mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / iommu / dmar.c
blobc5c61cabd6e3ea3508c39b7d799476676fb85d32
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
45 #include "irq_remapping.h"
48 * Assumptions:
49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50 * before IO devices managed by that unit.
51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52 * after IO devices managed by that unit.
53 * 3) Hotplug events are rare.
55 * Locking rules for DMA and interrupt remapping related global data structures:
56 * 1) Use dmar_global_lock in process context
57 * 2) Use RCU in interrupt context
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
62 struct acpi_table_header * __initdata dmar_tbl;
63 static acpi_size dmar_tbl_size;
64 static int dmar_dev_scope_status = 1;
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
69 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 struct acpi_dmar_device_scope *scope;
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
96 start += scope->length;
98 if (*cnt == 0)
99 return NULL;
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106 int i;
107 struct device *tmp_dev;
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
115 *devices = NULL;
116 *cnt = 0;
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
130 BUG_ON(dev->is_virtfn);
132 /* Only generate path[] for device addition event */
133 if (event == BUS_NOTIFY_ADD_DEVICE)
134 for (tmp = dev; tmp; tmp = tmp->bus->self)
135 level++;
137 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
138 if (size <= sizeof(dmar_pci_notify_info_buf)) {
139 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
140 } else {
141 info = kzalloc(size, GFP_KERNEL);
142 if (!info) {
143 pr_warn("Out of memory when allocating notify_info "
144 "for %s.\n", pci_name(dev));
145 if (dmar_dev_scope_status == 0)
146 dmar_dev_scope_status = -ENOMEM;
147 return NULL;
151 info->event = event;
152 info->dev = dev;
153 info->seg = pci_domain_nr(dev->bus);
154 info->level = level;
155 if (event == BUS_NOTIFY_ADD_DEVICE) {
156 for (tmp = dev; tmp; tmp = tmp->bus->self) {
157 level--;
158 info->path[level].bus = tmp->bus->number;
159 info->path[level].device = PCI_SLOT(tmp->devfn);
160 info->path[level].function = PCI_FUNC(tmp->devfn);
161 if (pci_is_root_bus(tmp->bus))
162 info->bus = tmp->bus->number;
166 return info;
169 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
171 if ((void *)info != dmar_pci_notify_info_buf)
172 kfree(info);
175 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
176 struct acpi_dmar_pci_path *path, int count)
178 int i;
180 if (info->bus != bus)
181 goto fallback;
182 if (info->level != count)
183 goto fallback;
185 for (i = 0; i < count; i++) {
186 if (path[i].device != info->path[i].device ||
187 path[i].function != info->path[i].function)
188 goto fallback;
191 return true;
193 fallback:
195 if (count != 1)
196 return false;
198 i = info->level - 1;
199 if (bus == info->path[i].bus &&
200 path[0].device == info->path[i].device &&
201 path[0].function == info->path[i].function) {
202 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
203 bus, path[0].device, path[0].function);
204 return true;
207 return false;
210 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
211 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
212 void *start, void*end, u16 segment,
213 struct dmar_dev_scope *devices,
214 int devices_cnt)
216 int i, level;
217 struct device *tmp, *dev = &info->dev->dev;
218 struct acpi_dmar_device_scope *scope;
219 struct acpi_dmar_pci_path *path;
221 if (segment != info->seg)
222 return 0;
224 for (; start < end; start += scope->length) {
225 scope = start;
226 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
227 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
228 continue;
230 path = (struct acpi_dmar_pci_path *)(scope + 1);
231 level = (scope->length - sizeof(*scope)) / sizeof(*path);
232 if (!dmar_match_pci_path(info, scope->bus, path, level))
233 continue;
235 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
236 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
237 pr_warn("Device scope type does not match for %s\n",
238 pci_name(info->dev));
239 return -EINVAL;
242 for_each_dev_scope(devices, devices_cnt, i, tmp)
243 if (tmp == NULL) {
244 devices[i].bus = info->dev->bus->number;
245 devices[i].devfn = info->dev->devfn;
246 rcu_assign_pointer(devices[i].dev,
247 get_device(dev));
248 return 1;
250 BUG_ON(i >= devices_cnt);
253 return 0;
256 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
257 struct dmar_dev_scope *devices, int count)
259 int index;
260 struct device *tmp;
262 if (info->seg != segment)
263 return 0;
265 for_each_active_dev_scope(devices, count, index, tmp)
266 if (tmp == &info->dev->dev) {
267 RCU_INIT_POINTER(devices[index].dev, NULL);
268 synchronize_rcu();
269 put_device(tmp);
270 return 1;
273 return 0;
276 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
278 int ret = 0;
279 struct dmar_drhd_unit *dmaru;
280 struct acpi_dmar_hardware_unit *drhd;
282 for_each_drhd_unit(dmaru) {
283 if (dmaru->include_all)
284 continue;
286 drhd = container_of(dmaru->hdr,
287 struct acpi_dmar_hardware_unit, header);
288 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
289 ((void *)drhd) + drhd->header.length,
290 dmaru->segment,
291 dmaru->devices, dmaru->devices_cnt);
292 if (ret != 0)
293 break;
295 if (ret >= 0)
296 ret = dmar_iommu_notify_scope_dev(info);
297 if (ret < 0 && dmar_dev_scope_status == 0)
298 dmar_dev_scope_status = ret;
300 return ret;
303 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
305 struct dmar_drhd_unit *dmaru;
307 for_each_drhd_unit(dmaru)
308 if (dmar_remove_dev_scope(info, dmaru->segment,
309 dmaru->devices, dmaru->devices_cnt))
310 break;
311 dmar_iommu_notify_scope_dev(info);
