2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt73usb device specific routines.
22 Supported chipsets: rt2571W & rt2671.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/usb.h>
34 #include "rt2x00usb.h"
38 * Allow hardware encryption to be disabled.
40 static bool modparam_nohwcrypt
;
41 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
42 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
46 * All access to the CSR registers will go through the methods
47 * rt2x00usb_register_read and rt2x00usb_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 * The _lock versions must be used if you already hold the csr_mutex
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 static void rt73usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
64 const unsigned int word
, const u8 value
)
68 mutex_lock(&rt2x00dev
->csr_mutex
);
71 * Wait until the BBP becomes available, afterwards we
72 * can safely write the new data into the register.
74 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
76 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
77 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
78 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
79 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
81 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
84 mutex_unlock(&rt2x00dev
->csr_mutex
);
87 static void rt73usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
88 const unsigned int word
, u8
*value
)
92 mutex_lock(&rt2x00dev
->csr_mutex
);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the read request into the register.
97 * After the data has been written, we wait until hardware
98 * returns the correct value, if at any time the register
99 * doesn't become available in time, reg will be 0xffffffff
100 * which means we return 0xff to the caller.
102 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
104 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
105 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
106 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
108 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
110 WAIT_FOR_BBP(rt2x00dev
, ®
);
113 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
115 mutex_unlock(&rt2x00dev
->csr_mutex
);
118 static void rt73usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
119 const unsigned int word
, const u32 value
)
123 mutex_lock(&rt2x00dev
->csr_mutex
);
126 * Wait until the RF becomes available, afterwards we
127 * can safely write the new data into the register.
129 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
131 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
133 * RF5225 and RF2527 contain 21 bits per RF register value,
134 * all others contain 20 bits.
136 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
,
137 20 + (rt2x00_rf(rt2x00dev
, RF5225
) ||
138 rt2x00_rf(rt2x00dev
, RF2527
)));
139 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
140 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
142 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR4
, reg
);
143 rt2x00_rf_write(rt2x00dev
, word
, value
);
146 mutex_unlock(&rt2x00dev
->csr_mutex
);
149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
150 static const struct rt2x00debug rt73usb_rt2x00debug
= {
151 .owner
= THIS_MODULE
,
153 .read
= rt2x00usb_register_read
,
154 .write
= rt2x00usb_register_write
,
155 .flags
= RT2X00DEBUGFS_OFFSET
,
156 .word_base
= CSR_REG_BASE
,
157 .word_size
= sizeof(u32
),
158 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
161 .read
= rt2x00_eeprom_read
,
162 .write
= rt2x00_eeprom_write
,
163 .word_base
= EEPROM_BASE
,
164 .word_size
= sizeof(u16
),
165 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
168 .read
= rt73usb_bbp_read
,
169 .write
= rt73usb_bbp_write
,
170 .word_base
= BBP_BASE
,
171 .word_size
= sizeof(u8
),
172 .word_count
= BBP_SIZE
/ sizeof(u8
),
175 .read
= rt2x00_rf_read
,
176 .write
= rt73usb_rf_write
,
177 .word_base
= RF_BASE
,
178 .word_size
= sizeof(u32
),
179 .word_count
= RF_SIZE
/ sizeof(u32
),
182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
184 static int rt73usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
188 rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
, ®
);
189 return rt2x00_get_field32(reg
, MAC_CSR13_VAL7
);
192 #ifdef CONFIG_RT2X00_LIB_LEDS
193 static void rt73usb_brightness_set(struct led_classdev
*led_cdev
,
194 enum led_brightness brightness
)
196 struct rt2x00_led
*led
=
197 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
198 unsigned int enabled
= brightness
!= LED_OFF
;
199 unsigned int a_mode
=
200 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
201 unsigned int bg_mode
=
202 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
204 if (led
->type
== LED_TYPE_RADIO
) {
205 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
206 MCU_LEDCS_RADIO_STATUS
, enabled
);
208 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
209 0, led
->rt2x00dev
->led_mcu_reg
,
211 } else if (led
->type
== LED_TYPE_ASSOC
) {
212 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
213 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
214 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
215 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
217 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
218 0, led
->rt2x00dev
->led_mcu_reg
,
220 } else if (led
->type
== LED_TYPE_QUALITY
) {
222 * The brightness is divided into 6 levels (0 - 5),
223 * this means we need to convert the brightness
224 * argument into the matching level within that range.
226 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
227 brightness
/ (LED_FULL
/ 6),
228 led
->rt2x00dev
->led_mcu_reg
,
233 static int rt73usb_blink_set(struct led_classdev
*led_cdev
,
234 unsigned long *delay_on
,
235 unsigned long *delay_off
)
237 struct rt2x00_led
*led
=
238 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
241 rt2x00usb_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
242 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
243 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
244 rt2x00usb_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
249 static void rt73usb_init_led(struct rt2x00_dev
*rt2x00dev
,
250 struct rt2x00_led
*led
,
253 led
->rt2x00dev
= rt2x00dev
;
255 led
->led_dev
.brightness_set
= rt73usb_brightness_set
;
256 led
->led_dev
.blink_set
= rt73usb_blink_set
;
257 led
->flags
= LED_INITIALIZED
;
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
262 * Configuration handlers.
264 static int rt73usb_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
265 struct rt2x00lib_crypto
*crypto
,
266 struct ieee80211_key_conf
*key
)
268 struct hw_key_entry key_entry
;
269 struct rt2x00_field32 field
;
273 if (crypto
->cmd
== SET_KEY
) {
275 * rt2x00lib can't determine the correct free
276 * key_idx for shared keys. We have 1 register
277 * with key valid bits. The goal is simple, read
278 * the register, if that is full we have no slots
280 * Note that each BSS is allowed to have up to 4
281 * shared keys, so put a mask over the allowed
284 mask
= (0xf << crypto
->bssidx
);
286 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
289 if (reg
&& reg
== mask
)
292 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
295 * Upload key to hardware
297 memcpy(key_entry
.key
, crypto
->key
,
298 sizeof(key_entry
.key
));
299 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
300 sizeof(key_entry
.tx_mic
));
301 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
302 sizeof(key_entry
.rx_mic
));
304 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
305 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
306 &key_entry
, sizeof(key_entry
));
309 * The cipher types are stored over 2 registers.
310 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312 * Using the correct defines correctly will cause overhead,
313 * so just calculate the correct offset.
315 if (key
->hw_key_idx
< 8) {
316 field
.bit_offset
= (3 * key
->hw_key_idx
);
317 field
.bit_mask
= 0x7 << field
.bit_offset
;
319 rt2x00usb_register_read(rt2x00dev
, SEC_CSR1
, ®
);
320 rt2x00_set_field32(®
, field
, crypto
->cipher
);
321 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, reg
);
323 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
324 field
.bit_mask
= 0x7 << field
.bit_offset
;
326 rt2x00usb_register_read(rt2x00dev
, SEC_CSR5
, ®
);
327 rt2x00_set_field32(®
, field
, crypto
->cipher
);
328 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, reg
);
332 * The driver does not support the IV/EIV generation
333 * in hardware. However it doesn't support the IV/EIV
334 * inside the ieee80211 frame either, but requires it
335 * to be provided separately for the descriptor.
