mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / net / wimax / i2400m / driver.c
blob9c78090e72f87dae118dff22fd366d5ce11bacd8
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
29 * ROADMAP:
31 * i2400m_op_msg_from_user()
32 * i2400m_msg_to_dev()
33 * wimax_msg_to_user_send()
35 * i2400m_op_reset()
36 * i240m->bus_reset()
38 * i2400m_dev_reset_handle()
39 * __i2400m_dev_reset_handle()
40 * __i2400m_dev_stop()
41 * __i2400m_dev_start()
43 * i2400m_setup()
44 * i2400m->bus_setup()
45 * i2400m_bootrom_init()
46 * register_netdev()
47 * wimax_dev_add()
48 * i2400m_dev_start()
49 * __i2400m_dev_start()
50 * i2400m_dev_bootstrap()
51 * i2400m_tx_setup()
52 * i2400m->bus_dev_start()
53 * i2400m_firmware_check()
54 * i2400m_check_mac_addr()
56 * i2400m_release()
57 * i2400m_dev_stop()
58 * __i2400m_dev_stop()
59 * i2400m_dev_shutdown()
60 * i2400m->bus_dev_stop()
61 * i2400m_tx_release()
62 * i2400m->bus_release()
63 * wimax_dev_rm()
64 * unregister_netdev()
66 #include "i2400m.h"
67 #include <linux/etherdevice.h>
68 #include <linux/wimax/i2400m.h>
69 #include <linux/module.h>
70 #include <linux/moduleparam.h>
71 #include <linux/suspend.h>
72 #include <linux/slab.h>
74 #define D_SUBMODULE driver
75 #include "debug-levels.h"
78 static char i2400m_debug_params[128];
79 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
80 0644);
81 MODULE_PARM_DESC(debug,
82 "String of space-separated NAME:VALUE pairs, where NAMEs "
83 "are the different debug submodules and VALUE are the "
84 "initial debug value to set.");
86 static char i2400m_barkers_params[128];
87 module_param_string(barkers, i2400m_barkers_params,
88 sizeof(i2400m_barkers_params), 0644);
89 MODULE_PARM_DESC(barkers,
90 "String of comma-separated 32-bit values; each is "
91 "recognized as the value the device sends as a reboot "
92 "signal; values are appended to a list--setting one value "
93 "as zero cleans the existing list and starts a new one.");
96 * WiMAX stack operation: relay a message from user space
98 * @wimax_dev: device descriptor
99 * @pipe_name: named pipe the message is for
100 * @msg_buf: pointer to the message bytes
101 * @msg_len: length of the buffer
102 * @genl_info: passed by the generic netlink layer
104 * The WiMAX stack will call this function when a message was received
105 * from user space.
107 * For the i2400m, this is an L3L4 message, as specified in
108 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
109 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
110 * coded in Little Endian.
112 * This function just verifies that the header declaration and the
113 * payload are consistent and then deals with it, either forwarding it
114 * to the device or procesing it locally.
116 * In the i2400m, messages are basically commands that will carry an
117 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
118 * user space. The rx.c code might intercept the response and use it
119 * to update the driver's state, but then it will pass it on so it can
120 * be relayed back to user space.
122 * Note that asynchronous events from the device are processed and
123 * sent to user space in rx.c.
125 static
126 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
127 const char *pipe_name,
128 const void *msg_buf, size_t msg_len,
129 const struct genl_info *genl_info)
131 int result;
132 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
133 struct device *dev = i2400m_dev(i2400m);
134 struct sk_buff *ack_skb;
136 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
137 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
138 msg_buf, msg_len, genl_info);
139 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
140 result = PTR_ERR(ack_skb);
141 if (IS_ERR(ack_skb))
142 goto error_msg_to_dev;
143 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
144 error_msg_to_dev:
145 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
146 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
147 genl_info, result);
148 return result;
153 * Context to wait for a reset to finalize
155 struct i2400m_reset_ctx {
156 struct completion completion;
157 int result;
162 * WiMAX stack operation: reset a device
164 * @wimax_dev: device descriptor
166 * See the documentation for wimax_reset() and wimax_dev->op_reset for
167 * the requirements of this function. The WiMAX stack guarantees
168 * serialization on calls to this function.