314 static int dmar_pci_bus_notifier(struct notifier_block *nb,
315 unsigned long action, void *data)
317 struct pci_dev *pdev = to_pci_dev(data);
318 struct dmar_pci_notify_info *info;
320 /* Only care about add/remove events for physical functions */
321 if (pdev->is_virtfn)
322 return NOTIFY_DONE;
323 if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
324 return NOTIFY_DONE;
326 info = dmar_alloc_pci_notify_info(pdev, action);
327 if (!info)
328 return NOTIFY_DONE;
330 down_write(&dmar_global_lock);
331 if (action == BUS_NOTIFY_ADD_DEVICE)
332 dmar_pci_bus_add_dev(info);
333 else if (action == BUS_NOTIFY_DEL_DEVICE)
334 dmar_pci_bus_del_dev(info);
335 up_write(&dmar_global_lock);
337 dmar_free_pci_notify_info(info);
339 return NOTIFY_OK;
342 static struct notifier_block dmar_pci_bus_nb = {
343 .notifier_call = dmar_pci_bus_notifier,
344 .priority = INT_MIN,
348 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
349 * structure which uniquely represent one DMA remapping hardware unit
350 * present in the platform
352 static int __init
353 dmar_parse_one_drhd(struct acpi_dmar_header *header)
355 struct acpi_dmar_hardware_unit *drhd;
356 struct dmar_drhd_unit *dmaru;
357 int ret = 0;
359 drhd = (struct acpi_dmar_hardware_unit *)header;
360 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
361 if (!dmaru)
362 return -ENOMEM;
364 dmaru->hdr = header;
365 dmaru->reg_base_addr = drhd->address;
366 dmaru->segment = drhd->segment;
367 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
368 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
369 ((void *)drhd) + drhd->header.length,
370 &dmaru->devices_cnt);
371 if (dmaru->devices_cnt && dmaru->devices == NULL) {
372 kfree(dmaru);
373 return -ENOMEM;
376 ret = alloc_iommu(dmaru);
377 if (ret) {
378 dmar_free_dev_scope(&dmaru->devices,
379 &dmaru->devices_cnt);
380 kfree(dmaru);
381 return ret;
383 dmar_register_drhd_unit(dmaru);
384 return 0;
387 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
389 if (dmaru->devices && dmaru->devices_cnt)
390 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
391 if (dmaru->iommu)
392 free_iommu(dmaru->iommu);
393 kfree(dmaru);
396 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header)
398 struct acpi_dmar_andd *andd = (void *)header;
400 /* Check for NUL termination within the designated length */
401 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
402 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
403 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
404 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
405 dmi_get_system_info(DMI_BIOS_VENDOR),
406 dmi_get_system_info(DMI_BIOS_VERSION),
407 dmi_get_system_info(DMI_PRODUCT_VERSION));
408 return -EINVAL;
410 pr_info("ANDD device: %x name: %s\n", andd->device_number,
411 andd->device_name);
413 return 0;
416 #ifdef CONFIG_ACPI_NUMA
417 static int __init
418 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
420 struct acpi_dmar_rhsa *rhsa;
421 struct dmar_drhd_unit *drhd;
423 rhsa = (struct acpi_dmar_rhsa *)header;
424 for_each_drhd_unit(drhd) {
425 if (drhd->reg_base_addr == rhsa->base_address) {
426 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
428 if (!node_online(node))
429 node = -1;
430 drhd->iommu->node = node;
431 return 0;
434 WARN_TAINT(
435 1, TAINT_FIRMWARE_WORKAROUND,
436 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
437 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
438 drhd->reg_base_addr,
439 dmi_get_system_info(DMI_BIOS_VENDOR),
440 dmi_get_system_info(DMI_BIOS_VERSION),
441 dmi_get_system_info(DMI_PRODUCT_VERSION));
443 return 0;
445 #endif
447 static void __init
448 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
450 struct acpi_dmar_hardware_unit *drhd;
451 struct acpi_dmar_reserved_memory *rmrr;
452 struct acpi_dmar_atsr *atsr;
453 struct acpi_dmar_rhsa *rhsa;
455 switch (header->type) {
456 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
457 drhd = container_of(header, struct acpi_dmar_hardware_unit,
458 header);
459 pr_info("DRHD base: %#016Lx flags: %#x\n",
460 (unsigned long long)drhd->address, drhd->flags);
461 break;
462 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
463 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
464 header);
465 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
466 (unsigned long long)rmrr->base_address,
467 (unsigned long long)rmrr->end_address);
468 break;
469 case ACPI_DMAR_TYPE_ROOT_ATS:
470 atsr = container_of(header, struct acpi_dmar_atsr, header);
471 pr_info("ATSR flags: %#x\n", atsr->flags);
472 break;
473 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
474 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
475 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
476 (unsigned long long)rhsa->base_address,
477 rhsa->proximity_domain);
478 break;
479 case ACPI_DMAR_TYPE_NAMESPACE:
480 /* We don't print this here because we need to sanity-check
481 it first. So print it in dmar_parse_one_andd() instead. */
482 break;
487 * dmar_table_detect - checks to see if the platform supports DMAR devices
489 static int __init dmar_table_detect(void)
491 acpi_status status = AE_OK;
493 /* if we could find DMAR table, then there are DMAR devices */
494 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
495 (struct acpi_table_header **)&dmar_tbl,
496 &dmar_tbl_size);
498 if (ACPI_SUCCESS(status) && !dmar_tbl) {
499 pr_warn("Unable to map DMAR\n");
500 status = AE_NOT_FOUND;
503 return (ACPI_SUCCESS(status) ? 1 : 0);
507 * parse_dmar_table - parses the DMA reporting table
509 static int __init
510 parse_dmar_table(void)
512 struct acpi_table_dmar *dmar;
513 struct acpi_dmar_header *entry_header;
514 int ret = 0;
515 int drhd_count = 0;
518 * Do it again, earlier dmar_tbl mapping could be mapped with
519 * fixed map.