336 * rt2x00lib will cut the IV/EIV data out of all frames
337 * given to us by mac80211, but we must tell mac80211
338 * to generate the IV/EIV data.
340 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
344 * SEC_CSR0 contains only single-bit fields to indicate
345 * a particular key is valid. Because using the FIELD32()
346 * defines directly will cause a lot of overhead we use
347 * a calculation to determine the correct bit directly.
349 mask
= 1 << key
->hw_key_idx
;
351 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
352 if (crypto
->cmd
== SET_KEY
)
354 else if (crypto
->cmd
== DISABLE_KEY
)
356 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, reg
);
361 static int rt73usb_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
362 struct rt2x00lib_crypto
*crypto
,
363 struct ieee80211_key_conf
*key
)
365 struct hw_pairwise_ta_entry addr_entry
;
366 struct hw_key_entry key_entry
;
370 if (crypto
->cmd
== SET_KEY
) {
372 * rt2x00lib can't determine the correct free
373 * key_idx for pairwise keys. We have 2 registers
374 * with key valid bits. The goal is simple, read
375 * the first register, if that is full move to
377 * When both registers are full, we drop the key,
378 * otherwise we use the first invalid entry.
380 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
381 if (reg
&& reg
== ~0) {
382 key
->hw_key_idx
= 32;
383 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
384 if (reg
&& reg
== ~0)
388 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
391 * Upload key to hardware
393 memcpy(key_entry
.key
, crypto
->key
,
394 sizeof(key_entry
.key
));
395 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
396 sizeof(key_entry
.tx_mic
));
397 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
398 sizeof(key_entry
.rx_mic
));
400 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
401 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
402 &key_entry
, sizeof(key_entry
));
405 * Send the address and cipher type to the hardware register.
407 memset(&addr_entry
, 0, sizeof(addr_entry
));
408 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
409 addr_entry
.cipher
= crypto
->cipher
;
411 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
412 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
413 &addr_entry
, sizeof(addr_entry
));
416 * Enable pairwise lookup table for given BSS idx,
417 * without this received frames will not be decrypted
420 rt2x00usb_register_read(rt2x00dev
, SEC_CSR4
, ®
);
421 reg
|= (1 << crypto
->bssidx
);
422 rt2x00usb_register_write(rt2x00dev
, SEC_CSR4
, reg
);
425 * The driver does not support the IV/EIV generation
426 * in hardware. However it doesn't support the IV/EIV
427 * inside the ieee80211 frame either, but requires it
428 * to be provided separately for the descriptor.
429 * rt2x00lib will cut the IV/EIV data out of all frames
430 * given to us by mac80211, but we must tell mac80211
431 * to generate the IV/EIV data.
433 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
437 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438 * a particular key is valid. Because using the FIELD32()
439 * defines directly will cause a lot of overhead we use
440 * a calculation to determine the correct bit directly.
442 if (key
->hw_key_idx
< 32) {
443 mask
= 1 << key
->hw_key_idx
;
445 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
446 if (crypto
->cmd
== SET_KEY
)
448 else if (crypto
->cmd
== DISABLE_KEY
)
450 rt2x00usb_register_write(rt2x00dev
, SEC_CSR2
, reg
);
452 mask
= 1 << (key
->hw_key_idx
- 32);
454 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
455 if (crypto
->cmd
== SET_KEY
)
457 else if (crypto
->cmd
== DISABLE_KEY
)
459 rt2x00usb_register_write(rt2x00dev
, SEC_CSR3
, reg
);
465 static void rt73usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
466 const unsigned int filter_flags
)
471 * Start configuration steps.
472 * Note that the version error will always be dropped
473 * and broadcast frames will always be accepted since
474 * there is no filter for it at this time.
476 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
477 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
478 !(filter_flags
& FIF_FCSFAIL
));
479 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
480 !(filter_flags
& FIF_PLCPFAIL
));
481 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
482 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
483 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
484 !(filter_flags
& FIF_PROMISC_IN_BSS
));
485 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
486 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
487 !rt2x00dev
->intf_ap_count
);
488 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
489 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
490 !(filter_flags
& FIF_ALLMULTI
));
491 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
492 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
493 !(filter_flags
& FIF_CONTROL
));
494 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
497 static void rt73usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
498 struct rt2x00_intf
*intf
,
499 struct rt2x00intf_conf
*conf
,
500 const unsigned int flags
)
504 if (flags
& CONFIG_UPDATE_TYPE
) {
506 * Enable synchronisation.
508 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
509 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
510 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
513 if (flags
& CONFIG_UPDATE_MAC
) {
514 reg
= le32_to_cpu(conf
->mac
[1]);
515 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
516 conf
->mac
[1] = cpu_to_le32(reg
);
518 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR2
,
519 conf
->mac
, sizeof(conf
->mac
));
522 if (flags
& CONFIG_UPDATE_BSSID
) {
523 reg
= le32_to_cpu(conf
->bssid
[1]);
524 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
525 conf
->bssid
[1] = cpu_to_le32(reg
);
527 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR4
,
528 conf
->bssid
, sizeof(conf
->bssid
));
532 static void rt73usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
533 struct rt2x00lib_erp
*erp
,
538 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
539 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
540 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
541 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
543 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
544 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
545 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
546 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
547 !!erp
->short_preamble
);
548 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
551 if (changed
& BSS_CHANGED_BASIC_RATES
)
552 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR5
,
555 if (changed
& BSS_CHANGED_BEACON_INT
) {
556 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
557 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
558 erp
->beacon_int
* 16);
559 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
562 if (changed
& BSS_CHANGED_ERP_SLOT
) {
563 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
564 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
565 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
567 rt2x00usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
568 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
569 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
570 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
571 rt2x00usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
575 static void rt73usb_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
576 struct antenna_setup
*ant
)
583 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
584 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
585 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
587 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
590 * Configure the RX antenna.
593 case ANTENNA_HW_DIVERSITY
:
594 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
595 temp
= !rt2x00_has_cap_frame_type(rt2x00dev
) &&
596 (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
);
597 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, temp
);
600 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
601 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
602 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
603 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
605 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
609 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
610 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
611 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
612 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
614 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
618 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
619 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
620 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
623 static void rt73usb_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
624 struct antenna_setup
*ant
)
630 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
631 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
632 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
634 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
635 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
636 !rt2x00_has_cap_frame_type(rt2x00dev
));
639 * Configure the RX antenna.
