mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blob7e3d954c9cacc1bdad0881be35a6cb1a2b0d7254
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
35 #include <trace/events/scsi.h>
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
41 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE 2
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56 SP(8),
57 SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61 SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63 SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70 SP(SCSI_MAX_SG_SEGMENTS)
72 #undef SP
74 struct kmem_cache *scsi_sdb_cache;
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
81 #define SCSI_QUEUE_DELAY 3
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 struct Scsi_Host *host = cmd->device->host;
87 struct scsi_device *device = cmd->device;
88 struct scsi_target *starget = scsi_target(device);
91 * Set the appropriate busy bit for the device/host.
93 * If the host/device isn't busy, assume that something actually
94 * completed, and that we should be able to queue a command now.
96 * Note that the prior mid-layer assumption that any host could
97 * always queue at least one command is now broken. The mid-layer
98 * will implement a user specifiable stall (see
99 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 * if a command is requeued with no other commands outstanding
101 * either for the device or for the host.
103 switch (reason) {
104 case SCSI_MLQUEUE_HOST_BUSY:
105 atomic_set(&host->host_blocked, host->max_host_blocked);
106 break;
107 case SCSI_MLQUEUE_DEVICE_BUSY:
108 case SCSI_MLQUEUE_EH_RETRY:
109 atomic_set(&device->device_blocked,
110 device->max_device_blocked);
111 break;
112 case SCSI_MLQUEUE_TARGET_BUSY:
113 atomic_set(&starget->target_blocked,
114 starget->max_target_blocked);
115 break;
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 struct scsi_device *sdev = cmd->device;
122 struct request_queue *q = cmd->request->q;
124 blk_mq_requeue_request(cmd->request);
125 blk_mq_kick_requeue_list(q);
126 put_device(&sdev->sdev_gendev);
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason: The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
135 * This is a private queue insertion. The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion. This function is
138 * for a requeue after completion, which should only occur in this
139 * file.
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 struct scsi_device *device = cmd->device;
144 struct request_queue *q = device->request_queue;
145 unsigned long flags;
147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 "Inserting command %p into mlqueue\n", cmd));
150 scsi_set_blocked(cmd, reason);
153 * Decrement the counters, since these commands are no longer
154 * active on the host/device.
156 if (unbusy)
157 scsi_device_unbusy(device);
160 * Requeue this command. It will go before all other commands
161 * that are already in the queue. Schedule requeue work under
162 * lock such that the kblockd_schedule_work() call happens
163 * before blk_cleanup_queue() finishes.
165 cmd->result = 0;
166 if (q->mq_ops) {
167 scsi_mq_requeue_cmd(cmd);
168 return;
170 spin_lock_irqsave(q->queue_lock, flags);
171 blk_requeue_request(q, cmd->request);
172 kblockd_schedule_work(&device->requeue_work);
173 spin_unlock_irqrestore(q->queue_lock, flags);
177 * Function: scsi_queue_insert()
179 * Purpose: Insert a command in the midlevel queue.
181 * Arguments: cmd - command that we are adding to queue.
182 * reason - why we are inserting command to queue.
184 * Lock status: Assumed that lock is not held upon entry.
186 * Returns: Nothing.
188 * Notes: We do this for one of two cases. Either the host is busy
189 * and it cannot accept any more commands for the time being,
190 * or the device returned QUEUE_FULL and can accept no more
191 * commands.
192 * Notes: This could be called either from an interrupt context or a
193 * normal process context.
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 __scsi_queue_insert(cmd, reason, 1);
200 * scsi_execute - insert request and wait for the result
201 * @sdev: scsi device
202 * @cmd: scsi command
203 * @data_direction: data direction
204 * @buffer: data buffer
205 * @bufflen: len of buffer
206 * @sense: optional sense buffer
207 * @timeout: request timeout in seconds
208 * @retries: number of times to retry request
209 * @flags: or into request flags;
210 * @resid: optional residual length
212 * returns the req->errors value which is the scsi_cmnd result
213 * field.
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 unsigned char *sense, int timeout, int retries, u64 flags,
218 int *resid)
220 struct request *req;
221 int write = (data_direction == DMA_TO_DEVICE);
222 int ret = DRIVER_ERROR << 24;
224 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225 if (IS_ERR(req))
226 return ret;
227 blk_rq_set_block_pc(req);
229 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
230 buffer, bufflen, __GFP_WAIT))
231 goto out;
233 req->cmd_len = COMMAND_SIZE(cmd[0]);
234 memcpy(req->cmd, cmd, req->cmd_len);
235 req->sense = sense;
236 req->sense_len = 0;
237 req->retries = retries;
238 req->timeout = timeout;
239 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
242 * head injection *required* here otherwise quiesce won't work
244 blk_execute_rq(req->q, NULL, req, 1);
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
252 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255 if (resid)
256 *resid = req->resid_len;
257 ret = req->errors;
258 out:
259 blk_put_request(req);
261 return ret;
263 EXPORT_SYMBOL(scsi_execute);
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266 int data_direction, void *buffer, unsigned bufflen,
267 struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 int *resid, u64 flags)
270 char *sense = NULL;
271 int result;
273 if (sshdr) {
274 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275 if (!sense)
276 return DRIVER_ERROR << 24;
278 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279 sense, timeout, retries, flags, resid);
280 if (sshdr)
281 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283 kfree(sense);
284 return result;
286 EXPORT_SYMBOL(scsi_execute_req_flags);
289 * Function: scsi_init_cmd_errh()
291 * Purpose: Initialize cmd fields related to error handling.
293 * Arguments: cmd - command that is ready to be queued.
295 * Notes: This function has the job of initializing a number of
296 * fields related to error handling. Typically this will
297 * be called once for each command, as required.
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 cmd->serial_number = 0;
302 scsi_set_resid(cmd, 0);
303 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304 if (cmd->cmd_len == 0)
305 cmd->cmd_len = scsi_command_size(cmd->cmnd);
308 void scsi_device_unbusy(struct scsi_device *sdev)
310 struct Scsi_Host *shost = sdev->host;
311 struct scsi_target *starget = scsi_target(sdev);
312 unsigned long flags;
314 atomic_dec(&shost->host_busy);
315 if (starget->can_queue > 0)
316 atomic_dec(&starget->target_busy);
318 if (unlikely(scsi_host_in_recovery(shost) &&
319 (shost->host_failed || shost->host_eh_scheduled))) {
320 spin_lock_irqsave(shost->host_lock, flags);
321 scsi_eh_wakeup(shost);
322 spin_unlock_irqrestore(shost->host_lock, flags);
325 atomic_dec(&sdev->device_busy);
328 static void scsi_kick_queue(struct request_queue *q)
330 if (q->mq_ops)
331 blk_mq_start_hw_queues(q);
332 else
333 blk_run_queue(q);
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
341 * Called with *no* scsi locks held.