170 * Do a warm reset on the device; if it fails, resort to a cold reset
171 * and return -ENODEV. On successful warm reset, we need to block
172 * until it is complete.
174 * The bus-driver implementation of reset takes care of falling back
175 * to cold reset if warm fails.
177 static
178 int i2400m_op_reset(struct wimax_dev *wimax_dev)
180 int result;
181 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
182 struct device *dev = i2400m_dev(i2400m);
183 struct i2400m_reset_ctx ctx = {
184 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
185 .result = 0,
188 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
189 mutex_lock(&i2400m->init_mutex);
190 i2400m->reset_ctx = &ctx;
191 mutex_unlock(&i2400m->init_mutex);
192 result = i2400m_reset(i2400m, I2400M_RT_WARM);
193 if (result < 0)
194 goto out;
195 result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
196 if (result == 0)
197 result = -ETIMEDOUT;
198 else if (result > 0)
199 result = ctx.result;
200 /* if result < 0, pass it on */
201 mutex_lock(&i2400m->init_mutex);
202 i2400m->reset_ctx = NULL;
203 mutex_unlock(&i2400m->init_mutex);
204 out:
205 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
206 return result;
211 * Check the MAC address we got from boot mode is ok
213 * @i2400m: device descriptor
215 * Returns: 0 if ok, < 0 errno code on error.
217 static
218 int i2400m_check_mac_addr(struct i2400m *i2400m)
220 int result;
221 struct device *dev = i2400m_dev(i2400m);
222 struct sk_buff *skb;
223 const struct i2400m_tlv_detailed_device_info *ddi;
224 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
226 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
227 skb = i2400m_get_device_info(i2400m);
228 if (IS_ERR(skb)) {
229 result = PTR_ERR(skb);
230 dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
231 result);
232 goto error;
234 /* Extract MAC address */
235 ddi = (void *) skb->data;
236 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
237 d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
238 ddi->mac_address);
239 if (!memcmp(net_dev->perm_addr, ddi->mac_address,
240 sizeof(ddi->mac_address)))
241 goto ok;
242 dev_warn(dev, "warning: device reports a different MAC address "
243 "to that of boot mode's\n");
244 dev_warn(dev, "device reports %pM\n", ddi->mac_address);
245 dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
246 if (is_zero_ether_addr(ddi->mac_address))
247 dev_err(dev, "device reports an invalid MAC address, "
248 "not updating\n");
249 else {
250 dev_warn(dev, "updating MAC address\n");
251 net_dev->addr_len = ETH_ALEN;
252 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
253 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
256 result = 0;
257 kfree_skb(skb);
258 error:
259 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
260 return result;
265 * __i2400m_dev_start - Bring up driver communication with the device
267 * @i2400m: device descriptor
268 * @flags: boot mode flags
270 * Returns: 0 if ok, < 0 errno code on error.
272 * Uploads firmware and brings up all the resources needed to be able
273 * to communicate with the device.
275 * The workqueue has to be setup early, at least before RX handling
276 * (it's only real user for now) so it can process reports as they
277 * arrive. We also want to destroy it if we retry, to make sure it is
278 * flushed...easier like this.
280 * TX needs to be setup before the bus-specific code (otherwise on
281 * shutdown, the bus-tx code could try to access it).