642 case ANTENNA_HW_DIVERSITY
:
643 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
646 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
647 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
651 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
652 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
656 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
657 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
658 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
664 * value[0] -> non-LNA
670 static const struct antenna_sel antenna_sel_a
[] = {
671 { 96, { 0x58, 0x78 } },
672 { 104, { 0x38, 0x48 } },
673 { 75, { 0xfe, 0x80 } },
674 { 86, { 0xfe, 0x80 } },
675 { 88, { 0xfe, 0x80 } },
676 { 35, { 0x60, 0x60 } },
677 { 97, { 0x58, 0x58 } },
678 { 98, { 0x58, 0x58 } },
681 static const struct antenna_sel antenna_sel_bg
[] = {
682 { 96, { 0x48, 0x68 } },
683 { 104, { 0x2c, 0x3c } },
684 { 75, { 0xfe, 0x80 } },
685 { 86, { 0xfe, 0x80 } },
686 { 88, { 0xfe, 0x80 } },
687 { 35, { 0x50, 0x50 } },
688 { 97, { 0x48, 0x48 } },
689 { 98, { 0x48, 0x48 } },
692 static void rt73usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
693 struct antenna_setup
*ant
)
695 const struct antenna_sel
*sel
;
701 * We should never come here because rt2x00lib is supposed
702 * to catch this and send us the correct antenna explicitely.
704 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
705 ant
->tx
== ANTENNA_SW_DIVERSITY
);
707 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
709 lna
= rt2x00_has_cap_external_lna_a(rt2x00dev
);
711 sel
= antenna_sel_bg
;
712 lna
= rt2x00_has_cap_external_lna_bg(rt2x00dev
);
715 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
716 rt73usb_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
718 rt2x00usb_register_read(rt2x00dev
, PHY_CSR0
, ®
);
720 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
721 (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
));
722 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
723 (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
));
725 rt2x00usb_register_write(rt2x00dev
, PHY_CSR0
, reg
);
727 if (rt2x00_rf(rt2x00dev
, RF5226
) || rt2x00_rf(rt2x00dev
, RF5225
))
728 rt73usb_config_antenna_5x(rt2x00dev
, ant
);
729 else if (rt2x00_rf(rt2x00dev
, RF2528
) || rt2x00_rf(rt2x00dev
, RF2527
))
730 rt73usb_config_antenna_2x(rt2x00dev
, ant
);
733 static void rt73usb_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
734 struct rt2x00lib_conf
*libconf
)
739 if (libconf
->conf
->chandef
.chan
->band
== IEEE80211_BAND_2GHZ
) {
740 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
))
743 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
744 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
746 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
747 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
750 rt2x00dev
->lna_gain
= lna_gain
;
753 static void rt73usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
754 struct rf_channel
*rf
, const int txpower
)
760 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
761 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
763 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
765 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
766 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
767 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
770 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
771 r94
+= txpower
- MAX_TXPOWER
;
772 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
774 rt73usb_bbp_write(rt2x00dev
, 94, r94
);
776 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
777 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
778 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
779 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
781 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
782 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
783 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
784 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
786 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
787 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
788 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
789 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
794 static void rt73usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
797 struct rf_channel rf
;
799 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
800 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
801 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
802 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
804 rt73usb_config_channel(rt2x00dev
, &rf
, txpower
);
807 static void rt73usb_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
808 struct rt2x00lib_conf
*libconf
)
812 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
813 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
814 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
815 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
816 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
817 libconf
->conf
->long_frame_max_tx_count
);
818 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
819 libconf
->conf
->short_frame_max_tx_count
);
820 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
823 static void rt73usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
824 struct rt2x00lib_conf
*libconf
)
826 enum dev_state state
=
827 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
828 STATE_SLEEP
: STATE_AWAKE
;
831 if (state
== STATE_SLEEP
) {
832 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
833 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
834 rt2x00dev
->beacon_int
- 10);
835 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
836 libconf
->conf
->listen_interval
- 1);
837 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
839 /* We must first disable autowake before it can be enabled */
840 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
841 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
843 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
844 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
846 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
847 USB_MODE_SLEEP
, REGISTER_TIMEOUT
);
849 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
850 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
851 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
852 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
853 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
854 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
856 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
857 USB_MODE_WAKEUP
, REGISTER_TIMEOUT
);
861 static void rt73usb_config(struct rt2x00_dev
*rt2x00dev
,
862 struct rt2x00lib_conf
*libconf
,
863 const unsigned int flags
)
865 /* Always recalculate LNA gain before changing configuration */
866 rt73usb_config_lna_gain(rt2x00dev
, libconf
);
868 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
869 rt73usb_config_channel(rt2x00dev
, &libconf
->rf
,
870 libconf
->conf
->power_level
);
871 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
872 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
873 rt73usb_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
874 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
875 rt73usb_config_retry_limit(rt2x00dev
, libconf
);
876 if (flags
& IEEE80211_CONF_CHANGE_PS
)
877 rt73usb_config_ps(rt2x00dev
, libconf
);
883 static void rt73usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
884 struct link_qual
*qual
)
889 * Update FCS error count from register.
891 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
892 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
895 * Update False CCA count from register.
897 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
898 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
901 static inline void rt73usb_set_vgc(struct rt2x00_dev
*rt2x00dev
,
902 struct link_qual
*qual
, u8 vgc_level
)
904 if (qual
->vgc_level
!= vgc_level
) {
905 rt73usb_bbp_write(rt2x00dev
, 17, vgc_level
);
906 qual
->vgc_level
= vgc_level
;
907 qual
->vgc_level_reg
= vgc_level
;
911 static void rt73usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
912 struct link_qual
*qual
)
914 rt73usb_set_vgc(rt2x00dev
, qual
, 0x20);
917 static void rt73usb_link_tuner(struct rt2x00_dev
*rt2x00dev
,
918 struct link_qual
*qual
, const u32 count
)
924 * Determine r17 bounds.
926 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
930 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
935 if (qual
->rssi
> -82) {
938 } else if (qual
->rssi
> -84) {
946 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
)) {
953 * If we are not associated, we should go straight to the
954 * dynamic CCA tuning.
956 if (!rt2x00dev
->intf_associated
)
957 goto dynamic_cca_tune
;
960 * Special big-R17 for very short distance
962 if (qual
->rssi
> -35) {
963 rt73usb_set_vgc(rt2x00dev
, qual
, 0x60);
968 * Special big-R17 for short distance
970 if (qual
->rssi
>= -58) {
971 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
976 * Special big-R17 for middle-short distance
978 if (qual
->rssi
>= -66) {
979 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
984 * Special mid-R17 for middle distance
986 if (qual
->rssi
>= -74) {
987 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
992 * Special case: Change up_bound based on the rssi.
993 * Lower up_bound when rssi is weaker then -74 dBm.
995 up_bound
-= 2 * (-74 - qual
->rssi
);
996 if (low_bound
> up_bound
)
997 up_bound
= low_bound
;
999 if (qual
->vgc_level
> up_bound
) {
1000 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
1007 * r17 does not yet exceed upper limit, continue and base
1008 * the r17 tuning on the false CCA count.