521 dmar_table_detect();
524 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
525 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
527 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
529 dmar = (struct acpi_table_dmar *)dmar_tbl;
530 if (!dmar)
531 return -ENODEV;
533 if (dmar->width < PAGE_SHIFT - 1) {
534 pr_warn("Invalid DMAR haw\n");
535 return -EINVAL;
538 pr_info("Host address width %d\n", dmar->width + 1);
540 entry_header = (struct acpi_dmar_header *)(dmar + 1);
541 while (((unsigned long)entry_header) <
542 (((unsigned long)dmar) + dmar_tbl->length)) {
543 /* Avoid looping forever on bad ACPI tables */
544 if (entry_header->length == 0) {
545 pr_warn("Invalid 0-length structure\n");
546 ret = -EINVAL;
547 break;
550 dmar_table_print_dmar_entry(entry_header);
552 switch (entry_header->type) {
553 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
554 drhd_count++;
555 ret = dmar_parse_one_drhd(entry_header);
556 break;
557 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
558 ret = dmar_parse_one_rmrr(entry_header);
559 break;
560 case ACPI_DMAR_TYPE_ROOT_ATS:
561 ret = dmar_parse_one_atsr(entry_header);
562 break;
563 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
564 #ifdef CONFIG_ACPI_NUMA
565 ret = dmar_parse_one_rhsa(entry_header);
566 #endif
567 break;
568 case ACPI_DMAR_TYPE_NAMESPACE:
569 ret = dmar_parse_one_andd(entry_header);
570 break;
571 default:
572 pr_warn("Unknown DMAR structure type %d\n",
573 entry_header->type);
574 ret = 0; /* for forward compatibility */
575 break;
577 if (ret)
578 break;
580 entry_header = ((void *)entry_header + entry_header->length);
582 if (drhd_count == 0)
583 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
584 return ret;
587 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
588 int cnt, struct pci_dev *dev)
590 int index;
591 struct device *tmp;
593 while (dev) {
594 for_each_active_dev_scope(devices, cnt, index, tmp)
595 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
596 return 1;
598 /* Check our parent */
599 dev = dev->bus->self;
602 return 0;
605 struct dmar_drhd_unit *
606 dmar_find_matched_drhd_unit(struct pci_dev *dev)
608 struct dmar_drhd_unit *dmaru;
609 struct acpi_dmar_hardware_unit *drhd;
611 dev = pci_physfn(dev);
613 rcu_read_lock();
614 for_each_drhd_unit(dmaru) {
615 drhd = container_of(dmaru->hdr,
616 struct acpi_dmar_hardware_unit,
617 header);
619 if (dmaru->include_all &&
620 drhd->segment == pci_domain_nr(dev->bus))
621 goto out;
623 if (dmar_pci_device_match(dmaru->devices,
624 dmaru->devices_cnt, dev))
625 goto out;
627 dmaru = NULL;
628 out:
629 rcu_read_unlock();
631 return dmaru;
634 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
635 struct acpi_device *adev)
637 struct dmar_drhd_unit *dmaru;
638 struct acpi_dmar_hardware_unit *drhd;
639 struct acpi_dmar_device_scope *scope;
640 struct device *tmp;
641 int i;
642 struct acpi_dmar_pci_path *path;
644 for_each_drhd_unit(dmaru) {
645 drhd = container_of(dmaru->hdr,
646 struct acpi_dmar_hardware_unit,
647 header);
649 for (scope = (void *)(drhd + 1);
650 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
651 scope = ((void *)scope) + scope->length) {
652 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
653 continue;
654 if (scope->enumeration_id != device_number)
655 continue;
657 path = (void *)(scope + 1);
658 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
659 dev_name(&adev->dev), dmaru->reg_base_addr,
660 scope->bus, path->device, path->function);
661 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
662 if (tmp == NULL) {
663 dmaru->devices[i].bus = scope->bus;
664 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
665 path->function);
666 rcu_assign_pointer(dmaru->devices[i].dev,
667 get_device(&adev->dev));
668 return;
670 BUG_ON(i >= dmaru->devices_cnt);
673 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
674 device_number, dev_name(&adev->dev));
677 static int __init dmar_acpi_dev_scope_init(void)
679 struct acpi_dmar_andd *andd;
681 if (dmar_tbl == NULL)
682 return -ENODEV;
684 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
685 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
686 andd = ((void *)andd) + andd->header.length) {