283 static
284 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
286 int result;
287 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
288 struct net_device *net_dev = wimax_dev->net_dev;
289 struct device *dev = i2400m_dev(i2400m);
290 int times = i2400m->bus_bm_retries;
292 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
293 retry:
294 result = i2400m_dev_bootstrap(i2400m, flags);
295 if (result < 0) {
296 dev_err(dev, "cannot bootstrap device: %d\n", result);
297 goto error_bootstrap;
299 result = i2400m_tx_setup(i2400m);
300 if (result < 0)
301 goto error_tx_setup;
302 result = i2400m_rx_setup(i2400m);
303 if (result < 0)
304 goto error_rx_setup;
305 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
306 if (i2400m->work_queue == NULL) {
307 result = -ENOMEM;
308 dev_err(dev, "cannot create workqueue\n");
309 goto error_create_workqueue;
311 if (i2400m->bus_dev_start) {
312 result = i2400m->bus_dev_start(i2400m);
313 if (result < 0)
314 goto error_bus_dev_start;
316 i2400m->ready = 1;
317 wmb(); /* see i2400m->ready's documentation */
318 /* process pending reports from the device */
319 queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
320 result = i2400m_firmware_check(i2400m); /* fw versions ok? */
321 if (result < 0)
322 goto error_fw_check;
323 /* At this point is ok to send commands to the device */
324 result = i2400m_check_mac_addr(i2400m);
325 if (result < 0)
326 goto error_check_mac_addr;
327 result = i2400m_dev_initialize(i2400m);
328 if (result < 0)
329 goto error_dev_initialize;
331 /* We don't want any additional unwanted error recovery triggered
332 * from any other context so if anything went wrong before we come
333 * here, let's keep i2400m->error_recovery untouched and leave it to
334 * dev_reset_handle(). See dev_reset_handle(). */
336 atomic_dec(&i2400m->error_recovery);
337 /* Every thing works so far, ok, now we are ready to
338 * take error recovery if it's required. */
340 /* At this point, reports will come for the device and set it
341 * to the right state if it is different than UNINITIALIZED */
342 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
343 net_dev, i2400m, result);
344 return result;
346 error_dev_initialize:
347 error_check_mac_addr:
348 error_fw_check:
349 i2400m->ready = 0;
350 wmb(); /* see i2400m->ready's documentation */
351 flush_workqueue(i2400m->work_queue);
352 if (i2400m->bus_dev_stop)
353 i2400m->bus_dev_stop(i2400m);
354 error_bus_dev_start:
355 destroy_workqueue(i2400m->work_queue);
356 error_create_workqueue:
357 i2400m_rx_release(i2400m);
358 error_rx_setup:
359 i2400m_tx_release(i2400m);
360 error_tx_setup:
361 error_bootstrap:
362 if (result == -EL3RST && times-- > 0) {
363 flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
364 goto retry;
366 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
367 net_dev, i2400m, result);
368 return result;
372 static
373 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
375 int result = 0;
376 mutex_lock(&i2400m->init_mutex); /* Well, start the device */
377 if (i2400m->updown == 0) {
378 result = __i2400m_dev_start(i2400m, bm_flags);
379 if (result >= 0) {
380 i2400m->updown = 1;
381 i2400m->alive = 1;
382 wmb();/* see i2400m->updown and i2400m->alive's doc */
385 mutex_unlock(&i2400m->init_mutex);
386 return result;
391 * i2400m_dev_stop - Tear down driver communication with the device
393 * @i2400m: device descriptor
395 * Returns: 0 if ok, < 0 errno code on error.
397 * Releases all the resources allocated to communicate with the
398 * device. Note we cannot destroy the workqueue earlier as until RX is
399 * fully destroyed, it could still try to schedule jobs.
401 static
402 void __i2400m_dev_stop(struct i2400m *i2400m)
404 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
405 struct device *dev = i2400m_dev(i2400m);
407 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
408 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
409 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
410 complete(&i2400m->msg_completion);
411 i2400m_net_wake_stop(i2400m);
412 i2400m_dev_shutdown(i2400m);
414 * Make sure no report hooks are running *before* we stop the
415 * communication infrastructure with the device.
417 i2400m->ready = 0; /* nobody can queue work anymore */
418 wmb(); /* see i2400m->ready's documentation */
419 flush_workqueue(i2400m->work_queue);
421 if (i2400m->bus_dev_stop)
422 i2400m->bus_dev_stop(i2400m);
423 destroy_workqueue(i2400m->work_queue);
424 i2400m_rx_release(i2400m);
425 i2400m_tx_release(i2400m);
426 wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
427 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
432 * Watch out -- we only need to stop if there is a need for it. The
433 * device could have reset itself and failed to come up again (see
434 * _i2400m_dev_reset_handle()).
436 static
437 void i2400m_dev_stop(struct i2400m *i2400m)
439 mutex_lock(&i2400m->init_mutex);
440 if (i2400m->updown) {
441 __i2400m_dev_stop(i2400m);
442 i2400m->updown = 0;
443 i2400m->alive = 0;
444 wmb(); /* see i2400m->updown and i2400m->alive's doc */
446 mutex_unlock(&i2400m->init_mutex);
451 * Listen to PM events to cache the firmware before suspend/hibernation
453 * When the device comes out of suspend, it might go into reset and
454 * firmware has to be uploaded again. At resume, most of the times, we
455 * can't load firmware images from disk, so we need to cache it.