1010 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1011 rt73usb_set_vgc(rt2x00dev
, qual
,
1012 min_t(u8
, qual
->vgc_level
+ 4, up_bound
));
1013 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1014 rt73usb_set_vgc(rt2x00dev
, qual
,
1015 max_t(u8
, qual
->vgc_level
- 4, low_bound
));
1021 static void rt73usb_start_queue(struct data_queue
*queue
)
1023 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1026 switch (queue
->qid
) {
1028 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1029 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1030 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1033 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1034 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1035 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1036 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1037 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1044 static void rt73usb_stop_queue(struct data_queue
*queue
)
1046 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1049 switch (queue
->qid
) {
1051 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1052 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1053 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1056 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1057 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1058 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1059 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1060 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1068 * Firmware functions
1070 static char *rt73usb_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1072 return FIRMWARE_RT2571
;
1075 static int rt73usb_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1076 const u8
*data
, const size_t len
)
1082 * Only support 2kb firmware files.
1085 return FW_BAD_LENGTH
;
1088 * The last 2 bytes in the firmware array are the crc checksum itself,
1089 * this means that we should never pass those 2 bytes to the crc
1092 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1095 * Use the crc itu-t algorithm.
1097 crc
= crc_itu_t(0, data
, len
- 2);
1098 crc
= crc_itu_t_byte(crc
, 0);
1099 crc
= crc_itu_t_byte(crc
, 0);
1101 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1104 static int rt73usb_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1105 const u8
*data
, const size_t len
)
1112 * Wait for stable hardware.
1114 for (i
= 0; i
< 100; i
++) {
1115 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1122 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1127 * Write firmware to device.
1129 rt2x00usb_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
, data
, len
);
1132 * Send firmware request to device to load firmware,
1133 * we need to specify a long timeout time.
1135 status
= rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
,
1136 0, USB_MODE_FIRMWARE
,
1137 REGISTER_TIMEOUT_FIRMWARE
);
1139 rt2x00_err(rt2x00dev
, "Failed to write Firmware to device\n");
1147 * Initialization functions.
1149 static int rt73usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
1153 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1154 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1155 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1156 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1157 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1159 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1160 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1161 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1162 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1163 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1164 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1165 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1166 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1167 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1168 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1171 * CCK TXD BBP registers
1173 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1174 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1175 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1176 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1177 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1178 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1179 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1180 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1181 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1182 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1185 * OFDM TXD BBP registers
1187 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1188 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1189 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1190 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1191 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1192 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1193 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1194 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1196 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1197 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1198 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1199 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1200 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1201 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1203 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1204 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1205 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1206 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1207 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1208 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1210 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1211 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1212 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1213 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1214 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1215 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1216 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1217 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1219 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1221 rt2x00usb_register_read(rt2x00dev
, MAC_CSR6
, ®
);
1222 rt2x00_set_field32(®
, MAC_CSR6_MAX_FRAME_UNIT
, 0xfff);
1223 rt2x00usb_register_write(rt2x00dev
, MAC_CSR6
, reg
);
1225 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00000718);
1227 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1230 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, 0x00007f00);
1233 * Invalidate all Shared Keys (SEC_CSR0),
1234 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1236 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1237 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1238 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1241 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
))
1242 rt2x00_set_field32(®
, PHY_CSR1_RF_RPI
, 1);
1243 rt2x00usb_register_write(rt2x00dev
, PHY_CSR1
, reg
);
1245 rt2x00usb_register_write(rt2x00dev
, PHY_CSR5
, 0x00040a06);
1246 rt2x00usb_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1247 rt2x00usb_register_write(rt2x00dev
, PHY_CSR7
, 0x00000408);
1249 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1250 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1251 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1255 * For the Beacon base registers we only need to clear
1256 * the first byte since that byte contains the VALID and OWNER
1257 * bits which (when set to 0) will invalidate the entire beacon.
1259 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1260 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1261 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1262 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1265 * We must clear the error counters.
1266 * These registers are cleared on read,
1267 * so we may pass a useless variable to store the value.
1269 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
1270 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
1271 rt2x00usb_register_read(rt2x00dev
, STA_CSR2
, ®
);
1274 * Reset MAC and BBP registers.
1276 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1277 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1278 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1279 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1281 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1282 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1283 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1284 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1286 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1287 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1288 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1293 static int rt73usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1298 for (i
= 0; i
< REGISTER_USB_BUSY_COUNT
; i
++) {
1299 rt73usb_bbp_read(rt2x00dev
, 0, &value
);
1300 if ((value
!= 0xff) && (value
!= 0x00))
1302 udelay(REGISTER_BUSY_DELAY
);
1305 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1309 static int rt73usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1316 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev
)))
1319 rt73usb_bbp_write(rt2x00dev
, 3, 0x80);
1320 rt73usb_bbp_write(rt2x00dev
, 15, 0x30);
1321 rt73usb_bbp_write(rt2x00dev
, 21, 0xc8);
1322 rt73usb_bbp_write(rt2x00dev
, 22, 0x38);
1323 rt73usb_bbp_write(rt2x00dev
, 23, 0x06);
1324 rt73usb_bbp_write(rt2x00dev
, 24, 0xfe);
1325 rt73usb_bbp_write(rt2x00dev
, 25, 0x0a);
1326 rt73usb_bbp_write(rt2x00dev
, 26, 0x0d);
1327 rt73usb_bbp_write(rt2x00dev
, 32, 0x0b);
1328 rt73usb_bbp_write(rt2x00dev
, 34, 0x12);
1329 rt73usb_bbp_write(rt2x00dev
, 37, 0x07);
1330 rt73usb_bbp_write(rt2x00dev
, 39, 0xf8);
1331 rt73usb_bbp_write(rt2x00dev
, 41, 0x60);
1332 rt73usb_bbp_write(rt2x00dev
, 53, 0x10);
1333 rt73usb_bbp_write(rt2x00dev
, 54, 0x18);
1334 rt73usb_bbp_write(rt2x00dev
, 60, 0x10);
1335 rt73usb_bbp_write(rt2x00dev
, 61, 0x04);
1336 rt73usb_bbp_write(rt2x00dev
, 62, 0x04);
1337 rt73usb_bbp_write(rt2x00dev
, 75, 0xfe);
1338 rt73usb_bbp_write(rt2x00dev
, 86, 0xfe);
1339 rt73usb_bbp_write(rt2x00dev
, 88, 0xfe);
1340 rt73usb_bbp_write(rt2x00dev
, 90, 0x0f);
1341 rt73usb_bbp_write(rt2x00dev
, 99, 0x00);
1342 rt73usb_bbp_write(rt2x00dev
, 102, 0x16);
1343 rt73usb_bbp_write(rt2x00dev
, 107, 0x04);
1345 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1346 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1348 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1349 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1350 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1351 rt73usb_bbp_write(rt2x00dev
, reg_id
, value
);
1359 * Device state switch handlers.
1361 static int rt73usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1364 * Initialize all registers.
