mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
blob05c64597838d6610c876ad548b2b6b6f8c536c18
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt2500usb
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
37 * Allow hardware encryption to be disabled.
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 const unsigned int offset,
60 u16 *value)
62 __le16 reg;
63 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 USB_VENDOR_REQUEST_IN, offset,
65 &reg, sizeof(reg));
66 *value = le16_to_cpu(reg);
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 const unsigned int offset,
71 u16 *value)
73 __le16 reg;
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 &reg, sizeof(reg), REGISTER_TIMEOUT);
77 *value = le16_to_cpu(reg);
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u16 length)
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
86 value, length);
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 const unsigned int offset,
91 u16 value)
93 __le16 reg = cpu_to_le16(value);
94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 USB_VENDOR_REQUEST_OUT, offset,
96 &reg, sizeof(reg));
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 const unsigned int offset,
101 u16 value)
103 __le16 reg = cpu_to_le16(value);
104 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 USB_VENDOR_REQUEST_OUT, offset,
106 &reg, sizeof(reg), REGISTER_TIMEOUT);
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 const unsigned int offset,
111 void *value, const u16 length)
113 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 USB_VENDOR_REQUEST_OUT, offset,
115 value, length);
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 const unsigned int offset,
120 struct rt2x00_field16 field,
121 u16 *reg)
123 unsigned int i;
125 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 if (!rt2x00_get_field16(*reg, field))
128 return 1;
129 udelay(REGISTER_BUSY_DELAY);
132 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 offset, *reg);
134 *reg = ~0;
136 return 0;
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
147 u16 reg;
149 mutex_lock(&rt2x00dev->csr_mutex);
152 * Wait until the BBP becomes available, afterwards we
153 * can safely write the new data into the register.
155 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
161 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
164 mutex_unlock(&rt2x00dev->csr_mutex);
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 const unsigned int word, u8 *value)
170 u16 reg;
172 mutex_lock(&rt2x00dev->csr_mutex);
175 * Wait until the BBP becomes available, afterwards we
176 * can safely write the read request into the register.
177 * After the data has been written, we wait until hardware
178 * returns the correct value, if at any time the register
179 * doesn't become available in time, reg will be 0xffffffff
180 * which means we return 0xff to the caller.
182 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 reg = 0;
184 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
187 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
189 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
193 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
195 mutex_unlock(&rt2x00dev->csr_mutex);
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, const u32 value)
201 u16 reg;
203 mutex_lock(&rt2x00dev->csr_mutex);
206 * Wait until the RF becomes available, afterwards we
207 * can safely write the new data into the register.
209 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 reg = 0;
211 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
214 reg = 0;
215 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
220 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 rt2x00_rf_write(rt2x00dev, word, value);
224 mutex_unlock(&rt2x00dev->csr_mutex);
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 const unsigned int offset,
230 u32 *value)
232 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
235 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
236 const unsigned int offset,
237 u32 value)
239 rt2500usb_register_write(rt2x00dev, offset, value);
242 static const struct rt2x00debug rt2500usb_rt2x00debug = {
243 .owner = THIS_MODULE,
244 .csr = {
245 .read = _rt2500usb_register_read,
246 .write = _rt2500usb_register_write,
247 .flags = RT2X00DEBUGFS_OFFSET,
248 .word_base = CSR_REG_BASE,
249 .word_size = sizeof(u16),
250 .word_count = CSR_REG_SIZE / sizeof(u16),
252 .eeprom = {
253 .read = rt2x00_eeprom_read,
254 .write = rt2x00_eeprom_write,
255 .word_base = EEPROM_BASE,
256 .word_size = sizeof(u16),
257 .word_count = EEPROM_SIZE / sizeof(u16),
259 .bbp = {
260 .read = rt2500usb_bbp_read,
261 .write = rt2500usb_bbp_write,
262 .word_base = BBP_BASE,
263 .word_size = sizeof(u8),
264 .word_count = BBP_SIZE / sizeof(u8),
266 .rf = {
267 .read = rt2x00_rf_read,
268 .write = rt2500usb_rf_write,
269 .word_base = RF_BASE,
270 .word_size = sizeof(u32),
271 .word_count = RF_SIZE / sizeof(u32),
274 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
276 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
278 u16 reg;
280 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
281 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
284 #ifdef CONFIG_RT2X00_LIB_LEDS
285 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
286 enum led_brightness brightness)
288 struct rt2x00_led *led =
289 container_of(led_cdev, struct rt2x00_led, led_dev);
290 unsigned int enabled = brightness != LED_OFF;
291 u16 reg;
293 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
295 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
296 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
297 else if (led->type == LED_TYPE_ACTIVITY)
298 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
300 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
303 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
304 unsigned long *delay_on,
305 unsigned long *delay_off)
307 struct rt2x00_led *led =
308 container_of(led_cdev, struct rt2x00_led, led_dev);
309 u16 reg;
311 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
312 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
313 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
314 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
316 return 0;
319 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00_led *led,
321 enum led_type type)
323 led->rt2x00dev = rt2x00dev;
324 led->type = type;
325 led->led_dev.brightness_set = rt2500usb_brightness_set;
326 led->led_dev.blink_set = rt2500usb_blink_set;
327 led->flags = LED_INITIALIZED;
329 #endif /* CONFIG_RT2X00_LIB_LEDS */
332 * Configuration handlers.
