mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / iommu / ipmmu-vmsa.c
blobe509c58eee92ac9ccfda3ea13d7f0617cb900af1
1 /*
2 * IPMMU VMSA
4 * Copyright (C) 2014 Renesas Electronics Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/module.h>
19 #include <linux/platform_data/ipmmu-vmsa.h>
20 #include <linux/platform_device.h>
21 #include <linux/sizes.h>
22 #include <linux/slab.h>
24 #include <asm/dma-iommu.h>
25 #include <asm/pgalloc.h>
27 struct ipmmu_vmsa_device {
28 struct device *dev;
29 void __iomem *base;
30 struct list_head list;
32 const struct ipmmu_vmsa_platform_data *pdata;
33 unsigned int num_utlbs;
35 struct dma_iommu_mapping *mapping;
38 struct ipmmu_vmsa_domain {
39 struct ipmmu_vmsa_device *mmu;
40 struct iommu_domain *io_domain;
42 unsigned int context_id;
43 spinlock_t lock; /* Protects mappings */
44 pgd_t *pgd;
47 struct ipmmu_vmsa_archdata {
48 struct ipmmu_vmsa_device *mmu;
49 unsigned int utlb;
52 static DEFINE_SPINLOCK(ipmmu_devices_lock);
53 static LIST_HEAD(ipmmu_devices);
55 #define TLB_LOOP_TIMEOUT 100 /* 100us */
57 /* -----------------------------------------------------------------------------
58 * Registers Definition
61 #define IM_CTX_SIZE 0x40
63 #define IMCTR 0x0000
64 #define IMCTR_TRE (1 << 17)
65 #define IMCTR_AFE (1 << 16)
66 #define IMCTR_RTSEL_MASK (3 << 4)
67 #define IMCTR_RTSEL_SHIFT 4
68 #define IMCTR_TREN (1 << 3)
69 #define IMCTR_INTEN (1 << 2)
70 #define IMCTR_FLUSH (1 << 1)
71 #define IMCTR_MMUEN (1 << 0)
73 #define IMCAAR 0x0004
75 #define IMTTBCR 0x0008
76 #define IMTTBCR_EAE (1 << 31)
77 #define IMTTBCR_PMB (1 << 30)
78 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
79 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
80 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
81 #define IMTTBCR_SH1_MASK (3 << 28)
82 #define IMTTBCR_ORGN1_NC (0 << 26)
83 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
84 #define IMTTBCR_ORGN1_WT (2 << 26)
85 #define IMTTBCR_ORGN1_WB (3 << 26)
86 #define IMTTBCR_ORGN1_MASK (3 << 26)
87 #define IMTTBCR_IRGN1_NC (0 << 24)
88 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
89 #define IMTTBCR_IRGN1_WT (2 << 24)
90 #define IMTTBCR_IRGN1_WB (3 << 24)
91 #define IMTTBCR_IRGN1_MASK (3 << 24)
92 #define IMTTBCR_TSZ1_MASK (7 << 16)
93 #define IMTTBCR_TSZ1_SHIFT 16
94 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
95 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
96 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
97 #define IMTTBCR_SH0_MASK (3 << 12)
98 #define IMTTBCR_ORGN0_NC (0 << 10)
99 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
100 #define IMTTBCR_ORGN0_WT (2 << 10)
101 #define IMTTBCR_ORGN0_WB (3 << 10)
102 #define IMTTBCR_ORGN0_MASK (3 << 10)
103 #define IMTTBCR_IRGN0_NC (0 << 8)