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
360 scsi_kick_queue(current_sdev->request_queue);
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 scsi_kick_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
376 scsi_device_put(sdev);
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385 return true;
386 if (atomic_read(&sdev->device_blocked) > 0)
387 return true;
388 return false;
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 if (starget->can_queue > 0) {
394 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395 return true;
396 if (atomic_read(&starget->target_blocked) > 0)
397 return true;
399 return false;
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 if (shost->can_queue > 0 &&
405 atomic_read(&shost->host_busy) >= shost->can_queue)
406 return true;
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
436 if (scsi_host_is_busy(shost))
437 break;
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
466 spin_lock_irqsave(shost->host_lock, flags);
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
474 * Function: scsi_run_queue()
476 * Purpose: Select a proper request queue to serve next
478 * Arguments: q - last request's queue
480 * Returns: Nothing
482 * Notes: The previous command was completely finished, start
483 * a new one if possible.
485 static void scsi_run_queue(struct request_queue *q)
487 struct scsi_device *sdev = q->queuedata;
489 if (scsi_target(sdev)->single_lun)
490 scsi_single_lun_run(sdev);
491 if (!list_empty(&sdev->host->starved_list))
492 scsi_starved_list_run(sdev->host);
494 if (q->mq_ops)
495 blk_mq_start_stopped_hw_queues(q, false);
496 else
497 blk_run_queue(q);
500 void scsi_requeue_run_queue(struct work_struct *work)
502 struct scsi_device *sdev;
503 struct request_queue *q;
505 sdev = container_of(work, struct scsi_device, requeue_work);
506 q = sdev->request_queue;
507 scsi_run_queue(q);
511 * Function: scsi_requeue_command()
513 * Purpose: Handle post-processing of completed commands.
515 * Arguments: q - queue to operate on
516 * cmd - command that may need to be requeued.
518 * Returns: Nothing
520 * Notes: After command completion, there may be blocks left
521 * over which weren't finished by the previous command
522 * this can be for a number of reasons - the main one is
523 * I/O errors in the middle of the request, in which case
524 * we need to request the blocks that come after the bad
525 * sector.
526 * Notes: Upon return, cmd is a stale pointer.
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 struct scsi_device *sdev = cmd->device;
531 struct request *req = cmd->request;
532 unsigned long flags;
534 spin_lock_irqsave(q->queue_lock, flags);
535 blk_unprep_request(req);
536 req->special = NULL;
537 scsi_put_command(cmd);
538 blk_requeue_request(q, req);
539 spin_unlock_irqrestore(q->queue_lock, flags);
541 scsi_run_queue(q);
543 put_device(&sdev->sdev_gendev);
546 void scsi_run_host_queues(struct Scsi_Host *shost)
548 struct scsi_device *sdev;
550 shost_for_each_device(sdev, shost)
551 scsi_run_queue(sdev->request_queue);
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 unsigned int index;
558 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560 if (nents <= 8)
561 index = 0;
562 else
563 index = get_count_order(nents) - 3;
565 return index;
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 struct scsi_host_sg_pool *sgp;
572 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573 mempool_free(sgl, sgp->pool);
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 struct scsi_host_sg_pool *sgp;
580 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581 return mempool_alloc(sgp->pool, gfp_mask);
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587 return;
588 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 struct scatterlist *first_chunk = NULL;
594 gfp_t gfp_mask = mq ? GFP_NOIO : GFP_ATOMIC;
595 int ret;
597 BUG_ON(!nents);
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = nents;
602 sg_init_table(sdb->table.sgl, sdb->table.nents);
603 return 0;
605 first_chunk = sdb->table.sgl;
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, gfp_mask, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
653 * Function: scsi_release_buffers()
655 * Purpose: Free resources allocate for a scsi_command.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
661 * Returns: Nothing
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
695 if (blk_update_request(req, error, bytes))
696 return true;
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
706 if (req->mq_ctx) {
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
714 scsi_mq_uninit_cmd(cmd);
716 __blk_mq_end_request(req, error);
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
733 scsi_release_buffers(cmd);
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
739 put_device(&sdev->sdev_gendev);
740 return false;
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
759 int error = 0;
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
786 return error;
790 * Function: scsi_io_completion()
792 * Purpose: Completion processing for block device I/O requests.
794 * Arguments: cmd - command that is finished.
796 * Lock status: Assumed that no lock is held upon entry.
798 * Returns: Nothing
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
841 * SG_IO wants current and deferred errors
843 int len = 8 + cmd->sense_buffer[7];
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
854 * __scsi_error_from_host_byte may have reset the host_byte
856 req->errors = cmd->result;
858 req->resid_len = scsi_get_resid(cmd);
860 if (scsi_bidi_cmnd(cmd)) {
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
878 error = __scsi_error_from_host_byte(cmd, result);
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
885 * Next deal with any sectors which we were able to correctly
886 * handle.
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
913 * If we finished all bytes in the request we are done now.
915 if (!scsi_end_request(req, error, good_bytes, 0))
916 return;
919 * Kill remainder if no retrys.
921 if (error && scsi_noretry_cmd(cmd)) {
922 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 BUG();
924 return;
928 * If there had been no error, but we have leftover bytes in the
929 * requeues just queue the command up again.
931 if (result == 0)
932 goto requeue;
934 error = __scsi_error_from_host_byte(cmd, result);
936 if (host_byte(result) == DID_RESET) {
937 /* Third party bus reset or reset for error recovery
938 * reasons. Just retry the command and see what
939 * happens.
941 action = ACTION_RETRY;
942 } else if (sense_valid && !sense_deferred) {
943 switch (sshdr.sense_key) {
944 case UNIT_ATTENTION:
945 if (cmd->device->removable) {
946 /* Detected disc change. Set a bit
947 * and quietly refuse further access.
949 cmd->device->changed = 1;
950 action = ACTION_FAIL;
951 } else {
952 /* Must have been a power glitch, or a
953 * bus reset. Could not have been a
954 * media change, so we just retry the
955 * command and see what happens.
957 action = ACTION_RETRY;
959 break;
960 case ILLEGAL_REQUEST:
961 /* If we had an ILLEGAL REQUEST returned, then
962 * we may have performed an unsupported
963 * command. The only thing this should be
964 * would be a ten byte read where only a six
965 * byte read was supported. Also, on a system
966 * where READ CAPACITY failed, we may have
967 * read past the end of the disk.
969 if ((cmd->device->use_10_for_rw &&
970 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 (cmd->cmnd[0] == READ_10 ||
972 cmd->cmnd[0] == WRITE_10)) {
973 /* This will issue a new 6-byte command. */
974 cmd->device->use_10_for_rw = 0;
975 action = ACTION_REPREP;
976 } else if (sshdr.asc == 0x10) /* DIX */ {
977 action = ACTION_FAIL;
978 error = -EILSEQ;
979 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 action = ACTION_FAIL;
982 error = -EREMOTEIO;
983 } else
984 action = ACTION_FAIL;
985 break;
986 case ABORTED_COMMAND:
987 action = ACTION_FAIL;
988 if (sshdr.asc == 0x10) /* DIF */
989 error = -EILSEQ;
990 break;
991 case NOT_READY:
992 /* If the device is in the process of becoming
993 * ready, or has a temporary blockage, retry.