336 * rt2500usb does not differentiate between shared and pairwise
337 * keys, so we should use the same function for both key types.
339 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
340 struct rt2x00lib_crypto *crypto,
341 struct ieee80211_key_conf *key)
343 u32 mask;
344 u16 reg;
345 enum cipher curr_cipher;
347 if (crypto->cmd == SET_KEY) {
349 * Disallow to set WEP key other than with index 0,
350 * it is known that not work at least on some hardware.
351 * SW crypto will be used in that case.
353 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
354 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
355 key->keyidx != 0)
356 return -EOPNOTSUPP;
359 * Pairwise key will always be entry 0, but this
360 * could collide with a shared key on the same
361 * position...
363 mask = TXRX_CSR0_KEY_ID.bit_mask;
365 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
366 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
367 reg &= mask;
369 if (reg && reg == mask)
370 return -ENOSPC;
372 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
374 key->hw_key_idx += reg ? ffz(reg) : 0;
376 * Hardware requires that all keys use the same cipher
377 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
378 * If this is not the first key, compare the cipher with the
379 * first one and fall back to SW crypto if not the same.
381 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
382 return -EOPNOTSUPP;
384 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
385 crypto->key, sizeof(crypto->key));
388 * The driver does not support the IV/EIV generation
389 * in hardware. However it demands the data to be provided
390 * both separately as well as inside the frame.
391 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
392 * to ensure rt2x00lib will not strip the data from the
393 * frame after the copy, now we must tell mac80211
394 * to generate the IV/EIV data.
396 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
402 * a particular key is valid.
404 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
405 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
406 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
408 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
409 if (crypto->cmd == SET_KEY)
410 mask |= 1 << key->hw_key_idx;
411 else if (crypto->cmd == DISABLE_KEY)
412 mask &= ~(1 << key->hw_key_idx);
413 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
414 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
416 return 0;
419 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
420 const unsigned int filter_flags)
422 u16 reg;
425 * Start configuration steps.
426 * Note that the version error will always be dropped
427 * and broadcast frames will always be accepted since
428 * there is no filter for it at this time.
430 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
431 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
432 !(filter_flags & FIF_FCSFAIL));
433 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
434 !(filter_flags & FIF_PLCPFAIL));
435 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
436 !(filter_flags & FIF_CONTROL));
437 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
438 !(filter_flags & FIF_PROMISC_IN_BSS));
439 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
440 !(filter_flags & FIF_PROMISC_IN_BSS) &&
441 !rt2x00dev->intf_ap_count);
442 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
443 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
444 !(filter_flags & FIF_ALLMULTI));
445 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
446 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
449 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
450 struct rt2x00_intf *intf,
451 struct rt2x00intf_conf *conf,
452 const unsigned int flags)
454 unsigned int bcn_preload;
455 u16 reg;
457 if (flags & CONFIG_UPDATE_TYPE) {
459 * Enable beacon config
461 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
462 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
463 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
464 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
465 2 * (conf->type != NL80211_IFTYPE_STATION));
466 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
469 * Enable synchronisation.
471 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
472 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
473 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
475 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
476 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
477 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
480 if (flags & CONFIG_UPDATE_MAC)
481 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
482 (3 * sizeof(__le16)));
484 if (flags & CONFIG_UPDATE_BSSID)
485 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
486 (3 * sizeof(__le16)));
489 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
490 struct rt2x00lib_erp *erp,
491 u32 changed)
493 u16 reg;
495 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
496 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
497 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
498 !!erp->short_preamble);
499 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
502 if (changed & BSS_CHANGED_BASIC_RATES)
503 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
504 erp->basic_rates);
506 if (changed & BSS_CHANGED_BEACON_INT) {
507 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
508 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
509 erp->beacon_int * 4);
510 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
513 if (changed & BSS_CHANGED_ERP_SLOT) {
514 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
515 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
516 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
520 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
521 struct antenna_setup *ant)
523 u8 r2;
524 u8 r14;
525 u16 csr5;
526 u16 csr6;
529 * We should never come here because rt2x00lib is supposed
530 * to catch this and send us the correct antenna explicitely.
532 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
533 ant->tx == ANTENNA_SW_DIVERSITY);
535 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
536 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
537 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
538 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
541 * Configure the TX antenna.