104 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
105 #define IMTTBCR_IRGN0_WT (2 << 8)
106 #define IMTTBCR_IRGN0_WB (3 << 8)
107 #define IMTTBCR_IRGN0_MASK (3 << 8)
108 #define IMTTBCR_SL0_LVL_2 (0 << 4)
109 #define IMTTBCR_SL0_LVL_1 (1 << 4)
110 #define IMTTBCR_TSZ0_MASK (7 << 0)
111 #define IMTTBCR_TSZ0_SHIFT O
113 #define IMBUSCR 0x000c
114 #define IMBUSCR_DVM (1 << 2)
115 #define IMBUSCR_BUSSEL_SYS (0 << 0)
116 #define IMBUSCR_BUSSEL_CCI (1 << 0)
117 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
118 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
119 #define IMBUSCR_BUSSEL_MASK (3 << 0)
121 #define IMTTLBR0 0x0010
122 #define IMTTUBR0 0x0014
123 #define IMTTLBR1 0x0018
124 #define IMTTUBR1 0x001c
126 #define IMSTR 0x0020
127 #define IMSTR_ERRLVL_MASK (3 << 12)
128 #define IMSTR_ERRLVL_SHIFT 12
129 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
130 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
131 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
132 #define IMSTR_ERRCODE_MASK (7 << 8)
133 #define IMSTR_MHIT (1 << 4)
134 #define IMSTR_ABORT (1 << 2)
135 #define IMSTR_PF (1 << 1)
136 #define IMSTR_TF (1 << 0)
138 #define IMMAIR0 0x0028
139 #define IMMAIR1 0x002c
140 #define IMMAIR_ATTR_MASK 0xff
141 #define IMMAIR_ATTR_DEVICE 0x04
142 #define IMMAIR_ATTR_NC 0x44
143 #define IMMAIR_ATTR_WBRWA 0xff
144 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
145 #define IMMAIR_ATTR_IDX_NC 0
146 #define IMMAIR_ATTR_IDX_WBRWA 1
147 #define IMMAIR_ATTR_IDX_DEV 2
149 #define IMEAR 0x0030
151 #define IMPCTR 0x0200
152 #define IMPSTR 0x0208
153 #define IMPEAR 0x020c
154 #define IMPMBA(n) (0x0280 + ((n) * 4))
155 #define IMPMBD(n) (0x02c0 + ((n) * 4))
157 #define IMUCTR(n) (0x0300 + ((n) * 16))
158 #define IMUCTR_FIXADDEN (1 << 31)
159 #define IMUCTR_FIXADD_MASK (0xff << 16)
160 #define IMUCTR_FIXADD_SHIFT 16
161 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
162 #define IMUCTR_TTSEL_PMB (8 << 4)
163 #define IMUCTR_TTSEL_MASK (15 << 4)
164 #define IMUCTR_FLUSH (1 << 1)
165 #define IMUCTR_MMUEN (1 << 0)
167 #define IMUASID(n) (0x0308 + ((n) * 16))
168 #define IMUASID_ASID8_MASK (0xff << 8)
169 #define IMUASID_ASID8_SHIFT 8
170 #define IMUASID_ASID0_MASK (0xff << 0)
171 #define IMUASID_ASID0_SHIFT 0
173 /* -----------------------------------------------------------------------------
174 * Page Table Bits
178 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
179 * Long-descriptor format" that the NStable bit being set in a table descriptor
180 * will result in the NStable and NS bits of all child entries being ignored and
181 * considered as being set. The IPMMU seems not to comply with this, as it
182 * generates a secure access page fault if any of the NStable and NS bits isn't
183 * set when running in non-secure mode.