1366 if (unlikely(rt73usb_init_registers(rt2x00dev
) ||
1367 rt73usb_init_bbp(rt2x00dev
)))
1373 static void rt73usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1375 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1378 * Disable synchronisation.
1380 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1382 rt2x00usb_disable_radio(rt2x00dev
);
1385 static int rt73usb_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1391 put_to_sleep
= (state
!= STATE_AWAKE
);
1393 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1394 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1395 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1396 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1399 * Device is not guaranteed to be in the requested state yet.
1400 * We must wait until the register indicates that the
1401 * device has entered the correct state.
1403 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1404 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®2
);
1405 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1406 if (state
== !put_to_sleep
)
1408 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1415 static int rt73usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1416 enum dev_state state
)
1421 case STATE_RADIO_ON
:
1422 retval
= rt73usb_enable_radio(rt2x00dev
);
1424 case STATE_RADIO_OFF
:
1425 rt73usb_disable_radio(rt2x00dev
);
1427 case STATE_RADIO_IRQ_ON
:
1428 case STATE_RADIO_IRQ_OFF
:
1429 /* No support, but no error either */
1431 case STATE_DEEP_SLEEP
:
1435 retval
= rt73usb_set_state(rt2x00dev
, state
);
1442 if (unlikely(retval
))
1443 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1450 * TX descriptor initialization
1452 static void rt73usb_write_tx_desc(struct queue_entry
*entry
,
1453 struct txentry_desc
*txdesc
)
1455 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1456 __le32
*txd
= (__le32
*) entry
->skb
->data
;
1460 * Start writing the descriptor words.
1462 rt2x00_desc_read(txd
, 0, &word
);
1463 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1464 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1465 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1466 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1467 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1468 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1469 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1470 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1471 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1472 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1473 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1474 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1475 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1476 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1477 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1478 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1479 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1480 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1481 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1482 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1483 rt2x00_set_field32(&word
, TXD_W0_BURST2
,
1484 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1485 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1486 rt2x00_desc_write(txd
, 0, word
);
1488 rt2x00_desc_read(txd
, 1, &word
);
1489 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1490 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1491 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1492 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1493 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1494 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1495 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1496 rt2x00_desc_write(txd
, 1, word
);
1498 rt2x00_desc_read(txd
, 2, &word
);
1499 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1500 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1501 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1502 txdesc
->u
.plcp
.length_low
);
1503 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1504 txdesc
->u
.plcp
.length_high
);
1505 rt2x00_desc_write(txd
, 2, word
);
1507 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1508 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1509 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1512 rt2x00_desc_read(txd
, 5, &word
);
1513 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1514 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1515 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1516 rt2x00_desc_write(txd
, 5, word
);
1519 * Register descriptor details in skb frame descriptor.
1521 skbdesc
->flags
|= SKBDESC_DESC_IN_SKB
;
1522 skbdesc
->desc
= txd
;
1523 skbdesc
->desc_len
= TXD_DESC_SIZE
;
1527 * TX data initialization
1529 static void rt73usb_write_beacon(struct queue_entry
*entry
,
1530 struct txentry_desc
*txdesc
)
1532 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1533 unsigned int beacon_base
;
1534 unsigned int padding_len
;
1538 * Disable beaconing while we are reloading the beacon data,
1539 * otherwise we might be sending out invalid data.
1541 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1543 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1544 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1547 * Add space for the descriptor in front of the skb.
1549 skb_push(entry
->skb
, TXD_DESC_SIZE
);
1550 memset(entry
->skb
->data
, 0, TXD_DESC_SIZE
);
1553 * Write the TX descriptor for the beacon.
1555 rt73usb_write_tx_desc(entry
, txdesc
);
1558 * Dump beacon to userspace through debugfs.
1560 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
->skb
);
1563 * Write entire beacon with descriptor and padding to register.
1565 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
1566 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
1567 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
1568 /* skb freed by skb_pad() on failure */
1570 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1574 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1575 rt2x00usb_register_multiwrite(rt2x00dev
, beacon_base
, entry
->skb
->data
,
1576 entry
->skb
->len
+ padding_len
);
1579 * Enable beaconing again.
1581 * For Wi-Fi faily generated beacons between participating stations.
1582 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1584 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1586 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1587 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1590 * Clean up the beacon skb.
1592 dev_kfree_skb(entry
->skb
);
1596 static void rt73usb_clear_beacon(struct queue_entry
*entry
)
1598 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1599 unsigned int beacon_base
;
1603 * Disable beaconing while we are reloading the beacon data,
1604 * otherwise we might be sending out invalid data.
1606 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, &orig_reg
);
1608 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1609 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1614 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1615 rt2x00usb_register_write(rt2x00dev
, beacon_base
, 0);
1618 * Restore beaconing state.
1620 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
1623 static int rt73usb_get_tx_data_len(struct queue_entry
*entry
)
1628 * The length _must_ be a multiple of 4,
1629 * but it must _not_ be a multiple of the USB packet size.
1631 length
= roundup(entry
->skb
->len
, 4);
1632 length
+= (4 * !(length
% entry
->queue
->usb_maxpacket
));
1638 * RX control handlers
1640 static int rt73usb_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1642 u8 offset
= rt2x00dev
->lna_gain
;
1645 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1660 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
1661 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
1662 if (lna
== 3 || lna
== 2)
1672 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1675 static void rt73usb_fill_rxdone(struct queue_entry
*entry
,
1676 struct rxdone_entry_desc
*rxdesc
)
1678 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1679 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1680 __le32
*rxd
= (__le32
*)entry
->skb
->data
;
1685 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1686 * frame data in rt2x00usb.
1688 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1689 rxd
= (__le32
*)skbdesc
->desc
;
1692 * It is now safe to read the descriptor on all architectures.
1694 rt2x00_desc_read(rxd
, 0, &word0
);
1695 rt2x00_desc_read(rxd
, 1, &word1
);
1697 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1698 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1700 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
1701 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
1703 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1704 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1705 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1706 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1708 _rt2x00_desc_read(rxd
, 4, &rxdesc
->icv
);
1709 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
1712 * Hardware has stripped IV/EIV data from 802.11 frame during
1713 * decryption. It has provided the data separately but rt2x00lib
1714 * should decide if it should be reinserted.
1716 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
1719 * The hardware has already checked the Michael Mic and has
1720 * stripped it from the frame. Signal this to mac80211.
1722 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1724 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1725 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1726 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1727 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1731 * Obtain the status about this packet.
1732 * When frame was received with an OFDM bitrate,
1733 * the signal is the PLCP value. If it was received with
1734 * a CCK bitrate the signal is the rate in 100kbit/s.
1736 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1737 rxdesc
->rssi
= rt73usb_agc_to_rssi(rt2x00dev
, word1
);
1738 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1740 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1741 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1743 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1744 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1745 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1748 * Set skb pointers, and update frame information.