543 switch (ant->tx) {
544 case ANTENNA_HW_DIVERSITY:
545 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
546 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
547 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
548 break;
549 case ANTENNA_A:
550 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
551 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
552 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
553 break;
554 case ANTENNA_B:
555 default:
556 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
557 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
558 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
559 break;
563 * Configure the RX antenna.
565 switch (ant->rx) {
566 case ANTENNA_HW_DIVERSITY:
567 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
568 break;
569 case ANTENNA_A:
570 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
571 break;
572 case ANTENNA_B:
573 default:
574 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
575 break;
579 * RT2525E and RT5222 need to flip TX I/Q
581 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
582 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
583 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
584 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
587 * RT2525E does not need RX I/Q Flip.
589 if (rt2x00_rf(rt2x00dev, RF2525E))
590 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
591 } else {
592 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
593 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
596 rt2500usb_bbp_write(rt2x00dev, 2, r2);
597 rt2500usb_bbp_write(rt2x00dev, 14, r14);
598 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
599 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
602 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
603 struct rf_channel *rf, const int txpower)
606 * Set TXpower.
608 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
611 * For RT2525E we should first set the channel to half band higher.
613 if (rt2x00_rf(rt2x00dev, RF2525E)) {
614 static const u32 vals[] = {
615 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
616 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
617 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
618 0x00000902, 0x00000906
621 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
622 if (rf->rf4)
623 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
627 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
628 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
629 if (rf->rf4)
630 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
633 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
634 const int txpower)
636 u32 rf3;
638 rt2x00_rf_read(rt2x00dev, 3, &rf3);
639 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
640 rt2500usb_rf_write(rt2x00dev, 3, rf3);
643 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
644 struct rt2x00lib_conf *libconf)
646 enum dev_state state =
647 (libconf->conf->flags & IEEE80211_CONF_PS) ?
648 STATE_SLEEP : STATE_AWAKE;
649 u16 reg;
651 if (state == STATE_SLEEP) {
652 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
653 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
654 rt2x00dev->beacon_int - 20);
655 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
656 libconf->conf->listen_interval - 1);
658 /* We must first disable autowake before it can be enabled */
659 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
660 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
663 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
664 } else {
665 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
666 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
667 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
670 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
673 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
674 struct rt2x00lib_conf *libconf,
675 const unsigned int flags)
677 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
678 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
679 libconf->conf->power_level);
680 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
681 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
682 rt2500usb_config_txpower(rt2x00dev,
683 libconf->conf->power_level);
684 if (flags & IEEE80211_CONF_CHANGE_PS)
685 rt2500usb_config_ps(rt2x00dev, libconf);
689 * Link tuning
691 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
692 struct link_qual *qual)
694 u16 reg;
697 * Update FCS error count from register.
699 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
700 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
703 * Update False CCA count from register.
705 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
706 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
709 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
710 struct link_qual *qual)
712 u16 eeprom;
713 u16 value;
715 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
716 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
717 rt2500usb_bbp_write(rt2x00dev, 24, value);
719 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
720 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
721 rt2500usb_bbp_write(rt2x00dev, 25, value);
723 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
724 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
725 rt2500usb_bbp_write(rt2x00dev, 61, value);
727 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
728 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
729 rt2500usb_bbp_write(rt2x00dev, 17, value);
731 qual->vgc_level = value;
735 * Queue handlers.
737 static void rt2500usb_start_queue(struct data_queue *queue)
739 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
740 u16 reg;
742 switch (queue->qid) {
743 case QID_RX:
744 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
745 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
746 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
747 break;
748 case QID_BEACON:
749 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
750 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
751 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
752 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
753 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
754 break;
755 default:
756 break;
760 static void rt2500usb_stop_queue(struct data_queue *queue)
762 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
763 u16 reg;
765 switch (queue->qid) {
766 case QID_RX:
767 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
768 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
769 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
770 break;
771 case QID_BEACON:
772 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
773 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
774 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
775 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
776 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
777 break;
778 default:
779 break;
784 * Initialization functions.