995 if (sshdr.asc == 0x04) {
996 switch (sshdr.ascq) {
997 case 0x01: /* becoming ready */
998 case 0x04: /* format in progress */
999 case 0x05: /* rebuild in progress */
1000 case 0x06: /* recalculation in progress */
1001 case 0x07: /* operation in progress */
1002 case 0x08: /* Long write in progress */
1003 case 0x09: /* self test in progress */
1004 case 0x14: /* space allocation in progress */
1005 action = ACTION_DELAYED_RETRY;
1006 break;
1007 default:
1008 action = ACTION_FAIL;
1009 break;
1011 } else
1012 action = ACTION_FAIL;
1013 break;
1014 case VOLUME_OVERFLOW:
1015 /* See SSC3rXX or current. */
1016 action = ACTION_FAIL;
1017 break;
1018 default:
1019 action = ACTION_FAIL;
1020 break;
1022 } else
1023 action = ACTION_FAIL;
1025 if (action != ACTION_FAIL &&
1026 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 action = ACTION_FAIL;
1029 switch (action) {
1030 case ACTION_FAIL:
1031 /* Give up and fail the remainder of the request */
1032 if (!(req->cmd_flags & REQ_QUIET)) {
1033 static DEFINE_RATELIMIT_STATE(_rs,
1034 DEFAULT_RATELIMIT_INTERVAL,
1035 DEFAULT_RATELIMIT_BURST);
1037 if (unlikely(scsi_logging_level))
1038 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 SCSI_LOG_MLCOMPLETE_BITS);
1042 * if logging is enabled the failure will be printed
1043 * in scsi_log_completion(), so avoid duplicate messages
1045 if (!level && __ratelimit(&_rs)) {
1046 scsi_print_result(cmd, NULL, FAILED);
1047 if (driver_byte(result) & DRIVER_SENSE)
1048 scsi_print_sense(cmd);
1049 scsi_print_command(cmd);
1052 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 return;
1054 /*FALLTHRU*/
1055 case ACTION_REPREP:
1056 requeue:
1057 /* Unprep the request and put it back at the head of the queue.
1058 * A new command will be prepared and issued.
1060 if (q->mq_ops) {
1061 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 scsi_mq_uninit_cmd(cmd);
1063 scsi_mq_requeue_cmd(cmd);
1064 } else {
1065 scsi_release_buffers(cmd);
1066 scsi_requeue_command(q, cmd);
1068 break;
1069 case ACTION_RETRY:
1070 /* Retry the same command immediately */
1071 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 break;
1073 case ACTION_DELAYED_RETRY:
1074 /* Retry the same command after a delay */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 break;
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1082 int count;
1085 * If sg table allocation fails, requeue request later.
1087 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088 req->mq_ctx != NULL)))
1089 return BLKPREP_DEFER;
1092 * Next, walk the list, and fill in the addresses and sizes of
1093 * each segment.
1095 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096 BUG_ON(count > sdb->table.nents);
1097 sdb->table.nents = count;
1098 sdb->length = blk_rq_bytes(req);
1099 return BLKPREP_OK;
1103 * Function: scsi_init_io()
1105 * Purpose: SCSI I/O initialize function.
1107 * Arguments: cmd - Command descriptor we wish to initialize
1109 * Returns: 0 on success
1110 * BLKPREP_DEFER if the failure is retryable
1111 * BLKPREP_KILL if the failure is fatal
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1115 struct scsi_device *sdev = cmd->device;
1116 struct request *rq = cmd->request;
1117 bool is_mq = (rq->mq_ctx != NULL);
1118 int error;
1120 BUG_ON(!rq->nr_phys_segments);
1122 error = scsi_init_sgtable(rq, &cmd->sdb);
1123 if (error)
1124 goto err_exit;
1126 if (blk_bidi_rq(rq)) {
1127 if (!rq->q->mq_ops) {
1128 struct scsi_data_buffer *bidi_sdb =
1129 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130 if (!bidi_sdb) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1135 rq->next_rq->special = bidi_sdb;
1138 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139 if (error)
1140 goto err_exit;
1143 if (blk_integrity_rq(rq)) {
1144 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 int ivecs, count;
1147 BUG_ON(prot_sdb == NULL);
1148 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1150 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1151 error = BLKPREP_DEFER;
1152 goto err_exit;
1155 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1156 prot_sdb->table.sgl);
1157 BUG_ON(unlikely(count > ivecs));
1158 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1160 cmd->prot_sdb = prot_sdb;
1161 cmd->prot_sdb->table.nents = count;
1164 return BLKPREP_OK;
1165 err_exit:
1166 if (is_mq) {
1167 scsi_mq_free_sgtables(cmd);
1168 } else {
1169 scsi_release_buffers(cmd);
1170 cmd->request->special = NULL;
1171 scsi_put_command(cmd);
1172 put_device(&sdev->sdev_gendev);
1174 return error;
1176 EXPORT_SYMBOL(scsi_init_io);
1178 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1179 struct request *req)
1181 struct scsi_cmnd *cmd;
1183 if (!req->special) {
1184 /* Bail if we can't get a reference to the device */
1185 if (!get_device(&sdev->sdev_gendev))
1186 return NULL;
1188 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1189 if (unlikely(!cmd)) {
1190 put_device(&sdev->sdev_gendev);
1191 return NULL;
1193 req->special = cmd;
1194 } else {
1195 cmd = req->special;
1198 /* pull a tag out of the request if we have one */
1199 cmd->tag = req->tag;
1200 cmd->request = req;
1202 cmd->cmnd = req->cmd;
1203 cmd->prot_op = SCSI_PROT_NORMAL;
1205 return cmd;
1208 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1210 struct scsi_cmnd *cmd = req->special;
1213 * BLOCK_PC requests may transfer data, in which case they must
1214 * a bio attached to them. Or they might contain a SCSI command
1215 * that does not transfer data, in which case they may optionally
1216 * submit a request without an attached bio.
1218 if (req->bio) {
1219 int ret = scsi_init_io(cmd);
1220 if (unlikely(ret))
1221 return ret;
1222 } else {
1223 BUG_ON(blk_rq_bytes(req));
1225 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1228 cmd->cmd_len = req->cmd_len;
1229 cmd->transfersize = blk_rq_bytes(req);
1230 cmd->allowed = req->retries;
1231 return BLKPREP_OK;
1235 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1236 * that still need to be translated to SCSI CDBs from the ULD.
1238 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1240 struct scsi_cmnd *cmd = req->special;
1242 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1243 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1244 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1245 if (ret != BLKPREP_OK)
1246 return ret;
1249 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1250 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1253 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1255 struct scsi_cmnd *cmd = req->special;
1257 if (!blk_rq_bytes(req))
1258 cmd->sc_data_direction = DMA_NONE;
1259 else if (rq_data_dir(req) == WRITE)
1260 cmd->sc_data_direction = DMA_TO_DEVICE;
1261 else
1262 cmd->sc_data_direction = DMA_FROM_DEVICE;
1264 switch (req->cmd_type) {
1265 case REQ_TYPE_FS:
1266 return scsi_setup_fs_cmnd(sdev, req);
1267 case REQ_TYPE_BLOCK_PC:
1268 return scsi_setup_blk_pc_cmnd(sdev, req);
1269 default:
1270 return BLKPREP_KILL;
1274 static int
1275 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1277 int ret = BLKPREP_OK;
1280 * If the device is not in running state we will reject some
1281 * or all commands.