185 #ifndef PMD_NSTABLE
186 #define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
187 #endif
189 #define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
190 #define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
191 #define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
192 #define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
193 #define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
194 #define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
195 #define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8)
196 #define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
197 #define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
199 /* Stage-1 PTE */
200 #define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
201 #define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
202 #define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
203 #define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6)
204 #define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2)
205 #define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
207 #define ARM_VMSA_PTE_ATTRS_MASK \
208 (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
209 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
210 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
212 #define ARM_VMSA_PTE_CONT_ENTRIES 16
213 #define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
215 #define IPMMU_PTRS_PER_PTE 512
216 #define IPMMU_PTRS_PER_PMD 512
217 #define IPMMU_PTRS_PER_PGD 4
219 /* -----------------------------------------------------------------------------
220 * Read/Write Access
223 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
225 return ioread32(mmu->base + offset);
228 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
229 u32 data)
231 iowrite32(data, mmu->base + offset);
234 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
236 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
239 static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
240 u32 data)
242 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
245 /* -----------------------------------------------------------------------------
246 * TLB and microTLB Management
249 /* Wait for any pending TLB invalidations to complete */
250 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
252 unsigned int count = 0;
254 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
255 cpu_relax();
256 if (++count == TLB_LOOP_TIMEOUT) {
257 dev_err_ratelimited(domain->mmu->dev,
258 "TLB sync timed out -- MMU may be deadlocked\n");
259 return;
261 udelay(1);
265 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
267 u32 reg;
269 reg = ipmmu_ctx_read(domain, IMCTR);
270 reg |= IMCTR_FLUSH;
271 ipmmu_ctx_write(domain, IMCTR, reg);
273 ipmmu_tlb_sync(domain);
277 * Enable MMU translation for the microTLB.
279 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
280 unsigned int utlb)
282 struct ipmmu_vmsa_device *mmu = domain->mmu;
285 * TODO: Reference-count the microTLB as several bus masters can be
286 * connected to the same microTLB.
289 /* TODO: What should we set the ASID to ? */
290 ipmmu_write(mmu, IMUASID(utlb), 0);
291 /* TODO: Do we need to flush the microTLB ? */
292 ipmmu_write(mmu, IMUCTR(utlb),
293 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
294 IMUCTR_MMUEN);
298 * Disable MMU translation for the microTLB.
300 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
301 unsigned int utlb)
303 struct ipmmu_vmsa_device *mmu = domain->mmu;
305 ipmmu_write(mmu, IMUCTR(utlb), 0);
308 static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
309 size_t size)
311 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
314 * TODO: Add support for coherent walk through CCI with DVM and remove
315 * cache handling.
317 dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
320 /* -----------------------------------------------------------------------------
321 * Domain/Context Management
324 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
326 phys_addr_t ttbr;
327 u32 reg;
330 * TODO: When adding support for multiple contexts, find an unused
331 * context.
333 domain->context_id = 0;
335 /* TTBR0 */
336 ipmmu_flush_pgtable(domain->mmu, domain->pgd,
337 IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
338 ttbr = __pa(domain->pgd);
339 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
340 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
343 * TTBCR
344 * We use long descriptors with inner-shareable WBWA tables and allocate
345 * the whole 32-bit VA space to TTBR0.
347 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
348 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
349 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
352 * MAIR0
353 * We need three attributes only, non-cacheable, write-back read/write
354 * allocate and device memory.
356 reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
357 | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
358 | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
359 ipmmu_ctx_write(domain, IMMAIR0, reg);
361 /* IMBUSCR */
362 ipmmu_ctx_write(domain, IMBUSCR,
363 ipmmu_ctx_read(domain, IMBUSCR) &
364 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
367 * IMSTR
368 * Clear all interrupt flags.
370 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
373 * IMCTR
374 * Enable the MMU and interrupt generation. The long-descriptor
375 * translation table format doesn't use TEX remapping. Don't enable AF
376 * software management as we have no use for it. Flush the TLB as
377 * required when modifying the context registers.
379 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
381 return 0;
384 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
387 * Disable the context. Flush the TLB as required when modifying the
388 * context registers.
390 * TODO: Is TLB flush really needed ?
392 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
393 ipmmu_tlb_sync(domain);
396 /* -----------------------------------------------------------------------------
397 * Fault Handling
400 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
402 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
403 struct ipmmu_vmsa_device *mmu = domain->mmu;
404 u32 status;
405 u32 iova;
407 status = ipmmu_ctx_read(domain, IMSTR);
408 if (!(status & err_mask))
409 return IRQ_NONE;
411 iova = ipmmu_ctx_read(domain, IMEAR);
414 * Clear the error status flags. Unlike traditional interrupt flag
415 * registers that must be cleared by writing 1, this status register
416 * seems to require 0. The error address register must be read before,
417 * otherwise its value will be 0.