1750 skb_pull(entry
->skb
, entry
->queue
->desc_size
);
1751 skb_trim(entry
->skb
, rxdesc
->size
);
1755 * Device probe functions.
1757 static int rt73usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1763 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1766 * Start validation of the data that has been read.
1768 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1769 if (!is_valid_ether_addr(mac
)) {
1770 eth_random_addr(mac
);
1771 rt2x00_eeprom_dbg(rt2x00dev
, "MAC: %pM\n", mac
);
1774 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1775 if (word
== 0xffff) {
1776 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1777 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1779 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1781 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1782 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1783 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1784 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5226
);
1785 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1786 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1789 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1790 if (word
== 0xffff) {
1791 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA
, 0);
1792 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1793 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
1796 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1797 if (word
== 0xffff) {
1798 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_G
, 0);
1799 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_A
, 0);
1800 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_ACT
, 0);
1801 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_0
, 0);
1802 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_1
, 0);
1803 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_2
, 0);
1804 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_3
, 0);
1805 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_4
, 0);
1806 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1808 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1809 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
1812 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1813 if (word
== 0xffff) {
1814 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1815 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1816 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1817 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
1820 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1821 if (word
== 0xffff) {
1822 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1823 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1824 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1825 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1827 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1828 if (value
< -10 || value
> 10)
1829 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1830 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1831 if (value
< -10 || value
> 10)
1832 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1833 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1836 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1837 if (word
== 0xffff) {
1838 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1839 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1840 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1841 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
1843 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1844 if (value
< -10 || value
> 10)
1845 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1846 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1847 if (value
< -10 || value
> 10)
1848 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1849 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1855 static int rt73usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1862 * Read EEPROM word for configuration.
1864 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1867 * Identify RF chipset.
1869 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1870 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1871 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
1872 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
1874 if (!rt2x00_rt(rt2x00dev
, RT2573
) || (rt2x00_rev(rt2x00dev
) == 0)) {
1875 rt2x00_err(rt2x00dev
, "Invalid RT chipset detected\n");
1879 if (!rt2x00_rf(rt2x00dev
, RF5226
) &&
1880 !rt2x00_rf(rt2x00dev
, RF2528
) &&
1881 !rt2x00_rf(rt2x00dev
, RF5225
) &&
1882 !rt2x00_rf(rt2x00dev
, RF2527
)) {
1883 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
1888 * Identify default antenna configuration.
1890 rt2x00dev
->default_ant
.tx
=
1891 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1892 rt2x00dev
->default_ant
.rx
=
1893 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1896 * Read the Frame type.
1898 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
1899 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
1902 * Detect if this device has an hardware controlled radio.
1904 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1905 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
1908 * Read frequency offset.
1910 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
1911 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
1914 * Read external LNA informations.
1916 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1918 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA
)) {
1919 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
1920 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
1924 * Store led settings, for correct led behaviour.
1926 #ifdef CONFIG_RT2X00_LIB_LEDS
1927 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
1929 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1930 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
1931 if (value
== LED_MODE_SIGNAL_STRENGTH
)
1932 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1935 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
1936 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
1937 rt2x00_get_field16(eeprom
,
1938 EEPROM_LED_POLARITY_GPIO_0
));
1939 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
1940 rt2x00_get_field16(eeprom
,
1941 EEPROM_LED_POLARITY_GPIO_1
));
1942 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
1943 rt2x00_get_field16(eeprom
,
1944 EEPROM_LED_POLARITY_GPIO_2
));
1945 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
1946 rt2x00_get_field16(eeprom
,
1947 EEPROM_LED_POLARITY_GPIO_3
));
1948 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
1949 rt2x00_get_field16(eeprom
,
1950 EEPROM_LED_POLARITY_GPIO_4
));
1951 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
1952 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
1953 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
1954 rt2x00_get_field16(eeprom
,
1955 EEPROM_LED_POLARITY_RDY_G
));
1956 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
1957 rt2x00_get_field16(eeprom
,
1958 EEPROM_LED_POLARITY_RDY_A
));
1959 #endif /* CONFIG_RT2X00_LIB_LEDS */
1965 * RF value list for RF2528
1968 static const struct rf_channel rf_vals_bg_2528
[] = {
1969 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1970 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1971 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1972 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1973 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1974 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1975 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1976 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1977 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1978 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1979 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1980 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1981 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1982 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1986 * RF value list for RF5226
1987 * Supports: 2.4 GHz & 5.2 GHz
1989 static const struct rf_channel rf_vals_5226
[] = {
1990 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1991 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1992 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1993 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1994 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1995 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1996 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1997 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1998 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1999 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2000 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2001 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2002 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2003 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2005 /* 802.11 UNI / HyperLan 2 */
2006 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2007 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2008 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2009 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2010 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2011 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2012 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2013 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2015 /* 802.11 HyperLan 2 */
2016 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2017 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2018 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2019 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2020 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2021 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2022 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2023 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2024 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2025 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2028 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2029 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2030 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2031 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2032 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2033 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2035 /* MMAC(Japan)J52 ch 34,38,42,46 */
2036 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2037 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2038 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2039 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2043 * RF value list for RF5225 & RF2527
2044 * Supports: 2.4 GHz & 5.2 GHz
2046 static const struct rf_channel rf_vals_5225_2527
[] = {
2047 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2048 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2049 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2050 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2051 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2052 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2053 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2054 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2055 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2056 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2057 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2058 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2059 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2060 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2062 /* 802.11 UNI / HyperLan 2 */
2063 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2064 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2065 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2066 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2067 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2068 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2069 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2070 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2072 /* 802.11 HyperLan 2 */
2073 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2074 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2075 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2076 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2077 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2078 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2079 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2080 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2081 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2082 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2085 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2086 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2087 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2088 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2089 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2090 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2092 /* MMAC(Japan)J52 ch 34,38,42,46 */
2093 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2094 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2095 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2096 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2100 static int rt73usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2102 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2103 struct channel_info
*info
;
2108 * Initialize all hw fields.
2110 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2111 * capable of sending the buffered frames out after the DTIM
2112 * transmission using rt2x00lib_beacondone. This will send out
2113 * multicast and broadcast traffic immediately instead of buffering it
2114 * infinitly and thus dropping it after some time.
2116 rt2x00dev
->hw
->flags
=
2117 IEEE80211_HW_SIGNAL_DBM
|
2118 IEEE80211_HW_SUPPORTS_PS
|
2119 IEEE80211_HW_PS_NULLFUNC_STACK
;
2121 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2122 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2123 rt2x00_eeprom_addr(rt2x00dev
,
2124 EEPROM_MAC_ADDR_0
));
2127 * Initialize hw_mode information.