457 * i2400m_fw_cache() will allocate a kobject and attach the firmware
458 * to it; that way we don't have to worry too much about the fw loader
459 * hitting a race condition.
461 * Note: modus operandi stolen from the Orinoco driver; thx.
463 static
464 int i2400m_pm_notifier(struct notifier_block *notifier,
465 unsigned long pm_event,
466 void *unused)
468 struct i2400m *i2400m =
469 container_of(notifier, struct i2400m, pm_notifier);
470 struct device *dev = i2400m_dev(i2400m);
472 d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
473 switch (pm_event) {
474 case PM_HIBERNATION_PREPARE:
475 case PM_SUSPEND_PREPARE:
476 i2400m_fw_cache(i2400m);
477 break;
478 case PM_POST_RESTORE:
479 /* Restore from hibernation failed. We need to clean
480 * up in exactly the same way, so fall through. */
481 case PM_POST_HIBERNATION:
482 case PM_POST_SUSPEND:
483 i2400m_fw_uncache(i2400m);
484 break;
486 case PM_RESTORE_PREPARE:
487 default:
488 break;
490 d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
491 return NOTIFY_DONE;
496 * pre-reset is called before a device is going on reset
498 * This has to be followed by a call to i2400m_post_reset(), otherwise
499 * bad things might happen.
501 int i2400m_pre_reset(struct i2400m *i2400m)
503 struct device *dev = i2400m_dev(i2400m);
505 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
506 d_printf(1, dev, "pre-reset shut down\n");
508 mutex_lock(&i2400m->init_mutex);
509 if (i2400m->updown) {
510 netif_tx_disable(i2400m->wimax_dev.net_dev);
511 __i2400m_dev_stop(i2400m);
512 /* down't set updown to zero -- this way
513 * post_reset can restore properly */
515 mutex_unlock(&i2400m->init_mutex);
516 if (i2400m->bus_release)
517 i2400m->bus_release(i2400m);
518 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
519 return 0;
521 EXPORT_SYMBOL_GPL(i2400m_pre_reset);
525 * Restore device state after a reset
527 * Do the work needed after a device reset to bring it up to the same
528 * state as it was before the reset.
530 * NOTE: this requires i2400m->init_mutex taken
532 int i2400m_post_reset(struct i2400m *i2400m)
534 int result = 0;
535 struct device *dev = i2400m_dev(i2400m);
537 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
538 d_printf(1, dev, "post-reset start\n");
539 if (i2400m->bus_setup) {
540 result = i2400m->bus_setup(i2400m);
541 if (result < 0) {
542 dev_err(dev, "bus-specific setup failed: %d\n",
543 result);
544 goto error_bus_setup;
547 mutex_lock(&i2400m->init_mutex);
548 if (i2400m->updown) {
549 result = __i2400m_dev_start(
550 i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
551 if (result < 0)
552 goto error_dev_start;
554 mutex_unlock(&i2400m->init_mutex);
555 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
556 return result;
558 error_dev_start:
559 if (i2400m->bus_release)
560 i2400m->bus_release(i2400m);
561 /* even if the device was up, it could not be recovered, so we
562 * mark it as down. */
563 i2400m->updown = 0;
564 wmb(); /* see i2400m->updown's documentation */
565 mutex_unlock(&i2400m->init_mutex);
566 error_bus_setup:
567 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
568 return result;
570 EXPORT_SYMBOL_GPL(i2400m_post_reset);
574 * The device has rebooted; fix up the device and the driver
576 * Tear down the driver communication with the device, reload the
577 * firmware and reinitialize the communication with the device.
579 * If someone calls a reset when the device's firmware is down, in
580 * theory we won't see it because we are not listening. However, just
581 * in case, leave the code to handle it.
583 * If there is a reset context, use it; this means someone is waiting
584 * for us to tell him when the reset operation is complete and the
585 * device is ready to rock again.
587 * NOTE: if we are in the process of bringing up or down the
588 * communication with the device [running i2400m_dev_start() or
589 * _stop()], don't do anything, let it fail and handle it.
591 * This function is ran always in a thread context
593 * This function gets passed, as payload to i2400m_work() a 'const
594 * char *' ptr with a "reason" why the reset happened (for messages).