1283 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1284 switch (sdev->sdev_state) {
1285 case SDEV_OFFLINE:
1286 case SDEV_TRANSPORT_OFFLINE:
1288 * If the device is offline we refuse to process any
1289 * commands. The device must be brought online
1290 * before trying any recovery commands.
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to offline device\n");
1294 ret = BLKPREP_KILL;
1295 break;
1296 case SDEV_DEL:
1298 * If the device is fully deleted, we refuse to
1299 * process any commands as well.
1301 sdev_printk(KERN_ERR, sdev,
1302 "rejecting I/O to dead device\n");
1303 ret = BLKPREP_KILL;
1304 break;
1305 case SDEV_QUIESCE:
1306 case SDEV_BLOCK:
1307 case SDEV_CREATED_BLOCK:
1309 * If the devices is blocked we defer normal commands.
1311 if (!(req->cmd_flags & REQ_PREEMPT))
1312 ret = BLKPREP_DEFER;
1313 break;
1314 default:
1316 * For any other not fully online state we only allow
1317 * special commands. In particular any user initiated
1318 * command is not allowed.
1320 if (!(req->cmd_flags & REQ_PREEMPT))
1321 ret = BLKPREP_KILL;
1322 break;
1325 return ret;
1328 static int
1329 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1331 struct scsi_device *sdev = q->queuedata;
1333 switch (ret) {
1334 case BLKPREP_KILL:
1335 req->errors = DID_NO_CONNECT << 16;
1336 /* release the command and kill it */
1337 if (req->special) {
1338 struct scsi_cmnd *cmd = req->special;
1339 scsi_release_buffers(cmd);
1340 scsi_put_command(cmd);
1341 put_device(&sdev->sdev_gendev);
1342 req->special = NULL;
1344 break;
1345 case BLKPREP_DEFER:
1347 * If we defer, the blk_peek_request() returns NULL, but the
1348 * queue must be restarted, so we schedule a callback to happen
1349 * shortly.
1351 if (atomic_read(&sdev->device_busy) == 0)
1352 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1353 break;
1354 default:
1355 req->cmd_flags |= REQ_DONTPREP;
1358 return ret;
1361 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1363 struct scsi_device *sdev = q->queuedata;
1364 struct scsi_cmnd *cmd;
1365 int ret;
1367 ret = scsi_prep_state_check(sdev, req);
1368 if (ret != BLKPREP_OK)
1369 goto out;
1371 cmd = scsi_get_cmd_from_req(sdev, req);
1372 if (unlikely(!cmd)) {
1373 ret = BLKPREP_DEFER;
1374 goto out;
1377 ret = scsi_setup_cmnd(sdev, req);
1378 out:
1379 return scsi_prep_return(q, req, ret);
1382 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1384 scsi_uninit_cmd(req->special);
1388 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1389 * return 0.
1391 * Called with the queue_lock held.
1393 static inline int scsi_dev_queue_ready(struct request_queue *q,
1394 struct scsi_device *sdev)
1396 unsigned int busy;
1398 busy = atomic_inc_return(&sdev->device_busy) - 1;
1399 if (atomic_read(&sdev->device_blocked)) {
1400 if (busy)
1401 goto out_dec;
1404 * unblock after device_blocked iterates to zero
1406 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1408 * For the MQ case we take care of this in the caller.
1410 if (!q->mq_ops)
1411 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1412 goto out_dec;
1414 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1415 "unblocking device at zero depth\n"));
1418 if (busy >= sdev->queue_depth)
1419 goto out_dec;
1421 return 1;
1422 out_dec:
1423 atomic_dec(&sdev->device_busy);
1424 return 0;
1428 * scsi_target_queue_ready: checks if there we can send commands to target
1429 * @sdev: scsi device on starget to check.
1431 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1432 struct scsi_device *sdev)
1434 struct scsi_target *starget = scsi_target(sdev);
1435 unsigned int busy;
1437 if (starget->single_lun) {
1438 spin_lock_irq(shost->host_lock);
1439 if (starget->starget_sdev_user &&
1440 starget->starget_sdev_user != sdev) {
1441 spin_unlock_irq(shost->host_lock);
1442 return 0;
1444 starget->starget_sdev_user = sdev;
1445 spin_unlock_irq(shost->host_lock);
1448 if (starget->can_queue <= 0)
1449 return 1;
1451 busy = atomic_inc_return(&starget->target_busy) - 1;
1452 if (atomic_read(&starget->target_blocked) > 0) {
1453 if (busy)
1454 goto starved;
1457 * unblock after target_blocked iterates to zero
1459 if (atomic_dec_return(&starget->target_blocked) > 0)
1460 goto out_dec;
1462 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1463 "unblocking target at zero depth\n"));
1466 if (busy >= starget->can_queue)
1467 goto starved;
1469 return 1;
1471 starved:
1472 spin_lock_irq(shost->host_lock);
1473 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1474 spin_unlock_irq(shost->host_lock);
1475 out_dec:
1476 if (starget->can_queue > 0)
1477 atomic_dec(&starget->target_busy);
1478 return 0;
1482 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1483 * return 0. We must end up running the queue again whenever 0 is
1484 * returned, else IO can hang.
1486 static inline int scsi_host_queue_ready(struct request_queue *q,
1487 struct Scsi_Host *shost,
1488 struct scsi_device *sdev)
1490 unsigned int busy;
1492 if (scsi_host_in_recovery(shost))
1493 return 0;
1495 busy = atomic_inc_return(&shost->host_busy) - 1;
1496 if (atomic_read(&shost->host_blocked) > 0) {
1497 if (busy)
1498 goto starved;
1501 * unblock after host_blocked iterates to zero
1503 if (atomic_dec_return(&shost->host_blocked) > 0)
1504 goto out_dec;
1506 SCSI_LOG_MLQUEUE(3,
1507 shost_printk(KERN_INFO, shost,
1508 "unblocking host at zero depth\n"));
1511 if (shost->can_queue > 0 && busy >= shost->can_queue)
1512 goto starved;
1513 if (shost->host_self_blocked)
1514 goto starved;
1516 /* We're OK to process the command, so we can't be starved */
1517 if (!list_empty(&sdev->starved_entry)) {
1518 spin_lock_irq(shost->host_lock);
1519 if (!list_empty(&sdev->starved_entry))
1520 list_del_init(&sdev->starved_entry);
1521 spin_unlock_irq(shost->host_lock);
1524 return 1;
1526 starved:
1527 spin_lock_irq(shost->host_lock);
1528 if (list_empty(&sdev->starved_entry))
1529 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1530 spin_unlock_irq(shost->host_lock);
1531 out_dec:
1532 atomic_dec(&shost->host_busy);
1533 return 0;
1537 * Busy state exporting function for request stacking drivers.