2129 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2130 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2132 if (rt2x00_rf(rt2x00dev
, RF2528
)) {
2133 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2528
);
2134 spec
->channels
= rf_vals_bg_2528
;
2135 } else if (rt2x00_rf(rt2x00dev
, RF5226
)) {
2136 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2137 spec
->num_channels
= ARRAY_SIZE(rf_vals_5226
);
2138 spec
->channels
= rf_vals_5226
;
2139 } else if (rt2x00_rf(rt2x00dev
, RF2527
)) {
2140 spec
->num_channels
= 14;
2141 spec
->channels
= rf_vals_5225_2527
;
2142 } else if (rt2x00_rf(rt2x00dev
, RF5225
)) {
2143 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2144 spec
->num_channels
= ARRAY_SIZE(rf_vals_5225_2527
);
2145 spec
->channels
= rf_vals_5225_2527
;
2149 * Create channel information array
2151 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2155 spec
->channels_info
= info
;
2157 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2158 for (i
= 0; i
< 14; i
++) {
2159 info
[i
].max_power
= MAX_TXPOWER
;
2160 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2163 if (spec
->num_channels
> 14) {
2164 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2165 for (i
= 14; i
< spec
->num_channels
; i
++) {
2166 info
[i
].max_power
= MAX_TXPOWER
;
2167 info
[i
].default_power1
=
2168 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2175 static int rt73usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2181 * Allocate eeprom data.
2183 retval
= rt73usb_validate_eeprom(rt2x00dev
);
2187 retval
= rt73usb_init_eeprom(rt2x00dev
);
2192 * Enable rfkill polling by setting GPIO direction of the
2193 * rfkill switch GPIO pin correctly.
2195 rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
, ®
);
2196 rt2x00_set_field32(®
, MAC_CSR13_DIR7
, 0);
2197 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2200 * Initialize hw specifications.
2202 retval
= rt73usb_probe_hw_mode(rt2x00dev
);
2207 * This device has multiple filters for control frames,
2208 * but has no a separate filter for PS Poll frames.
2210 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2213 * This device requires firmware.
2215 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2216 if (!modparam_nohwcrypt
)
2217 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2218 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2219 __set_bit(REQUIRE_PS_AUTOWAKE
, &rt2x00dev
->cap_flags
);
2222 * Set the rssi offset.
2224 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2230 * IEEE80211 stack callback functions.
2232 static int rt73usb_conf_tx(struct ieee80211_hw
*hw
,
2233 struct ieee80211_vif
*vif
, u16 queue_idx
,
2234 const struct ieee80211_tx_queue_params
*params
)
2236 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2237 struct data_queue
*queue
;
2238 struct rt2x00_field32 field
;
2244 * First pass the configuration through rt2x00lib, that will
2245 * update the queue settings and validate the input. After that
2246 * we are free to update the registers based on the value
2247 * in the queue parameter.
2249 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2254 * We only need to perform additional register initialization
2260 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2262 /* Update WMM TXOP register */
2263 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2264 field
.bit_offset
= (queue_idx
& 1) * 16;
2265 field
.bit_mask
= 0xffff << field
.bit_offset
;
2267 rt2x00usb_register_read(rt2x00dev
, offset
, ®
);
2268 rt2x00_set_field32(®
, field
, queue
->txop
);
2269 rt2x00usb_register_write(rt2x00dev
, offset
, reg
);
2271 /* Update WMM registers */
2272 field
.bit_offset
= queue_idx
* 4;
2273 field
.bit_mask
= 0xf << field
.bit_offset
;
2275 rt2x00usb_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2276 rt2x00_set_field32(®
, field
, queue
->aifs
);
2277 rt2x00usb_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2279 rt2x00usb_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2280 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2281 rt2x00usb_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2283 rt2x00usb_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2284 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2285 rt2x00usb_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2290 static u64
rt73usb_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2292 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2296 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2297 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2298 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2299 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2304 static const struct ieee80211_ops rt73usb_mac80211_ops
= {
2306 .start
= rt2x00mac_start
,
2307 .stop
= rt2x00mac_stop
,
2308 .add_interface
= rt2x00mac_add_interface
,
2309 .remove_interface
= rt2x00mac_remove_interface
,
2310 .config
= rt2x00mac_config
,
2311 .configure_filter
= rt2x00mac_configure_filter
,
2312 .set_tim
= rt2x00mac_set_tim
,
2313 .set_key
= rt2x00mac_set_key
,
2314 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2315 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2316 .get_stats
= rt2x00mac_get_stats
,
2317 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2318 .conf_tx
= rt73usb_conf_tx
,
2319 .get_tsf
= rt73usb_get_tsf
,
2320 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2321 .flush
= rt2x00mac_flush
,
2322 .set_antenna
= rt2x00mac_set_antenna
,
2323 .get_antenna
= rt2x00mac_get_antenna
,
2324 .get_ringparam
= rt2x00mac_get_ringparam
,
2325 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2328 static const struct rt2x00lib_ops rt73usb_rt2x00_ops
= {
2329 .probe_hw
= rt73usb_probe_hw
,
2330 .get_firmware_name
= rt73usb_get_firmware_name
,
2331 .check_firmware
= rt73usb_check_firmware
,
2332 .load_firmware
= rt73usb_load_firmware
,
2333 .initialize
= rt2x00usb_initialize
,
2334 .uninitialize
= rt2x00usb_uninitialize
,
2335 .clear_entry
= rt2x00usb_clear_entry
,
2336 .set_device_state
= rt73usb_set_device_state
,
2337 .rfkill_poll
= rt73usb_rfkill_poll
,
2338 .link_stats
= rt73usb_link_stats
,
2339 .reset_tuner
= rt73usb_reset_tuner
,
2340 .link_tuner
= rt73usb_link_tuner
,
2341 .watchdog
= rt2x00usb_watchdog
,
2342 .start_queue
= rt73usb_start_queue
,
2343 .kick_queue
= rt2x00usb_kick_queue
,
2344 .stop_queue
= rt73usb_stop_queue
,
2345 .flush_queue
= rt2x00usb_flush_queue
,
2346 .write_tx_desc
= rt73usb_write_tx_desc
,
2347 .write_beacon
= rt73usb_write_beacon
,
2348 .clear_beacon
= rt73usb_clear_beacon
,
2349 .get_tx_data_len
= rt73usb_get_tx_data_len
,
2350 .fill_rxdone
= rt73usb_fill_rxdone
,
2351 .config_shared_key
= rt73usb_config_shared_key
,
2352 .config_pairwise_key
= rt73usb_config_pairwise_key
,
2353 .config_filter
= rt73usb_config_filter
,
2354 .config_intf
= rt73usb_config_intf
,
2355 .config_erp
= rt73usb_config_erp
,
2356 .config_ant
= rt73usb_config_ant
,
2357 .config
= rt73usb_config
,
2360 static void rt73usb_queue_init(struct data_queue
*queue
)
2362 switch (queue
->qid
) {
2365 queue
->data_size
= DATA_FRAME_SIZE
;
2366 queue
->desc_size
= RXD_DESC_SIZE
;
2367 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2375 queue
->data_size
= DATA_FRAME_SIZE
;
2376 queue
->desc_size
= TXD_DESC_SIZE
;
2377 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2382 queue
->data_size
= MGMT_FRAME_SIZE
;
2383 queue
->desc_size
= TXINFO_SIZE
;
2384 queue
->priv_size
= sizeof(struct queue_entry_priv_usb
);
2395 static const struct rt2x00_ops rt73usb_ops
= {
2396 .name
= KBUILD_MODNAME
,
2398 .eeprom_size
= EEPROM_SIZE
,
2400 .tx_queues
= NUM_TX_QUEUES
,
2401 .queue_init
= rt73usb_queue_init
,
2402 .lib
= &rt73usb_rt2x00_ops
,
2403 .hw
= &rt73usb_mac80211_ops
,
2404 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2405 .debugfs
= &rt73usb_rt2x00debug
,
2406 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2410 * rt73usb module information.