596 static
597 void __i2400m_dev_reset_handle(struct work_struct *ws)
599 struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
600 const char *reason = i2400m->reset_reason;
601 struct device *dev = i2400m_dev(i2400m);
602 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
603 int result;
605 d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
607 i2400m->boot_mode = 1;
608 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
610 result = 0;
611 if (mutex_trylock(&i2400m->init_mutex) == 0) {
612 /* We are still in i2400m_dev_start() [let it fail] or
613 * i2400m_dev_stop() [we are shutting down anyway, so
614 * ignore it] or we are resetting somewhere else. */
615 dev_err(dev, "device rebooted somewhere else?\n");
616 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
617 complete(&i2400m->msg_completion);
618 goto out;
621 dev_err(dev, "%s: reinitializing driver\n", reason);
622 rmb();
623 if (i2400m->updown) {
624 __i2400m_dev_stop(i2400m);
625 i2400m->updown = 0;
626 wmb(); /* see i2400m->updown's documentation */
629 if (i2400m->alive) {
630 result = __i2400m_dev_start(i2400m,
631 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
632 if (result < 0) {
633 dev_err(dev, "%s: cannot start the device: %d\n",
634 reason, result);
635 result = -EUCLEAN;
636 if (atomic_read(&i2400m->bus_reset_retries)
637 >= I2400M_BUS_RESET_RETRIES) {
638 result = -ENODEV;
639 dev_err(dev, "tried too many times to "
640 "reset the device, giving up\n");
645 if (i2400m->reset_ctx) {
646 ctx->result = result;
647 complete(&ctx->completion);
649 mutex_unlock(&i2400m->init_mutex);
650 if (result == -EUCLEAN) {
652 * We come here because the reset during operational mode
653 * wasn't successfully done and need to proceed to a bus
654 * reset. For the dev_reset_handle() to be able to handle
655 * the reset event later properly, we restore boot_mode back
656 * to the state before previous reset. ie: just like we are
657 * issuing the bus reset for the first time
659 i2400m->boot_mode = 0;
660 wmb();
662 atomic_inc(&i2400m->bus_reset_retries);
663 /* ops, need to clean up [w/ init_mutex not held] */
664 result = i2400m_reset(i2400m, I2400M_RT_BUS);
665 if (result >= 0)
666 result = -ENODEV;
667 } else {
668 rmb();
669 if (i2400m->alive) {
670 /* great, we expect the device state up and
671 * dev_start() actually brings the device state up */
672 i2400m->updown = 1;
673 wmb();
674 atomic_set(&i2400m->bus_reset_retries, 0);
677 out:
678 d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
679 ws, i2400m, reason);
684 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
686 * Schedule a device reset handling out on a thread context, so it
687 * is safe to call from atomic context. We can't use the i2400m's
688 * queue as we are going to destroy it and reinitialize it as part of
689 * the driver bringup/bringup process.
691 * See __i2400m_dev_reset_handle() for details; that takes care of
692 * reinitializing the driver to handle the reset, calling into the
693 * bus-specific functions ops as needed.
695 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
697 i2400m->reset_reason = reason;
698 return schedule_work(&i2400m->reset_ws);
700 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
704 * The actual work of error recovery.
706 * The current implementation of error recovery is to trigger a bus reset.
708 static
709 void __i2400m_error_recovery(struct work_struct *ws)
711 struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
713 i2400m_reset(i2400m, I2400M_RT_BUS);
717 * Schedule a work struct for error recovery.
719 * The intention of error recovery is to bring back the device to some
720 * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
721 * the device. The TX failure could mean a device bus stuck, so the current
722 * error recovery implementation is to trigger a bus reset to the device
723 * and hopefully it can bring back the device.
725 * The actual work of error recovery has to be in a thread context because
726 * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
727 * destroyed by the error recovery mechanism (currently a bus reset).
729 * Also, there may be already a queue of TX works that all hit
730 * the -ETIMEOUT error condition because the device is stuck already.
731 * Since bus reset is used as the error recovery mechanism and we don't
732 * want consecutive bus resets simply because the multiple TX works
733 * in the queue all hit the same device erratum, the flag "error_recovery"
734 * is introduced for preventing unwanted consecutive bus resets.
736 * Error recovery shall only be invoked again if previous one was completed.
