943 nr_extents
= setup_swap_extents(p
, span
);
2946 nr_good_pages
= p
->pages
;
2948 if (!nr_good_pages
) {
2949 pr_warn("Empty swap-file\n");
2958 * Reduce false cache line sharing between cluster_info and
2959 * sharing same address space.
2961 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
2962 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
2963 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
2964 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
2965 if (idx
>= nr_clusters
)
2967 if (cluster_count(&cluster_info
[idx
]))
2969 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2970 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
2978 * Helper to sys_swapon determining if a given swap
2979 * backing device queue supports DISCARD operations.
2981 static bool swap_discardable(struct swap_info_struct
*si
)
2983 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2985 if (!q
|| !blk_queue_discard(q
))
2991 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2993 struct swap_info_struct
*p
;
2994 struct filename
*name
;
2995 struct file
*swap_file
= NULL
;
2996 struct address_space
*mapping
;
2999 union swap_header
*swap_header
;
3002 unsigned long maxpages
;
3003 unsigned char *swap_map
= NULL
;
3004 struct swap_cluster_info
*cluster_info
= NULL
;
3005 unsigned long *frontswap_map
= NULL
;
3006 struct page
*page
= NULL
;
3007 struct inode
*inode
= NULL
;
3008 bool inced_nr_rotate_swap
= false;
3010 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3013 if (!capable(CAP_SYS_ADMIN
))
3016 if (!swap_avail_heads
)
3019 p
= alloc_swap_info();
3023 INIT_WORK(&p
->discard_work
, swap_discard_work
);
3025 name
= getname(specialfile
);
3027 error
= PTR_ERR(name
);
3031 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
3032 if (IS_ERR(swap_file
)) {
3033 error
= PTR_ERR(swap_file
);
3038 p
->swap_file
= swap_file
;
3039 mapping
= swap_file
->f_mapping
;
3040 inode
= mapping
->host
;
3042 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3043 error
= claim_swapfile(p
, inode
);
3044 if (unlikely(error
))
3048 * Read the swap header.
3050 if (!mapping
->a_ops
->readpage
) {
3054 page
= read_mapping_page(mapping
, 0, swap_file
);
3056 error
= PTR_ERR(page
);
3059 swap_header
= kmap(page
);
3061 maxpages
= read_swap_header(p
, swap_header
, inode
);
3062 if (unlikely(!maxpages
)) {
3067 /* OK, set up the swap map and apply the bad block list */
3068 swap_map
= vzalloc(maxpages
);
3074 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
3075 p
->flags
|= SWP_STABLE_WRITES
;
3077 if (bdi_cap_synchronous_io(inode_to_bdi(inode
)))
3078 p
->flags
|= SWP_SYNCHRONOUS_IO
;
3080 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
3082 unsigned long ci
, nr_cluster
;
3084 p
->flags
|= SWP_SOLIDSTATE
;
3086 * select a random position to start with to help wear leveling
3089 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
3090 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3092 cluster_info
= kvcalloc(nr_cluster
, sizeof(*cluster_info
),
3094 if (!cluster_info
) {
3099 for (ci
= 0; ci
< nr_cluster
; ci
++)
3100 spin_lock_init(&((cluster_info
+ ci
)->lock
));
3102 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3103 if (!p
->percpu_cluster
) {
3107 for_each_possible_cpu(cpu
) {
3108 struct percpu_cluster
*cluster
;
3109 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
3110 cluster_set_null(&cluster
->index
);
3113 atomic_inc(&nr_rotate_swap
);
3114 inced_nr_rotate_swap
= true;
3117 error
= swap_cgroup_swapon(p
->type
, maxpages
);
3121 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
3122 cluster_info
, maxpages
, &span
);
3123 if (unlikely(nr_extents
< 0)) {
3127 /* frontswap enabled? set up bit-per-page map for frontswap */
3128 if (IS_ENABLED(CONFIG_FRONTSWAP
))
3129 frontswap_map
= kvcalloc(BITS_TO_LONGS(maxpages
),
3133 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
3135 * When discard is enabled for swap with no particular
3136 * policy flagged, we set all swap discard flags here in
3137 * order to sustain backward compatibility with older
3138 * swapon(8) releases.
