2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
30 const char *pci_power_names
[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
33 EXPORT_SYMBOL_GPL(pci_power_names
);
35 int isa_dma_bridge_buggy
;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
39 EXPORT_SYMBOL(pci_pci_problems
);
41 unsigned int pci_pm_d3_delay
;
43 static void pci_pme_list_scan(struct work_struct
*work
);
45 static LIST_HEAD(pci_pme_list
);
46 static DEFINE_MUTEX(pci_pme_list_mutex
);
47 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
49 struct pci_pme_device
{
50 struct list_head list
;
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
56 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
58 unsigned int delay
= dev
->d3_delay
;
60 if (delay
< pci_pm_d3_delay
)
61 delay
= pci_pm_d3_delay
;
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported
= 1;
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
74 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
80 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
82 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
90 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
91 u8 pci_cache_line_size
;
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
97 unsigned int pcibios_max_latency
= 255;
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled
;
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
109 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
112 unsigned char max
, n
;
114 max
= bus
->busn_res
.end
;
115 list_for_each_entry(tmp
, &bus
->children
, node
) {
116 n
= pci_bus_max_busnr(tmp
);
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
128 * Make sure the BAR is actually a memory resource, not an IO resource
130 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
134 return ioremap_nocache(pci_resource_start(pdev
, bar
),
135 pci_resource_len(pdev
, bar
));
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
140 #define PCI_FIND_CAP_TTL 48
142 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
143 u8 pos
, int cap
, int *ttl
)
148 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
152 pci_bus_read_config_byte(bus
, devfn
, pos
+ PCI_CAP_LIST_ID
,
158 pos
+= PCI_CAP_LIST_NEXT
;
163 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
166 int ttl
= PCI_FIND_CAP_TTL
;
168 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
171 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
173 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
174 pos
+ PCI_CAP_LIST_NEXT
, cap
);
176 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
178 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
179 unsigned int devfn
, u8 hdr_type
)
183 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
184 if (!(status
& PCI_STATUS_CAP_LIST
))
188 case PCI_HEADER_TYPE_NORMAL
:
189 case PCI_HEADER_TYPE_BRIDGE
:
190 return PCI_CAPABILITY_LIST
;
191 case PCI_HEADER_TYPE_CARDBUS
:
192 return PCI_CB_CAPABILITY_LIST
;
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
219 int pci_find_capability(struct pci_dev
*dev
, int cap
)
223 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
225 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
229 EXPORT_SYMBOL(pci_find_capability
);
232 * pci_bus_find_capability - query for devices' capabilities
233 * @bus: the PCI bus to query
234 * @devfn: PCI device to query
235 * @cap: capability code
237 * Like pci_find_capability() but works for pci devices that do not have a
238 * pci_dev structure set up yet.
240 * Returns the address of the requested capability structure within the
241 * device's PCI configuration space or 0 in case the device does not
244 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
249 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
251 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
253 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
257 EXPORT_SYMBOL(pci_bus_find_capability
);
260 * pci_find_next_ext_capability - Find an extended capability
261 * @dev: PCI device to query
262 * @start: address at which to start looking (0 to start at beginning of list)
263 * @cap: capability code
265 * Returns the address of the next matching extended capability structure
266 * within the device's PCI configuration space or 0 if the device does
267 * not support it. Some capabilities can occur several times, e.g., the
268 * vendor-specific capability, and this provides a way to find them all.
270 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
274 int pos
= PCI_CFG_SPACE_SIZE
;
276 /* minimum 8 bytes per capability */
277 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
279 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
285 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
289 * If we have no capabilities, this is indicated by cap ID,
290 * cap version and next pointer all being 0.
296 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
299 pos
= PCI_EXT_CAP_NEXT(header
);
300 if (pos
< PCI_CFG_SPACE_SIZE
)
303 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
312 * pci_find_ext_capability - Find an extended capability
313 * @dev: PCI device to query
314 * @cap: capability code
316 * Returns the address of the requested extended capability structure
317 * within the device's PCI configuration space or 0 if the device does
318 * not support it. Possible values for @cap:
320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
321 * %PCI_EXT_CAP_ID_VC Virtual Channel
322 * %PCI_EXT_CAP_ID_DSN Device Serial Number
323 * %PCI_EXT_CAP_ID_PWR Power Budgeting
325 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
327 return pci_find_next_ext_capability(dev
, 0, cap
);
329 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
331 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
333 int rc
, ttl
= PCI_FIND_CAP_TTL
;
336 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
337 mask
= HT_3BIT_CAP_MASK
;
339 mask
= HT_5BIT_CAP_MASK
;
341 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
342 PCI_CAP_ID_HT
, &ttl
);
344 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
345 if (rc
!= PCIBIOS_SUCCESSFUL
)
348 if ((cap
& mask
) == ht_cap
)
351 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
352 pos
+ PCI_CAP_LIST_NEXT
,
353 PCI_CAP_ID_HT
, &ttl
);
359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360 * @dev: PCI device to query
361 * @pos: Position from which to continue searching
362 * @ht_cap: Hypertransport capability code
364 * To be used in conjunction with pci_find_ht_capability() to search for
365 * all capabilities matching @ht_cap. @pos should always be a value returned
366 * from pci_find_ht_capability().
368 * NB. To be 100% safe against broken PCI devices, the caller should take
369 * steps to avoid an infinite loop.
371 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
373 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
378 * pci_find_ht_capability - query a device's Hypertransport capabilities
379 * @dev: PCI device to query
380 * @ht_cap: Hypertransport capability code
382 * Tell if a device supports a given Hypertransport capability.
383 * Returns an address within the device's PCI configuration space
384 * or 0 in case the device does not support the request capability.
385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386 * which has a Hypertransport capability matching @ht_cap.
388 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
392 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
394 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
398 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
401 * pci_find_parent_resource - return resource region of parent bus of given region
402 * @dev: PCI device structure contains resources to be searched
403 * @res: child resource record for which parent is sought
405 * For given resource region of given device, return the resource
406 * region of parent bus the given region is contained in.
408 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
409 struct resource
*res
)
411 const struct pci_bus
*bus
= dev
->bus
;
415 pci_bus_for_each_resource(bus
, r
, i
) {
418 if (res
->start
&& resource_contains(r
, res
)) {
421 * If the window is prefetchable but the BAR is
422 * not, the allocator made a mistake.
424 if (r
->flags
& IORESOURCE_PREFETCH
&&
425 !(res
->flags
& IORESOURCE_PREFETCH
))
429 * If we're below a transparent bridge, there may
430 * be both a positively-decoded aperture and a
431 * subtractively-decoded region that contain the BAR.
432 * We want the positively-decoded one, so this depends
433 * on pci_bus_for_each_resource() giving us those
441 EXPORT_SYMBOL(pci_find_parent_resource
);
444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445 * @dev: the PCI device to operate on
446 * @pos: config space offset of status word
447 * @mask: mask of bit(s) to care about in status word
449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
451 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
455 /* Wait for Transaction Pending bit clean */
456 for (i
= 0; i
< 4; i
++) {
459 msleep((1 << (i
- 1)) * 100);
461 pci_read_config_word(dev
, pos
, &status
);
462 if (!(status
& mask
))
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
476 static void pci_restore_bars(struct pci_dev
*dev
)
480 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
481 pci_update_resource(dev
, i
);
484 static struct pci_platform_pm_ops
*pci_platform_pm
;
486 int pci_set_platform_pm(struct pci_platform_pm_ops
*ops
)
488 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
491 pci_platform_pm
= ops
;
495 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
497 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
500 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
503 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
506 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
508 return pci_platform_pm
?
509 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
512 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
514 return pci_platform_pm
?
515 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
518 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
520 return pci_platform_pm
?
521 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
527 * @dev: PCI device to handle.
528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
531 * -EINVAL if the requested state is invalid.
532 * -EIO if device does not support PCI PM or its PM capabilities register has a
533 * wrong version, or device doesn't support the requested state.
534 * 0 if device already is in the requested state.
535 * 0 if device's power state has been successfully changed.
537 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
540 bool need_restore
= false;
542 /* Check if we're already there */
543 if (dev
->current_state
== state
)
549 if (state
< PCI_D0
|| state
> PCI_D3hot
)
552 /* Validate current state:
553 * Can enter D0 from any state, but if we can only go deeper
554 * to sleep if we're already in a low power state
556 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
557 && dev
->current_state
> state
) {
558 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
559 dev
->current_state
, state
);
563 /* check if this device supports the desired state */
564 if ((state
== PCI_D1
&& !dev
->d1_support
)
565 || (state
== PCI_D2
&& !dev
->d2_support
))
568 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
570 /* If we're (effectively) in D3, force entire word to 0.
571 * This doesn't affect PME_Status, disables PME_En, and
572 * sets PowerState to 0.
574 switch (dev
->current_state
) {
578 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
583 case PCI_UNKNOWN
: /* Boot-up */
584 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
585 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
587 /* Fall-through: force to D0 */
593 /* enter specified state */
594 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
596 /* Mandatory power management transition delays */
597 /* see PCI PM 1.1 5.6.1 table 18 */
598 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
599 pci_dev_d3_sleep(dev
);
600 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
601 udelay(PCI_PM_D2_DELAY
);
603 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
604 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
605 if (dev
->current_state
!= state
&& printk_ratelimit())
606 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
610 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
611 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
612 * from D3hot to D0 _may_ perform an internal reset, thereby
613 * going to "D0 Uninitialized" rather than "D0 Initialized".
614 * For example, at least some versions of the 3c905B and the
615 * 3c556B exhibit this behaviour.
617 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
618 * devices in a D3hot state at boot. Consequently, we need to
619 * restore at least the BARs so that the device will be
620 * accessible to its driver.
623 pci_restore_bars(dev
);
626 pcie_aspm_pm_state_change(dev
->bus
->self
);
632 * pci_update_current_state - Read PCI power state of given device from its
633 * PCI PM registers and cache it
634 * @dev: PCI device to handle.
635 * @state: State to cache in case the device doesn't have the PM capability
637 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
643 * Configuration space is not accessible for device in
644 * D3cold, so just keep or set D3cold for safety
646 if (dev
->current_state
== PCI_D3cold
)
648 if (state
== PCI_D3cold
) {
649 dev
->current_state
= PCI_D3cold
;
652 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
653 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
655 dev
->current_state
= state
;
660 * pci_power_up - Put the given device into D0 forcibly
661 * @dev: PCI device to power up
663 void pci_power_up(struct pci_dev
*dev
)
665 if (platform_pci_power_manageable(dev
))
666 platform_pci_set_power_state(dev
, PCI_D0
);
668 pci_raw_set_power_state(dev
, PCI_D0
);
669 pci_update_current_state(dev
, PCI_D0
);
673 * pci_platform_power_transition - Use platform to change device power state
674 * @dev: PCI device to handle.
675 * @state: State to put the device into.
677 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
681 if (platform_pci_power_manageable(dev
)) {
682 error
= platform_pci_set_power_state(dev
, state
);
684 pci_update_current_state(dev
, state
);
688 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
689 dev
->current_state
= PCI_D0
;
695 * pci_wakeup - Wake up a PCI device
696 * @pci_dev: Device to handle.
697 * @ign: ignored parameter
699 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
701 pci_wakeup_event(pci_dev
);
702 pm_request_resume(&pci_dev
->dev
);
707 * pci_wakeup_bus - Walk given bus and wake up devices on it
708 * @bus: Top bus of the subtree to walk.