687 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
688 acpi_handle h;
689 struct acpi_device *adev;
691 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
692 andd->device_name,
693 &h))) {
694 pr_err("Failed to find handle for ACPI object %s\n",
695 andd->device_name);
696 continue;
698 if (acpi_bus_get_device(h, &adev)) {
699 pr_err("Failed to get device for ACPI object %s\n",
700 andd->device_name);
701 continue;
703 dmar_acpi_insert_dev_scope(andd->device_number, adev);
706 return 0;
709 int __init dmar_dev_scope_init(void)
711 struct pci_dev *dev = NULL;
712 struct dmar_pci_notify_info *info;
714 if (dmar_dev_scope_status != 1)
715 return dmar_dev_scope_status;
717 if (list_empty(&dmar_drhd_units)) {
718 dmar_dev_scope_status = -ENODEV;
719 } else {
720 dmar_dev_scope_status = 0;
722 dmar_acpi_dev_scope_init();
724 for_each_pci_dev(dev) {
725 if (dev->is_virtfn)
726 continue;
728 info = dmar_alloc_pci_notify_info(dev,
729 BUS_NOTIFY_ADD_DEVICE);
730 if (!info) {
731 return dmar_dev_scope_status;
732 } else {
733 dmar_pci_bus_add_dev(info);
734 dmar_free_pci_notify_info(info);
738 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
741 return dmar_dev_scope_status;
745 int __init dmar_table_init(void)
747 static int dmar_table_initialized;
748 int ret;
750 if (dmar_table_initialized == 0) {
751 ret = parse_dmar_table();
752 if (ret < 0) {
753 if (ret != -ENODEV)
754 pr_info("parse DMAR table failure.\n");
755 } else if (list_empty(&dmar_drhd_units)) {
756 pr_info("No DMAR devices found\n");
757 ret = -ENODEV;
760 if (ret < 0)
761 dmar_table_initialized = ret;
762 else
763 dmar_table_initialized = 1;
766 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
769 static void warn_invalid_dmar(u64 addr, const char *message)
771 WARN_TAINT_ONCE(
772 1, TAINT_FIRMWARE_WORKAROUND,
773 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
774 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
775 addr, message,
776 dmi_get_system_info(DMI_BIOS_VENDOR),
777 dmi_get_system_info(DMI_BIOS_VERSION),
778 dmi_get_system_info(DMI_PRODUCT_VERSION));
781 static int __init check_zero_address(void)
783 struct acpi_table_dmar *dmar;
784 struct acpi_dmar_header *entry_header;
785 struct acpi_dmar_hardware_unit *drhd;
787 dmar = (struct acpi_table_dmar *)dmar_tbl;
788 entry_header = (struct acpi_dmar_header *)(dmar + 1);
790 while (((unsigned long)entry_header) <
791 (((unsigned long)dmar) + dmar_tbl->length)) {
792 /* Avoid looping forever on bad ACPI tables */
793 if (entry_header->length == 0) {
794 pr_warn("Invalid 0-length structure\n");
795 return 0;
798 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
799 void __iomem *addr;
800 u64 cap, ecap;
802 drhd = (void *)entry_header;
803 if (!drhd->address) {
804 warn_invalid_dmar(0, "");
805 goto failed;
808 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
809 if (!addr ) {
810 printk("IOMMU: can't validate: %llx\n", drhd->address);
811 goto failed;
813 cap = dmar_readq(addr + DMAR_CAP_REG);
814 ecap = dmar_readq(addr + DMAR_ECAP_REG);
815 early_iounmap(addr, VTD_PAGE_SIZE);
816 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
817 warn_invalid_dmar(drhd->address,
818 " returns all ones");
819 goto failed;
823 entry_header = ((void *)entry_header + entry_header->length);
825 return 1;
827 failed:
828 return 0;
831 int __init detect_intel_iommu(void)
833 int ret;
835 down_write(&dmar_global_lock);
836 ret = dmar_table_detect();
837 if (ret)
838 ret = check_zero_address();
840 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
841 iommu_detected = 1;
842 /* Make sure ACS will be enabled */
843 pci_request_acs();
846 #ifdef CONFIG_X86
847 if (ret)
848 x86_init.iommu.iommu_init = intel_iommu_init;
849 #endif
851 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
852 dmar_tbl = NULL;
853 up_write(&dmar_global_lock);
855 return ret ? 1 : -ENODEV;
859 static void unmap_iommu(struct intel_iommu *iommu)
861 iounmap(iommu->reg);
862 release_mem_region(iommu->reg_phys, iommu->reg_size);
866 * map_iommu: map the iommu's registers
867 * @iommu: the iommu to map
868 * @phys_addr: the physical address of the base resgister
870 * Memory map the iommu's registers. Start w/ a single page, and
871 * possibly expand if that turns out to be insufficent.