786 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
788 u16 reg;
790 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
791 USB_MODE_TEST, REGISTER_TIMEOUT);
792 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
793 0x00f0, REGISTER_TIMEOUT);
795 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
796 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
797 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
799 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
800 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
802 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
803 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
804 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
805 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
806 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
808 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
809 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
810 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
811 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
812 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
814 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
815 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
816 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
817 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
818 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
819 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
821 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
822 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
823 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
824 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
825 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
826 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
828 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
829 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
830 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
831 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
832 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
833 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
835 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
836 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
837 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
838 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
839 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
840 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
842 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
843 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
844 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
845 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
846 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
847 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
849 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
850 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
852 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
853 return -EBUSY;
855 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
856 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
857 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
858 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
859 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
861 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
862 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
863 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
864 } else {
865 reg = 0;
866 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
867 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
869 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
871 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
872 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
873 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
874 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
876 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
877 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
878 rt2x00dev->rx->data_size);
879 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
881 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
882 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
883 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
884 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
885 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
887 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
888 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
889 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
891 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
892 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
893 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
895 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
896 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
897 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
899 return 0;
902 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
904 unsigned int i;
905 u8 value;
907 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
908 rt2500usb_bbp_read(rt2x00dev, 0, &value);
909 if ((value != 0xff) && (value != 0x00))
910 return 0;
911 udelay(REGISTER_BUSY_DELAY);
914 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
915 return -EACCES;
918 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
920 unsigned int i;
921 u16 eeprom;
922 u8 value;
923 u8 reg_id;
925 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
926 return -EACCES;
928 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
929 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
930 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
931 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
932 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
933 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
934 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
935 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
936 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
937 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
938 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
939 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
940 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
941 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
942 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
943 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
944 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
945 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
946 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
947 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
948 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
949 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
950 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
951 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
952 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
953 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
954 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
955 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
956 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
957 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
958 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
960 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
961 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
963 if (eeprom != 0xffff && eeprom != 0x0000) {
964 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
965 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
966 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
970 return 0;
974 * Device state switch handlers.
976 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
979 * Initialize all registers.
981 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
982 rt2500usb_init_bbp(rt2x00dev)))
983 return -EIO;
985 return 0;
988 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
990 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
991 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
994 * Disable synchronisation.
996 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
998 rt2x00usb_disable_radio(rt2x00dev);
1001 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1002 enum dev_state state)
1004 u16 reg;
1005 u16 reg2;
1006 unsigned int i;
1007 char put_to_sleep;
1008 char bbp_state;
1009 char rf_state;
1011 put_to_sleep = (state != STATE_AWAKE);
1013 reg = 0;
1014 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1015 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1016 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1017 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1018 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1019 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1022 * Device is not guaranteed to be in the requested state yet.
1023 * We must wait until the register indicates that the
1024 * device has entered the correct state.
1026 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1027 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1028 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1029 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1030 if (bbp_state == state && rf_state == state)
1031 return 0;
1032 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1033 msleep(30);
1036 return -EBUSY;
1039 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1040 enum dev_state state)
1042 int retval = 0;
1044 switch (state) {
1045 case STATE_RADIO_ON:
1046 retval = rt2500usb_enable_radio(rt2x00dev);
1047 break;
1048 case STATE_RADIO_OFF:
1049 rt2500usb_disable_radio(rt2x00dev);
1050 break;
1051 case STATE_RADIO_IRQ_ON:
1052 case STATE_RADIO_IRQ_OFF:
1053 /* No support, but no error either */
1054 break;
1055 case STATE_DEEP_SLEEP:
1056 case STATE_SLEEP:
1057 case STATE_STANDBY:
1058 case STATE_AWAKE:
1059 retval = rt2500usb_set_state(rt2x00dev, state);
1060 break;
1061 default:
1062 retval = -ENOTSUPP;
1063 break;
1066 if (unlikely(retval))
1067 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1068 state, retval);
1070 return retval;
1074 * TX descriptor initialization
1076 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1077 struct txentry_desc *txdesc)
1079 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1080 __le32 *txd = (__le32 *) entry->skb->data;
1081 u32 word;
1084 * Start writing the descriptor words.
1086 rt2x00_desc_read(txd, 0, &word);
1087 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1088 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1089 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1090 rt2x00_set_field32(&word, TXD_W0_ACK,
1091 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1092 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1093 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1094 rt2x00_set_field32(&word, TXD_W0_OFDM,
1095 (txdesc->rate_mode == RATE_MODE_OFDM));
1096 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1097 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1098 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1099 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1100 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1101 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1102 rt2x00_desc_write(txd, 0, word);
1104 rt2x00_desc_read(txd, 1, &word);
1105 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1106 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1107 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1108 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1109 rt2x00_desc_write(txd, 1, word);
1111 rt2x00_desc_read(txd, 2, &word);
1112 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1113 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1114 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1115 txdesc->u.plcp.length_low);
1116 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1117 txdesc->u.plcp.length_high);
1118 rt2x00_desc_write(txd, 2, word);
1120 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1121 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1122 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1126 * Register descriptor details in skb frame descriptor.
1128 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1129 skbdesc->desc = txd;
1130 skbdesc->desc_len = TXD_DESC_SIZE;
1134 * TX data initialization
1136 static void rt2500usb_beacondone(struct urb *urb);
1138 static void rt2500usb_write_beacon(struct queue_entry *entry,
1139 struct txentry_desc *txdesc)
1141 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1142 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1143 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1144 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1145 int length;
1146 u16 reg, reg0;
1149 * Disable beaconing while we are reloading the beacon data,
1150 * otherwise we might be sending out invalid data.
1152 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1153 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1154 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1157 * Add space for the descriptor in front of the skb.