737 * The flag error_recovery is set when error recovery mechanism is scheduled,
738 * and is checked when we need to schedule another error recovery. If it is
739 * in place already, then we shouldn't schedule another one.
741 void i2400m_error_recovery(struct i2400m *i2400m)
743 if (atomic_add_return(1, &i2400m->error_recovery) == 1)
744 schedule_work(&i2400m->recovery_ws);
745 else
746 atomic_dec(&i2400m->error_recovery);
748 EXPORT_SYMBOL_GPL(i2400m_error_recovery);
751 * Alloc the command and ack buffers for boot mode
753 * Get the buffers needed to deal with boot mode messages.
755 static
756 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
758 int result;
760 result = -ENOMEM;
761 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
762 if (i2400m->bm_cmd_buf == NULL)
763 goto error_bm_cmd_kzalloc;
764 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
765 if (i2400m->bm_ack_buf == NULL)
766 goto error_bm_ack_buf_kzalloc;
767 return 0;
769 error_bm_ack_buf_kzalloc:
770 kfree(i2400m->bm_cmd_buf);
771 error_bm_cmd_kzalloc:
772 return result;
777 * Free boot mode command and ack buffers.
779 static
780 void i2400m_bm_buf_free(struct i2400m *i2400m)
782 kfree(i2400m->bm_ack_buf);
783 kfree(i2400m->bm_cmd_buf);
788 * i2400m_init - Initialize a 'struct i2400m' from all zeroes
790 * This is a bus-generic API call.
792 void i2400m_init(struct i2400m *i2400m)
794 wimax_dev_init(&i2400m->wimax_dev);
796 i2400m->boot_mode = 1;
797 i2400m->rx_reorder = 1;
798 init_waitqueue_head(&i2400m->state_wq);
800 spin_lock_init(&i2400m->tx_lock);
801 i2400m->tx_pl_min = UINT_MAX;
802 i2400m->tx_size_min = UINT_MAX;
804 spin_lock_init(&i2400m->rx_lock);
805 i2400m->rx_pl_min = UINT_MAX;
806 i2400m->rx_size_min = UINT_MAX;
807 INIT_LIST_HEAD(&i2400m->rx_reports);
808 INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
810 mutex_init(&i2400m->msg_mutex);
811 init_completion(&i2400m->msg_completion);
813 mutex_init(&i2400m->init_mutex);
814 /* wake_tx_ws is initialized in i2400m_tx_setup() */
816 INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
817 INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
819 atomic_set(&i2400m->bus_reset_retries, 0);
821 i2400m->alive = 0;
823 /* initialize error_recovery to 1 for denoting we
824 * are not yet ready to take any error recovery */
825 atomic_set(&i2400m->error_recovery, 1);
827 EXPORT_SYMBOL_GPL(i2400m_init);
830 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
832 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
835 * Make sure we stop TXs and down the carrier before
836 * resetting; this is needed to avoid things like
837 * i2400m_wake_tx() scheduling stuff in parallel.
839 if (net_dev->reg_state == NETREG_REGISTERED) {
840 netif_tx_disable(net_dev);
841 netif_carrier_off(net_dev);
843 return i2400m->bus_reset(i2400m, rt);
845 EXPORT_SYMBOL_GPL(i2400m_reset);
849 * i2400m_setup - bus-generic setup function for the i2400m device
851 * @i2400m: device descriptor (bus-specific parts have been initialized)
853 * Returns: 0 if ok, < 0 errno code on error.
855 * Sets up basic device comunication infrastructure, boots the ROM to
856 * read the MAC address, registers with the WiMAX and network stacks
857 * and then brings up the device.