2412 static struct usb_device_id rt73usb_device_table
[] = {
2414 { USB_DEVICE(0x07b8, 0xb21b) },
2415 { USB_DEVICE(0x07b8, 0xb21c) },
2416 { USB_DEVICE(0x07b8, 0xb21d) },
2417 { USB_DEVICE(0x07b8, 0xb21e) },
2418 { USB_DEVICE(0x07b8, 0xb21f) },
2420 { USB_DEVICE(0x14b2, 0x3c10) },
2422 { USB_DEVICE(0x148f, 0x9021) },
2423 { USB_DEVICE(0x0eb0, 0x9021) },
2425 { USB_DEVICE(0x18c5, 0x0002) },
2427 { USB_DEVICE(0x1690, 0x0722) },
2429 { USB_DEVICE(0x0b05, 0x1723) },
2430 { USB_DEVICE(0x0b05, 0x1724) },
2432 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2433 { USB_DEVICE(0x050d, 0x705a) },
2434 { USB_DEVICE(0x050d, 0x905b) },
2435 { USB_DEVICE(0x050d, 0x905c) },
2437 { USB_DEVICE(0x1631, 0xc019) },
2438 { USB_DEVICE(0x08dd, 0x0120) },
2440 { USB_DEVICE(0x0411, 0x00d8) },
2441 { USB_DEVICE(0x0411, 0x00d9) },
2442 { USB_DEVICE(0x0411, 0x00e6) },
2443 { USB_DEVICE(0x0411, 0x00f4) },
2444 { USB_DEVICE(0x0411, 0x0116) },
2445 { USB_DEVICE(0x0411, 0x0119) },
2446 { USB_DEVICE(0x0411, 0x0137) },
2448 { USB_DEVICE(0x178d, 0x02be) },
2450 { USB_DEVICE(0x1371, 0x9022) },
2451 { USB_DEVICE(0x1371, 0x9032) },
2453 { USB_DEVICE(0x14b2, 0x3c22) },
2455 { USB_DEVICE(0x07aa, 0x002e) },
2457 { USB_DEVICE(0x07d1, 0x3c03) },
2458 { USB_DEVICE(0x07d1, 0x3c04) },
2459 { USB_DEVICE(0x07d1, 0x3c06) },
2460 { USB_DEVICE(0x07d1, 0x3c07) },
2462 { USB_DEVICE(0x7392, 0x7318) },
2463 { USB_DEVICE(0x7392, 0x7618) },
2465 { USB_DEVICE(0x1740, 0x3701) },
2467 { USB_DEVICE(0x15a9, 0x0004) },
2469 { USB_DEVICE(0x1044, 0x8008) },
2470 { USB_DEVICE(0x1044, 0x800a) },
2472 { USB_DEVICE(0x1472, 0x0009) },
2474 { USB_DEVICE(0x06f8, 0xe002) },
2475 { USB_DEVICE(0x06f8, 0xe010) },
2476 { USB_DEVICE(0x06f8, 0xe020) },
2478 { USB_DEVICE(0x13b1, 0x0020) },
2479 { USB_DEVICE(0x13b1, 0x0023) },
2480 { USB_DEVICE(0x13b1, 0x0028) },
2482 { USB_DEVICE(0x0db0, 0x4600) },
2483 { USB_DEVICE(0x0db0, 0x6877) },
2484 { USB_DEVICE(0x0db0, 0x6874) },
2485 { USB_DEVICE(0x0db0, 0xa861) },
2486 { USB_DEVICE(0x0db0, 0xa874) },
2488 { USB_DEVICE(0x1b75, 0x7318) },
2490 { USB_DEVICE(0x04bb, 0x093d) },
2491 { USB_DEVICE(0x148f, 0x2573) },
2492 { USB_DEVICE(0x148f, 0x2671) },
2493 { USB_DEVICE(0x0812, 0x3101) },
2495 { USB_DEVICE(0x18e8, 0x6196) },
2496 { USB_DEVICE(0x18e8, 0x6229) },
2497 { USB_DEVICE(0x18e8, 0x6238) },
2499 { USB_DEVICE(0x04e8, 0x4471) },
2501 { USB_DEVICE(0x1740, 0x7100) },
2503 { USB_DEVICE(0x0df6, 0x0024) },
2504 { USB_DEVICE(0x0df6, 0x0027) },
2505 { USB_DEVICE(0x0df6, 0x002f) },
2506 { USB_DEVICE(0x0df6, 0x90ac) },
2507 { USB_DEVICE(0x0df6, 0x9712) },
2509 { USB_DEVICE(0x0769, 0x31f3) },
2511 { USB_DEVICE(0x6933, 0x5001) },
2513 { USB_DEVICE(0x0471, 0x200a) },
2515 { USB_DEVICE(0x2019, 0xab01) },
2516 { USB_DEVICE(0x2019, 0xab50) },
2518 { USB_DEVICE(0x7167, 0x3840) },
2520 { USB_DEVICE(0x0cde, 0x001c) },
2522 { USB_DEVICE(0x0586, 0x3415) },
2526 MODULE_AUTHOR(DRV_PROJECT
);
2527 MODULE_VERSION(DRV_VERSION
);
2528 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2529 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2530 MODULE_DEVICE_TABLE(usb
, rt73usb_device_table
);
2531 MODULE_FIRMWARE(FIRMWARE_RT2571
);
2532 MODULE_LICENSE("GPL");
2534 static int rt73usb_probe(struct usb_interface
*usb_intf
,
2535 const struct usb_device_id
*id
)
2537 return rt2x00usb_probe(usb_intf
, &rt73usb_ops
);
2540 static struct usb_driver rt73usb_driver
= {
2541 .name
= KBUILD_MODNAME
,
2542 .id_table
= rt73usb_device_table
,
2543 .probe
= rt73usb_probe
,
2544 .disconnect
= rt2x00usb_disconnect
,
2545 .suspend
= rt2x00usb_suspend
,
2546 .resume
= rt2x00usb_resume
,
2547 .reset_resume
= rt2x00usb_resume
,
2548 .disable_hub_initiated_lpm
= 1,
2551 module_usb_driver(rt73usb_driver
);