1159 skb_push(entry->skb, TXD_DESC_SIZE);
1160 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1163 * Write the TX descriptor for the beacon.
1165 rt2500usb_write_tx_desc(entry, txdesc);
1168 * Dump beacon to userspace through debugfs.
1170 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1173 * USB devices cannot blindly pass the skb->len as the
1174 * length of the data to usb_fill_bulk_urb. Pass the skb
1175 * to the driver to determine what the length should be.
1177 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1179 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1180 entry->skb->data, length, rt2500usb_beacondone,
1181 entry);
1184 * Second we need to create the guardian byte.
1185 * We only need a single byte, so lets recycle
1186 * the 'flags' field we are not using for beacons.
1188 bcn_priv->guardian_data = 0;
1189 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1190 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1191 entry);
1194 * Send out the guardian byte.
1196 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1199 * Enable beaconing again.
1201 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1202 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1203 reg0 = reg;
1204 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1206 * Beacon generation will fail initially.
1207 * To prevent this we need to change the TXRX_CSR19
1208 * register several times (reg0 is the same as reg
1209 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1210 * and 1 in reg).
1212 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1213 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1216 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1219 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1221 int length;
1224 * The length _must_ be a multiple of 2,
1225 * but it must _not_ be a multiple of the USB packet size.
1227 length = roundup(entry->skb->len, 2);
1228 length += (2 * !(length % entry->queue->usb_maxpacket));
1230 return length;
1234 * RX control handlers
1236 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1237 struct rxdone_entry_desc *rxdesc)
1239 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1240 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1241 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1242 __le32 *rxd =
1243 (__le32 *)(entry->skb->data +
1244 (entry_priv->urb->actual_length -
1245 entry->queue->desc_size));
1246 u32 word0;
1247 u32 word1;
1250 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1251 * frame data in rt2x00usb.
1253 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1254 rxd = (__le32 *)skbdesc->desc;
1257 * It is now safe to read the descriptor on all architectures.
1259 rt2x00_desc_read(rxd, 0, &word0);
1260 rt2x00_desc_read(rxd, 1, &word1);
1262 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1263 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1264 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1265 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1267 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1268 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1269 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1271 if (rxdesc->cipher != CIPHER_NONE) {
1272 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1273 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1274 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1276 /* ICV is located at the end of frame */
1278 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1279 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1280 rxdesc->flags |= RX_FLAG_DECRYPTED;
1281 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1282 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1286 * Obtain the status about this packet.
1287 * When frame was received with an OFDM bitrate,
1288 * the signal is the PLCP value. If it was received with
1289 * a CCK bitrate the signal is the rate in 100kbit/s.
1291 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1292 rxdesc->rssi =
1293 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1294 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1296 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1297 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1298 else
1299 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1300 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1301 rxdesc->dev_flags |= RXDONE_MY_BSS;
1304 * Adjust the skb memory window to the frame boundaries.
1306 skb_trim(entry->skb, rxdesc->size);
1310 * Interrupt functions.
1312 static void rt2500usb_beacondone(struct urb *urb)
1314 struct queue_entry *entry = (struct queue_entry *)urb->context;
1315 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1317 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1318 return;
1321 * Check if this was the guardian beacon,
1322 * if that was the case we need to send the real beacon now.
1323 * Otherwise we should free the sk_buffer, the device
1324 * should be doing the rest of the work now.
1326 if (bcn_priv->guardian_urb == urb) {
1327 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1328 } else if (bcn_priv->urb == urb) {
1329 dev_kfree_skb(entry->skb);
1330 entry->skb = NULL;
1335 * Device probe functions.
1337 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1339 u16 word;
1340 u8 *mac;
1341 u8 bbp;
1343 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1346 * Start validation of the data that has been read.
1348 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1349 if (!is_valid_ether_addr(mac)) {
1350 eth_random_addr(mac);
1351 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1354 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1355 if (word == 0xffff) {
1356 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1357 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1358 ANTENNA_SW_DIVERSITY);
1359 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1360 ANTENNA_SW_DIVERSITY);
1361 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1362 LED_MODE_DEFAULT);
1363 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1364 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1365 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1366 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1367 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1370 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1371 if (word == 0xffff) {
1372 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1373 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1374 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1375 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1376 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1379 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1380 if (word == 0xffff) {
1381 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1382 DEFAULT_RSSI_OFFSET);
1383 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1384 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1385 word);
1388 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1389 if (word == 0xffff) {
1390 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1391 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1392 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1396 * Switch lower vgc bound to current BBP R17 value,
1397 * lower the value a bit for better quality.