859 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
861 int result = -ENODEV;
862 struct device *dev = i2400m_dev(i2400m);
863 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
864 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
866 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
868 snprintf(wimax_dev->name, sizeof(wimax_dev->name),
869 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
871 result = i2400m_bm_buf_alloc(i2400m);
872 if (result < 0) {
873 dev_err(dev, "cannot allocate bootmode scratch buffers\n");
874 goto error_bm_buf_alloc;
877 if (i2400m->bus_setup) {
878 result = i2400m->bus_setup(i2400m);
879 if (result < 0) {
880 dev_err(dev, "bus-specific setup failed: %d\n",
881 result);
882 goto error_bus_setup;
886 result = i2400m_bootrom_init(i2400m, bm_flags);
887 if (result < 0) {
888 dev_err(dev, "read mac addr: bootrom init "
889 "failed: %d\n", result);
890 goto error_bootrom_init;
892 result = i2400m_read_mac_addr(i2400m);
893 if (result < 0)
894 goto error_read_mac_addr;
895 eth_random_addr(i2400m->src_mac_addr);
897 i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
898 register_pm_notifier(&i2400m->pm_notifier);
900 result = register_netdev(net_dev); /* Okey dokey, bring it up */
901 if (result < 0) {
902 dev_err(dev, "cannot register i2400m network device: %d\n",
903 result);
904 goto error_register_netdev;
906 netif_carrier_off(net_dev);
908 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
909 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
910 i2400m->wimax_dev.op_reset = i2400m_op_reset;
912 result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
913 if (result < 0)
914 goto error_wimax_dev_add;
916 /* Now setup all that requires a registered net and wimax device. */
917 result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
918 if (result < 0) {
919 dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
920 goto error_sysfs_setup;
923 result = i2400m_debugfs_add(i2400m);
924 if (result < 0) {
925 dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
926 goto error_debugfs_setup;
929 result = i2400m_dev_start(i2400m, bm_flags);
930 if (result < 0)
931 goto error_dev_start;
932 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
933 return result;
935 error_dev_start:
936 i2400m_debugfs_rm(i2400m);
937 error_debugfs_setup:
938 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
939 &i2400m_dev_attr_group);
940 error_sysfs_setup:
941 wimax_dev_rm(&i2400m->wimax_dev);
942 error_wimax_dev_add:
943 unregister_netdev(net_dev);
944 error_register_netdev:
945 unregister_pm_notifier(&i2400m->pm_notifier);
946 error_read_mac_addr:
947 error_bootrom_init:
948 if (i2400m->bus_release)
949 i2400m->bus_release(i2400m);
950 error_bus_setup:
951 i2400m_bm_buf_free(i2400m);
952 error_bm_buf_alloc:
953 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
954 return result;
956 EXPORT_SYMBOL_GPL(i2400m_setup);
960 * i2400m_release - release the bus-generic driver resources
962 * Sends a disconnect message and undoes any setup done by i2400m_setup()
964 void i2400m_release(struct i2400m *i2400m)
966 struct device *dev = i2400m_dev(i2400m);
968 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
969 netif_stop_queue(i2400m->wimax_dev.net_dev);
971 i2400m_dev_stop(i2400m);
973 cancel_work_sync(&i2400m->reset_ws);
974 cancel_work_sync(&i2400m->recovery_ws);
976 i2400m_debugfs_rm(i2400m);
977 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
978 &i2400m_dev_attr_group);
979 wimax_dev_rm(&i2400m->wimax_dev);
980 unregister_netdev(i2400m->wimax_dev.net_dev);
981 unregister_pm_notifier(&i2400m->pm_notifier);
982 if (i2400m->bus_release)
983 i2400m->bus_release(i2400m);
984 i2400m_bm_buf_free(i2400m);
985 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
987 EXPORT_SYMBOL_GPL(i2400m_release);
991 * Debug levels control; see debug.h
993 struct d_level D_LEVEL[] = {
994 D_SUBMODULE_DEFINE(control),
995 D_SUBMODULE_DEFINE(driver),
996 D_SUBMODULE_DEFINE(debugfs),
997 D_SUBMODULE_DEFINE(fw),
998 D_SUBMODULE_DEFINE(netdev),
999 D_SUBMODULE_DEFINE(rfkill),
1000 D_SUBMODULE_DEFINE(rx),
1001 D_SUBMODULE_DEFINE(sysfs),
1002 D_SUBMODULE_DEFINE(tx),
1004 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
1007 static
1008 int __init i2400m_driver_init(void)
1010 d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
1011 "i2400m.debug");
1012 return i2400m_barker_db_init(i2400m_barkers_params);
1014 module_init(i2400m_driver_init);
1016 static
1017 void __exit i2400m_driver_exit(void)
1019 i2400m_barker_db_exit();
1021 module_exit(i2400m_driver_exit);
1023 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1024 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1025 MODULE_LICENSE("GPL");