873 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
875 int map_size, err=0;
877 iommu->reg_phys = phys_addr;
878 iommu->reg_size = VTD_PAGE_SIZE;
880 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
881 pr_err("IOMMU: can't reserve memory\n");
882 err = -EBUSY;
883 goto out;
886 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
887 if (!iommu->reg) {
888 pr_err("IOMMU: can't map the region\n");
889 err = -ENOMEM;
890 goto release;
893 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
894 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
896 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
897 err = -EINVAL;
898 warn_invalid_dmar(phys_addr, " returns all ones");
899 goto unmap;
902 /* the registers might be more than one page */
903 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
904 cap_max_fault_reg_offset(iommu->cap));
905 map_size = VTD_PAGE_ALIGN(map_size);
906 if (map_size > iommu->reg_size) {
907 iounmap(iommu->reg);
908 release_mem_region(iommu->reg_phys, iommu->reg_size);
909 iommu->reg_size = map_size;
910 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
911 iommu->name)) {
912 pr_err("IOMMU: can't reserve memory\n");
913 err = -EBUSY;
914 goto out;
916 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
917 if (!iommu->reg) {
918 pr_err("IOMMU: can't map the region\n");
919 err = -ENOMEM;
920 goto release;
923 err = 0;
924 goto out;
926 unmap:
927 iounmap(iommu->reg);
928 release:
929 release_mem_region(iommu->reg_phys, iommu->reg_size);
930 out:
931 return err;
934 static int alloc_iommu(struct dmar_drhd_unit *drhd)
936 struct intel_iommu *iommu;
937 u32 ver, sts;
938 static int iommu_allocated = 0;
939 int agaw = 0;
940 int msagaw = 0;
941 int err;
943 if (!drhd->reg_base_addr) {
944 warn_invalid_dmar(0, "");
945 return -EINVAL;
948 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
949 if (!iommu)
950 return -ENOMEM;
952 iommu->seq_id = iommu_allocated++;
953 sprintf (iommu->name, "dmar%d", iommu->seq_id);
955 err = map_iommu(iommu, drhd->reg_base_addr);
956 if (err) {
957 pr_err("IOMMU: failed to map %s\n", iommu->name);
958 goto error;
961 err = -EINVAL;
962 agaw = iommu_calculate_agaw(iommu);
963 if (agaw < 0) {
964 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
965 iommu->seq_id);
966 goto err_unmap;
968 msagaw = iommu_calculate_max_sagaw(iommu);
969 if (msagaw < 0) {
970 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
971 iommu->seq_id);
972 goto err_unmap;
974 iommu->agaw = agaw;
975 iommu->msagaw = msagaw;
976 iommu->segment = drhd->segment;
978 iommu->node = -1;
980 ver = readl(iommu->reg + DMAR_VER_REG);
981 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
982 iommu->seq_id,
983 (unsigned long long)drhd->reg_base_addr,
984 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
985 (unsigned long long)iommu->cap,
986 (unsigned long long)iommu->ecap);
988 /* Reflect status in gcmd */
989 sts = readl(iommu->reg + DMAR_GSTS_REG);
990 if (sts & DMA_GSTS_IRES)
991 iommu->gcmd |= DMA_GCMD_IRE;
992 if (sts & DMA_GSTS_TES)
993 iommu->gcmd |= DMA_GCMD_TE;
994 if (sts & DMA_GSTS_QIES)
995 iommu->gcmd |= DMA_GCMD_QIE;
997 raw_spin_lock_init(&iommu->register_lock);
999 drhd->iommu = iommu;
1001 if (intel_iommu_enabled)
1002 iommu->iommu_dev = iommu_device_create(NULL, iommu,
1003 intel_iommu_groups,
1004 iommu->name);
1006 return 0;
1008 err_unmap:
1009 unmap_iommu(iommu);
1010 error:
1011 kfree(iommu);
1012 return err;
1015 static void free_iommu(struct intel_iommu *iommu)
1017 iommu_device_destroy(iommu->iommu_dev);
1019 if (iommu->irq) {
1020 free_irq(iommu->irq, iommu);
1021 irq_set_handler_data(iommu->irq, NULL);
1022 dmar_free_hwirq(iommu->irq);
1025 if (iommu->qi) {
1026 free_page((unsigned long)iommu->qi->desc);
1027 kfree(iommu->qi->desc_status);
1028 kfree(iommu->qi);
1031 if (iommu->reg)
1032 unmap_iommu(iommu);
1034 kfree(iommu);
1038 * Reclaim all the submitted descriptors which have completed its work.
1040 static inline void reclaim_free_desc(struct q_inval *qi)
1042 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1043 qi->desc_status[qi->free_tail] == QI_ABORT) {
1044 qi->desc_status[qi->free_tail] = QI_FREE;
1045 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1046 qi->free_cnt++;
1050 static int qi_check_fault(struct intel_iommu *iommu, int index)
1052 u32 fault;
1053 int head, tail;
1054 struct q_inval *qi = iommu->qi;
1055 int wait_index = (index + 1) % QI_LENGTH;
1057 if (qi->desc_status[wait_index] == QI_ABORT)
1058 return -EAGAIN;
1060 fault = readl(iommu->reg + DMAR_FSTS_REG);
1063 * If IQE happens, the head points to the descriptor associated
1064 * with the error. No new descriptors are fetched until the IQE
1065 * is cleared.