1399 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1400 bbp -= 6;
1402 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1403 if (word == 0xffff) {
1404 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1405 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1406 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1407 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1408 } else {
1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1413 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1414 if (word == 0xffff) {
1415 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1416 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1417 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1418 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1421 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1422 if (word == 0xffff) {
1423 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1424 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1425 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1426 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1429 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1430 if (word == 0xffff) {
1431 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1432 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1433 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1434 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1437 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1438 if (word == 0xffff) {
1439 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1440 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1441 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1442 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1445 return 0;
1448 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1450 u16 reg;
1451 u16 value;
1452 u16 eeprom;
1455 * Read EEPROM word for configuration.
1457 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1460 * Identify RF chipset.
1462 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1463 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1464 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1466 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1467 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1468 return -ENODEV;
1471 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1472 !rt2x00_rf(rt2x00dev, RF2523) &&
1473 !rt2x00_rf(rt2x00dev, RF2524) &&
1474 !rt2x00_rf(rt2x00dev, RF2525) &&
1475 !rt2x00_rf(rt2x00dev, RF2525E) &&
1476 !rt2x00_rf(rt2x00dev, RF5222)) {
1477 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1478 return -ENODEV;
1482 * Identify default antenna configuration.
1484 rt2x00dev->default_ant.tx =
1485 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1486 rt2x00dev->default_ant.rx =
1487 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1490 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1491 * I am not 100% sure about this, but the legacy drivers do not
1492 * indicate antenna swapping in software is required when
1493 * diversity is enabled.
1495 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1496 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1497 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1498 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1501 * Store led mode, for correct led behaviour.
1503 #ifdef CONFIG_RT2X00_LIB_LEDS
1504 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1506 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1507 if (value == LED_MODE_TXRX_ACTIVITY ||
1508 value == LED_MODE_DEFAULT ||
1509 value == LED_MODE_ASUS)
1510 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1511 LED_TYPE_ACTIVITY);
1512 #endif /* CONFIG_RT2X00_LIB_LEDS */
1515 * Detect if this device has an hardware controlled radio.
1517 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1518 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1521 * Read the RSSI <-> dBm offset information.
1523 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1524 rt2x00dev->rssi_offset =
1525 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1527 return 0;
1531 * RF value list for RF2522
1532 * Supports: 2.4 GHz
1534 static const struct rf_channel rf_vals_bg_2522[] = {
1535 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1536 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1537 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1538 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1539 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1540 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1541 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1542 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1543 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1544 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1545 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1546 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1547 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1548 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1552 * RF value list for RF2523
1553 * Supports: 2.4 GHz
1555 static const struct rf_channel rf_vals_bg_2523[] = {
1556 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1557 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1558 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1559 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1560 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1561 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1562 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1563 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1564 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1565 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1566 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1567 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1568 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1569 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1573 * RF value list for RF2524
1574 * Supports: 2.4 GHz
1576 static const struct rf_channel rf_vals_bg_2524[] = {
1577 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1578 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1579 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1580 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1581 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1582 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1583 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1584 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1585 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1586 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1587 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1588 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1589 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1590 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1594 * RF value list for RF2525
1595 * Supports: 2.4 GHz
1597 static const struct rf_channel rf_vals_bg_2525[] = {
1598 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1599 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1600 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1601 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1602 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1603 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1604 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1605 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1606 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1607 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1608 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1609 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1610 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1611 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1615 * RF value list for RF2525e
1616 * Supports: 2.4 GHz
1618 static const struct rf_channel rf_vals_bg_2525e[] = {
1619 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1620 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1621 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1622 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1623 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1624 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1625 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1626 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1627 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1628 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1629 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1630 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1631 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1632 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1636 * RF value list for RF5222
1637 * Supports: 2.4 GHz & 5.2 GHz
1639 static const struct rf_channel rf_vals_5222[] = {
1640 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1641 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1642 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1643 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1644 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1645 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1646 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1647 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1648 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1649 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1650 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1651 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1652 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1653 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1655 /* 802.11 UNI / HyperLan 2 */
1656 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1657 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1658 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1659 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1660 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1661 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1662 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1663 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1665 /* 802.11 HyperLan 2 */
1666 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1667 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1668 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1669 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1670 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1671 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1672 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1673 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1674 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1675 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1677 /* 802.11 UNII */
1678 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1679 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1680 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1681 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1682 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1685 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1687 struct hw_mode_spec *spec = &rt2x00dev->spec;
1688 struct channel_info *info;
1689 char *tx_power;
1690 unsigned int i;
1693 * Initialize all hw fields.
1695 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1696 * capable of sending the buffered frames out after the DTIM
1697 * transmission using rt2x00lib_beacondone. This will send out
1698 * multicast and broadcast traffic immediately instead of buffering it
1699 * infinitly and thus dropping it after some time.
1701 rt2x00dev->hw->flags =
1702 IEEE80211_HW_RX_INCLUDES_FCS |
1703 IEEE80211_HW_SIGNAL_DBM |
1704 IEEE80211_HW_SUPPORTS_PS |
1705 IEEE80211_HW_PS_NULLFUNC_STACK;
1708 * Disable powersaving as default.