710 static void pci_wakeup_bus(struct pci_bus
*bus
)
713 pci_walk_bus(bus
, pci_wakeup
, NULL
);
717 * __pci_start_power_transition - Start power transition of a PCI device
718 * @dev: PCI device to handle.
719 * @state: State to put the device into.
721 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
723 if (state
== PCI_D0
) {
724 pci_platform_power_transition(dev
, PCI_D0
);
726 * Mandatory power management transition delays, see
727 * PCI Express Base Specification Revision 2.0 Section
728 * 6.6.1: Conventional Reset. Do not delay for
729 * devices powered on/off by corresponding bridge,
730 * because have already delayed for the bridge.
732 if (dev
->runtime_d3cold
) {
733 msleep(dev
->d3cold_delay
);
735 * When powering on a bridge from D3cold, the
736 * whole hierarchy may be powered on into
737 * D0uninitialized state, resume them to give
738 * them a chance to suspend again
740 pci_wakeup_bus(dev
->subordinate
);
746 * __pci_dev_set_current_state - Set current state of a PCI device
747 * @dev: Device to handle
748 * @data: pointer to state to be set
750 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
752 pci_power_t state
= *(pci_power_t
*)data
;
754 dev
->current_state
= state
;
759 * __pci_bus_set_current_state - Walk given bus and set current state of devices
760 * @bus: Top bus of the subtree to walk.
761 * @state: state to be set
763 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
766 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
770 * __pci_complete_power_transition - Complete power transition of a PCI device
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
774 * This function should not be called directly by device drivers.
776 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
782 ret
= pci_platform_power_transition(dev
, state
);
783 /* Power off the bridge may power off the whole hierarchy */
784 if (!ret
&& state
== PCI_D3cold
)
785 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
791 * pci_set_power_state - Set the power state of a PCI device
792 * @dev: PCI device to handle.
793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
795 * Transition a device to a new power state, using the platform firmware and/or
796 * the device's PCI PM registers.
799 * -EINVAL if the requested state is invalid.
800 * -EIO if device does not support PCI PM or its PM capabilities register has a
801 * wrong version, or device doesn't support the requested state.
802 * 0 if device already is in the requested state.
803 * 0 if device's power state has been successfully changed.
805 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
809 /* bound the state we're entering */
810 if (state
> PCI_D3cold
)
812 else if (state
< PCI_D0
)
814 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
816 * If the device or the parent bridge do not support PCI PM,
817 * ignore the request if we're doing anything other than putting
818 * it into D0 (which would only happen on boot).
822 /* Check if we're already there */
823 if (dev
->current_state
== state
)
826 __pci_start_power_transition(dev
, state
);
828 /* This device is quirked not to be put into D3, so
829 don't put it in D3 */
830 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
834 * To put device in D3cold, we put device into D3hot in native
835 * way, then put device into D3cold with platform ops
837 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
840 if (!__pci_complete_power_transition(dev
, state
))
845 EXPORT_SYMBOL(pci_set_power_state
);
848 * pci_choose_state - Choose the power state of a PCI device
849 * @dev: PCI device to be suspended
850 * @state: target sleep state for the whole system. This is the value
851 * that is passed to suspend() function.
853 * Returns PCI power state suitable for given device and given system
857 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
864 ret
= platform_pci_choose_state(dev
);
865 if (ret
!= PCI_POWER_ERROR
)
868 switch (state
.event
) {
871 case PM_EVENT_FREEZE
:
872 case PM_EVENT_PRETHAW
:
873 /* REVISIT both freeze and pre-thaw "should" use D0 */
874 case PM_EVENT_SUSPEND
:
875 case PM_EVENT_HIBERNATE
:
878 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
884 EXPORT_SYMBOL(pci_choose_state
);
886 #define PCI_EXP_SAVE_REGS 7
888 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
889 u16 cap
, bool extended
)
891 struct pci_cap_saved_state
*tmp
;
893 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
894 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
900 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
902 return _pci_find_saved_cap(dev
, cap
, false);
905 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
907 return _pci_find_saved_cap(dev
, cap
, true);
910 static int pci_save_pcie_state(struct pci_dev
*dev
)
913 struct pci_cap_saved_state
*save_state
;
916 if (!pci_is_pcie(dev
))
919 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
921 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
925 cap
= (u16
*)&save_state
->cap
.data
[0];
926 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
927 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
928 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
929 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
930 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
931 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
932 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
937 static void pci_restore_pcie_state(struct pci_dev
*dev
)
940 struct pci_cap_saved_state
*save_state
;
943 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
947 cap
= (u16
*)&save_state
->cap
.data
[0];
948 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
949 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
950 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
951 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
952 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
953 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
954 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
958 static int pci_save_pcix_state(struct pci_dev
*dev
)
961 struct pci_cap_saved_state
*save_state
;
963 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
967 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
969 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
973 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
974 (u16
*)save_state
->cap
.data
);
979 static void pci_restore_pcix_state(struct pci_dev
*dev
)
982 struct pci_cap_saved_state
*save_state
;
985 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
986 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
987 if (!save_state
|| pos
<= 0)
989 cap
= (u16
*)&save_state
->cap
.data
[0];
991 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
996 * pci_save_state - save the PCI configuration space of a device before suspending
997 * @dev: - PCI device that we're dealing with
999 int pci_save_state(struct pci_dev
*dev
)
1002 /* XXX: 100% dword access ok here? */
1003 for (i
= 0; i
< 16; i
++)
1004 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1005 dev
->state_saved
= true;
1007 i
= pci_save_pcie_state(dev
);
1011 i
= pci_save_pcix_state(dev
);
1015 return pci_save_vc_state(dev
);
1017 EXPORT_SYMBOL(pci_save_state
);
1019 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1020 u32 saved_val
, int retry
)
1024 pci_read_config_dword(pdev
, offset
, &val
);
1025 if (val
== saved_val
)
1029 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1030 offset
, val
, saved_val
);
1031 pci_write_config_dword(pdev
, offset
, saved_val
);
1035 pci_read_config_dword(pdev
, offset
, &val
);
1036 if (val
== saved_val
)
1043 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1044 int start
, int end
, int retry
)
1048 for (index
= end
; index
>= start
; index
--)
1049 pci_restore_config_dword(pdev
, 4 * index
,
1050 pdev
->saved_config_space
[index
],
1054 static void pci_restore_config_space(struct pci_dev
*pdev
)
1056 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1057 pci_restore_config_space_range(pdev
, 10, 15, 0);
1058 /* Restore BARs before the command register. */
1059 pci_restore_config_space_range(pdev
, 4, 9, 10);
1060 pci_restore_config_space_range(pdev
, 0, 3, 0);
1062 pci_restore_config_space_range(pdev
, 0, 15, 0);
1067 * pci_restore_state - Restore the saved state of a PCI device
1068 * @dev: - PCI device that we're dealing with
1070 void pci_restore_state(struct pci_dev
*dev
)
1072 if (!dev
->state_saved
)
1075 /* PCI Express register must be restored first */
1076 pci_restore_pcie_state(dev
);
1077 pci_restore_ats_state(dev
);
1078 pci_restore_vc_state(dev
);
1080 pci_restore_config_space(dev
);
1082 pci_restore_pcix_state(dev
);
1083 pci_restore_msi_state(dev
);
1084 pci_restore_iov_state(dev
);
1086 dev
->state_saved
= false;
1088 EXPORT_SYMBOL(pci_restore_state
);
1090 struct pci_saved_state
{
1091 u32 config_space
[16];
1092 struct pci_cap_saved_data cap
[0];
1096 * pci_store_saved_state - Allocate and return an opaque struct containing
1097 * the device saved state.
1098 * @dev: PCI device that we're dealing with
1100 * Return NULL if no state or error.
1102 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1104 struct pci_saved_state
*state
;
1105 struct pci_cap_saved_state
*tmp
;
1106 struct pci_cap_saved_data
*cap
;
1109 if (!dev
->state_saved
)
1112 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1114 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1115 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1117 state
= kzalloc(size
, GFP_KERNEL
);
1121 memcpy(state
->config_space
, dev
->saved_config_space
,
1122 sizeof(state
->config_space
));
1125 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1126 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1127 memcpy(cap
, &tmp
->cap
, len
);
1128 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1130 /* Empty cap_save terminates list */
1134 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1137 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1138 * @dev: PCI device that we're dealing with
1139 * @state: Saved state returned from pci_store_saved_state()
1141 int pci_load_saved_state(struct pci_dev
*dev
,
1142 struct pci_saved_state
*state
)
1144 struct pci_cap_saved_data
*cap
;
1146 dev
->state_saved
= false;
1151 memcpy(dev
->saved_config_space
, state
->config_space
,
1152 sizeof(state
->config_space
));
1156 struct pci_cap_saved_state
*tmp
;
1158 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1159 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1162 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1163 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1164 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1167 dev
->state_saved
= true;
1170 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1173 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174 * and free the memory allocated for it.
1175 * @dev: PCI device that we're dealing with
1176 * @state: Pointer to saved state returned from pci_store_saved_state()
1178 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1179 struct pci_saved_state
**state
)
1181 int ret
= pci_load_saved_state(dev
, *state
);
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1188 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1190 return pci_enable_resources(dev
, bars
);
1193 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1196 struct pci_dev
*bridge
;
1200 err
= pci_set_power_state(dev
, PCI_D0
);
1201 if (err
< 0 && err
!= -EIO
)
1204 bridge
= pci_upstream_bridge(dev
);
1206 pcie_aspm_powersave_config_link(bridge
);
1208 err
= pcibios_enable_device(dev
, bars
);
1211 pci_fixup_device(pci_fixup_enable
, dev
);
1213 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1216 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1218 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1219 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1220 pci_write_config_word(dev
, PCI_COMMAND
,
1221 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1228 * pci_reenable_device - Resume abandoned device
1229 * @dev: PCI device to be resumed
1231 * Note this function is a backend of pci_default_resume and is not supposed
1232 * to be called by normal code, write proper resume handler and use it instead.
1234 int pci_reenable_device(struct pci_dev
*dev
)
1236 if (pci_is_enabled(dev
))
1237 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1240 EXPORT_SYMBOL(pci_reenable_device
);
1242 static void pci_enable_bridge(struct pci_dev
*dev
)
1244 struct pci_dev
*bridge
;
1247 bridge
= pci_upstream_bridge(dev
);
1249 pci_enable_bridge(bridge
);
1251 if (pci_is_enabled(dev
)) {
1252 if (!dev
->is_busmaster
)
1253 pci_set_master(dev
);
1257 retval
= pci_enable_device(dev
);
1259 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1261 pci_set_master(dev
);
1264 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1266 struct pci_dev
*bridge
;
1271 * Power state could be unknown at this point, either due to a fresh
1272 * boot or a device removal call. So get the current power state
1273 * so that things like MSI message writing will behave as expected
1274 * (e.g. if the device really is in D0 at enable time).
1278 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1279 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1282 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1283 return 0; /* already enabled */
1285 bridge
= pci_upstream_bridge(dev
);
1287 pci_enable_bridge(bridge
);
1289 /* only skip sriov related */
1290 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1291 if (dev
->resource
[i
].flags
& flags
)
1293 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1294 if (dev
->resource
[i
].flags
& flags
)
1297 err
= do_pci_enable_device(dev
, bars
);
1299 atomic_dec(&dev
->enable_cnt
);
1304 * pci_enable_device_io - Initialize a device for use with IO space
1305 * @dev: PCI device to be initialized
1307 * Initialize device before it's used by a driver. Ask low-level code
1308 * to enable I/O resources. Wake up the device if it was suspended.