3140 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3144 * By flagging sys_swapon, a sysadmin can tell us to
3145 * either do single-time area discards only, or to just
3146 * perform discards for released swap page-clusters.
3147 * Now it's time to adjust the p->flags accordingly.
3149 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3150 p
->flags
&= ~SWP_PAGE_DISCARD
;
3151 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3152 p
->flags
&= ~SWP_AREA_DISCARD
;
3154 /* issue a swapon-time discard if it's still required */
3155 if (p
->flags
& SWP_AREA_DISCARD
) {
3156 int err
= discard_swap(p
);
3158 pr_err("swapon: discard_swap(%p): %d\n",
3163 error
= init_swap_address_space(p
->type
, maxpages
);
3167 mutex_lock(&swapon_mutex
);
3169 if (swap_flags
& SWAP_FLAG_PREFER
)
3171 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3172 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
3174 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3175 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
3176 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
3177 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3178 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3179 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3180 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
3181 (frontswap_map
) ? "FS" : "");
3183 mutex_unlock(&swapon_mutex
);
3184 atomic_inc(&proc_poll_event
);
3185 wake_up_interruptible(&proc_poll_wait
);
3187 if (S_ISREG(inode
->i_mode
))
3188 inode
->i_flags
|= S_SWAPFILE
;
3192 free_percpu(p
->percpu_cluster
);
3193 p
->percpu_cluster
= NULL
;
3194 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
3195 set_blocksize(p
->bdev
, p
->old_block_size
);
3196 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
3198 destroy_swap_extents(p
);
3199 swap_cgroup_swapoff(p
->type
);
3200 spin_lock(&swap_lock
);
3201 p
->swap_file
= NULL
;
3203 spin_unlock(&swap_lock
);
3205 kvfree(cluster_info
);
3206 kvfree(frontswap_map
);
3207 if (inced_nr_rotate_swap
)
3208 atomic_dec(&nr_rotate_swap
);
3210 if (inode
&& S_ISREG(inode
->i_mode
)) {
3211 inode_unlock(inode
);
3214 filp_close(swap_file
, NULL
);
3217 if (page
&& !IS_ERR(page
)) {
3223 if (inode
&& S_ISREG(inode
->i_mode
))
3224 inode_unlock(inode
);
3226 enable_swap_slots_cache();
3230 void si_swapinfo(struct sysinfo
*val
)
3233 unsigned long nr_to_be_unused
= 0;
3235 spin_lock(&swap_lock
);
3236 for (type
= 0; type
< nr_swapfiles
; type
++) {
3237 struct swap_info_struct
*si
= swap_info
[type
];
3239 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3240 nr_to_be_unused
+= si
->inuse_pages
;
3242 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3243 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3244 spin_unlock(&swap_lock
);
3248 * Verify that a swap entry is valid and increment its swap map count.
3250 * Returns error code in following case.