1710 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1712 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1713 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1714 rt2x00_eeprom_addr(rt2x00dev,
1715 EEPROM_MAC_ADDR_0));
1718 * Initialize hw_mode information.
1720 spec->supported_bands = SUPPORT_BAND_2GHZ;
1721 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1723 if (rt2x00_rf(rt2x00dev, RF2522)) {
1724 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1725 spec->channels = rf_vals_bg_2522;
1726 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1727 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1728 spec->channels = rf_vals_bg_2523;
1729 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1730 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1731 spec->channels = rf_vals_bg_2524;
1732 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1733 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1734 spec->channels = rf_vals_bg_2525;
1735 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1736 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1737 spec->channels = rf_vals_bg_2525e;
1738 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1740 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1741 spec->channels = rf_vals_5222;
1745 * Create channel information array
1747 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1748 if (!info)
1749 return -ENOMEM;
1751 spec->channels_info = info;
1753 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1754 for (i = 0; i < 14; i++) {
1755 info[i].max_power = MAX_TXPOWER;
1756 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759 if (spec->num_channels > 14) {
1760 for (i = 14; i < spec->num_channels; i++) {
1761 info[i].max_power = MAX_TXPOWER;
1762 info[i].default_power1 = DEFAULT_TXPOWER;
1766 return 0;
1769 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1771 int retval;
1772 u16 reg;
1775 * Allocate eeprom data.
1777 retval = rt2500usb_validate_eeprom(rt2x00dev);
1778 if (retval)
1779 return retval;
1781 retval = rt2500usb_init_eeprom(rt2x00dev);
1782 if (retval)
1783 return retval;
1786 * Enable rfkill polling by setting GPIO direction of the
1787 * rfkill switch GPIO pin correctly.
1789 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790 rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1791 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794 * Initialize hw specifications.
1796 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1797 if (retval)
1798 return retval;
1801 * This device requires the atim queue
1803 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1805 if (!modparam_nohwcrypt) {
1806 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1807 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1809 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1810 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813 * Set the rssi offset.
1815 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1817 return 0;
1820 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1821 .tx = rt2x00mac_tx,
1822 .start = rt2x00mac_start,
1823 .stop = rt2x00mac_stop,
1824 .add_interface = rt2x00mac_add_interface,
1825 .remove_interface = rt2x00mac_remove_interface,
1826 .config = rt2x00mac_config,
1827 .configure_filter = rt2x00mac_configure_filter,
1828 .set_tim = rt2x00mac_set_tim,
1829 .set_key = rt2x00mac_set_key,
1830 .sw_scan_start = rt2x00mac_sw_scan_start,
1831 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1832 .get_stats = rt2x00mac_get_stats,
1833 .bss_info_changed = rt2x00mac_bss_info_changed,
1834 .conf_tx = rt2x00mac_conf_tx,
1835 .rfkill_poll = rt2x00mac_rfkill_poll,
1836 .flush = rt2x00mac_flush,
1837 .set_antenna = rt2x00mac_set_antenna,
1838 .get_antenna = rt2x00mac_get_antenna,
1839 .get_ringparam = rt2x00mac_get_ringparam,
1840 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1843 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1844 .probe_hw = rt2500usb_probe_hw,
1845 .initialize = rt2x00usb_initialize,
1846 .uninitialize = rt2x00usb_uninitialize,
1847 .clear_entry = rt2x00usb_clear_entry,
1848 .set_device_state = rt2500usb_set_device_state,
1849 .rfkill_poll = rt2500usb_rfkill_poll,
1850 .link_stats = rt2500usb_link_stats,
1851 .reset_tuner = rt2500usb_reset_tuner,
1852 .watchdog = rt2x00usb_watchdog,
1853 .start_queue = rt2500usb_start_queue,