1309 * Beware, this function can fail.
1311 int pci_enable_device_io(struct pci_dev
*dev
)
1313 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1315 EXPORT_SYMBOL(pci_enable_device_io
);
1318 * pci_enable_device_mem - Initialize a device for use with Memory space
1319 * @dev: PCI device to be initialized
1321 * Initialize device before it's used by a driver. Ask low-level code
1322 * to enable Memory resources. Wake up the device if it was suspended.
1323 * Beware, this function can fail.
1325 int pci_enable_device_mem(struct pci_dev
*dev
)
1327 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1329 EXPORT_SYMBOL(pci_enable_device_mem
);
1332 * pci_enable_device - Initialize device before it's used by a driver.
1333 * @dev: PCI device to be initialized
1335 * Initialize device before it's used by a driver. Ask low-level code
1336 * to enable I/O and memory. Wake up the device if it was suspended.
1337 * Beware, this function can fail.
1339 * Note we don't actually enable the device many times if we call
1340 * this function repeatedly (we just increment the count).
1342 int pci_enable_device(struct pci_dev
*dev
)
1344 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1346 EXPORT_SYMBOL(pci_enable_device
);
1349 * Managed PCI resources. This manages device on/off, intx/msi/msix
1350 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1351 * there's no need to track it separately. pci_devres is initialized
1352 * when a device is enabled using managed PCI device enable interface.
1355 unsigned int enabled
:1;
1356 unsigned int pinned
:1;
1357 unsigned int orig_intx
:1;
1358 unsigned int restore_intx
:1;
1362 static void pcim_release(struct device
*gendev
, void *res
)
1364 struct pci_dev
*dev
= container_of(gendev
, struct pci_dev
, dev
);
1365 struct pci_devres
*this = res
;
1368 if (dev
->msi_enabled
)
1369 pci_disable_msi(dev
);
1370 if (dev
->msix_enabled
)
1371 pci_disable_msix(dev
);
1373 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1374 if (this->region_mask
& (1 << i
))
1375 pci_release_region(dev
, i
);
1377 if (this->restore_intx
)
1378 pci_intx(dev
, this->orig_intx
);
1380 if (this->enabled
&& !this->pinned
)
1381 pci_disable_device(dev
);
1384 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1386 struct pci_devres
*dr
, *new_dr
;
1388 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1392 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1395 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1398 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1400 if (pci_is_managed(pdev
))
1401 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1406 * pcim_enable_device - Managed pci_enable_device()
1407 * @pdev: PCI device to be initialized
1409 * Managed pci_enable_device().
1411 int pcim_enable_device(struct pci_dev
*pdev
)
1413 struct pci_devres
*dr
;
1416 dr
= get_pci_dr(pdev
);
1422 rc
= pci_enable_device(pdev
);
1424 pdev
->is_managed
= 1;
1429 EXPORT_SYMBOL(pcim_enable_device
);
1432 * pcim_pin_device - Pin managed PCI device
1433 * @pdev: PCI device to pin
1435 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1436 * driver detach. @pdev must have been enabled with
1437 * pcim_enable_device().
1439 void pcim_pin_device(struct pci_dev
*pdev
)
1441 struct pci_devres
*dr
;
1443 dr
= find_pci_dr(pdev
);
1444 WARN_ON(!dr
|| !dr
->enabled
);
1448 EXPORT_SYMBOL(pcim_pin_device
);
1451 * pcibios_add_device - provide arch specific hooks when adding device dev
1452 * @dev: the PCI device being added
1454 * Permits the platform to provide architecture specific functionality when
1455 * devices are added. This is the default implementation. Architecture
1456 * implementations can override this.
1458 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1464 * pcibios_release_device - provide arch specific hooks when releasing device dev
1465 * @dev: the PCI device being released
1467 * Permits the platform to provide architecture specific functionality when
1468 * devices are released. This is the default implementation. Architecture
1469 * implementations can override this.
1471 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1474 * pcibios_disable_device - disable arch specific PCI resources for device dev
1475 * @dev: the PCI device to disable
1477 * Disables architecture specific PCI resources for the device. This
1478 * is the default implementation. Architecture implementations can
1481 void __weak
pcibios_disable_device (struct pci_dev
*dev
) {}
1484 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1485 * @irq: ISA IRQ to penalize
1486 * @active: IRQ active or not
1488 * Permits the platform to provide architecture-specific functionality when
1489 * penalizing ISA IRQs. This is the default implementation. Architecture
1490 * implementations can override this.
1492 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1494 static void do_pci_disable_device(struct pci_dev
*dev
)
1498 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1499 if (pci_command
& PCI_COMMAND_MASTER
) {
1500 pci_command
&= ~PCI_COMMAND_MASTER
;
1501 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1504 pcibios_disable_device(dev
);
1508 * pci_disable_enabled_device - Disable device without updating enable_cnt
1509 * @dev: PCI device to disable
1511 * NOTE: This function is a backend of PCI power management routines and is
1512 * not supposed to be called drivers.
1514 void pci_disable_enabled_device(struct pci_dev
*dev
)
1516 if (pci_is_enabled(dev
))
1517 do_pci_disable_device(dev
);
1521 * pci_disable_device - Disable PCI device after use
1522 * @dev: PCI device to be disabled
1524 * Signal to the system that the PCI device is not in use by the system
1525 * anymore. This only involves disabling PCI bus-mastering, if active.
1527 * Note we don't actually disable the device until all callers of
1528 * pci_enable_device() have called pci_disable_device().
1530 void pci_disable_device(struct pci_dev
*dev
)
1532 struct pci_devres
*dr
;
1534 dr
= find_pci_dr(dev
);
1538 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1539 "disabling already-disabled device");
1541 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1544 do_pci_disable_device(dev
);
1546 dev
->is_busmaster
= 0;
1548 EXPORT_SYMBOL(pci_disable_device
);
1551 * pcibios_set_pcie_reset_state - set reset state for device dev
1552 * @dev: the PCIe device reset
1553 * @state: Reset state to enter into
1556 * Sets the PCIe reset state for the device. This is the default
1557 * implementation. Architecture implementations can override this.
1559 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1560 enum pcie_reset_state state
)
1566 * pci_set_pcie_reset_state - set reset state for device dev
1567 * @dev: the PCIe device reset
1568 * @state: Reset state to enter into
1571 * Sets the PCI reset state for the device.
1573 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1575 return pcibios_set_pcie_reset_state(dev
, state
);
1577 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1580 * pci_check_pme_status - Check if given device has generated PME.
1581 * @dev: Device to check.
1583 * Check the PME status of the device and if set, clear it and clear PME enable
1584 * (if set). Return 'true' if PME status and PME enable were both set or
1585 * 'false' otherwise.
1587 bool pci_check_pme_status(struct pci_dev
*dev
)
1596 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1597 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1598 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1601 /* Clear PME status. */
1602 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1603 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1604 /* Disable PME to avoid interrupt flood. */
1605 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1609 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1615 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1616 * @dev: Device to handle.
1617 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1619 * Check if @dev has generated PME and queue a resume request for it in that
1622 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1624 if (pme_poll_reset
&& dev
->pme_poll
)
1625 dev
->pme_poll
= false;
1627 if (pci_check_pme_status(dev
)) {
1628 pci_wakeup_event(dev
);
1629 pm_request_resume(&dev
->dev
);
1635 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1636 * @bus: Top bus of the subtree to walk.
1638 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1641 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1646 * pci_pme_capable - check the capability of PCI device to generate PME#
1647 * @dev: PCI device to handle.
1648 * @state: PCI state from which device will issue PME#.
1650 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1655 return !!(dev
->pme_support
& (1 << state
));
1657 EXPORT_SYMBOL(pci_pme_capable
);
1659 static void pci_pme_list_scan(struct work_struct
*work
)
1661 struct pci_pme_device
*pme_dev
, *n
;
1663 mutex_lock(&pci_pme_list_mutex
);
1664 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1665 if (pme_dev
->dev
->pme_poll
) {
1666 struct pci_dev
*bridge
;
1668 bridge
= pme_dev
->dev
->bus
->self
;
1670 * If bridge is in low power state, the
1671 * configuration space of subordinate devices
1672 * may be not accessible
1674 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1676 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1678 list_del(&pme_dev
->list
);
1682 if (!list_empty(&pci_pme_list
))
1683 schedule_delayed_work(&pci_pme_work
,
1684 msecs_to_jiffies(PME_TIMEOUT
));
1685 mutex_unlock(&pci_pme_list_mutex
);
1689 * pci_pme_active - enable or disable PCI device's PME# function
1690 * @dev: PCI device to handle.
1691 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1693 * The caller must verify that the device is capable of generating PME# before
1694 * calling this function with @enable equal to 'true'.
1696 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1700 if (!dev
->pme_support
)
1703 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1704 /* Clear PME_Status by writing 1 to it and enable PME# */
1705 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1707 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1709 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1712 * PCI (as opposed to PCIe) PME requires that the device have
1713 * its PME# line hooked up correctly. Not all hardware vendors
1714 * do this, so the PME never gets delivered and the device
1715 * remains asleep. The easiest way around this is to
1716 * periodically walk the list of suspended devices and check
1717 * whether any have their PME flag set. The assumption is that
1718 * we'll wake up often enough anyway that this won't be a huge
1719 * hit, and the power savings from the devices will still be a
1722 * Although PCIe uses in-band PME message instead of PME# line
1723 * to report PME, PME does not work for some PCIe devices in
1724 * reality. For example, there are devices that set their PME
1725 * status bits, but don't really bother to send a PME message;
1726 * there are PCI Express Root Ports that don't bother to
1727 * trigger interrupts when they receive PME messages from the
1728 * devices below. So PME poll is used for PCIe devices too.
1731 if (dev
->pme_poll
) {
1732 struct pci_pme_device
*pme_dev
;
1734 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1737 dev_warn(&dev
->dev
, "can't enable PME#\n");
1741 mutex_lock(&pci_pme_list_mutex
);
1742 list_add(&pme_dev
->list
, &pci_pme_list
);
1743 if (list_is_singular(&pci_pme_list
))
1744 schedule_delayed_work(&pci_pme_work
,
1745 msecs_to_jiffies(PME_TIMEOUT
));
1746 mutex_unlock(&pci_pme_list_mutex
);
1748 mutex_lock(&pci_pme_list_mutex
);
1749 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1750 if (pme_dev
->dev
== dev
) {
1751 list_del(&pme_dev
->list
);
1756 mutex_unlock(&pci_pme_list_mutex
);
1760 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1762 EXPORT_SYMBOL(pci_pme_active
);
1765 * __pci_enable_wake - enable PCI device as wakeup event source
1766 * @dev: PCI device affected
1767 * @state: PCI state from which device will issue wakeup events
1768 * @runtime: True if the events are to be generated at run time
1769 * @enable: True to enable event generation; false to disable
1771 * This enables the device as a wakeup event source, or disables it.
1772 * When such events involves platform-specific hooks, those hooks are
1773 * called automatically by this routine.
1775 * Devices with legacy power management (no standard PCI PM capabilities)
1776 * always require such platform hooks.
