e1000e: cleanup PARENTHESIS_ALIGNMENT checkpatch checks
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-pmcmsp.c
blobf6389e2c9d02d704163cd7b2f0fc6c23bda1f8ba
1 /*
2 * Specific bus support for PMC-TWI compliant implementation on MSP71xx.
4 * Copyright 2005-2007 PMC-Sierra, Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
14 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
15 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
16 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
17 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
18 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
19 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
20 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/platform_device.h>
31 #include <linux/i2c.h>
32 #include <linux/interrupt.h>
33 #include <linux/completion.h>
34 #include <linux/mutex.h>
35 #include <linux/delay.h>
36 #include <linux/io.h>
38 #define DRV_NAME "pmcmsptwi"
40 #define MSP_TWI_SF_CLK_REG_OFFSET 0x00
41 #define MSP_TWI_HS_CLK_REG_OFFSET 0x04
42 #define MSP_TWI_CFG_REG_OFFSET 0x08
43 #define MSP_TWI_CMD_REG_OFFSET 0x0c
44 #define MSP_TWI_ADD_REG_OFFSET 0x10
45 #define MSP_TWI_DAT_0_REG_OFFSET 0x14
46 #define MSP_TWI_DAT_1_REG_OFFSET 0x18
47 #define MSP_TWI_INT_STS_REG_OFFSET 0x1c
48 #define MSP_TWI_INT_MSK_REG_OFFSET 0x20
49 #define MSP_TWI_BUSY_REG_OFFSET 0x24
51 #define MSP_TWI_INT_STS_DONE (1 << 0)
52 #define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1)
53 #define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2)
54 #define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3)
55 #define MSP_TWI_INT_STS_BUSY (1 << 4)
56 #define MSP_TWI_INT_STS_ALL 0x1f
58 #define MSP_MAX_BYTES_PER_RW 8
59 #define MSP_MAX_POLL 5
60 #define MSP_POLL_DELAY 10
61 #define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY)
63 /* IO Operation macros */
64 #define pmcmsptwi_readl __raw_readl
65 #define pmcmsptwi_writel __raw_writel
67 /* TWI command type */
68 enum pmcmsptwi_cmd_type {
69 MSP_TWI_CMD_WRITE = 0, /* Write only */
70 MSP_TWI_CMD_READ = 1, /* Read only */
71 MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */
74 /* The possible results of the xferCmd */
75 enum pmcmsptwi_xfer_result {
76 MSP_TWI_XFER_OK = 0,
77 MSP_TWI_XFER_TIMEOUT,
78 MSP_TWI_XFER_BUSY,
79 MSP_TWI_XFER_DATA_COLLISION,
80 MSP_TWI_XFER_NO_RESPONSE,
81 MSP_TWI_XFER_LOST_ARBITRATION,
84 /* Corresponds to a PMCTWI clock configuration register */
85 struct pmcmsptwi_clock {
86 u8 filter; /* Bits 15:12, default = 0x03 */
87 u16 clock; /* Bits 9:0, default = 0x001f */
90 struct pmcmsptwi_clockcfg {
91 struct pmcmsptwi_clock standard; /* The standard/fast clock config */
92 struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
95 /* Corresponds to the main TWI configuration register */
96 struct pmcmsptwi_cfg {
97 u8 arbf; /* Bits 15:12, default=0x03 */
98 u8 nak; /* Bits 11:8, default=0x03 */
99 u8 add10; /* Bit 7, default=0x00 */
100 u8 mst_code; /* Bits 6:4, default=0x00 */
101 u8 arb; /* Bit 1, default=0x01 */
102 u8 highspeed; /* Bit 0, default=0x00 */
105 /* A single pmctwi command to issue */
106 struct pmcmsptwi_cmd {
107 u16 addr; /* The slave address (7 or 10 bits) */
108 enum pmcmsptwi_cmd_type type; /* The command type */
109 u8 write_len; /* Number of bytes in the write buffer */
110 u8 read_len; /* Number of bytes in the read buffer */
111 u8 *write_data; /* Buffer of characters to send */
112 u8 *read_data; /* Buffer to fill with incoming data */
115 /* The private data */
116 struct pmcmsptwi_data {
117 void __iomem *iobase; /* iomapped base for IO */
118 int irq; /* IRQ to use (0 disables) */
119 struct completion wait; /* Completion for xfer */
120 struct mutex lock; /* Used for threadsafeness */
121 enum pmcmsptwi_xfer_result last_result; /* result of last xfer */
124 /* The default settings */
125 static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
126 .standard = {
127 .filter = 0x3,
128 .clock = 0x1f,
130 .highspeed = {
131 .filter = 0x3,
132 .clock = 0x1f,
136 static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
137 .arbf = 0x03,
138 .nak = 0x03,
139 .add10 = 0x00,
140 .mst_code = 0x00,
141 .arb = 0x01,
142 .highspeed = 0x00,
145 static struct pmcmsptwi_data pmcmsptwi_data;
147 static struct i2c_adapter pmcmsptwi_adapter;
149 /* inline helper functions */
150 static inline u32 pmcmsptwi_clock_to_reg(
151 const struct pmcmsptwi_clock *clock)
