mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / scsi / csiostor / csio_hw_t4.c
blob95d831857640eecb28cab0dd2e67d7d94a028999
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
32 #include "csio_hw.h"
33 #include "csio_init.h"
36 * Return the specified PCI-E Configuration Space register from our Physical
37 * Function. We try first via a Firmware LDST Command since we prefer to let
38 * the firmware own all of these registers, but if that fails we go for it
39 * directly ourselves.
41 static uint32_t
42 csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg)
44 u32 val = 0;
45 struct csio_mb *mbp;
46 int rv;
47 struct fw_ldst_cmd *ldst_cmd;
49 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
50 if (!mbp) {
51 CSIO_INC_STATS(hw, n_err_nomem);
52 pci_read_config_dword(hw->pdev, reg, &val);
53 return val;
56 csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
57 rv = csio_mb_issue(hw, mbp);
60 * If the LDST Command suucceeded, exctract the returned register
61 * value. Otherwise read it directly ourself.
63 if (rv == 0) {
64 ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
65 val = ntohl(ldst_cmd->u.pcie.data[0]);
66 } else
67 pci_read_config_dword(hw->pdev, reg, &val);
69 mempool_free(mbp, hw->mb_mempool);
71 return val;
74 static int
75 csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win)
77 u32 bar0;
78 u32 mem_win_base;
81 * Truncation intentional: we only read the bottom 32-bits of the
82 * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
83 * read BAR0 instead of using pci_resource_start() because we could be
84 * operating from within a Virtual Machine which is trapping our
85 * accesses to our Configuration Space and we need to set up the PCI-E
86 * Memory Window decoders with the actual addresses which will be
87 * coming across the PCI-E link.
89 bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
90 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
92 mem_win_base = bar0 + MEMWIN_BASE;
95 * Set up memory window for accessing adapter memory ranges. (Read
96 * back MA register to ensure that changes propagate before we attempt
97 * to use the new values.)
99 csio_wr_reg32(hw, mem_win_base | BIR(0) |
100 WINDOW(ilog2(MEMWIN_APERTURE) - 10),
101 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
102 csio_rd_reg32(hw,
103 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
104 return 0;
108 * Interrupt handler for the PCIE module.
110 static void
111 csio_t4_pcie_intr_handler(struct csio_hw *hw)
113 static struct intr_info sysbus_intr_info[] = {
114 { RNPP, "RXNP array parity error", -1, 1 },
115 { RPCP, "RXPC array parity error", -1, 1 },
116 { RCIP, "RXCIF array parity error", -1, 1 },
117 { RCCP, "Rx completions control array parity error", -1, 1 },
118 { RFTP, "RXFT array parity error", -1, 1 },
119 { 0, NULL, 0, 0 }
121 static struct intr_info pcie_port_intr_info[] = {
122 { TPCP, "TXPC array parity error", -1, 1 },
123 { TNPP, "TXNP array parity error", -1, 1 },
124 { TFTP, "TXFT array parity error", -1, 1 },
125 { TCAP, "TXCA array parity error", -1, 1 },
126 { TCIP, "TXCIF array parity error", -1, 1 },
127 { RCAP, "RXCA array parity error", -1, 1 },
128 { OTDD, "outbound request TLP discarded", -1, 1 },
129 { RDPE, "Rx data parity error", -1, 1 },
130 { TDUE, "Tx uncorrectable data error", -1, 1 },
131 { 0, NULL, 0, 0 }
134 static struct intr_info pcie_intr_info[] = {
135 { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
136 { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
137 { MSIDATAPERR, "MSI data parity error", -1, 1 },
138 { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
139 { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
140 { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
141 { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
142 { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
143 { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
144 { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
145 { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
146 { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
147 { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
148 { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
149 { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
150 { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
151 { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
152 { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
153 { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
154 { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
155 { FIDPERR, "PCI FID parity error", -1, 1 },
156 { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
157 { MATAGPERR, "PCI MA tag parity error", -1, 1 },
158 { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
159 { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
160 { RXWRPERR, "PCI Rx write parity error", -1, 1 },
161 { RPLPERR, "PCI replay buffer parity error", -1, 1 },
162 { PCIESINT, "PCI core secondary fault", -1, 1 },
163 { PCIEPINT, "PCI core primary fault", -1, 1 },
164 { UNXSPLCPLERR, "PCI unexpected split completion error", -1,
165 0 },
166 { 0, NULL, 0, 0 }
169 int fat;
170 fat = csio_handle_intr_status(hw,
171 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
172 sysbus_intr_info) +
173 csio_handle_intr_status(hw,
174 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
175 pcie_port_intr_info) +
176 csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info);
177 if (fat)
178 csio_hw_fatal_err(hw);
182 * csio_t4_flash_cfg_addr - return the address of the flash configuration file
183 * @hw: the HW module
185 * Return the address within the flash where the Firmware Configuration
186 * File is stored.
188 static unsigned int
189 csio_t4_flash_cfg_addr(struct csio_hw *hw)
191 return FLASH_CFG_OFFSET;
195 * csio_t4_mc_read - read from MC through backdoor accesses
196 * @hw: the hw module
197 * @idx: not used for T4 adapter
198 * @addr: address of first byte requested
199 * @data: 64 bytes of data containing the requested address
200 * @ecc: where to store the corresponding 64-bit ECC word
202 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
203 * that covers the requested address @addr. If @parity is not %NULL it
204 * is assigned the 64-bit ECC word for the read data.