1779 * 0 is returned on success
1780 * -EINVAL is returned if device is not supposed to wake up the system
1781 * Error code depending on the platform is returned if both the platform and
1782 * the native mechanism fail to enable the generation of wake-up events
1784 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1785 bool runtime
, bool enable
)
1789 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1792 /* Don't do the same thing twice in a row for one device. */
1793 if (!!enable
== !!dev
->wakeup_prepared
)
1797 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1798 * Anderson we should be doing PME# wake enable followed by ACPI wake
1799 * enable. To disable wake-up we call the platform first, for symmetry.
1805 if (pci_pme_capable(dev
, state
))
1806 pci_pme_active(dev
, true);
1809 error
= runtime
? platform_pci_run_wake(dev
, true) :
1810 platform_pci_sleep_wake(dev
, true);
1814 dev
->wakeup_prepared
= true;
1817 platform_pci_run_wake(dev
, false);
1819 platform_pci_sleep_wake(dev
, false);
1820 pci_pme_active(dev
, false);
1821 dev
->wakeup_prepared
= false;
1826 EXPORT_SYMBOL(__pci_enable_wake
);
1829 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1830 * @dev: PCI device to prepare
1831 * @enable: True to enable wake-up event generation; false to disable
1833 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1834 * and this function allows them to set that up cleanly - pci_enable_wake()
1835 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1836 * ordering constraints.
1838 * This function only returns error code if the device is not capable of
1839 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1840 * enable wake-up power for it.
1842 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1844 return pci_pme_capable(dev
, PCI_D3cold
) ?
1845 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1846 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1848 EXPORT_SYMBOL(pci_wake_from_d3
);
1851 * pci_target_state - find an appropriate low power state for a given PCI dev
1854 * Use underlying platform code to find a supported low power state for @dev.
1855 * If the platform can't manage @dev, return the deepest state from which it
1856 * can generate wake events, based on any available PME info.
1858 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1860 pci_power_t target_state
= PCI_D3hot
;
1862 if (platform_pci_power_manageable(dev
)) {
1864 * Call the platform to choose the target state of the device
1865 * and enable wake-up from this state if supported.
1867 pci_power_t state
= platform_pci_choose_state(dev
);
1870 case PCI_POWER_ERROR
:
1875 if (pci_no_d1d2(dev
))
1878 target_state
= state
;
1880 } else if (!dev
->pm_cap
) {
1881 target_state
= PCI_D0
;
1882 } else if (device_may_wakeup(&dev
->dev
)) {
1884 * Find the deepest state from which the device can generate
1885 * wake-up events, make it the target state and enable device
1888 if (dev
->pme_support
) {
1890 && !(dev
->pme_support
& (1 << target_state
)))
1895 return target_state
;
1899 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1900 * @dev: Device to handle.
1902 * Choose the power state appropriate for the device depending on whether
1903 * it can wake up the system and/or is power manageable by the platform
1904 * (PCI_D3hot is the default) and put the device into that state.
1906 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1908 pci_power_t target_state
= pci_target_state(dev
);
1911 if (target_state
== PCI_POWER_ERROR
)
1914 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1916 error
= pci_set_power_state(dev
, target_state
);
1919 pci_enable_wake(dev
, target_state
, false);
1923 EXPORT_SYMBOL(pci_prepare_to_sleep
);
1926 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1927 * @dev: Device to handle.
1929 * Disable device's system wake-up capability and put it into D0.
1931 int pci_back_from_sleep(struct pci_dev
*dev
)
1933 pci_enable_wake(dev
, PCI_D0
, false);
1934 return pci_set_power_state(dev
, PCI_D0
);
1936 EXPORT_SYMBOL(pci_back_from_sleep
);
1939 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1940 * @dev: PCI device being suspended.
1942 * Prepare @dev to generate wake-up events at run time and put it into a low
1945 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
1947 pci_power_t target_state
= pci_target_state(dev
);
1950 if (target_state
== PCI_POWER_ERROR
)
1953 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
1955 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
1957 error
= pci_set_power_state(dev
, target_state
);
1960 __pci_enable_wake(dev
, target_state
, true, false);
1961 dev
->runtime_d3cold
= false;
1968 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1969 * @dev: Device to check.
1971 * Return true if the device itself is capable of generating wake-up events
1972 * (through the platform or using the native PCIe PME) or if the device supports
1973 * PME and one of its upstream bridges can generate wake-up events.
1975 bool pci_dev_run_wake(struct pci_dev
*dev
)
1977 struct pci_bus
*bus
= dev
->bus
;
1979 if (device_run_wake(&dev
->dev
))
1982 if (!dev
->pme_support
)
1985 while (bus
->parent
) {
1986 struct pci_dev
*bridge
= bus
->self
;
1988 if (device_run_wake(&bridge
->dev
))
1994 /* We have reached the root bus. */
1996 return device_run_wake(bus
->bridge
);
2000 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2002 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2004 struct device
*dev
= &pdev
->dev
;
2005 struct device
*parent
= dev
->parent
;
2008 pm_runtime_get_sync(parent
);
2009 pm_runtime_get_noresume(dev
);
2011 * pdev->current_state is set to PCI_D3cold during suspending,
2012 * so wait until suspending completes
2014 pm_runtime_barrier(dev
);
2016 * Only need to resume devices in D3cold, because config
2017 * registers are still accessible for devices suspended but
2020 if (pdev
->current_state
== PCI_D3cold
)
2021 pm_runtime_resume(dev
);
2024 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2026 struct device
*dev
= &pdev
->dev
;
2027 struct device
*parent
= dev
->parent
;
2029 pm_runtime_put(dev
);
2031 pm_runtime_put_sync(parent
);
2035 * pci_pm_init - Initialize PM functions of given PCI device
2036 * @dev: PCI device to handle.
2038 void pci_pm_init(struct pci_dev
*dev
)
2043 pm_runtime_forbid(&dev
->dev
);
2044 pm_runtime_set_active(&dev
->dev
);
2045 pm_runtime_enable(&dev
->dev
);
2046 device_enable_async_suspend(&dev
->dev
);
2047 dev
->wakeup_prepared
= false;
2050 dev
->pme_support
= 0;
2052 /* find PCI PM capability in list */
2053 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2056 /* Check device's ability to generate PME# */
2057 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2059 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2060 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2061 pmc
& PCI_PM_CAP_VER_MASK
);
2066 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2067 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2068 dev
->d3cold_allowed
= true;
2070 dev
->d1_support
= false;
2071 dev
->d2_support
= false;
2072 if (!pci_no_d1d2(dev
)) {
2073 if (pmc
& PCI_PM_CAP_D1
)
2074 dev
->d1_support
= true;
2075 if (pmc
& PCI_PM_CAP_D2
)
2076 dev
->d2_support
= true;
2078 if (dev
->d1_support
|| dev
->d2_support
)
2079 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2080 dev
->d1_support
? " D1" : "",
2081 dev
->d2_support
? " D2" : "");
2084 pmc
&= PCI_PM_CAP_PME_MASK
;
2086 dev_printk(KERN_DEBUG
, &dev
->dev
,
2087 "PME# supported from%s%s%s%s%s\n",
2088 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2089 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2090 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2091 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2092 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2093 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2094 dev
->pme_poll
= true;
2096 * Make device's PM flags reflect the wake-up capability, but
2097 * let the user space enable it to wake up the system as needed.
2099 device_set_wakeup_capable(&dev
->dev
, true);
2100 /* Disable the PME# generation functionality */
2101 pci_pme_active(dev
, false);
2105 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2106 struct pci_cap_saved_state
*new_cap
)
2108 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2112 * _pci_add_cap_save_buffer - allocate buffer for saving given
2113 * capability registers
2114 * @dev: the PCI device
2115 * @cap: the capability to allocate the buffer for
2116 * @extended: Standard or Extended capability ID
2117 * @size: requested size of the buffer
2119 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2120 bool extended
, unsigned int size
)
2123 struct pci_cap_saved_state
*save_state
;
2126 pos
= pci_find_ext_capability(dev
, cap
);
2128 pos
= pci_find_capability(dev
, cap
);
2133 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2137 save_state
->cap
.cap_nr
= cap
;
2138 save_state
->cap
.cap_extended
= extended
;
2139 save_state
->cap
.size
= size
;
2140 pci_add_saved_cap(dev
, save_state
);
2145 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2147 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2150 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2152 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2156 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2157 * @dev: the PCI device
2159 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2163 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2164 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2167 "unable to preallocate PCI Express save buffer\n");
2169 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2172 "unable to preallocate PCI-X save buffer\n");
2174 pci_allocate_vc_save_buffers(dev
);
2177 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2179 struct pci_cap_saved_state
*tmp
;
2180 struct hlist_node
*n
;
2182 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2187 * pci_configure_ari - enable or disable ARI forwarding
2188 * @dev: the PCI device
2190 * If @dev and its upstream bridge both support ARI, enable ARI in the
2191 * bridge. Otherwise, disable ARI in the bridge.
2193 void pci_configure_ari(struct pci_dev
*dev
)
2196 struct pci_dev
*bridge
;
2198 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2201 bridge
= dev
->bus
->self
;
2205 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2206 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2209 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2210 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2211 PCI_EXP_DEVCTL2_ARI
);
2212 bridge
->ari_enabled
= 1;
2214 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2215 PCI_EXP_DEVCTL2_ARI
);
2216 bridge
->ari_enabled
= 0;
2220 static int pci_acs_enable
;
2223 * pci_request_acs - ask for ACS to be enabled if supported
2225 void pci_request_acs(void)
2231 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2232 * @dev: the PCI device
2234 static int pci_std_enable_acs(struct pci_dev
*dev
)
2240 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2244 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2245 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2247 /* Source Validation */
2248 ctrl
|= (cap
& PCI_ACS_SV
);
2250 /* P2P Request Redirect */
2251 ctrl
|= (cap
& PCI_ACS_RR
);
2253 /* P2P Completion Redirect */
2254 ctrl
|= (cap
& PCI_ACS_CR
);
2256 /* Upstream Forwarding */
2257 ctrl
|= (cap
& PCI_ACS_UF
);
2259 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2265 * pci_enable_acs - enable ACS if hardware support it
2266 * @dev: the PCI device
2268 void pci_enable_acs(struct pci_dev
*dev
)
2270 if (!pci_acs_enable
)
2273 if (!pci_std_enable_acs(dev
))
2276 pci_dev_specific_enable_acs(dev
);
2279 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2284 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2289 * Except for egress control, capabilities are either required
2290 * or only required if controllable. Features missing from the
2291 * capability field can therefore be assumed as hard-wired enabled.
2293 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2294 acs_flags
&= (cap
| PCI_ACS_EC
);
2296 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2297 return (ctrl
& acs_flags
) == acs_flags
;
2301 * pci_acs_enabled - test ACS against required flags for a given device
2302 * @pdev: device to test
2303 * @acs_flags: required PCI ACS flags
2305 * Return true if the device supports the provided flags. Automatically
2306 * filters out flags that are not implemented on multifunction devices.
2308 * Note that this interface checks the effective ACS capabilities of the
2309 * device rather than the actual capabilities. For instance, most single
2310 * function endpoints are not required to support ACS because they have no
2311 * opportunity for peer-to-peer access. We therefore return 'true'
2312 * regardless of whether the device exposes an ACS capability. This makes
2313 * it much easier for callers of this function to ignore the actual type
2314 * or topology of the device when testing ACS support.
2316 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2320 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2325 * Conventional PCI and PCI-X devices never support ACS, either
2326 * effectively or actually. The shared bus topology implies that
2327 * any device on the bus can receive or snoop DMA.