419 ipmmu_ctx_write(domain, IMSTR, 0);
421 /* Log fatal errors. */
422 if (status & IMSTR_MHIT)
423 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
424 iova);
425 if (status & IMSTR_ABORT)
426 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
427 iova);
429 if (!(status & (IMSTR_PF | IMSTR_TF)))
430 return IRQ_NONE;
433 * Try to handle page faults and translation faults.
435 * TODO: We need to look up the faulty device based on the I/O VA. Use
436 * the IOMMU device for now.
438 if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
439 return IRQ_HANDLED;
441 dev_err_ratelimited(mmu->dev,
442 "Unhandled fault: status 0x%08x iova 0x%08x\n",
443 status, iova);
445 return IRQ_HANDLED;
448 static irqreturn_t ipmmu_irq(int irq, void *dev)
450 struct ipmmu_vmsa_device *mmu = dev;
451 struct iommu_domain *io_domain;
452 struct ipmmu_vmsa_domain *domain;
454 if (!mmu->mapping)
455 return IRQ_NONE;
457 io_domain = mmu->mapping->domain;
458 domain = io_domain->priv;
460 return ipmmu_domain_irq(domain);
463 /* -----------------------------------------------------------------------------
464 * Page Table Management
467 #define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
469 static void ipmmu_free_ptes(pmd_t *pmd)
471 pgtable_t table = pmd_pgtable(*pmd);
472 __free_page(table);
475 static void ipmmu_free_pmds(pud_t *pud)
477 pmd_t *pmd = pmd_offset(pud, 0);
478 pgtable_t table;
479 unsigned int i;
481 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
482 if (!pmd_table(*pmd))
483 continue;
485 ipmmu_free_ptes(pmd);
486 pmd++;
489 table = pud_pgtable(*pud);
490 __free_page(table);
493 static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
495 pgd_t *pgd, *pgd_base = domain->pgd;
496 unsigned int i;
499 * Recursively free the page tables for this domain. We don't care about
500 * speculative TLB filling, because the TLB will be nuked next time this
501 * context bank is re-allocated and no devices currently map to these
502 * tables.
504 pgd = pgd_base;
505 for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
506 if (pgd_none(*pgd))
507 continue;
508 ipmmu_free_pmds((pud_t *)pgd);
509 pgd++;
512 kfree(pgd_base);
516 * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
517 * functions as they would flush the CPU TLB.
520 static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
521 unsigned long iova)
523 pte_t *pte;
525 if (!pmd_none(*pmd))
526 return pte_offset_kernel(pmd, iova);
528 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
529 if (!pte)
530 return NULL;
532 ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
533 *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
534 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
536 return pte + pte_index(iova);
539 static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
540 unsigned long iova)
542 pud_t *pud = (pud_t *)pgd;
543 pmd_t *pmd;
545 if (!pud_none(*pud))
546 return pmd_offset(pud, iova);
548 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
549 if (!pmd)
550 return NULL;
552 ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
553 *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
554 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
556 return pmd + pmd_index(iova);
559 static u64 ipmmu_page_prot(unsigned int prot, u64 type)
561 u64 pgprot = ARM_VMSA_PTE_XN | ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
562 | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
563 | ARM_VMSA_PTE_NS | type;
565 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
566 pgprot |= ARM_VMSA_PTE_AP_RDONLY;
568 if (prot & IOMMU_CACHE)
569 pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
571 if (prot & IOMMU_EXEC)
572 pgprot &= ~ARM_VMSA_PTE_XN;
573 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
574 /* If no access create a faulting entry to avoid TLB fills. */
575 pgprot &= ~ARM_VMSA_PTE_PAGE;
577 return pgprot;
580 static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
581 unsigned long iova, unsigned long pfn,
582 size_t size, int prot)
584 pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
585 unsigned int num_ptes = 1;
586 pte_t *pte, *start;
587 unsigned int i;
589 pte = ipmmu_alloc_pte(mmu, pmd, iova);
590 if (!pte)
591 return -ENOMEM;
593 start = pte;
596 * Install the page table entries. We can be called both for a single
597 * page or for a block of 16 physically contiguous pages. In the latter
598 * case set the PTE contiguous hint.