1067 if (fault & DMA_FSTS_IQE) {
1068 head = readl(iommu->reg + DMAR_IQH_REG);
1069 if ((head >> DMAR_IQ_SHIFT) == index) {
1070 pr_err("VT-d detected invalid descriptor: "
1071 "low=%llx, high=%llx\n",
1072 (unsigned long long)qi->desc[index].low,
1073 (unsigned long long)qi->desc[index].high);
1074 memcpy(&qi->desc[index], &qi->desc[wait_index],
1075 sizeof(struct qi_desc));
1076 __iommu_flush_cache(iommu, &qi->desc[index],
1077 sizeof(struct qi_desc));
1078 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1079 return -EINVAL;
1084 * If ITE happens, all pending wait_desc commands are aborted.
1085 * No new descriptors are fetched until the ITE is cleared.
1087 if (fault & DMA_FSTS_ITE) {
1088 head = readl(iommu->reg + DMAR_IQH_REG);
1089 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1090 head |= 1;
1091 tail = readl(iommu->reg + DMAR_IQT_REG);
1092 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1094 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1096 do {
1097 if (qi->desc_status[head] == QI_IN_USE)
1098 qi->desc_status[head] = QI_ABORT;
1099 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1100 } while (head != tail);
1102 if (qi->desc_status[wait_index] == QI_ABORT)
1103 return -EAGAIN;
1106 if (fault & DMA_FSTS_ICE)
1107 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1109 return 0;
1113 * Submit the queued invalidation descriptor to the remapping
1114 * hardware unit and wait for its completion.
1116 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1118 int rc;
1119 struct q_inval *qi = iommu->qi;
1120 struct qi_desc *hw, wait_desc;
1121 int wait_index, index;
1122 unsigned long flags;
1124 if (!qi)
1125 return 0;
1127 hw = qi->desc;
1129 restart:
1130 rc = 0;
1132 raw_spin_lock_irqsave(&qi->q_lock, flags);
1133 while (qi->free_cnt < 3) {
1134 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1135 cpu_relax();
1136 raw_spin_lock_irqsave(&qi->q_lock, flags);
1139 index = qi->free_head;
1140 wait_index = (index + 1) % QI_LENGTH;
1142 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1144 hw[index] = *desc;
1146 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1147 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1148 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1150 hw[wait_index] = wait_desc;
1152 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1153 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1155 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1156 qi->free_cnt -= 2;
1159 * update the HW tail register indicating the presence of
1160 * new descriptors.
1162 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1164 while (qi->desc_status[wait_index] != QI_DONE) {
1166 * We will leave the interrupts disabled, to prevent interrupt
1167 * context to queue another cmd while a cmd is already submitted
1168 * and waiting for completion on this cpu. This is to avoid
1169 * a deadlock where the interrupt context can wait indefinitely
1170 * for free slots in the queue.
1172 rc = qi_check_fault(iommu, index);
1173 if (rc)
1174 break;
1176 raw_spin_unlock(&qi->q_lock);
1177 cpu_relax();
1178 raw_spin_lock(&qi->q_lock);
1181 qi->desc_status[index] = QI_DONE;
1183 reclaim_free_desc(qi);
1184 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1186 if (rc == -EAGAIN)
1187 goto restart;
1189 return rc;
1193 * Flush the global interrupt entry cache.
1195 void qi_global_iec(struct intel_iommu *iommu)
1197 struct qi_desc desc;
1199 desc.low = QI_IEC_TYPE;
1200 desc.high = 0;
1202 /* should never fail */
1203 qi_submit_sync(&desc, iommu);
1206 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1207 u64 type)
1209 struct qi_desc desc;
1211 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1212 | QI_CC_GRAN(type) | QI_CC_TYPE;
1213 desc.high = 0;
1215 qi_submit_sync(&desc, iommu);
1218 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1219 unsigned int size_order, u64 type)
1221 u8 dw = 0, dr = 0;
1223 struct qi_desc desc;
1224 int ih = 0;
1226 if (cap_write_drain(iommu->cap))
1227 dw = 1;
1229 if (cap_read_drain(iommu->cap))
1230 dr = 1;
1232 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1233 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1234 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1235 | QI_IOTLB_AM(size_order);
1237 qi_submit_sync(&desc, iommu);
1240 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1241 u64 addr, unsigned mask)
1243 struct qi_desc desc;
1245 if (mask) {
1246 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1247 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1248 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1249 } else
1250 desc.high = QI_DEV_IOTLB_ADDR(addr);
1252 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1253 qdep = 0;
1255 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1256 QI_DIOTLB_TYPE;
1258 qi_submit_sync(&desc, iommu);
1262 * Disable Queued Invalidation interface.