2329 if (!pci_is_pcie(pdev
))
2332 switch (pci_pcie_type(pdev
)) {
2334 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2335 * but since their primary interface is PCI/X, we conservatively
2336 * handle them as we would a non-PCIe device.
2338 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2340 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2341 * applicable... must never implement an ACS Extended Capability...".
2342 * This seems arbitrary, but we take a conservative interpretation
2343 * of this statement.
2345 case PCI_EXP_TYPE_PCI_BRIDGE
:
2346 case PCI_EXP_TYPE_RC_EC
:
2349 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2350 * implement ACS in order to indicate their peer-to-peer capabilities,
2351 * regardless of whether they are single- or multi-function devices.
2353 case PCI_EXP_TYPE_DOWNSTREAM
:
2354 case PCI_EXP_TYPE_ROOT_PORT
:
2355 return pci_acs_flags_enabled(pdev
, acs_flags
);
2357 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2358 * implemented by the remaining PCIe types to indicate peer-to-peer
2359 * capabilities, but only when they are part of a multifunction
2360 * device. The footnote for section 6.12 indicates the specific
2361 * PCIe types included here.
2363 case PCI_EXP_TYPE_ENDPOINT
:
2364 case PCI_EXP_TYPE_UPSTREAM
:
2365 case PCI_EXP_TYPE_LEG_END
:
2366 case PCI_EXP_TYPE_RC_END
:
2367 if (!pdev
->multifunction
)
2370 return pci_acs_flags_enabled(pdev
, acs_flags
);
2374 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2375 * to single function devices with the exception of downstream ports.
2381 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2382 * @start: starting downstream device
2383 * @end: ending upstream device or NULL to search to the root bus
2384 * @acs_flags: required flags
2386 * Walk up a device tree from start to end testing PCI ACS support. If
2387 * any step along the way does not support the required flags, return false.
2389 bool pci_acs_path_enabled(struct pci_dev
*start
,
2390 struct pci_dev
*end
, u16 acs_flags
)
2392 struct pci_dev
*pdev
, *parent
= start
;
2397 if (!pci_acs_enabled(pdev
, acs_flags
))
2400 if (pci_is_root_bus(pdev
->bus
))
2401 return (end
== NULL
);
2403 parent
= pdev
->bus
->self
;
2404 } while (pdev
!= end
);
2410 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2411 * @dev: the PCI device
2412 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2414 * Perform INTx swizzling for a device behind one level of bridge. This is
2415 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2416 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2417 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2418 * the PCI Express Base Specification, Revision 2.1)
2420 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2424 if (pci_ari_enabled(dev
->bus
))
2427 slot
= PCI_SLOT(dev
->devfn
);
2429 return (((pin
- 1) + slot
) % 4) + 1;
2432 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2440 while (!pci_is_root_bus(dev
->bus
)) {
2441 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2442 dev
= dev
->bus
->self
;
2449 * pci_common_swizzle - swizzle INTx all the way to root bridge
2450 * @dev: the PCI device
2451 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2453 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2454 * bridges all the way up to a PCI root bus.
2456 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2460 while (!pci_is_root_bus(dev
->bus
)) {
2461 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2462 dev
= dev
->bus
->self
;
2465 return PCI_SLOT(dev
->devfn
);
2469 * pci_release_region - Release a PCI bar
2470 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2471 * @bar: BAR to release
2473 * Releases the PCI I/O and memory resources previously reserved by a
2474 * successful call to pci_request_region. Call this function only
2475 * after all use of the PCI regions has ceased.
2477 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2479 struct pci_devres
*dr
;
2481 if (pci_resource_len(pdev
, bar
) == 0)
2483 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2484 release_region(pci_resource_start(pdev
, bar
),
2485 pci_resource_len(pdev
, bar
));
2486 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2487 release_mem_region(pci_resource_start(pdev
, bar
),
2488 pci_resource_len(pdev
, bar
));
2490 dr
= find_pci_dr(pdev
);
2492 dr
->region_mask
&= ~(1 << bar
);
2494 EXPORT_SYMBOL(pci_release_region
);
2497 * __pci_request_region - Reserved PCI I/O and memory resource
2498 * @pdev: PCI device whose resources are to be reserved
2499 * @bar: BAR to be reserved
2500 * @res_name: Name to be associated with resource.
2501 * @exclusive: whether the region access is exclusive or not
2503 * Mark the PCI region associated with PCI device @pdev BR @bar as
2504 * being reserved by owner @res_name. Do not access any
2505 * address inside the PCI regions unless this call returns
2508 * If @exclusive is set, then the region is marked so that userspace
2509 * is explicitly not allowed to map the resource via /dev/mem or
2510 * sysfs MMIO access.
2512 * Returns 0 on success, or %EBUSY on error. A warning
2513 * message is also printed on failure.
2515 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
2516 const char *res_name
, int exclusive
)
2518 struct pci_devres
*dr
;
2520 if (pci_resource_len(pdev
, bar
) == 0)
2523 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2524 if (!request_region(pci_resource_start(pdev
, bar
),
2525 pci_resource_len(pdev
, bar
), res_name
))
2527 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2528 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2529 pci_resource_len(pdev
, bar
), res_name
,
2534 dr
= find_pci_dr(pdev
);
2536 dr
->region_mask
|= 1 << bar
;
2541 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2542 &pdev
->resource
[bar
]);
2547 * pci_request_region - Reserve PCI I/O and memory resource
2548 * @pdev: PCI device whose resources are to be reserved
2549 * @bar: BAR to be reserved
2550 * @res_name: Name to be associated with resource
2552 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2553 * being reserved by owner @res_name. Do not access any
2554 * address inside the PCI regions unless this call returns
2557 * Returns 0 on success, or %EBUSY on error. A warning
2558 * message is also printed on failure.
2560 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2562 return __pci_request_region(pdev
, bar
, res_name
, 0);
2564 EXPORT_SYMBOL(pci_request_region
);
2567 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2568 * @pdev: PCI device whose resources are to be reserved
2569 * @bar: BAR to be reserved
2570 * @res_name: Name to be associated with resource.
2572 * Mark the PCI region associated with PCI device @pdev BR @bar as
2573 * being reserved by owner @res_name. Do not access any
2574 * address inside the PCI regions unless this call returns
2577 * Returns 0 on success, or %EBUSY on error. A warning
2578 * message is also printed on failure.
2580 * The key difference that _exclusive makes it that userspace is
2581 * explicitly not allowed to map the resource via /dev/mem or
2584 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
2585 const char *res_name
)
2587 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2589 EXPORT_SYMBOL(pci_request_region_exclusive
);
2592 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2593 * @pdev: PCI device whose resources were previously reserved
2594 * @bars: Bitmask of BARs to be released
2596 * Release selected PCI I/O and memory resources previously reserved.
2597 * Call this function only after all use of the PCI regions has ceased.
2599 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2603 for (i
= 0; i
< 6; i
++)
2604 if (bars
& (1 << i
))
2605 pci_release_region(pdev
, i
);
2607 EXPORT_SYMBOL(pci_release_selected_regions
);
2609 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2610 const char *res_name
, int excl
)
2614 for (i
= 0; i
< 6; i
++)
2615 if (bars
& (1 << i
))
2616 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2622 if (bars
& (1 << i
))
2623 pci_release_region(pdev
, i
);
2630 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @bars: Bitmask of BARs to be requested
2633 * @res_name: Name to be associated with resource
2635 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2636 const char *res_name
)
2638 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2640 EXPORT_SYMBOL(pci_request_selected_regions
);
2642 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
2643 const char *res_name
)
2645 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2646 IORESOURCE_EXCLUSIVE
);
2648 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
2651 * pci_release_regions - Release reserved PCI I/O and memory resources
2652 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2654 * Releases all PCI I/O and memory resources previously reserved by a
2655 * successful call to pci_request_regions. Call this function only
2656 * after all use of the PCI regions has ceased.
2659 void pci_release_regions(struct pci_dev
*pdev
)
2661 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2663 EXPORT_SYMBOL(pci_release_regions
);
2666 * pci_request_regions - Reserved PCI I/O and memory resources
2667 * @pdev: PCI device whose resources are to be reserved
2668 * @res_name: Name to be associated with resource.
2670 * Mark all PCI regions associated with PCI device @pdev as
2671 * being reserved by owner @res_name. Do not access any
2672 * address inside the PCI regions unless this call returns
2675 * Returns 0 on success, or %EBUSY on error. A warning
2676 * message is also printed on failure.
2678 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2680 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
2682 EXPORT_SYMBOL(pci_request_regions
);
2685 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2686 * @pdev: PCI device whose resources are to be reserved
2687 * @res_name: Name to be associated with resource.
2689 * Mark all PCI regions associated with PCI device @pdev as
2690 * being reserved by owner @res_name. Do not access any
2691 * address inside the PCI regions unless this call returns
2694 * pci_request_regions_exclusive() will mark the region so that
2695 * /dev/mem and the sysfs MMIO access will not be allowed.
2697 * Returns 0 on success, or %EBUSY on error. A warning
2698 * message is also printed on failure.
2700 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
2702 return pci_request_selected_regions_exclusive(pdev
,
2703 ((1 << 6) - 1), res_name
);
2705 EXPORT_SYMBOL(pci_request_regions_exclusive
);
2708 * pci_remap_iospace - Remap the memory mapped I/O space
2709 * @res: Resource describing the I/O space
2710 * @phys_addr: physical address of range to be mapped
2712 * Remap the memory mapped I/O space described by the @res
2713 * and the CPU physical address @phys_addr into virtual address space.
2714 * Only architectures that have memory mapped IO functions defined
2715 * (and the PCI_IOBASE value defined) should call this function.
2717 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
2719 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2720 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
2722 if (!(res
->flags
& IORESOURCE_IO
))
2725 if (res
->end
> IO_SPACE_LIMIT
)
2728 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
2729 pgprot_device(PAGE_KERNEL
));
2731 /* this architecture does not have memory mapped I/O space,
2732 so this function should never be called */
2733 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2738 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
2742 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
2744 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
2746 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
2747 if (cmd
!= old_cmd
) {
2748 dev_dbg(&dev
->dev
, "%s bus mastering\n",
2749 enable
? "enabling" : "disabling");
2750 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2752 dev
->is_busmaster
= enable
;
2756 * pcibios_setup - process "pci=" kernel boot arguments
2757 * @str: string used to pass in "pci=" kernel boot arguments
2759 * Process kernel boot arguments. This is the default implementation.
2760 * Architecture specific implementations can override this as necessary.
2762 char * __weak __init
pcibios_setup(char *str
)
2768 * pcibios_set_master - enable PCI bus-mastering for device dev
2769 * @dev: the PCI device to enable
2771 * Enables PCI bus-mastering for the device. This is the default
2772 * implementation. Architecture specific implementations can override
2773 * this if necessary.
2775 void __weak
pcibios_set_master(struct pci_dev
*dev
)
2779 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2780 if (pci_is_pcie(dev
))
2783 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
2785 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
2786 else if (lat
> pcibios_max_latency
)
2787 lat
= pcibios_max_latency
;
2791 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
2795 * pci_set_master - enables bus-mastering for device dev
2796 * @dev: the PCI device to enable
2798 * Enables bus-mastering on the device and calls pcibios_set_master()
2799 * to do the needed arch specific settings.