1539 * For efficiency, no lock is taken to check the busy state of
1540 * shost/starget/sdev, since the returned value is not guaranteed and
1541 * may be changed after request stacking drivers call the function,
1542 * regardless of taking lock or not.
1544 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1545 * needs to return 'not busy'. Otherwise, request stacking drivers
1546 * may hold requests forever.
1548 static int scsi_lld_busy(struct request_queue *q)
1550 struct scsi_device *sdev = q->queuedata;
1551 struct Scsi_Host *shost;
1553 if (blk_queue_dying(q))
1554 return 0;
1556 shost = sdev->host;
1559 * Ignore host/starget busy state.
1560 * Since block layer does not have a concept of fairness across
1561 * multiple queues, congestion of host/starget needs to be handled
1562 * in SCSI layer.
1564 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1565 return 1;
1567 return 0;
1571 * Kill a request for a dead device
1573 static void scsi_kill_request(struct request *req, struct request_queue *q)
1575 struct scsi_cmnd *cmd = req->special;
1576 struct scsi_device *sdev;
1577 struct scsi_target *starget;
1578 struct Scsi_Host *shost;
1580 blk_start_request(req);
1582 scmd_printk(KERN_INFO, cmd, "killing request\n");
1584 sdev = cmd->device;
1585 starget = scsi_target(sdev);
1586 shost = sdev->host;
1587 scsi_init_cmd_errh(cmd);
1588 cmd->result = DID_NO_CONNECT << 16;
1589 atomic_inc(&cmd->device->iorequest_cnt);
1592 * SCSI request completion path will do scsi_device_unbusy(),
1593 * bump busy counts. To bump the counters, we need to dance
1594 * with the locks as normal issue path does.
1596 atomic_inc(&sdev->device_busy);
1597 atomic_inc(&shost->host_busy);
1598 if (starget->can_queue > 0)
1599 atomic_inc(&starget->target_busy);
1601 blk_complete_request(req);
1604 static void scsi_softirq_done(struct request *rq)
1606 struct scsi_cmnd *cmd = rq->special;
1607 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1608 int disposition;
1610 INIT_LIST_HEAD(&cmd->eh_entry);
1612 atomic_inc(&cmd->device->iodone_cnt);
1613 if (cmd->result)
1614 atomic_inc(&cmd->device->ioerr_cnt);
1616 disposition = scsi_decide_disposition(cmd);
1617 if (disposition != SUCCESS &&
1618 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1619 sdev_printk(KERN_ERR, cmd->device,
1620 "timing out command, waited %lus\n",
1621 wait_for/HZ);
1622 disposition = SUCCESS;
1625 scsi_log_completion(cmd, disposition);
1627 switch (disposition) {
1628 case SUCCESS:
1629 scsi_finish_command(cmd);
1630 break;
1631 case NEEDS_RETRY:
1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1633 break;
1634 case ADD_TO_MLQUEUE:
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1636 break;
1637 default:
1638 if (!scsi_eh_scmd_add(cmd, 0))
1639 scsi_finish_command(cmd);
1644 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1645 * @cmd: command block we are dispatching.
1647 * Return: nonzero return request was rejected and device's queue needs to be
1648 * plugged.
1650 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1652 struct Scsi_Host *host = cmd->device->host;
1653 int rtn = 0;
1655 atomic_inc(&cmd->device->iorequest_cnt);
1657 /* check if the device is still usable */
1658 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1659 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1660 * returns an immediate error upwards, and signals
1661 * that the device is no longer present */
1662 cmd->result = DID_NO_CONNECT << 16;
1663 goto done;
1666 /* Check to see if the scsi lld made this device blocked. */
1667 if (unlikely(scsi_device_blocked(cmd->device))) {
1669 * in blocked state, the command is just put back on
1670 * the device queue. The suspend state has already
1671 * blocked the queue so future requests should not
1672 * occur until the device transitions out of the
1673 * suspend state.
1675 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1676 "queuecommand : device blocked\n"));
1677 return SCSI_MLQUEUE_DEVICE_BUSY;
1680 /* Store the LUN value in cmnd, if needed. */
1681 if (cmd->device->lun_in_cdb)
1682 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1683 (cmd->device->lun << 5 & 0xe0);
1685 scsi_log_send(cmd);
1688 * Before we queue this command, check if the command
1689 * length exceeds what the host adapter can handle.
1691 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1692 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1693 "queuecommand : command too long. "
1694 "cdb_size=%d host->max_cmd_len=%d\n",
1695 cmd->cmd_len, cmd->device->host->max_cmd_len));
1696 cmd->result = (DID_ABORT << 16);
1697 goto done;
1700 if (unlikely(host->shost_state == SHOST_DEL)) {
1701 cmd->result = (DID_NO_CONNECT << 16);
1702 goto done;
1706 trace_scsi_dispatch_cmd_start(cmd);
1707 rtn = host->hostt->queuecommand(host, cmd);
1708 if (rtn) {
1709 trace_scsi_dispatch_cmd_error(cmd, rtn);
1710 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1711 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1712 rtn = SCSI_MLQUEUE_HOST_BUSY;
1714 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1715 "queuecommand : request rejected\n"));
1718 return rtn;
1719 done:
1720 cmd->scsi_done(cmd);
1721 return 0;
1725 * scsi_done - Invoke completion on finished SCSI command.
1726 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1727 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1729 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1730 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1731 * calls blk_complete_request() for further processing.
1733 * This function is interrupt context safe.
1735 static void scsi_done(struct scsi_cmnd *cmd)
1737 trace_scsi_dispatch_cmd_done(cmd);
1738 blk_complete_request(cmd->request);
1742 * Function: scsi_request_fn()
1744 * Purpose: Main strategy routine for SCSI.
1746 * Arguments: q - Pointer to actual queue.
1748 * Returns: Nothing
1750 * Lock status: IO request lock assumed to be held when called.
1752 static void scsi_request_fn(struct request_queue *q)
1753 __releases(q->queue_lock)
1754 __acquires(q->queue_lock)
1756 struct scsi_device *sdev = q->queuedata;
1757 struct Scsi_Host *shost;
1758 struct scsi_cmnd *cmd;
1759 struct request *req;
1762 * To start with, we keep looping until the queue is empty, or until
1763 * the host is no longer able to accept any more requests.
1765 shost = sdev->host;
1766 for (;;) {
1767 int rtn;
1769 * get next queueable request. We do this early to make sure
1770 * that the request is fully prepared even if we cannot
1771 * accept it.
1773 req = blk_peek_request(q);
1774 if (!req)
1775 break;
1777 if (unlikely(!scsi_device_online(sdev))) {
1778 sdev_printk(KERN_ERR, sdev,
1779 "rejecting I/O to offline device\n");
1780 scsi_kill_request(req, q);
1781 continue;
1784 if (!scsi_dev_queue_ready(q, sdev))
1785 break;
1788 * Remove the request from the request list.