153 return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
156 static inline void pmcmsptwi_reg_to_clock(
157 u32 reg, struct pmcmsptwi_clock *clock)
159 clock->filter = (reg >> 12) & 0xf;
160 clock->clock = reg & 0x03ff;
163 static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
165 return ((cfg->arbf & 0xf) << 12) |
166 ((cfg->nak & 0xf) << 8) |
167 ((cfg->add10 & 0x1) << 7) |
168 ((cfg->mst_code & 0x7) << 4) |
169 ((cfg->arb & 0x1) << 1) |
170 (cfg->highspeed & 0x1);
173 static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
175 cfg->arbf = (reg >> 12) & 0xf;
176 cfg->nak = (reg >> 8) & 0xf;
177 cfg->add10 = (reg >> 7) & 0x1;
178 cfg->mst_code = (reg >> 4) & 0x7;
179 cfg->arb = (reg >> 1) & 0x1;
180 cfg->highspeed = reg & 0x1;
184 * Sets the current clock configuration
186 static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
187 struct pmcmsptwi_data *data)
189 mutex_lock(&data->lock);
190 pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
191 data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
192 pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
193 data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
194 mutex_unlock(&data->lock);
198 * Gets the current TWI bus configuration
200 static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
201 struct pmcmsptwi_data *data)
203 mutex_lock(&data->lock);
204 pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
205 data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
206 mutex_unlock(&data->lock);
210 * Sets the current TWI bus configuration
212 static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
213 struct pmcmsptwi_data *data)
215 mutex_lock(&data->lock);
216 pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
217 data->iobase + MSP_TWI_CFG_REG_OFFSET);
218 mutex_unlock(&data->lock);
222 * Parses the 'int_sts' register and returns a well-defined error code
224 static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
226 if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
227 dev_dbg(&pmcmsptwi_adapter.dev,
228 "Result: Lost arbitration\n");
229 return MSP_TWI_XFER_LOST_ARBITRATION;
230 } else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
231 dev_dbg(&pmcmsptwi_adapter.dev,
232 "Result: No response\n");
233 return MSP_TWI_XFER_NO_RESPONSE;
234 } else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
235 dev_dbg(&pmcmsptwi_adapter.dev,
236 "Result: Data collision\n");
237 return MSP_TWI_XFER_DATA_COLLISION;
238 } else if (reg & MSP_TWI_INT_STS_BUSY) {
239 dev_dbg(&pmcmsptwi_adapter.dev,
240 "Result: Bus busy\n");
241 return MSP_TWI_XFER_BUSY;
244 dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
245 return MSP_TWI_XFER_OK;
249 * In interrupt mode, handle the interrupt.
250 * NOTE: Assumes data->lock is held.
252 static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
254 struct pmcmsptwi_data *data = ptr;
256 u32 reason = pmcmsptwi_readl(data->iobase +
257 MSP_TWI_INT_STS_REG_OFFSET);
258 pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
260 dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
261 if (!(reason & MSP_TWI_INT_STS_DONE))
262 return IRQ_NONE;
264 data->last_result = pmcmsptwi_get_result(reason);
265 complete(&data->wait);
267 return IRQ_HANDLED;
271 * Probe for and register the device and return 0 if there is one.
273 static int pmcmsptwi_probe(struct platform_device *pldev)
275 struct resource *res;
276 int rc = -ENODEV;
278 /* get the static platform resources */
279 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
280 if (!res) {
281 dev_err(&pldev->dev, "IOMEM resource not found\n");
282 goto ret_err;
285 /* reserve the memory region */
286 if (!request_mem_region(res->start, resource_size(res),
287 pldev->name)) {
288 dev_err(&pldev->dev,
289 "Unable to get memory/io address region 0x%08x\n",
290 res->start);
291 rc = -EBUSY;
292 goto ret_err;
295 /* remap the memory */
296 pmcmsptwi_data.iobase = ioremap_nocache(res->start,
297 resource_size(res));
298 if (!pmcmsptwi_data.iobase) {
299 dev_err(&pldev->dev,
300 "Unable to ioremap address 0x%08x\n", res->start);
301 rc = -EIO;
302 goto ret_unreserve;
305 /* request the irq */
306 pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
307 if (pmcmsptwi_data.irq) {
308 rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
309 IRQF_SHARED, pldev->name, &pmcmsptwi_data);
310 if (rc == 0) {
312 * Enable 'DONE' interrupt only.