3252 * - swp_entry is invalid -> EINVAL
3253 * - swp_entry is migration entry -> EINVAL
3254 * - swap-cache reference is requested but there is already one. -> EEXIST
3255 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3256 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
3260 struct swap_info_struct
*p
;
3261 struct swap_cluster_info
*ci
;
3262 unsigned long offset
;
3263 unsigned char count
;
3264 unsigned char has_cache
;
3267 if (non_swap_entry(entry
))
3270 p
= swp_swap_info(entry
);
3274 offset
= swp_offset(entry
);
3275 if (unlikely(offset
>= p
->max
))
3278 ci
= lock_cluster_or_swap_info(p
, offset
);
3280 count
= p
->swap_map
[offset
];
3283 * swapin_readahead() doesn't check if a swap entry is valid, so the
3284 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3286 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3291 has_cache
= count
& SWAP_HAS_CACHE
;
3292 count
&= ~SWAP_HAS_CACHE
;
3295 if (usage
== SWAP_HAS_CACHE
) {
3297 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3298 if (!has_cache
&& count
)
3299 has_cache
= SWAP_HAS_CACHE
;
3300 else if (has_cache
) /* someone else added cache */
3302 else /* no users remaining */
3305 } else if (count
|| has_cache
) {
3307 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3309 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3311 else if (swap_count_continued(p
, offset
, count
))
3312 count
= COUNT_CONTINUED
;
3316 err
= -ENOENT
; /* unused swap entry */
3318 p
->swap_map
[offset
] = count
| has_cache
;
3321 unlock_cluster_or_swap_info(p
, ci
);
3326 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3331 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332 * (in which case its reference count is never incremented).
3334 void swap_shmem_alloc(swp_entry_t entry
)
3336 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3340 * Increase reference count of swap entry by 1.
3341 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3343 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344 * might occur if a page table entry has got corrupted.
3346 int swap_duplicate(swp_entry_t entry
)
3350 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3351 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3356 * @entry: swap entry for which we allocate swap cache.
3358 * Called when allocating swap cache for existing swap entry,
3359 * This can return error codes. Returns 0 at success.
3360 * -EBUSY means there is a swap cache.
3361 * Note: return code is different from swap_duplicate().
3363 int swapcache_prepare(swp_entry_t entry
)
3365 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3368 struct swap_info_struct
*swp_swap_info(swp_entry_t entry
)
3370 return swap_type_to_swap_info(swp_type(entry
));
3373 struct swap_info_struct
*page_swap_info(struct page
*page
)
3375 swp_entry_t entry
= { .val
= page_private(page
) };
3376 return swp_swap_info(entry
);
3380 * out-of-line __page_file_ methods to avoid include hell.
3382 struct address_space
*__page_file_mapping(struct page
*page
)
3384 return page_swap_info(page
)->swap_file
->f_mapping
;
3386 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3388 pgoff_t
__page_file_index(struct page
*page
)
3390 swp_entry_t swap
= { .val
= page_private(page
) };
3391 return swp_offset(swap
);
3393 EXPORT_SYMBOL_GPL(__page_file_index
);
3396 * add_swap_count_continuation - called when a swap count is duplicated
3397 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3398 * page of the original vmalloc'ed swap_map, to hold the continuation count
3399 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3400 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3402 * These continuation pages are seldom referenced: the common paths all work
3403 * on the original swap_map, only referring to a continuation page when the
3404 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3406 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3407 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3408 * can be called after dropping locks.
3410 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3412 struct swap_info_struct
*si
;
3413 struct swap_cluster_info
*ci
;
3416 struct page
*list_page
;
3418 unsigned char count
;
3421 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3422 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3424 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3426 si
= swap_info_get(entry
);
3429 * An acceptable race has occurred since the failing
3430 * __swap_duplicate(): the swap entry has been freed,
3431 * perhaps even the whole swap_map cleared for swapoff.
3436 offset
= swp_offset(entry
);
3438 ci
= lock_cluster(si
, offset
);
3440 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3442 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3444 * The higher the swap count, the more likely it is that tasks
3445 * will race to add swap count continuation: we need to avoid
3446 * over-provisioning.
3453 spin_unlock(&si
->lock
);
3458 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3459 * no architecture is using highmem pages for kernel page tables: so it
3460 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3462 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3463 offset
&= ~PAGE_MASK
;
3465 spin_lock(&si
->cont_lock
);
3467 * Page allocation does not initialize the page's lru field,
3468 * but it does always reset its private field.
3470 if (!page_private(head
)) {
3471 BUG_ON(count
& COUNT_CONTINUED
);
3472 INIT_LIST_HEAD(&head
->lru
);
3473 set_page_private(head
, SWP_CONTINUED
);
3474 si
->flags
|= SWP_CONTINUED
;
3477 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3481 * If the previous map said no continuation, but we've found
3482 * a continuation page, free our allocation and use this one.