1790 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1791 blk_start_request(req);
1793 spin_unlock_irq(q->queue_lock);
1794 cmd = req->special;
1795 if (unlikely(cmd == NULL)) {
1796 printk(KERN_CRIT "impossible request in %s.\n"
1797 "please mail a stack trace to "
1798 "linux-scsi@vger.kernel.org\n",
1799 __func__);
1800 blk_dump_rq_flags(req, "foo");
1801 BUG();
1805 * We hit this when the driver is using a host wide
1806 * tag map. For device level tag maps the queue_depth check
1807 * in the device ready fn would prevent us from trying
1808 * to allocate a tag. Since the map is a shared host resource
1809 * we add the dev to the starved list so it eventually gets
1810 * a run when a tag is freed.
1812 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1813 spin_lock_irq(shost->host_lock);
1814 if (list_empty(&sdev->starved_entry))
1815 list_add_tail(&sdev->starved_entry,
1816 &shost->starved_list);
1817 spin_unlock_irq(shost->host_lock);
1818 goto not_ready;
1821 if (!scsi_target_queue_ready(shost, sdev))
1822 goto not_ready;
1824 if (!scsi_host_queue_ready(q, shost, sdev))
1825 goto host_not_ready;
1827 if (sdev->simple_tags)
1828 cmd->flags |= SCMD_TAGGED;
1829 else
1830 cmd->flags &= ~SCMD_TAGGED;
1833 * Finally, initialize any error handling parameters, and set up
1834 * the timers for timeouts.
1836 scsi_init_cmd_errh(cmd);
1839 * Dispatch the command to the low-level driver.
1841 cmd->scsi_done = scsi_done;
1842 rtn = scsi_dispatch_cmd(cmd);
1843 if (rtn) {
1844 scsi_queue_insert(cmd, rtn);
1845 spin_lock_irq(q->queue_lock);
1846 goto out_delay;
1848 spin_lock_irq(q->queue_lock);
1851 return;
1853 host_not_ready:
1854 if (scsi_target(sdev)->can_queue > 0)
1855 atomic_dec(&scsi_target(sdev)->target_busy);
1856 not_ready:
1858 * lock q, handle tag, requeue req, and decrement device_busy. We
1859 * must return with queue_lock held.
1861 * Decrementing device_busy without checking it is OK, as all such
1862 * cases (host limits or settings) should run the queue at some
1863 * later time.
1865 spin_lock_irq(q->queue_lock);
1866 blk_requeue_request(q, req);
1867 atomic_dec(&sdev->device_busy);
1868 out_delay:
1869 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1870 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1873 static inline int prep_to_mq(int ret)
1875 switch (ret) {
1876 case BLKPREP_OK:
1877 return 0;
1878 case BLKPREP_DEFER:
1879 return BLK_MQ_RQ_QUEUE_BUSY;
1880 default:
1881 return BLK_MQ_RQ_QUEUE_ERROR;
1885 static int scsi_mq_prep_fn(struct request *req)
1887 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1888 struct scsi_device *sdev = req->q->queuedata;
1889 struct Scsi_Host *shost = sdev->host;
1890 unsigned char *sense_buf = cmd->sense_buffer;
1891 struct scatterlist *sg;
1893 memset(cmd, 0, sizeof(struct scsi_cmnd));
1895 req->special = cmd;
1897 cmd->request = req;
1898 cmd->device = sdev;
1899 cmd->sense_buffer = sense_buf;
1901 cmd->tag = req->tag;
1903 cmd->cmnd = req->cmd;
1904 cmd->prot_op = SCSI_PROT_NORMAL;
1906 INIT_LIST_HEAD(&cmd->list);
1907 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1908 cmd->jiffies_at_alloc = jiffies;
1910 if (shost->use_cmd_list) {
1911 spin_lock_irq(&sdev->list_lock);
1912 list_add_tail(&cmd->list, &sdev->cmd_list);
1913 spin_unlock_irq(&sdev->list_lock);
1916 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1917 cmd->sdb.table.sgl = sg;
1919 if (scsi_host_get_prot(shost)) {
1920 cmd->prot_sdb = (void *)sg +
1921 shost->sg_tablesize * sizeof(struct scatterlist);
1922 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1924 cmd->prot_sdb->table.sgl =
1925 (struct scatterlist *)(cmd->prot_sdb + 1);
1928 if (blk_bidi_rq(req)) {
1929 struct request *next_rq = req->next_rq;
1930 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1932 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1933 bidi_sdb->table.sgl =
1934 (struct scatterlist *)(bidi_sdb + 1);
1936 next_rq->special = bidi_sdb;
1939 blk_mq_start_request(req);
1941 return scsi_setup_cmnd(sdev, req);
1944 static void scsi_mq_done(struct scsi_cmnd *cmd)
1946 trace_scsi_dispatch_cmd_done(cmd);
1947 blk_mq_complete_request(cmd->request);
1950 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1951 bool last)
1953 struct request_queue *q = req->q;
1954 struct scsi_device *sdev = q->queuedata;
1955 struct Scsi_Host *shost = sdev->host;
1956 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1957 int ret;
1958 int reason;
1960 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1961 if (ret)
1962 goto out;
1964 ret = BLK_MQ_RQ_QUEUE_BUSY;
1965 if (!get_device(&sdev->sdev_gendev))
1966 goto out;
1968 if (!scsi_dev_queue_ready(q, sdev))
1969 goto out_put_device;
1970 if (!scsi_target_queue_ready(shost, sdev))
1971 goto out_dec_device_busy;
1972 if (!scsi_host_queue_ready(q, shost, sdev))
1973 goto out_dec_target_busy;
1976 if (!(req->cmd_flags & REQ_DONTPREP)) {
1977 ret = prep_to_mq(scsi_mq_prep_fn(req));
1978 if (ret)
1979 goto out_dec_host_busy;
1980 req->cmd_flags |= REQ_DONTPREP;
1981 } else {
1982 blk_mq_start_request(req);
1985 if (sdev->simple_tags)
1986 cmd->flags |= SCMD_TAGGED;
1987 else
1988 cmd->flags &= ~SCMD_TAGGED;
1990 scsi_init_cmd_errh(cmd);
1991 cmd->scsi_done = scsi_mq_done;
1993 reason = scsi_dispatch_cmd(cmd);
1994 if (reason) {
1995 scsi_set_blocked(cmd, reason);
1996 ret = BLK_MQ_RQ_QUEUE_BUSY;
1997 goto out_dec_host_busy;
2000 return BLK_MQ_RQ_QUEUE_OK;
2002 out_dec_host_busy:
2003 atomic_dec(&shost->host_busy);
2004 out_dec_target_busy:
2005 if (scsi_target(sdev)->can_queue > 0)
2006 atomic_dec(&scsi_target(sdev)->target_busy);
2007 out_dec_device_busy:
2008 atomic_dec(&sdev->device_busy);
2009 out_put_device:
2010 put_device(&sdev->sdev_gendev);
2011 out:
2012 switch (ret) {
2013 case BLK_MQ_RQ_QUEUE_BUSY:
2014 blk_mq_stop_hw_queue(hctx);
2015 if (atomic_read(&sdev->device_busy) == 0 &&
2016 !scsi_device_blocked(sdev))
2017 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2018 break;
2019 case BLK_MQ_RQ_QUEUE_ERROR:
2021 * Make sure to release all allocated ressources when
2022 * we hit an error, as we will never see this command
2023 * again.