314 * If you enable all interrupts, you will get one on
315 * error and another when the operation completes.
316 * This way you only have to handle one interrupt,
317 * but you can still check all result flags.
319 pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
320 pmcmsptwi_data.iobase +
321 MSP_TWI_INT_MSK_REG_OFFSET);
322 } else {
323 dev_warn(&pldev->dev,
324 "Could not assign TWI IRQ handler "
325 "to irq %d (continuing with poll)\n",
326 pmcmsptwi_data.irq);
327 pmcmsptwi_data.irq = 0;
331 init_completion(&pmcmsptwi_data.wait);
332 mutex_init(&pmcmsptwi_data.lock);
334 pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
335 pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
337 printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
339 pmcmsptwi_adapter.dev.parent = &pldev->dev;
340 platform_set_drvdata(pldev, &pmcmsptwi_adapter);
341 i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
343 rc = i2c_add_adapter(&pmcmsptwi_adapter);
344 if (rc) {
345 dev_err(&pldev->dev, "Unable to register I2C adapter\n");
346 goto ret_unmap;
349 return 0;
351 ret_unmap:
352 if (pmcmsptwi_data.irq) {
353 pmcmsptwi_writel(0,
354 pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
355 free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
358 iounmap(pmcmsptwi_data.iobase);
360 ret_unreserve:
361 release_mem_region(res->start, resource_size(res));
363 ret_err:
364 return rc;
368 * Release the device and return 0 if there is one.
370 static int pmcmsptwi_remove(struct platform_device *pldev)
372 struct resource *res;
374 i2c_del_adapter(&pmcmsptwi_adapter);
376 if (pmcmsptwi_data.irq) {
377 pmcmsptwi_writel(0,
378 pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
379 free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
382 iounmap(pmcmsptwi_data.iobase);
384 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
385 release_mem_region(res->start, resource_size(res));
387 return 0;
391 * Polls the 'busy' register until the command is complete.
392 * NOTE: Assumes data->lock is held.
394 static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
396 int i;
398 for (i = 0; i < MSP_MAX_POLL; i++) {
399 u32 val = pmcmsptwi_readl(data->iobase +
400 MSP_TWI_BUSY_REG_OFFSET);
401 if (val == 0) {
402 u32 reason = pmcmsptwi_readl(data->iobase +
403 MSP_TWI_INT_STS_REG_OFFSET);
404 pmcmsptwi_writel(reason, data->iobase +
405 MSP_TWI_INT_STS_REG_OFFSET);
406 data->last_result = pmcmsptwi_get_result(reason);
407 return;
409 udelay(MSP_POLL_DELAY);
412 dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
413 data->last_result = MSP_TWI_XFER_TIMEOUT;
417 * Do the transfer (low level):
418 * May use interrupt-driven or polling, depending on if an IRQ is
419 * presently registered.
420 * NOTE: Assumes data->lock is held.
422 static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
423 u32 reg, struct pmcmsptwi_data *data)
425 dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
426 pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
427 if (data->irq) {
428 unsigned long timeleft = wait_for_completion_timeout(
429 &data->wait, MSP_IRQ_TIMEOUT);
430 if (timeleft == 0) {
431 dev_dbg(&pmcmsptwi_adapter.dev,
432 "Result: IRQ timeout\n");
433 complete(&data->wait);
434 data->last_result = MSP_TWI_XFER_TIMEOUT;
436 } else
437 pmcmsptwi_poll_complete(data);
439 return data->last_result;
443 * Helper routine, converts 'pmctwi_cmd' struct to register format
445 static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
447 return ((cmd->type & 0x3) << 8) |
448 (((cmd->write_len - 1) & 0x7) << 4) |
449 ((cmd->read_len - 1) & 0x7);
453 * Do the transfer (high level)
455 static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
456 struct pmcmsptwi_cmd *cmd,
457 struct pmcmsptwi_data *data)
459 enum pmcmsptwi_xfer_result retval;
461 if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
462 (cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
463 (cmd->type == MSP_TWI_CMD_WRITE_READ &&
464 (cmd->read_len == 0 || cmd->write_len == 0))) {
465 dev_err(&pmcmsptwi_adapter.dev,
466 "%s: Cannot transfer less than 1 byte\n",
467 __func__);
468 return -EINVAL;
471 if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
472 cmd->write_len > MSP_MAX_BYTES_PER_RW) {
473 dev_err(&pmcmsptwi_adapter.dev,
474 "%s: Cannot transfer more than %d bytes\n",
475 __func__, MSP_MAX_BYTES_PER_RW);
476 return -EINVAL;
479 mutex_lock(&data->lock);