1264 void dmar_disable_qi(struct intel_iommu *iommu)
1266 unsigned long flags;
1267 u32 sts;
1268 cycles_t start_time = get_cycles();
1270 if (!ecap_qis(iommu->ecap))
1271 return;
1273 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1275 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1276 if (!(sts & DMA_GSTS_QIES))
1277 goto end;
1280 * Give a chance to HW to complete the pending invalidation requests.
1282 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1283 readl(iommu->reg + DMAR_IQH_REG)) &&
1284 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1285 cpu_relax();
1287 iommu->gcmd &= ~DMA_GCMD_QIE;
1288 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1290 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1291 !(sts & DMA_GSTS_QIES), sts);
1292 end:
1293 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1297 * Enable queued invalidation.
1299 static void __dmar_enable_qi(struct intel_iommu *iommu)
1301 u32 sts;
1302 unsigned long flags;
1303 struct q_inval *qi = iommu->qi;
1305 qi->free_head = qi->free_tail = 0;
1306 qi->free_cnt = QI_LENGTH;
1308 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1310 /* write zero to the tail reg */
1311 writel(0, iommu->reg + DMAR_IQT_REG);
1313 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1315 iommu->gcmd |= DMA_GCMD_QIE;
1316 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1318 /* Make sure hardware complete it */
1319 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1321 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1325 * Enable Queued Invalidation interface. This is a must to support
1326 * interrupt-remapping. Also used by DMA-remapping, which replaces
1327 * register based IOTLB invalidation.
1329 int dmar_enable_qi(struct intel_iommu *iommu)
1331 struct q_inval *qi;
1332 struct page *desc_page;
1334 if (!ecap_qis(iommu->ecap))
1335 return -ENOENT;
1338 * queued invalidation is already setup and enabled.
1340 if (iommu->qi)
1341 return 0;
1343 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1344 if (!iommu->qi)
1345 return -ENOMEM;
1347 qi = iommu->qi;
1350 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1351 if (!desc_page) {
1352 kfree(qi);
1353 iommu->qi = NULL;
1354 return -ENOMEM;
1357 qi->desc = page_address(desc_page);
1359 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1360 if (!qi->desc_status) {
1361 free_page((unsigned long) qi->desc);
1362 kfree(qi);
1363 iommu->qi = NULL;
1364 return -ENOMEM;
1367 raw_spin_lock_init(&qi->q_lock);
1369 __dmar_enable_qi(iommu);
1371 return 0;
1374 /* iommu interrupt handling. Most stuff are MSI-like. */
1376 enum faulttype {
1377 DMA_REMAP,
1378 INTR_REMAP,
1379 UNKNOWN,
1382 static const char *dma_remap_fault_reasons[] =
1384 "Software",
1385 "Present bit in root entry is clear",
1386 "Present bit in context entry is clear",
1387 "Invalid context entry",
1388 "Access beyond MGAW",
1389 "PTE Write access is not set",
1390 "PTE Read access is not set",
1391 "Next page table ptr is invalid",
1392 "Root table address invalid",
1393 "Context table ptr is invalid",
1394 "non-zero reserved fields in RTP",
1395 "non-zero reserved fields in CTP",
1396 "non-zero reserved fields in PTE",
1397 "PCE for translation request specifies blocking",
1400 static const char *irq_remap_fault_reasons[] =
1402 "Detected reserved fields in the decoded interrupt-remapped request",
1403 "Interrupt index exceeded the interrupt-remapping table size",
1404 "Present field in the IRTE entry is clear",
1405 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1406 "Detected reserved fields in the IRTE entry",
1407 "Blocked a compatibility format interrupt request",
1408 "Blocked an interrupt request due to source-id verification failure",
1411 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1413 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1414 ARRAY_SIZE(irq_remap_fault_reasons))) {
1415 *fault_type = INTR_REMAP;
1416 return irq_remap_fault_reasons[fault_reason - 0x20];
1417 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1418 *fault_type = DMA_REMAP;
1419 return dma_remap_fault_reasons[fault_reason];
1420 } else {
1421 *fault_type = UNKNOWN;
1422 return "Unknown";
1426 void dmar_msi_unmask(struct irq_data *data)
1428 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1429 unsigned long flag;
1431 /* unmask it */
1432 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1433 writel(0, iommu->reg + DMAR_FECTL_REG);
1434 /* Read a reg to force flush the post write */
1435 readl(iommu->reg + DMAR_FECTL_REG);
1436 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1439 void dmar_msi_mask(struct irq_data *data)
1441 unsigned long flag;
1442 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1444 /* mask it */
1445 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1446 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1447 /* Read a reg to force flush the post write */
1448 readl(iommu->reg + DMAR_FECTL_REG);
1449 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1452 void dmar_msi_write(int irq, struct msi_msg *msg)
1454 struct intel_iommu *iommu = irq_get_handler_data(irq);
1455 unsigned long flag;
1457 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1458 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1459 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1460 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1461 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1464 void dmar_msi_read(int irq, struct msi_msg *msg)
1466 struct intel_iommu *iommu = irq_get_handler_data(irq);