600 if (size == SZ_64K) {
601 pteval |= ARM_VMSA_PTE_CONT;
602 num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
605 for (i = num_ptes; i; --i)
606 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
608 ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
610 return 0;
613 static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
614 unsigned long iova, unsigned long pfn,
615 int prot)
617 pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
619 *pmd = pfn_pmd(pfn, __pgprot(pmdval));
620 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
622 return 0;
625 static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
626 unsigned long iova, phys_addr_t paddr,
627 size_t size, int prot)
629 struct ipmmu_vmsa_device *mmu = domain->mmu;
630 pgd_t *pgd = domain->pgd;
631 unsigned long flags;
632 unsigned long pfn;
633 pmd_t *pmd;
634 int ret;
636 if (!pgd)
637 return -EINVAL;
639 if (size & ~PAGE_MASK)
640 return -EINVAL;
642 if (paddr & ~((1ULL << 40) - 1))
643 return -ERANGE;
645 pfn = __phys_to_pfn(paddr);
646 pgd += pgd_index(iova);
648 /* Update the page tables. */
649 spin_lock_irqsave(&domain->lock, flags);
651 pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
652 if (!pmd) {
653 ret = -ENOMEM;
654 goto done;
657 switch (size) {
658 case SZ_2M:
659 ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
660 break;
661 case SZ_64K:
662 case SZ_4K:
663 ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
664 break;
665 default:
666 ret = -EINVAL;
667 break;
670 done:
671 spin_unlock_irqrestore(&domain->lock, flags);
673 if (!ret)
674 ipmmu_tlb_invalidate(domain);
676 return ret;
679 static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
681 /* Free the page table. */
682 pgtable_t table = pud_pgtable(*pud);
683 __free_page(table);
685 /* Clear the PUD. */
686 *pud = __pud(0);
687 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
690 static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
691 pmd_t *pmd)
693 unsigned int i;
695 /* Free the page table. */
696 if (pmd_table(*pmd)) {
697 pgtable_t table = pmd_pgtable(*pmd);
698 __free_page(table);
701 /* Clear the PMD. */
702 *pmd = __pmd(0);
703 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
705 /* Check whether the PUD is still needed. */
706 pmd = pmd_offset(pud, 0);
707 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
708 if (!pmd_none(pmd[i]))
709 return;
712 /* Clear the parent PUD. */
713 ipmmu_clear_pud(mmu, pud);
716 static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
717 pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
719 unsigned int i;
721 /* Clear the PTE. */
722 for (i = num_ptes; i; --i)
723 pte[i-1] = __pte(0);
725 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
727 /* Check whether the PMD is still needed. */
728 pte = pte_offset_kernel(pmd, 0);
729 for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
730 if (!pte_none(pte[i]))
731 return;
734 /* Clear the parent PMD. */
735 ipmmu_clear_pmd(mmu, pud, pmd);
738 static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
740 pte_t *pte, *start;
741 pteval_t pteval;
742 unsigned long pfn;
743 unsigned int i;
745 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
746 if (!pte)
747 return -ENOMEM;
749 /* Copy the PMD attributes. */
750 pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
751 | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
753 pfn = pmd_pfn(*pmd);
754 start = pte;
756 for (i = IPMMU_PTRS_PER_PTE; i; --i)
757 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
759 ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
760 *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
761 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
763 return 0;
766 static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
768 unsigned int i;
770 for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
771 pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
773 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
776 static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
777 unsigned long iova, size_t size)
779 struct ipmmu_vmsa_device *mmu = domain->mmu;
780 unsigned long flags;
781 pgd_t *pgd = domain->pgd;
782 pud_t *pud;
783 pmd_t *pmd;
784 pte_t *pte;
785 int ret = 0;
787 if (!pgd)
788 return -EINVAL;
790 if (size & ~PAGE_MASK)
791 return -EINVAL;
793 pgd += pgd_index(iova);
794 pud = (pud_t *)pgd;
796 spin_lock_irqsave(&domain->lock, flags);
798 /* If there's no PUD or PMD we're done. */
799 if (pud_none(*pud))
800 goto done;
802 pmd = pmd_offset(pud, iova);
803 if (pmd_none(*pmd))
804 goto done;
807 * When freeing a 2MB block just clear the PMD. In the unlikely case the
808 * block is mapped as individual pages this will free the corresponding
809 * PTE page table.