480 dev_dbg(&pmcmsptwi_adapter.dev,
481 "Setting address to 0x%04x\n", cmd->addr);
482 pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
484 if (cmd->type == MSP_TWI_CMD_WRITE ||
485 cmd->type == MSP_TWI_CMD_WRITE_READ) {
486 u64 tmp = be64_to_cpup((__be64 *)cmd->write_data);
487 tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
488 dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
489 pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
490 data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
491 if (cmd->write_len > 4)
492 pmcmsptwi_writel(tmp >> 32,
493 data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
496 retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
497 if (retval != MSP_TWI_XFER_OK)
498 goto xfer_err;
500 if (cmd->type == MSP_TWI_CMD_READ ||
501 cmd->type == MSP_TWI_CMD_WRITE_READ) {
502 int i;
503 u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
504 u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
505 MSP_TWI_DAT_0_REG_OFFSET);
506 if (cmd->read_len > 4)
507 tmp |= (u64)pmcmsptwi_readl(data->iobase +
508 MSP_TWI_DAT_1_REG_OFFSET) << 32;
509 tmp &= rmsk;
510 dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
512 for (i = 0; i < cmd->read_len; i++)
513 cmd->read_data[i] = tmp >> i;
516 xfer_err:
517 mutex_unlock(&data->lock);
519 return retval;
522 /* -- Algorithm functions -- */
525 * Sends an i2c command out on the adapter
527 static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
528 struct i2c_msg *msg, int num)
530 struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
531 struct pmcmsptwi_cmd cmd;
532 struct pmcmsptwi_cfg oldcfg, newcfg;
533 int ret;
535 if (num > 2) {
536 dev_dbg(&adap->dev, "%d messages unsupported\n", num);
537 return -EINVAL;
538 } else if (num == 2) {
539 /* Check for a dual write-then-read command */
540 struct i2c_msg *nextmsg = msg + 1;
541 if (!(msg->flags & I2C_M_RD) &&
542 (nextmsg->flags & I2C_M_RD) &&
543 msg->addr == nextmsg->addr) {
544 cmd.type = MSP_TWI_CMD_WRITE_READ;
545 cmd.write_len = msg->len;
546 cmd.write_data = msg->buf;
547 cmd.read_len = nextmsg->len;
548 cmd.read_data = nextmsg->buf;
549 } else {
550 dev_dbg(&adap->dev,
551 "Non write-read dual messages unsupported\n");
552 return -EINVAL;
554 } else if (msg->flags & I2C_M_RD) {
555 cmd.type = MSP_TWI_CMD_READ;
556 cmd.read_len = msg->len;
557 cmd.read_data = msg->buf;
558 cmd.write_len = 0;
559 cmd.write_data = NULL;
560 } else {
561 cmd.type = MSP_TWI_CMD_WRITE;
562 cmd.read_len = 0;
563 cmd.read_data = NULL;
564 cmd.write_len = msg->len;
565 cmd.write_data = msg->buf;
568 if (msg->len == 0) {
569 dev_err(&adap->dev, "Zero-byte messages unsupported\n");
570 return -EINVAL;
573 cmd.addr = msg->addr;
575 if (msg->flags & I2C_M_TEN) {
576 pmcmsptwi_get_twi_config(&newcfg, data);
577 memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
579 /* Set the special 10-bit address flag */
580 newcfg.add10 = 1;
582 pmcmsptwi_set_twi_config(&newcfg, data);
585 /* Execute the command */
586 ret = pmcmsptwi_xfer_cmd(&cmd, data);
588 if (msg->flags & I2C_M_TEN)
589 pmcmsptwi_set_twi_config(&oldcfg, data);
591 dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
592 (msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
593 (ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
595 if (ret != MSP_TWI_XFER_OK) {
597 * TODO: We could potentially loop and retry in the case
598 * of MSP_TWI_XFER_TIMEOUT.
600 return -1;
603 return 0;
606 static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
608 return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
609 I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
610 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
613 /* -- Initialization -- */
615 static struct i2c_algorithm pmcmsptwi_algo = {
616 .master_xfer = pmcmsptwi_master_xfer,
617 .functionality = pmcmsptwi_i2c_func,
620 static struct i2c_adapter pmcmsptwi_adapter = {
621 .owner = THIS_MODULE,
622 .class = I2C_CLASS_HWMON | I2C_CLASS_SPD,
623 .algo = &pmcmsptwi_algo,
624 .name = DRV_NAME,
627 static struct platform_driver pmcmsptwi_driver = {
628 .probe = pmcmsptwi_probe,
629 .remove = pmcmsptwi_remove,
630 .driver = {
631 .name = DRV_NAME,
632 .owner = THIS_MODULE,
636 module_platform_driver(pmcmsptwi_driver);
638 MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
639 MODULE_LICENSE("GPL");
640 MODULE_ALIAS("platform:" DRV_NAME);