2025 if (req->cmd_flags & REQ_DONTPREP)
2026 scsi_mq_uninit_cmd(cmd);
2027 break;
2028 default:
2029 break;
2031 return ret;
2034 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2035 bool reserved)
2037 if (reserved)
2038 return BLK_EH_RESET_TIMER;
2039 return scsi_times_out(req);
2042 static int scsi_init_request(void *data, struct request *rq,
2043 unsigned int hctx_idx, unsigned int request_idx,
2044 unsigned int numa_node)
2046 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2048 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2049 numa_node);
2050 if (!cmd->sense_buffer)
2051 return -ENOMEM;
2052 return 0;
2055 static void scsi_exit_request(void *data, struct request *rq,
2056 unsigned int hctx_idx, unsigned int request_idx)
2058 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2060 kfree(cmd->sense_buffer);
2063 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2065 struct device *host_dev;
2066 u64 bounce_limit = 0xffffffff;
2068 if (shost->unchecked_isa_dma)
2069 return BLK_BOUNCE_ISA;
2071 * Platforms with virtual-DMA translation
2072 * hardware have no practical limit.
2074 if (!PCI_DMA_BUS_IS_PHYS)
2075 return BLK_BOUNCE_ANY;
2077 host_dev = scsi_get_device(shost);
2078 if (host_dev && host_dev->dma_mask)
2079 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2081 return bounce_limit;
2084 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2086 struct device *dev = shost->dma_dev;
2089 * this limit is imposed by hardware restrictions
2091 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2092 SCSI_MAX_SG_CHAIN_SEGMENTS));
2094 if (scsi_host_prot_dma(shost)) {
2095 shost->sg_prot_tablesize =
2096 min_not_zero(shost->sg_prot_tablesize,
2097 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2098 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2099 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2102 blk_queue_max_hw_sectors(q, shost->max_sectors);
2103 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2104 blk_queue_segment_boundary(q, shost->dma_boundary);
2105 dma_set_seg_boundary(dev, shost->dma_boundary);
2107 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2109 if (!shost->use_clustering)
2110 q->limits.cluster = 0;
2113 * set a reasonable default alignment on word boundaries: the
2114 * host and device may alter it using
2115 * blk_queue_update_dma_alignment() later.
2117 blk_queue_dma_alignment(q, 0x03);
2120 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2121 request_fn_proc *request_fn)
2123 struct request_queue *q;
2125 q = blk_init_queue(request_fn, NULL);
2126 if (!q)
2127 return NULL;
2128 __scsi_init_queue(shost, q);
2129 return q;
2131 EXPORT_SYMBOL(__scsi_alloc_queue);
2133 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2135 struct request_queue *q;
2137 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2138 if (!q)
2139 return NULL;
2141 blk_queue_prep_rq(q, scsi_prep_fn);
2142 blk_queue_unprep_rq(q, scsi_unprep_fn);
2143 blk_queue_softirq_done(q, scsi_softirq_done);
2144 blk_queue_rq_timed_out(q, scsi_times_out);
2145 blk_queue_lld_busy(q, scsi_lld_busy);
2146 return q;
2149 static struct blk_mq_ops scsi_mq_ops = {
2150 .map_queue = blk_mq_map_queue,
2151 .queue_rq = scsi_queue_rq,
2152 .complete = scsi_softirq_done,
2153 .timeout = scsi_timeout,
2154 .init_request = scsi_init_request,
2155 .exit_request = scsi_exit_request,
2158 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2160 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2161 if (IS_ERR(sdev->request_queue))
2162 return NULL;
2164 sdev->request_queue->queuedata = sdev;
2165 __scsi_init_queue(sdev->host, sdev->request_queue);
2166 return sdev->request_queue;
2169 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2171 unsigned int cmd_size, sgl_size, tbl_size;
2173 tbl_size = shost->sg_tablesize;
2174 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2175 tbl_size = SCSI_MAX_SG_SEGMENTS;
2176 sgl_size = tbl_size * sizeof(struct scatterlist);
2177 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2178 if (scsi_host_get_prot(shost))
2179 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2181 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2182 shost->tag_set.ops = &scsi_mq_ops;
2183 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2184 shost->tag_set.queue_depth = shost->can_queue;
2185 shost->tag_set.cmd_size = cmd_size;
2186 shost->tag_set.numa_node = NUMA_NO_NODE;
2187 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2188 shost->tag_set.driver_data = shost;
2190 return blk_mq_alloc_tag_set(&shost->tag_set);
2193 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2195 blk_mq_free_tag_set(&shost->tag_set);
2199 * Function: scsi_block_requests()
2201 * Purpose: Utility function used by low-level drivers to prevent further
2202 * commands from being queued to the device.
2204 * Arguments: shost - Host in question
2206 * Returns: Nothing
2208 * Lock status: No locks are assumed held.
2210 * Notes: There is no timer nor any other means by which the requests
2211 * get unblocked other than the low-level driver calling
2212 * scsi_unblock_requests().
2214 void scsi_block_requests(struct Scsi_Host *shost)
2216 shost->host_self_blocked = 1;
2218 EXPORT_SYMBOL(scsi_block_requests);
2221 * Function: scsi_unblock_requests()
2223 * Purpose: Utility function used by low-level drivers to allow further
2224 * commands from being queued to the device.
2226 * Arguments: shost - Host in question
2228 * Returns: Nothing
2230 * Lock status: No locks are assumed held.
2232 * Notes: There is no timer nor any other means by which the requests
2233 * get unblocked other than the low-level driver calling
2234 * scsi_unblock_requests().
2236 * This is done as an API function so that changes to the
2237 * internals of the scsi mid-layer won't require wholesale
2238 * changes to drivers that use this feature.