2801 void pci_set_master(struct pci_dev
*dev
)
2803 __pci_set_master(dev
, true);
2804 pcibios_set_master(dev
);
2806 EXPORT_SYMBOL(pci_set_master
);
2809 * pci_clear_master - disables bus-mastering for device dev
2810 * @dev: the PCI device to disable
2812 void pci_clear_master(struct pci_dev
*dev
)
2814 __pci_set_master(dev
, false);
2816 EXPORT_SYMBOL(pci_clear_master
);
2819 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2820 * @dev: the PCI device for which MWI is to be enabled
2822 * Helper function for pci_set_mwi.
2823 * Originally copied from drivers/net/acenic.c.
2824 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2826 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2828 int pci_set_cacheline_size(struct pci_dev
*dev
)
2832 if (!pci_cache_line_size
)
2835 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2836 equal to or multiple of the right value. */
2837 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2838 if (cacheline_size
>= pci_cache_line_size
&&
2839 (cacheline_size
% pci_cache_line_size
) == 0)
2842 /* Write the correct value. */
2843 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
2845 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2846 if (cacheline_size
== pci_cache_line_size
)
2849 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
2850 pci_cache_line_size
<< 2);
2854 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
2857 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2858 * @dev: the PCI device for which MWI is enabled
2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2862 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2864 int pci_set_mwi(struct pci_dev
*dev
)
2866 #ifdef PCI_DISABLE_MWI
2872 rc
= pci_set_cacheline_size(dev
);
2876 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2877 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
2878 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
2879 cmd
|= PCI_COMMAND_INVALIDATE
;
2880 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2885 EXPORT_SYMBOL(pci_set_mwi
);
2888 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2889 * @dev: the PCI device for which MWI is enabled
2891 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2892 * Callers are not required to check the return value.
2894 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2896 int pci_try_set_mwi(struct pci_dev
*dev
)
2898 #ifdef PCI_DISABLE_MWI
2901 return pci_set_mwi(dev
);
2904 EXPORT_SYMBOL(pci_try_set_mwi
);
2907 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2908 * @dev: the PCI device to disable
2910 * Disables PCI Memory-Write-Invalidate transaction on the device
2912 void pci_clear_mwi(struct pci_dev
*dev
)
2914 #ifndef PCI_DISABLE_MWI
2917 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2918 if (cmd
& PCI_COMMAND_INVALIDATE
) {
2919 cmd
&= ~PCI_COMMAND_INVALIDATE
;
2920 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2924 EXPORT_SYMBOL(pci_clear_mwi
);
2927 * pci_intx - enables/disables PCI INTx for device dev
2928 * @pdev: the PCI device to operate on
2929 * @enable: boolean: whether to enable or disable PCI INTx
2931 * Enables/disables PCI INTx for device dev
2933 void pci_intx(struct pci_dev
*pdev
, int enable
)
2935 u16 pci_command
, new;
2937 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
2940 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
2942 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
2944 if (new != pci_command
) {
2945 struct pci_devres
*dr
;
2947 pci_write_config_word(pdev
, PCI_COMMAND
, new);
2949 dr
= find_pci_dr(pdev
);
2950 if (dr
&& !dr
->restore_intx
) {
2951 dr
->restore_intx
= 1;
2952 dr
->orig_intx
= !enable
;
2956 EXPORT_SYMBOL_GPL(pci_intx
);
2959 * pci_intx_mask_supported - probe for INTx masking support
2960 * @dev: the PCI device to operate on
2962 * Check if the device dev support INTx masking via the config space
2965 bool pci_intx_mask_supported(struct pci_dev
*dev
)
2967 bool mask_supported
= false;
2970 if (dev
->broken_intx_masking
)
2973 pci_cfg_access_lock(dev
);
2975 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
2976 pci_write_config_word(dev
, PCI_COMMAND
,
2977 orig
^ PCI_COMMAND_INTX_DISABLE
);
2978 pci_read_config_word(dev
, PCI_COMMAND
, &new);
2981 * There's no way to protect against hardware bugs or detect them
2982 * reliably, but as long as we know what the value should be, let's
2983 * go ahead and check it.
2985 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
2986 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2988 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
2989 mask_supported
= true;
2990 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
2993 pci_cfg_access_unlock(dev
);
2994 return mask_supported
;
2996 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
2998 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3000 struct pci_bus
*bus
= dev
->bus
;
3001 bool mask_updated
= true;
3002 u32 cmd_status_dword
;
3003 u16 origcmd
, newcmd
;
3004 unsigned long flags
;
3008 * We do a single dword read to retrieve both command and status.
3009 * Document assumptions that make this possible.
3011 BUILD_BUG_ON(PCI_COMMAND
% 4);
3012 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3014 raw_spin_lock_irqsave(&pci_lock
, flags
);
3016 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3018 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3021 * Check interrupt status register to see whether our device
3022 * triggered the interrupt (when masking) or the next IRQ is
3023 * already pending (when unmasking).
3025 if (mask
!= irq_pending
) {
3026 mask_updated
= false;
3030 origcmd
= cmd_status_dword
;
3031 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3033 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3034 if (newcmd
!= origcmd
)
3035 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3038 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3040 return mask_updated
;
3044 * pci_check_and_mask_intx - mask INTx on pending interrupt
3045 * @dev: the PCI device to operate on
3047 * Check if the device dev has its INTx line asserted, mask it and
3048 * return true in that case. False is returned if not interrupt was
3051 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3053 return pci_check_and_set_intx_mask(dev
, true);
3055 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3058 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3059 * @dev: the PCI device to operate on
3061 * Check if the device dev has its INTx line asserted, unmask it if not
3062 * and return true. False is returned and the mask remains active if
3063 * there was still an interrupt pending.
3065 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3067 return pci_check_and_set_intx_mask(dev
, false);
3069 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3072 * pci_msi_off - disables any MSI or MSI-X capabilities
3073 * @dev: the PCI device to operate on
3075 * If you want to use MSI, see pci_enable_msi() and friends.
3076 * This is a lower-level primitive that allows us to disable
3077 * MSI operation at the device level.
3079 void pci_msi_off(struct pci_dev
*dev
)
3085 * This looks like it could go in msi.c, but we need it even when
3086 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3087 * dev->msi_cap or dev->msix_cap here.
3089 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSI
);
3091 pci_read_config_word(dev
, pos
+ PCI_MSI_FLAGS
, &control
);
3092 control
&= ~PCI_MSI_FLAGS_ENABLE
;
3093 pci_write_config_word(dev
, pos
+ PCI_MSI_FLAGS
, control
);
3095 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
3097 pci_read_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, &control
);
3098 control
&= ~PCI_MSIX_FLAGS_ENABLE
;
3099 pci_write_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, control
);
3102 EXPORT_SYMBOL_GPL(pci_msi_off
);
3104 int pci_set_dma_max_seg_size(struct pci_dev
*dev
, unsigned int size
)
3106 return dma_set_max_seg_size(&dev
->dev
, size
);
3108 EXPORT_SYMBOL(pci_set_dma_max_seg_size
);
3110 int pci_set_dma_seg_boundary(struct pci_dev
*dev
, unsigned long mask
)
3112 return dma_set_seg_boundary(&dev
->dev
, mask
);
3114 EXPORT_SYMBOL(pci_set_dma_seg_boundary
);
3117 * pci_wait_for_pending_transaction - waits for pending transaction
3118 * @dev: the PCI device to operate on
3120 * Return 0 if transaction is pending 1 otherwise.
3122 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3124 if (!pci_is_pcie(dev
))
3127 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3128 PCI_EXP_DEVSTA_TRPND
);
3130 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3132 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3136 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3137 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3143 if (!pci_wait_for_pending_transaction(dev
))
3144 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3146 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3151 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3156 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3160 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3161 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3168 * Wait for Transaction Pending bit to clear. A word-aligned test
3169 * is used, so we use the conrol offset rather than status and shift
3170 * the test bit to match.
3172 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3173 PCI_AF_STATUS_TP
<< 8))
3174 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3176 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3182 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3183 * @dev: Device to reset.
3184 * @probe: If set, only check if the device can be reset this way.
3186 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3187 * unset, it will be reinitialized internally when going from PCI_D3hot to
3188 * PCI_D0. If that's the case and the device is not in a low-power state
3189 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3191 * NOTE: This causes the caller to sleep for twice the device power transition
3192 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3193 * by default (i.e. unless the @dev's d3_delay field has a different value).
3194 * Moreover, only devices in D0 can be reset by this function.
3196 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3203 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3204 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3210 if (dev
->current_state
!= PCI_D0
)
3213 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3215 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3216 pci_dev_d3_sleep(dev
);
3218 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3220 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3221 pci_dev_d3_sleep(dev
);
3226 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3230 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3231 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3232 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3234 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3235 * this to 2ms to ensure that we meet the minimum requirement.
3239 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3240 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3243 * Trhfa for conventional PCI is 2^25 clock cycles.
3244 * Assuming a minimum 33MHz clock this results in a 1s
3245 * delay before we can consider subordinate devices to
3246 * be re-initialized. PCIe has some ways to shorten this,
3247 * but we don't make use of them yet.
3252 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3254 pci_reset_secondary_bus(dev
);
3258 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3259 * @dev: Bridge device
3261 * Use the bridge control register to assert reset on the secondary bus.
3262 * Devices on the secondary bus are left in power-on state.
3264 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3266 pcibios_reset_secondary_bus(dev
);
3268 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3270 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3272 struct pci_dev
*pdev
;
3274 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
|| !dev
->bus
->self
)
3277 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3284 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3289 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3293 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3296 if (hotplug
->ops
->reset_slot
)
3297 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3299 module_put(hotplug
->ops
->owner
);
3304 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3306 struct pci_dev
*pdev
;
3308 if (dev
->subordinate
|| !dev
->slot
)
3311 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3312 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3315 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3318 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3324 rc
= pci_dev_specific_reset(dev
, probe
);
3328 rc
= pcie_flr(dev
, probe
);
3332 rc
= pci_af_flr(dev
, probe
);
3336 rc
= pci_pm_reset(dev
, probe
);
3340 rc
= pci_dev_reset_slot_function(dev
, probe
);
3344 rc
= pci_parent_bus_reset(dev
, probe
);
3349 static void pci_dev_lock(struct pci_dev
*dev
)
3351 pci_cfg_access_lock(dev
);
3352 /* block PM suspend, driver probe, etc. */
3353 device_lock(&dev
->dev
);
3356 /* Return 1 on successful lock, 0 on contention */
3357 static int pci_dev_trylock(struct pci_dev
*dev
)
3359 if (pci_cfg_access_trylock(dev
)) {
3360 if (device_trylock(&dev
->dev
))
3362 pci_cfg_access_unlock(dev
);
3368 static void pci_dev_unlock(struct pci_dev
*dev
)
3370 device_unlock(&dev
->dev
);
3371 pci_cfg_access_unlock(dev
);
3375 * pci_reset_notify - notify device driver of reset
3376 * @dev: device to be notified of reset
3377 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3380 * Must be called prior to device access being disabled and after device
3381 * access is restored.
3383 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3385 const struct pci_error_handlers
*err_handler
=
3386 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3387 if (err_handler
&& err_handler
->reset_notify
)
3388 err_handler
->reset_notify(dev
, prepare
);
3391 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
3393 pci_reset_notify(dev
, true);
3396 * Wake-up device prior to save. PM registers default to D0 after
3397 * reset and a simple register restore doesn't reliably return
3398 * to a non-D0 state anyway.