811 if (size == SZ_2M) {
812 ipmmu_clear_pmd(mmu, pud, pmd);
813 goto done;
817 * If the PMD has been mapped as a section remap it as pages to allow
818 * freeing individual pages.
820 if (pmd_sect(*pmd))
821 ipmmu_split_pmd(mmu, pmd);
823 pte = pte_offset_kernel(pmd, iova);
826 * When freeing a 64kB block just clear the PTE entries. We don't have
827 * to care about the contiguous hint of the surrounding entries.
829 if (size == SZ_64K) {
830 ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
831 goto done;
835 * If the PTE has been mapped with the contiguous hint set remap it and
836 * its surrounding PTEs to allow unmapping a single page.
838 if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
839 ipmmu_split_pte(mmu, pte);
841 /* Clear the PTE. */
842 ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
844 done:
845 spin_unlock_irqrestore(&domain->lock, flags);
847 if (ret)
848 ipmmu_tlb_invalidate(domain);
850 return 0;
853 /* -----------------------------------------------------------------------------
854 * IOMMU Operations
857 static int ipmmu_domain_init(struct iommu_domain *io_domain)
859 struct ipmmu_vmsa_domain *domain;
861 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
862 if (!domain)
863 return -ENOMEM;
865 spin_lock_init(&domain->lock);
867 domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
868 if (!domain->pgd) {
869 kfree(domain);
870 return -ENOMEM;
873 io_domain->priv = domain;
874 domain->io_domain = io_domain;
876 return 0;
879 static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
881 struct ipmmu_vmsa_domain *domain = io_domain->priv;
884 * Free the domain resources. We assume that all devices have already
885 * been detached.
887 ipmmu_domain_destroy_context(domain);
888 ipmmu_free_pgtables(domain);
889 kfree(domain);
892 static int ipmmu_attach_device(struct iommu_domain *io_domain,
893 struct device *dev)
895 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
896 struct ipmmu_vmsa_device *mmu = archdata->mmu;
897 struct ipmmu_vmsa_domain *domain = io_domain->priv;
898 unsigned long flags;
899 int ret = 0;
901 if (!mmu) {
902 dev_err(dev, "Cannot attach to IPMMU\n");
903 return -ENXIO;
906 spin_lock_irqsave(&domain->lock, flags);
908 if (!domain->mmu) {
909 /* The domain hasn't been used yet, initialize it. */
910 domain->mmu = mmu;
911 ret = ipmmu_domain_init_context(domain);
912 } else if (domain->mmu != mmu) {
914 * Something is wrong, we can't attach two devices using
915 * different IOMMUs to the same domain.
917 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
918 dev_name(mmu->dev), dev_name(domain->mmu->dev));
919 ret = -EINVAL;
922 spin_unlock_irqrestore(&domain->lock, flags);
924 if (ret < 0)
925 return ret;
927 ipmmu_utlb_enable(domain, archdata->utlb);
929 return 0;
932 static void ipmmu_detach_device(struct iommu_domain *io_domain,
933 struct device *dev)
935 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
936 struct ipmmu_vmsa_domain *domain = io_domain->priv;
938 ipmmu_utlb_disable(domain, archdata->utlb);
941 * TODO: Optimize by disabling the context when no device is attached.