1854 .kick_queue = rt2x00usb_kick_queue,
1855 .stop_queue = rt2500usb_stop_queue,
1856 .flush_queue = rt2x00usb_flush_queue,
1857 .write_tx_desc = rt2500usb_write_tx_desc,
1858 .write_beacon = rt2500usb_write_beacon,
1859 .get_tx_data_len = rt2500usb_get_tx_data_len,
1860 .fill_rxdone = rt2500usb_fill_rxdone,
1861 .config_shared_key = rt2500usb_config_key,
1862 .config_pairwise_key = rt2500usb_config_key,
1863 .config_filter = rt2500usb_config_filter,
1864 .config_intf = rt2500usb_config_intf,
1865 .config_erp = rt2500usb_config_erp,
1866 .config_ant = rt2500usb_config_ant,
1867 .config = rt2500usb_config,
1870 static void rt2500usb_queue_init(struct data_queue *queue)
1872 switch (queue->qid) {
1873 case QID_RX:
1874 queue->limit = 32;
1875 queue->data_size = DATA_FRAME_SIZE;
1876 queue->desc_size = RXD_DESC_SIZE;
1877 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878 break;
1880 case QID_AC_VO:
1881 case QID_AC_VI:
1882 case QID_AC_BE:
1883 case QID_AC_BK:
1884 queue->limit = 32;
1885 queue->data_size = DATA_FRAME_SIZE;
1886 queue->desc_size = TXD_DESC_SIZE;
1887 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1888 break;
1890 case QID_BEACON:
1891 queue->limit = 1;
1892 queue->data_size = MGMT_FRAME_SIZE;
1893 queue->desc_size = TXD_DESC_SIZE;
1894 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1895 break;
1897 case QID_ATIM:
1898 queue->limit = 8;
1899 queue->data_size = DATA_FRAME_SIZE;
1900 queue->desc_size = TXD_DESC_SIZE;
1901 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1902 break;
1904 default:
1905 BUG();
1906 break;
1910 static const struct rt2x00_ops rt2500usb_ops = {
1911 .name = KBUILD_MODNAME,
1912 .max_ap_intf = 1,
1913 .eeprom_size = EEPROM_SIZE,
1914 .rf_size = RF_SIZE,
1915 .tx_queues = NUM_TX_QUEUES,
1916 .queue_init = rt2500usb_queue_init,
1917 .lib = &rt2500usb_rt2x00_ops,
1918 .hw = &rt2500usb_mac80211_ops,
1919 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1920 .debugfs = &rt2500usb_rt2x00debug,
1921 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1925 * rt2500usb module information.
1927 static struct usb_device_id rt2500usb_device_table[] = {
1928 /* ASUS */
1929 { USB_DEVICE(0x0b05, 0x1706) },
1930 { USB_DEVICE(0x0b05, 0x1707) },
1931 /* Belkin */
1932 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1933 { USB_DEVICE(0x050d, 0x7051) },
1934 /* Cisco Systems */
1935 { USB_DEVICE(0x13b1, 0x000d) },
1936 { USB_DEVICE(0x13b1, 0x0011) },
1937 { USB_DEVICE(0x13b1, 0x001a) },
1938 /* Conceptronic */
1939 { USB_DEVICE(0x14b2, 0x3c02) },
1940 /* D-LINK */
1941 { USB_DEVICE(0x2001, 0x3c00) },
1942 /* Gigabyte */
1943 { USB_DEVICE(0x1044, 0x8001) },
1944 { USB_DEVICE(0x1044, 0x8007) },
1945 /* Hercules */
1946 { USB_DEVICE(0x06f8, 0xe000) },
1947 /* Melco */
1948 { USB_DEVICE(0x0411, 0x005e) },
1949 { USB_DEVICE(0x0411, 0x0066) },
1950 { USB_DEVICE(0x0411, 0x0067) },
1951 { USB_DEVICE(0x0411, 0x008b) },
1952 { USB_DEVICE(0x0411, 0x0097) },
1953 /* MSI */
1954 { USB_DEVICE(0x0db0, 0x6861) },
1955 { USB_DEVICE(0x0db0, 0x6865) },
1956 { USB_DEVICE(0x0db0, 0x6869) },
1957 /* Ralink */
1958 { USB_DEVICE(0x148f, 0x1706) },
1959 { USB_DEVICE(0x148f, 0x2570) },
1960 { USB_DEVICE(0x148f, 0x9020) },
1961 /* Sagem */
1962 { USB_DEVICE(0x079b, 0x004b) },
1963 /* Siemens */
1964 { USB_DEVICE(0x0681, 0x3c06) },
1965 /* SMC */
1966 { USB_DEVICE(0x0707, 0xee13) },
1967 /* Spairon */
1968 { USB_DEVICE(0x114b, 0x0110) },
1969 /* SURECOM */
1970 { USB_DEVICE(0x0769, 0x11f3) },
1971 /* Trust */
1972 { USB_DEVICE(0x0eb0, 0x9020) },
1973 /* VTech */
1974 { USB_DEVICE(0x0f88, 0x3012) },
1975 /* Zinwell */
1976 { USB_DEVICE(0x5a57, 0x0260) },
1977 { 0, }
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1984 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1985 MODULE_LICENSE("GPL");
1987 static int rt2500usb_probe(struct usb_interface *usb_intf,
1988 const struct usb_device_id *id)
1990 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993 static struct usb_driver rt2500usb_driver = {
1994 .name = KBUILD_MODNAME,
1995 .id_table = rt2500usb_device_table,
1996 .probe = rt2500usb_probe,
1997 .disconnect = rt2x00usb_disconnect,
1998 .suspend = rt2x00usb_suspend,
1999 .resume = rt2x00usb_resume,
2000 .reset_resume = rt2x00usb_resume,
2001 .disable_hub_initiated_lpm = 1,
2004 module_usb_driver(rt2500usb_driver);