3400 pci_set_power_state(dev
, PCI_D0
);
3402 pci_save_state(dev
);
3404 * Disable the device by clearing the Command register, except for
3405 * INTx-disable which is set. This not only disables MMIO and I/O port
3406 * BARs, but also prevents the device from being Bus Master, preventing
3407 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3408 * compliant devices, INTx-disable prevents legacy interrupts.
3410 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3413 static void pci_dev_restore(struct pci_dev
*dev
)
3415 pci_restore_state(dev
);
3416 pci_reset_notify(dev
, false);
3419 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3426 rc
= __pci_dev_reset(dev
, probe
);
3429 pci_dev_unlock(dev
);
3435 * __pci_reset_function - reset a PCI device function
3436 * @dev: PCI device to reset
3438 * Some devices allow an individual function to be reset without affecting
3439 * other functions in the same device. The PCI device must be responsive
3440 * to PCI config space in order to use this function.
3442 * The device function is presumed to be unused when this function is called.
3443 * Resetting the device will make the contents of PCI configuration space
3444 * random, so any caller of this must be prepared to reinitialise the
3445 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3448 * Returns 0 if the device function was successfully reset or negative if the
3449 * device doesn't support resetting a single function.
3451 int __pci_reset_function(struct pci_dev
*dev
)
3453 return pci_dev_reset(dev
, 0);
3455 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3458 * __pci_reset_function_locked - reset a PCI device function while holding
3459 * the @dev mutex lock.
3460 * @dev: PCI device to reset
3462 * Some devices allow an individual function to be reset without affecting
3463 * other functions in the same device. The PCI device must be responsive
3464 * to PCI config space in order to use this function.
3466 * The device function is presumed to be unused and the caller is holding
3467 * the device mutex lock when this function is called.
3468 * Resetting the device will make the contents of PCI configuration space
3469 * random, so any caller of this must be prepared to reinitialise the
3470 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3473 * Returns 0 if the device function was successfully reset or negative if the
3474 * device doesn't support resetting a single function.
3476 int __pci_reset_function_locked(struct pci_dev
*dev
)
3478 return __pci_dev_reset(dev
, 0);
3480 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3483 * pci_probe_reset_function - check whether the device can be safely reset
3484 * @dev: PCI device to reset
3486 * Some devices allow an individual function to be reset without affecting
3487 * other functions in the same device. The PCI device must be responsive
3488 * to PCI config space in order to use this function.
3490 * Returns 0 if the device function can be reset or negative if the
3491 * device doesn't support resetting a single function.
3493 int pci_probe_reset_function(struct pci_dev
*dev
)
3495 return pci_dev_reset(dev
, 1);
3499 * pci_reset_function - quiesce and reset a PCI device function
3500 * @dev: PCI device to reset
3502 * Some devices allow an individual function to be reset without affecting
3503 * other functions in the same device. The PCI device must be responsive
3504 * to PCI config space in order to use this function.
3506 * This function does not just reset the PCI portion of a device, but
3507 * clears all the state associated with the device. This function differs
3508 * from __pci_reset_function in that it saves and restores device state
3511 * Returns 0 if the device function was successfully reset or negative if the
3512 * device doesn't support resetting a single function.
3514 int pci_reset_function(struct pci_dev
*dev
)
3518 rc
= pci_dev_reset(dev
, 1);
3522 pci_dev_save_and_disable(dev
);
3524 rc
= pci_dev_reset(dev
, 0);
3526 pci_dev_restore(dev
);
3530 EXPORT_SYMBOL_GPL(pci_reset_function
);
3533 * pci_try_reset_function - quiesce and reset a PCI device function
3534 * @dev: PCI device to reset
3536 * Same as above, except return -EAGAIN if unable to lock device.
3538 int pci_try_reset_function(struct pci_dev
*dev
)
3542 rc
= pci_dev_reset(dev
, 1);
3546 pci_dev_save_and_disable(dev
);
3548 if (pci_dev_trylock(dev
)) {
3549 rc
= __pci_dev_reset(dev
, 0);
3550 pci_dev_unlock(dev
);
3554 pci_dev_restore(dev
);
3558 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
3560 /* Lock devices from the top of the tree down */
3561 static void pci_bus_lock(struct pci_bus
*bus
)
3563 struct pci_dev
*dev
;
3565 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3567 if (dev
->subordinate
)
3568 pci_bus_lock(dev
->subordinate
);
3572 /* Unlock devices from the bottom of the tree up */
3573 static void pci_bus_unlock(struct pci_bus
*bus
)
3575 struct pci_dev
*dev
;
3577 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3578 if (dev
->subordinate
)
3579 pci_bus_unlock(dev
->subordinate
);
3580 pci_dev_unlock(dev
);
3584 /* Return 1 on successful lock, 0 on contention */
3585 static int pci_bus_trylock(struct pci_bus
*bus
)
3587 struct pci_dev
*dev
;
3589 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3590 if (!pci_dev_trylock(dev
))
3592 if (dev
->subordinate
) {
3593 if (!pci_bus_trylock(dev
->subordinate
)) {
3594 pci_dev_unlock(dev
);
3602 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
3603 if (dev
->subordinate
)
3604 pci_bus_unlock(dev
->subordinate
);
3605 pci_dev_unlock(dev
);
3610 /* Lock devices from the top of the tree down */
3611 static void pci_slot_lock(struct pci_slot
*slot
)
3613 struct pci_dev
*dev
;
3615 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3616 if (!dev
->slot
|| dev
->slot
!= slot
)
3619 if (dev
->subordinate
)
3620 pci_bus_lock(dev
->subordinate
);
3624 /* Unlock devices from the bottom of the tree up */
3625 static void pci_slot_unlock(struct pci_slot
*slot
)
3627 struct pci_dev
*dev
;
3629 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3630 if (!dev
->slot
|| dev
->slot
!= slot
)
3632 if (dev
->subordinate
)
3633 pci_bus_unlock(dev
->subordinate
);
3634 pci_dev_unlock(dev
);
3638 /* Return 1 on successful lock, 0 on contention */
3639 static int pci_slot_trylock(struct pci_slot
*slot
)
3641 struct pci_dev
*dev
;
3643 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3644 if (!dev
->slot
|| dev
->slot
!= slot
)
3646 if (!pci_dev_trylock(dev
))
3648 if (dev
->subordinate
) {
3649 if (!pci_bus_trylock(dev
->subordinate
)) {
3650 pci_dev_unlock(dev
);
3658 list_for_each_entry_continue_reverse(dev
,
3659 &slot
->bus
->devices
, bus_list
) {
3660 if (!dev
->slot
|| dev
->slot
!= slot
)
3662 if (dev
->subordinate
)
3663 pci_bus_unlock(dev
->subordinate
);
3664 pci_dev_unlock(dev
);
3669 /* Save and disable devices from the top of the tree down */
3670 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
3672 struct pci_dev
*dev
;
3674 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3675 pci_dev_save_and_disable(dev
);
3676 if (dev
->subordinate
)
3677 pci_bus_save_and_disable(dev
->subordinate
);
3682 * Restore devices from top of the tree down - parent bridges need to be
3683 * restored before we can get to subordinate devices.
3685 static void pci_bus_restore(struct pci_bus
*bus
)
3687 struct pci_dev
*dev
;
3689 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3690 pci_dev_restore(dev
);
3691 if (dev
->subordinate
)
3692 pci_bus_restore(dev
->subordinate
);
3696 /* Save and disable devices from the top of the tree down */
3697 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
3699 struct pci_dev
*dev
;
3701 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3702 if (!dev
->slot
|| dev
->slot
!= slot
)
3704 pci_dev_save_and_disable(dev
);
3705 if (dev
->subordinate
)
3706 pci_bus_save_and_disable(dev
->subordinate
);
3711 * Restore devices from top of the tree down - parent bridges need to be
3712 * restored before we can get to subordinate devices.
3714 static void pci_slot_restore(struct pci_slot
*slot
)
3716 struct pci_dev
*dev
;
3718 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3719 if (!dev
->slot
|| dev
->slot
!= slot
)
3721 pci_dev_restore(dev
);
3722 if (dev
->subordinate
)
3723 pci_bus_restore(dev
->subordinate
);
3727 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
3735 pci_slot_lock(slot
);
3739 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
3742 pci_slot_unlock(slot
);
3748 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3749 * @slot: PCI slot to probe
3751 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3753 int pci_probe_reset_slot(struct pci_slot
*slot
)
3755 return pci_slot_reset(slot
, 1);
3757 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
3760 * pci_reset_slot - reset a PCI slot
3761 * @slot: PCI slot to reset
3763 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3764 * independent of other slots. For instance, some slots may support slot power
3765 * control. In the case of a 1:1 bus to slot architecture, this function may
3766 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3767 * Generally a slot reset should be attempted before a bus reset. All of the
3768 * function of the slot and any subordinate buses behind the slot are reset
3769 * through this function. PCI config space of all devices in the slot and
3770 * behind the slot is saved before and restored after reset.
3772 * Return 0 on success, non-zero on error.
3774 int pci_reset_slot(struct pci_slot
*slot
)
3778 rc
= pci_slot_reset(slot
, 1);
3782 pci_slot_save_and_disable(slot
);
3784 rc
= pci_slot_reset(slot
, 0);
3786 pci_slot_restore(slot
);
3790 EXPORT_SYMBOL_GPL(pci_reset_slot
);
3793 * pci_try_reset_slot - Try to reset a PCI slot
3794 * @slot: PCI slot to reset
3796 * Same as above except return -EAGAIN if the slot cannot be locked
3798 int pci_try_reset_slot(struct pci_slot
*slot
)
3802 rc
= pci_slot_reset(slot
, 1);
3806 pci_slot_save_and_disable(slot
);
3808 if (pci_slot_trylock(slot
)) {
3810 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
3811 pci_slot_unlock(slot
);
3815 pci_slot_restore(slot
);
3819 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
3821 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
3833 pci_reset_bridge_secondary_bus(bus
->self
);
3835 pci_bus_unlock(bus
);
3841 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3842 * @bus: PCI bus to probe
3844 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3846 int pci_probe_reset_bus(struct pci_bus
*bus
)
3848 return pci_bus_reset(bus
, 1);
3850 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
3853 * pci_reset_bus - reset a PCI bus
3854 * @bus: top level PCI bus to reset
3856 * Do a bus reset on the given bus and any subordinate buses, saving
3857 * and restoring state of all devices.
3859 * Return 0 on success, non-zero on error.
3861 int pci_reset_bus(struct pci_bus
*bus
)
3865 rc
= pci_bus_reset(bus
, 1);
3869 pci_bus_save_and_disable(bus
);
3871 rc
= pci_bus_reset(bus
, 0);
3873 pci_bus_restore(bus
);
3877 EXPORT_SYMBOL_GPL(pci_reset_bus
);
3880 * pci_try_reset_bus - Try to reset a PCI bus
3881 * @bus: top level PCI bus to reset
3883 * Same as above except return -EAGAIN if the bus cannot be locked
3885 int pci_try_reset_bus(struct pci_bus
*bus
)
3889 rc
= pci_bus_reset(bus
, 1);
3893 pci_bus_save_and_disable(bus
);
3895 if (pci_bus_trylock(bus
)) {
3897 pci_reset_bridge_secondary_bus(bus
->self
);
3898 pci_bus_unlock(bus
);
3902 pci_bus_restore(bus
);
3906 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
3909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3910 * @dev: PCI device to query
3912 * Returns mmrbc: maximum designed memory read count in bytes
3913 * or appropriate error value.