3484 if (!(count
& COUNT_CONTINUED
))
3485 goto out_unlock_cont
;
3487 map
= kmap_atomic(list_page
) + offset
;
3492 * If this continuation count now has some space in it,
3493 * free our allocation and use this one.
3495 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3496 goto out_unlock_cont
;
3499 list_add_tail(&page
->lru
, &head
->lru
);
3500 page
= NULL
; /* now it's attached, don't free it */
3502 spin_unlock(&si
->cont_lock
);
3505 spin_unlock(&si
->lock
);
3513 * swap_count_continued - when the original swap_map count is incremented
3514 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3515 * into, carry if so, or else fail until a new continuation page is allocated;
3516 * when the original swap_map count is decremented from 0 with continuation,
3517 * borrow from the continuation and report whether it still holds more.
3518 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3521 static bool swap_count_continued(struct swap_info_struct
*si
,
3522 pgoff_t offset
, unsigned char count
)
3529 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3530 if (page_private(head
) != SWP_CONTINUED
) {
3531 BUG_ON(count
& COUNT_CONTINUED
);
3532 return false; /* need to add count continuation */
3535 spin_lock(&si
->cont_lock
);
3536 offset
&= ~PAGE_MASK
;
3537 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3538 map
= kmap_atomic(page
) + offset
;
3540 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3541 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3543 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3545 * Think of how you add 1 to 999
3547 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3549 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3550 BUG_ON(page
== head
);
3551 map
= kmap_atomic(page
) + offset
;
3553 if (*map
== SWAP_CONT_MAX
) {
3555 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3557 ret
= false; /* add count continuation */
3560 map
= kmap_atomic(page
) + offset
;
3561 init_map
: *map
= 0; /* we didn't zero the page */
3565 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3566 while (page
!= head
) {
3567 map
= kmap_atomic(page
) + offset
;
3568 *map
= COUNT_CONTINUED
;
3570 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3572 ret
= true; /* incremented */
3574 } else { /* decrementing */
3576 * Think of how you subtract 1 from 1000
3578 BUG_ON(count
!= COUNT_CONTINUED
);
3579 while (*map
== COUNT_CONTINUED
) {
3581 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3582 BUG_ON(page
== head
);
3583 map
= kmap_atomic(page
) + offset
;
3590 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3591 while (page
!= head
) {
3592 map
= kmap_atomic(page
) + offset
;
3593 *map
= SWAP_CONT_MAX
| count
;
3594 count
= COUNT_CONTINUED
;
3596 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3598 ret
= count
== COUNT_CONTINUED
;
3601 spin_unlock(&si
->cont_lock
);
3606 * free_swap_count_continuations - swapoff free all the continuation pages
3607 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3613 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3615 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3616 if (page_private(head
)) {
3617 struct page
*page
, *next
;
3619 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3620 list_del(&page
->lru
);
3627 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3628 void mem_cgroup_throttle_swaprate(struct mem_cgroup
*memcg
, int node
,
3631 struct swap_info_struct
*si
, *next
;
3632 if (!(gfp_mask
& __GFP_IO
) || !memcg
)
3635 if (!blk_cgroup_congested())
3639 * We've already scheduled a throttle, avoid taking the global swap
3642 if (current
->throttle_queue
)
3645 spin_lock(&swap_avail_lock
);
3646 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
],
3647 avail_lists
[node
]) {
3649 blkcg_schedule_throttle(bdev_get_queue(si
->bdev
),
3654 spin_unlock(&swap_avail_lock
);
3658 static int __init
swapfile_init(void)
3662 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
3664 if (!swap_avail_heads
) {
3665 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3670 plist_head_init(&swap_avail_heads
[nid
]);
3674 subsys_initcall(swapfile_init
);