945 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
946 phys_addr_t paddr, size_t size, int prot)
948 struct ipmmu_vmsa_domain *domain = io_domain->priv;
950 if (!domain)
951 return -ENODEV;
953 return ipmmu_create_mapping(domain, iova, paddr, size, prot);
956 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
957 size_t size)
959 struct ipmmu_vmsa_domain *domain = io_domain->priv;
960 int ret;
962 ret = ipmmu_clear_mapping(domain, iova, size);
963 return ret ? 0 : size;
966 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
967 dma_addr_t iova)
969 struct ipmmu_vmsa_domain *domain = io_domain->priv;
970 pgd_t pgd;
971 pud_t pud;
972 pmd_t pmd;
973 pte_t pte;
975 /* TODO: Is locking needed ? */
977 if (!domain->pgd)
978 return 0;
980 pgd = *(domain->pgd + pgd_index(iova));
981 if (pgd_none(pgd))
982 return 0;
984 pud = *pud_offset(&pgd, iova);
985 if (pud_none(pud))
986 return 0;
988 pmd = *pmd_offset(&pud, iova);
989 if (pmd_none(pmd))
990 return 0;
992 if (pmd_sect(pmd))
993 return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
995 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
996 if (pte_none(pte))
997 return 0;
999 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1002 static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev)
1004 const struct ipmmu_vmsa_master *master = mmu->pdata->masters;
1005 const char *devname = dev_name(dev);
1006 unsigned int i;
1008 for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) {
1009 if (strcmp(master->name, devname) == 0)
1010 return master->utlb;
1013 return -1;
1016 static int ipmmu_add_device(struct device *dev)
1018 struct ipmmu_vmsa_archdata *archdata;
1019 struct ipmmu_vmsa_device *mmu;
1020 struct iommu_group *group;
1021 int utlb = -1;
1022 int ret;
1024 if (dev->archdata.iommu) {
1025 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
1026 dev_name(dev));
1027 return -EINVAL;
1030 /* Find the master corresponding to the device. */
1031 spin_lock(&ipmmu_devices_lock);
1033 list_for_each_entry(mmu, &ipmmu_devices, list) {
1034 utlb = ipmmu_find_utlb(mmu, dev);
1035 if (utlb >= 0) {
1037 * TODO Take a reference to the MMU to protect
1038 * against device removal.
1040 break;
1044 spin_unlock(&ipmmu_devices_lock);
1046 if (utlb < 0)
1047 return -ENODEV;
1049 if (utlb >= mmu->num_utlbs)
1050 return -EINVAL;
1052 /* Create a device group and add the device to it. */
1053 group = iommu_group_alloc();
1054 if (IS_ERR(group)) {
1055 dev_err(dev, "Failed to allocate IOMMU group\n");
1056 return PTR_ERR(group);
1059 ret = iommu_group_add_device(group, dev);
1060 iommu_group_put(group);
1062 if (ret < 0) {
1063 dev_err(dev, "Failed to add device to IPMMU group\n");
1064 return ret;
1067 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
1068 if (!archdata) {
1069 ret = -ENOMEM;
1070 goto error;
1073 archdata->mmu = mmu;
1074 archdata->utlb = utlb;
1075 dev->archdata.iommu = archdata;
1078 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1079 * VAs. This will allocate a corresponding IOMMU domain.
1081 * TODO:
1082 * - Create one mapping per context (TLB).
1083 * - Make the mapping size configurable ? We currently use a 2GB mapping
1084 * at a 1GB offset to ensure that NULL VAs will fault.