1467 unsigned long flag;
1469 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1470 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1471 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1472 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1473 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1476 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1477 u8 fault_reason, u16 source_id, unsigned long long addr)
1479 const char *reason;
1480 int fault_type;
1482 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1484 if (fault_type == INTR_REMAP)
1485 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1486 "fault index %llx\n"
1487 "INTR-REMAP:[fault reason %02d] %s\n",
1488 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1489 PCI_FUNC(source_id & 0xFF), addr >> 48,
1490 fault_reason, reason);
1491 else
1492 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1493 "fault addr %llx \n"
1494 "DMAR:[fault reason %02d] %s\n",
1495 (type ? "DMA Read" : "DMA Write"),
1496 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1497 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1498 return 0;
1501 #define PRIMARY_FAULT_REG_LEN (16)
1502 irqreturn_t dmar_fault(int irq, void *dev_id)
1504 struct intel_iommu *iommu = dev_id;
1505 int reg, fault_index;
1506 u32 fault_status;
1507 unsigned long flag;
1509 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1510 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1511 if (fault_status)
1512 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1514 /* TBD: ignore advanced fault log currently */
1515 if (!(fault_status & DMA_FSTS_PPF))
1516 goto unlock_exit;
1518 fault_index = dma_fsts_fault_record_index(fault_status);
1519 reg = cap_fault_reg_offset(iommu->cap);
1520 while (1) {
1521 u8 fault_reason;
1522 u16 source_id;
1523 u64 guest_addr;
1524 int type;
1525 u32 data;
1527 /* highest 32 bits */
1528 data = readl(iommu->reg + reg +
1529 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1530 if (!(data & DMA_FRCD_F))
1531 break;
1533 fault_reason = dma_frcd_fault_reason(data);
1534 type = dma_frcd_type(data);
1536 data = readl(iommu->reg + reg +
1537 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1538 source_id = dma_frcd_source_id(data);
1540 guest_addr = dmar_readq(iommu->reg + reg +
1541 fault_index * PRIMARY_FAULT_REG_LEN);
1542 guest_addr = dma_frcd_page_addr(guest_addr);
1543 /* clear the fault */
1544 writel(DMA_FRCD_F, iommu->reg + reg +
1545 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1547 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1549 dmar_fault_do_one(iommu, type, fault_reason,
1550 source_id, guest_addr);
1552 fault_index++;
1553 if (fault_index >= cap_num_fault_regs(iommu->cap))
1554 fault_index = 0;
1555 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1558 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1560 unlock_exit:
1561 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1562 return IRQ_HANDLED;
1565 int dmar_set_interrupt(struct intel_iommu *iommu)
1567 int irq, ret;
1570 * Check if the fault interrupt is already initialized.
1572 if (iommu->irq)
1573 return 0;
1575 irq = dmar_alloc_hwirq();
1576 if (irq <= 0) {
1577 pr_err("IOMMU: no free vectors\n");
1578 return -EINVAL;
1581 irq_set_handler_data(irq, iommu);
1582 iommu->irq = irq;
1584 ret = arch_setup_dmar_msi(irq);
1585 if (ret) {
1586 irq_set_handler_data(irq, NULL);
1587 iommu->irq = 0;
1588 dmar_free_hwirq(irq);
1589 return ret;
1592 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1593 if (ret)
1594 pr_err("IOMMU: can't request irq\n");
1595 return ret;
1598 int __init enable_drhd_fault_handling(void)
1600 struct dmar_drhd_unit *drhd;
1601 struct intel_iommu *iommu;
1604 * Enable fault control interrupt.
1606 for_each_iommu(iommu, drhd) {
1607 u32 fault_status;
1608 int ret = dmar_set_interrupt(iommu);
1610 if (ret) {
1611 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1612 (unsigned long long)drhd->reg_base_addr, ret);
1613 return -1;
1617 * Clear any previous faults.
1619 dmar_fault(iommu->irq, iommu);
1620 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1621 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1624 return 0;
1628 * Re-enable Queued Invalidation interface.
1630 int dmar_reenable_qi(struct intel_iommu *iommu)
1632 if (!ecap_qis(iommu->ecap))
1633 return -ENOENT;
1635 if (!iommu->qi)
1636 return -ENOENT;
1639 * First disable queued invalidation.
1641 dmar_disable_qi(iommu);
1643 * Then enable queued invalidation again. Since there is no pending
1644 * invalidation requests now, it's safe to re-enable queued
1645 * invalidation.
1647 __dmar_enable_qi(iommu);
1649 return 0;
1653 * Check interrupt remapping support in DMAR table description.
1655 int __init dmar_ir_support(void)
1657 struct acpi_table_dmar *dmar;
1658 dmar = (struct acpi_table_dmar *)dmar_tbl;
1659 if (!dmar)
1660 return 0;
1661 return dmar->flags & 0x1;
1664 static int __init dmar_free_unused_resources(void)
1666 struct dmar_drhd_unit *dmaru, *dmaru_n;
1668 /* DMAR units are in use */
1669 if (irq_remapping_enabled || intel_iommu_enabled)
1670 return 0;
1672 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1673 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1675 down_write(&dmar_global_lock);
1676 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1677 list_del(&dmaru->list);
1678 dmar_free_drhd(dmaru);
1680 up_write(&dmar_global_lock);
1682 return 0;
1685 late_initcall(dmar_free_unused_resources);
1686 IOMMU_INIT_POST(detect_intel_iommu);