206 static int
207 csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
208 uint64_t *ecc)
210 int i;
212 if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST)
213 return -EBUSY;
214 csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR);
215 csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN);
216 csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN);
217 csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1),
218 MC_BIST_CMD);
219 i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST,
220 0, 10, 1, NULL);
221 if (i)
222 return i;
224 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
226 for (i = 15; i >= 0; i--)
227 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
228 if (ecc)
229 *ecc = csio_rd_reg64(hw, MC_DATA(16));
230 #undef MC_DATA
231 return 0;
235 * csio_t4_edc_read - read from EDC through backdoor accesses
236 * @hw: the hw module
237 * @idx: which EDC to access
238 * @addr: address of first byte requested
239 * @data: 64 bytes of data containing the requested address
240 * @ecc: where to store the corresponding 64-bit ECC word
242 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
243 * that covers the requested address @addr. If @parity is not %NULL it
244 * is assigned the 64-bit ECC word for the read data.
246 static int
247 csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
248 uint64_t *ecc)
250 int i;
252 idx *= EDC_STRIDE;
253 if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST)
254 return -EBUSY;
255 csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx);
256 csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx);
257 csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx);
258 csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST,
259 EDC_BIST_CMD + idx);
260 i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST,
261 0, 10, 1, NULL);
262 if (i)
263 return i;
265 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
267 for (i = 15; i >= 0; i--)
268 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
269 if (ecc)
270 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
271 #undef EDC_DATA
272 return 0;
276 * csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
277 * @hw: the csio_hw
278 * @win: PCI-E memory Window to use
279 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
280 * @addr: address within indicated memory type
281 * @len: amount of memory to transfer
282 * @buf: host memory buffer
283 * @dir: direction of transfer 1 => read, 0 => write
285 * Reads/writes an [almost] arbitrary memory region in the firmware: the
286 * firmware memory address, length and host buffer must be aligned on
287 * 32-bit boudaries. The memory is transferred as a raw byte sequence
288 * from/to the firmware's memory. If this memory contains data
289 * structures which contain multi-byte integers, it's the callers
290 * responsibility to perform appropriate byte order conversions.
292 static int
293 csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
294 u32 len, uint32_t *buf, int dir)
296 u32 pos, start, offset, memoffset, bar0;
297 u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base;
300 * Argument sanity checks ...
302 if ((addr & 0x3) || (len & 0x3))
303 return -EINVAL;
305 /* Offset into the region of memory which is being accessed
306 * MEM_EDC0 = 0
307 * MEM_EDC1 = 1
308 * MEM_MC = 2 -- T4
310 edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
311 if (mtype != MEM_MC1)
312 memoffset = (mtype * (edc_size * 1024 * 1024));
313 else {
314 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
315 MA_EXT_MEMORY_BAR_A));
316 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
319 /* Determine the PCIE_MEM_ACCESS_OFFSET */
320 addr = addr + memoffset;
323 * Each PCI-E Memory Window is programmed with a window size -- or
324 * "aperture" -- which controls the granularity of its mapping onto
325 * adapter memory. We need to grab that aperture in order to know
326 * how to use the specified window. The window is also programmed
327 * with the base address of the Memory Window in BAR0's address
328 * space. For T4 this is an absolute PCI-E Bus Address. For T5
329 * the address is relative to BAR0.
331 mem_reg = csio_rd_reg32(hw,
332 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win));
333 mem_aperture = 1 << (WINDOW(mem_reg) + 10);
334 mem_base = GET_PCIEOFST(mem_reg) << 10;
336 bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
337 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
338 mem_base -= bar0;
340 start = addr & ~(mem_aperture-1);
341 offset = addr - start;
343 csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
344 mem_reg, mem_aperture);
345 csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
346 mem_base, memoffset);
347 csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n",
348 bar0, start, offset);
349 csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
350 mtype, addr, len);
352 for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
354 * Move PCI-E Memory Window to our current transfer
355 * position. Read it back to ensure that changes propagate
356 * before we attempt to use the new value.
358 csio_wr_reg32(hw, pos,
359 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
360 csio_rd_reg32(hw,
361 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
363 while (offset < mem_aperture && len > 0) {
364 if (dir)
365 *buf++ = csio_rd_reg32(hw, mem_base + offset);
366 else
367 csio_wr_reg32(hw, *buf++, mem_base + offset);
369 offset += sizeof(__be32);
370 len -= sizeof(__be32);
373 return 0;
377 * csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values
378 * @hw: the csio_hw
380 * This function creates files in the debugfs with external memory region MC.
382 static void
383 csio_t4_dfs_create_ext_mem(struct csio_hw *hw)
385 u32 size;
386 int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
388 if (i & EXT_MEM_ENABLE_F) {
389 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
390 csio_add_debugfs_mem(hw, "mc", MEM_MC,
391 EXT_MEM_SIZE_G(size));
395 /* T4 adapter specific function */
396 struct csio_hw_chip_ops t4_ops = {
397 .chip_set_mem_win = csio_t4_set_mem_win,
398 .chip_pcie_intr_handler = csio_t4_pcie_intr_handler,
399 .chip_flash_cfg_addr = csio_t4_flash_cfg_addr,
400 .chip_mc_read = csio_t4_mc_read,
401 .chip_edc_read = csio_t4_edc_read,
402 .chip_memory_rw = csio_t4_memory_rw,
403 .chip_dfs_create_ext_mem = csio_t4_dfs_create_ext_mem,