3915 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
3920 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3924 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3927 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
3929 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
3932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3933 * @dev: PCI device to query
3935 * Returns mmrbc: maximum memory read count in bytes
3936 * or appropriate error value.
3938 int pcix_get_mmrbc(struct pci_dev
*dev
)
3943 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3947 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
3950 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
3952 EXPORT_SYMBOL(pcix_get_mmrbc
);
3955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3956 * @dev: PCI device to query
3957 * @mmrbc: maximum memory read count in bytes
3958 * valid values are 512, 1024, 2048, 4096
3960 * If possible sets maximum memory read byte count, some bridges have erratas
3961 * that prevent this.
3963 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
3969 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
3972 v
= ffs(mmrbc
) - 10;
3974 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3978 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3981 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
3984 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
3987 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
3989 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
3992 cmd
&= ~PCI_X_CMD_MAX_READ
;
3994 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
3999 EXPORT_SYMBOL(pcix_set_mmrbc
);
4002 * pcie_get_readrq - get PCI Express read request size
4003 * @dev: PCI device to query
4005 * Returns maximum memory read request in bytes
4006 * or appropriate error value.
4008 int pcie_get_readrq(struct pci_dev
*dev
)
4012 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4014 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4016 EXPORT_SYMBOL(pcie_get_readrq
);
4019 * pcie_set_readrq - set PCI Express maximum memory read request
4020 * @dev: PCI device to query
4021 * @rq: maximum memory read count in bytes
4022 * valid values are 128, 256, 512, 1024, 2048, 4096
4024 * If possible sets maximum memory read request in bytes
4026 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4030 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4034 * If using the "performance" PCIe config, we clamp the
4035 * read rq size to the max packet size to prevent the
4036 * host bridge generating requests larger than we can
4039 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4040 int mps
= pcie_get_mps(dev
);
4046 v
= (ffs(rq
) - 8) << 12;
4048 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4049 PCI_EXP_DEVCTL_READRQ
, v
);
4051 EXPORT_SYMBOL(pcie_set_readrq
);
4054 * pcie_get_mps - get PCI Express maximum payload size
4055 * @dev: PCI device to query
4057 * Returns maximum payload size in bytes
4059 int pcie_get_mps(struct pci_dev
*dev
)
4063 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4065 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4067 EXPORT_SYMBOL(pcie_get_mps
);
4070 * pcie_set_mps - set PCI Express maximum payload size
4071 * @dev: PCI device to query
4072 * @mps: maximum payload size in bytes
4073 * valid values are 128, 256, 512, 1024, 2048, 4096
4075 * If possible sets maximum payload size
4077 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4081 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4085 if (v
> dev
->pcie_mpss
)
4089 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4090 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4092 EXPORT_SYMBOL(pcie_set_mps
);
4095 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4096 * @dev: PCI device to query
4097 * @speed: storage for minimum speed
4098 * @width: storage for minimum width
4100 * This function will walk up the PCI device chain and determine the minimum
4101 * link width and speed of the device.
4103 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4104 enum pcie_link_width
*width
)
4108 *speed
= PCI_SPEED_UNKNOWN
;
4109 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4113 enum pci_bus_speed next_speed
;
4114 enum pcie_link_width next_width
;
4116 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4120 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4121 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4122 PCI_EXP_LNKSTA_NLW_SHIFT
;
4124 if (next_speed
< *speed
)
4125 *speed
= next_speed
;
4127 if (next_width
< *width
)
4128 *width
= next_width
;
4130 dev
= dev
->bus
->self
;
4135 EXPORT_SYMBOL(pcie_get_minimum_link
);
4138 * pci_select_bars - Make BAR mask from the type of resource
4139 * @dev: the PCI device for which BAR mask is made
4140 * @flags: resource type mask to be selected
4142 * This helper routine makes bar mask from the type of resource.
4144 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4147 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4148 if (pci_resource_flags(dev
, i
) & flags
)
4152 EXPORT_SYMBOL(pci_select_bars
);
4155 * pci_resource_bar - get position of the BAR associated with a resource
4156 * @dev: the PCI device
4157 * @resno: the resource number
4158 * @type: the BAR type to be filled in
4160 * Returns BAR position in config space, or 0 if the BAR is invalid.
4162 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4166 if (resno
< PCI_ROM_RESOURCE
) {
4167 *type
= pci_bar_unknown
;
4168 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4169 } else if (resno
== PCI_ROM_RESOURCE
) {
4170 *type
= pci_bar_mem32
;
4171 return dev
->rom_base_reg
;
4172 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4173 /* device specific resource */
4174 *type
= pci_bar_unknown
;
4175 reg
= pci_iov_resource_bar(dev
, resno
);
4180 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4184 /* Some architectures require additional programming to enable VGA */
4185 static arch_set_vga_state_t arch_set_vga_state
;
4187 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4189 arch_set_vga_state
= func
; /* NULL disables */
4192 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4193 unsigned int command_bits
, u32 flags
)
4195 if (arch_set_vga_state
)
4196 return arch_set_vga_state(dev
, decode
, command_bits
,
4202 * pci_set_vga_state - set VGA decode state on device and parents if requested
4203 * @dev: the PCI device
4204 * @decode: true = enable decoding, false = disable decoding
4205 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4206 * @flags: traverse ancestors and change bridges
4207 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4209 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4210 unsigned int command_bits
, u32 flags
)
4212 struct pci_bus
*bus
;
4213 struct pci_dev
*bridge
;
4217 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4219 /* ARCH specific VGA enables */
4220 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4224 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4225 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4227 cmd
|= command_bits
;
4229 cmd
&= ~command_bits
;
4230 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4233 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4240 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4243 cmd
|= PCI_BRIDGE_CTL_VGA
;
4245 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4246 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4254 bool pci_device_is_present(struct pci_dev
*pdev
)
4258 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4260 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4262 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4263 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4264 static DEFINE_SPINLOCK(resource_alignment_lock
);
4267 * pci_specified_resource_alignment - get resource alignment specified by user.
4268 * @dev: the PCI device to get
4270 * RETURNS: Resource alignment if it is specified.
4271 * Zero if it is not specified.
4273 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4275 int seg
, bus
, slot
, func
, align_order
, count
;
4276 resource_size_t align
= 0;
4279 spin_lock(&resource_alignment_lock
);
4280 p
= resource_alignment_param
;
4283 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4289 if (sscanf(p
, "%x:%x:%x.%x%n",
4290 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4292 if (sscanf(p
, "%x:%x.%x%n",
4293 &bus
, &slot
, &func
, &count
) != 3) {
4294 /* Invalid format */
4295 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
4301 if (seg
== pci_domain_nr(dev
->bus
) &&
4302 bus
== dev
->bus
->number
&&
4303 slot
== PCI_SLOT(dev
->devfn
) &&
4304 func
== PCI_FUNC(dev
->devfn
)) {
4305 if (align_order
== -1)
4308 align
= 1 << align_order
;
4312 if (*p
!= ';' && *p
!= ',') {
4313 /* End of param or invalid format */
4318 spin_unlock(&resource_alignment_lock
);
4323 * This function disables memory decoding and releases memory resources
4324 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4325 * It also rounds up size to specified alignment.
4326 * Later on, the kernel will assign page-aligned memory resource back
4329 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
4333 resource_size_t align
, size
;
4336 /* check if specified PCI is target device to reassign */
4337 align
= pci_specified_resource_alignment(dev
);
4341 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
4342 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
4344 "Can't reassign resources to host bridge.\n");
4349 "Disabling memory decoding and releasing memory resources.\n");
4350 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
4351 command
&= ~PCI_COMMAND_MEMORY
;
4352 pci_write_config_word(dev
, PCI_COMMAND
, command
);
4354 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
4355 r
= &dev
->resource
[i
];
4356 if (!(r
->flags
& IORESOURCE_MEM
))
4358 size
= resource_size(r
);
4362 "Rounding up size of resource #%d to %#llx.\n",
4363 i
, (unsigned long long)size
);
4365 r
->flags
|= IORESOURCE_UNSET
;
4369 /* Need to disable bridge's resource window,
4370 * to enable the kernel to reassign new resource
4373 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
4374 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
4375 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
4376 r
= &dev
->resource
[i
];
4377 if (!(r
->flags
& IORESOURCE_MEM
))
4379 r
->flags
|= IORESOURCE_UNSET
;
4380 r
->end
= resource_size(r
) - 1;
4383 pci_disable_bridge_window(dev
);
4387 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
4389 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
4390 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
4391 spin_lock(&resource_alignment_lock
);
4392 strncpy(resource_alignment_param
, buf
, count
);
4393 resource_alignment_param
[count
] = '\0';
4394 spin_unlock(&resource_alignment_lock
);
4398 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
4401 spin_lock(&resource_alignment_lock
);
4402 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
4403 spin_unlock(&resource_alignment_lock
);
4407 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
4409 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
4412 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
4413 const char *buf
, size_t count
)
4415 return pci_set_resource_alignment_param(buf
, count
);
4418 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
4419 pci_resource_alignment_store
);
4421 static int __init
pci_resource_alignment_sysfs_init(void)
4423 return bus_create_file(&pci_bus_type
,
4424 &bus_attr_resource_alignment
);
4426 late_initcall(pci_resource_alignment_sysfs_init
);
4428 static void pci_no_domains(void)
4430 #ifdef CONFIG_PCI_DOMAINS
4431 pci_domains_supported
= 0;
4435 #ifdef CONFIG_PCI_DOMAINS
4436 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
4438 int pci_get_new_domain_nr(void)
4440 return atomic_inc_return(&__domain_nr
);
4445 * pci_ext_cfg_avail - can we access extended PCI config space?
4447 * Returns 1 if we can access PCI extended config space (offsets
4448 * greater than 0xff). This is the default implementation. Architecture
4449 * implementations can override this.
4451 int __weak
pci_ext_cfg_avail(void)
4456 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
4459 EXPORT_SYMBOL(pci_fixup_cardbus
);
4461 static int __init
pci_setup(char *str
)
4464 char *k
= strchr(str
, ',');
4467 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
4468 if (!strcmp(str
, "nomsi")) {
4470 } else if (!strcmp(str
, "noaer")) {
4472 } else if (!strncmp(str
, "realloc=", 8)) {
4473 pci_realloc_get_opt(str
+ 8);
4474 } else if (!strncmp(str
, "realloc", 7)) {
4475 pci_realloc_get_opt("on");
4476 } else if (!strcmp(str
, "nodomains")) {
4478 } else if (!strncmp(str
, "noari", 5)) {
4479 pcie_ari_disabled
= true;
4480 } else if (!strncmp(str
, "cbiosize=", 9)) {
4481 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
4482 } else if (!strncmp(str
, "cbmemsize=", 10)) {
4483 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
4484 } else if (!strncmp(str
, "resource_alignment=", 19)) {
4485 pci_set_resource_alignment_param(str
+ 19,
4487 } else if (!strncmp(str
, "ecrc=", 5)) {
4488 pcie_ecrc_get_policy(str
+ 5);
4489 } else if (!strncmp(str
, "hpiosize=", 9)) {
4490 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
4491 } else if (!strncmp(str
, "hpmemsize=", 10)) {
4492 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
4493 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
4494 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
4495 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
4496 pcie_bus_config
= PCIE_BUS_SAFE
;
4497 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
4498 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
4499 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
4500 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
4501 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
4502 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
4504 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
4512 early_param("pci", pci_setup
);