1086 if (!mmu->mapping) {
1087 struct dma_iommu_mapping *mapping;
1089 mapping = arm_iommu_create_mapping(&platform_bus_type,
1090 SZ_1G, SZ_2G);
1091 if (IS_ERR(mapping)) {
1092 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
1093 return PTR_ERR(mapping);
1096 mmu->mapping = mapping;
1099 /* Attach the ARM VA mapping to the device. */
1100 ret = arm_iommu_attach_device(dev, mmu->mapping);
1101 if (ret < 0) {
1102 dev_err(dev, "Failed to attach device to VA mapping\n");
1103 goto error;
1106 return 0;
1108 error:
1109 kfree(dev->archdata.iommu);
1110 dev->archdata.iommu = NULL;
1111 iommu_group_remove_device(dev);
1112 return ret;
1115 static void ipmmu_remove_device(struct device *dev)
1117 arm_iommu_detach_device(dev);
1118 iommu_group_remove_device(dev);
1119 kfree(dev->archdata.iommu);
1120 dev->archdata.iommu = NULL;
1123 static const struct iommu_ops ipmmu_ops = {
1124 .domain_init = ipmmu_domain_init,
1125 .domain_destroy = ipmmu_domain_destroy,
1126 .attach_dev = ipmmu_attach_device,
1127 .detach_dev = ipmmu_detach_device,
1128 .map = ipmmu_map,
1129 .unmap = ipmmu_unmap,
1130 .map_sg = default_iommu_map_sg,
1131 .iova_to_phys = ipmmu_iova_to_phys,
1132 .add_device = ipmmu_add_device,
1133 .remove_device = ipmmu_remove_device,
1134 .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
1137 /* -----------------------------------------------------------------------------
1138 * Probe/remove and init
1141 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
1143 unsigned int i;
1145 /* Disable all contexts. */
1146 for (i = 0; i < 4; ++i)
1147 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1150 static int ipmmu_probe(struct platform_device *pdev)
1152 struct ipmmu_vmsa_device *mmu;
1153 struct resource *res;
1154 int irq;
1155 int ret;
1157 if (!pdev->dev.platform_data) {
1158 dev_err(&pdev->dev, "missing platform data\n");
1159 return -EINVAL;
1162 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1163 if (!mmu) {
1164 dev_err(&pdev->dev, "cannot allocate device data\n");
1165 return -ENOMEM;
1168 mmu->dev = &pdev->dev;
1169 mmu->pdata = pdev->dev.platform_data;
1170 mmu->num_utlbs = 32;
1172 /* Map I/O memory and request IRQ. */
1173 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1174 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1175 if (IS_ERR(mmu->base))
1176 return PTR_ERR(mmu->base);
1178 irq = platform_get_irq(pdev, 0);
1179 if (irq < 0) {
1180 dev_err(&pdev->dev, "no IRQ found\n");
1181 return irq;
1184 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1185 dev_name(&pdev->dev), mmu);
1186 if (ret < 0) {
1187 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1188 return irq;
1191 ipmmu_device_reset(mmu);
1194 * We can't create the ARM mapping here as it requires the bus to have
1195 * an IOMMU, which only happens when bus_set_iommu() is called in
1196 * ipmmu_init() after the probe function returns.
1199 spin_lock(&ipmmu_devices_lock);
1200 list_add(&mmu->list, &ipmmu_devices);
1201 spin_unlock(&ipmmu_devices_lock);
1203 platform_set_drvdata(pdev, mmu);
1205 return 0;
1208 static int ipmmu_remove(struct platform_device *pdev)
1210 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1212 spin_lock(&ipmmu_devices_lock);
1213 list_del(&mmu->list);
1214 spin_unlock(&ipmmu_devices_lock);
1216 arm_iommu_release_mapping(mmu->mapping);
1218 ipmmu_device_reset(mmu);
1220 return 0;
1223 static struct platform_driver ipmmu_driver = {
1224 .driver = {
1225 .owner = THIS_MODULE,
1226 .name = "ipmmu-vmsa",
1228 .probe = ipmmu_probe,
1229 .remove = ipmmu_remove,
1232 static int __init ipmmu_init(void)
1234 int ret;
1236 ret = platform_driver_register(&ipmmu_driver);
1237 if (ret < 0)
1238 return ret;
1240 if (!iommu_present(&platform_bus_type))
1241 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1243 return 0;
1246 static void __exit ipmmu_exit(void)
1248 return platform_driver_unregister(&ipmmu_driver);
1251 subsys_initcall(ipmmu_init);
1252 module_exit(ipmmu_exit);
1254 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1255 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1256 MODULE_LICENSE("GPL v2");