2240 void scsi_unblock_requests(struct Scsi_Host *shost)
2242 shost->host_self_blocked = 0;
2243 scsi_run_host_queues(shost);
2245 EXPORT_SYMBOL(scsi_unblock_requests);
2247 int __init scsi_init_queue(void)
2249 int i;
2251 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2252 sizeof(struct scsi_data_buffer),
2253 0, 0, NULL);
2254 if (!scsi_sdb_cache) {
2255 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2256 return -ENOMEM;
2259 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2260 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2261 int size = sgp->size * sizeof(struct scatterlist);
2263 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2264 SLAB_HWCACHE_ALIGN, NULL);
2265 if (!sgp->slab) {
2266 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2267 sgp->name);
2268 goto cleanup_sdb;
2271 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2272 sgp->slab);
2273 if (!sgp->pool) {
2274 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2275 sgp->name);
2276 goto cleanup_sdb;
2280 return 0;
2282 cleanup_sdb:
2283 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2284 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2285 if (sgp->pool)
2286 mempool_destroy(sgp->pool);
2287 if (sgp->slab)
2288 kmem_cache_destroy(sgp->slab);
2290 kmem_cache_destroy(scsi_sdb_cache);
2292 return -ENOMEM;
2295 void scsi_exit_queue(void)
2297 int i;
2299 kmem_cache_destroy(scsi_sdb_cache);
2301 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2302 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2303 mempool_destroy(sgp->pool);
2304 kmem_cache_destroy(sgp->slab);
2309 * scsi_mode_select - issue a mode select
2310 * @sdev: SCSI device to be queried
2311 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2312 * @sp: Save page bit (0 == don't save, 1 == save)
2313 * @modepage: mode page being requested
2314 * @buffer: request buffer (may not be smaller than eight bytes)
2315 * @len: length of request buffer.
2316 * @timeout: command timeout
2317 * @retries: number of retries before failing
2318 * @data: returns a structure abstracting the mode header data
2319 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2320 * must be SCSI_SENSE_BUFFERSIZE big.
2322 * Returns zero if successful; negative error number or scsi
2323 * status on error
2327 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2328 unsigned char *buffer, int len, int timeout, int retries,
2329 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2331 unsigned char cmd[10];
2332 unsigned char *real_buffer;
2333 int ret;
2335 memset(cmd, 0, sizeof(cmd));
2336 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2338 if (sdev->use_10_for_ms) {
2339 if (len > 65535)
2340 return -EINVAL;
2341 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2342 if (!real_buffer)
2343 return -ENOMEM;
2344 memcpy(real_buffer + 8, buffer, len);
2345 len += 8;
2346 real_buffer[0] = 0;
2347 real_buffer[1] = 0;
2348 real_buffer[2] = data->medium_type;
2349 real_buffer[3] = data->device_specific;
2350 real_buffer[4] = data->longlba ? 0x01 : 0;
2351 real_buffer[5] = 0;
2352 real_buffer[6] = data->block_descriptor_length >> 8;
2353 real_buffer[7] = data->block_descriptor_length;
2355 cmd[0] = MODE_SELECT_10;
2356 cmd[7] = len >> 8;
2357 cmd[8] = len;
2358 } else {
2359 if (len > 255 || data->block_descriptor_length > 255 ||
2360 data->longlba)
2361 return -EINVAL;
2363 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2364 if (!real_buffer)
2365 return -ENOMEM;
2366 memcpy(real_buffer + 4, buffer, len);
2367 len += 4;
2368 real_buffer[0] = 0;
2369 real_buffer[1] = data->medium_type;
2370 real_buffer[2] = data->device_specific;
2371 real_buffer[3] = data->block_descriptor_length;
2374 cmd[0] = MODE_SELECT;
2375 cmd[4] = len;
2378 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2379 sshdr, timeout, retries, NULL);
2380 kfree(real_buffer);
2381 return ret;
2383 EXPORT_SYMBOL_GPL(scsi_mode_select);
2386 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2387 * @sdev: SCSI device to be queried
2388 * @dbd: set if mode sense will allow block descriptors to be returned
2389 * @modepage: mode page being requested
2390 * @buffer: request buffer (may not be smaller than eight bytes)
2391 * @len: length of request buffer.
2392 * @timeout: command timeout
2393 * @retries: number of retries before failing
2394 * @data: returns a structure abstracting the mode header data
2395 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2396 * must be SCSI_SENSE_BUFFERSIZE big.
2398 * Returns zero if unsuccessful, or the header offset (either 4
2399 * or 8 depending on whether a six or ten byte command was
2400 * issued) if successful.
2403 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2404 unsigned char *buffer, int len, int timeout, int retries,
2405 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2407 unsigned char cmd[12];
2408 int use_10_for_ms;
2409 int header_length;
2410 int result;
2411 struct scsi_sense_hdr my_sshdr;
2413 memset(data, 0, sizeof(*data));
2414 memset(&cmd[0], 0, 12);
2415 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2416 cmd[2] = modepage;
2418 /* caller might not be interested in sense, but we need it */
2419 if (!sshdr)
2420 sshdr = &my_sshdr;
2422 retry:
2423 use_10_for_ms = sdev->use_10_for_ms;
2425 if (use_10_for_ms) {
2426 if (len < 8)
2427 len = 8;
2429 cmd[0] = MODE_SENSE_10;
2430 cmd[8] = len;
2431 header_length = 8;
2432 } else {
2433 if (len < 4)
2434 len = 4;
2436 cmd[0] = MODE_SENSE;
2437 cmd[4] = len;
2438 header_length = 4;
2441 memset(buffer, 0, len);
2443 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2444 sshdr, timeout, retries, NULL);
2446 /* This code looks awful: what it's doing is making sure an
2447 * ILLEGAL REQUEST sense return identifies the actual command
2448 * byte as the problem. MODE_SENSE commands can return
2449 * ILLEGAL REQUEST if the code page isn't supported */
2451 if (use_10_for_ms && !scsi_status_is_good(result) &&
2452 (driver_byte(result) & DRIVER_SENSE)) {
2453 if (scsi_sense_valid(sshdr)) {
2454 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2455 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2457 * Invalid command operation code
2459 sdev->use_10_for_ms = 0;
2460 goto retry;
2465 if(scsi_status_is_good(result)) {
2466 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2467 (modepage == 6 || modepage == 8))) {
2468 /* Initio breakage? */
2469 header_length = 0;
2470 data->length = 13;
2471 data->medium_type = 0;
2472 data->device_specific = 0;
2473 data->longlba = 0;
2474 data->block_descriptor_length = 0;
2475 } else if(use_10_for_ms) {
2476 data->length = buffer[0]*256 + buffer[1] + 2;
2477 data->medium_type = buffer[2];
2478 data->device_specific = buffer[3];
2479 data->longlba = buffer[4] & 0x01;
2480 data->block_descriptor_length = buffer[6]*256
2481 + buffer[7];
2482 } else {
2483 data->length = buffer[0] + 1;
2484 data->medium_type = buffer[1];
2485 data->device_specific = buffer[2];
2486 data->block_descriptor_length = buffer[3];
2488 data->header_length = header_length;
2491 return result;
2493 EXPORT_SYMBOL(scsi_mode_sense);
2496 * scsi_test_unit_ready - test if unit is ready
2497 * @sdev: scsi device to change the state of.
2498 * @timeout: command timeout
2499 * @retries: number of retries before failing
2500 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2501 * returning sense. Make sure that this is cleared before passing
2502 * in.
2504 * Returns zero if unsuccessful or an error if TUR failed. For
2505 * removable media, UNIT_ATTENTION sets ->changed flag.
2508 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2509 struct scsi_sense_hdr *sshdr_external)
2511 char cmd[] = {
2512 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2514 struct scsi_sense_hdr *sshdr;
2515 int result;
2517 if (!sshdr_external)
2518 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2519 else
2520 sshdr = sshdr_external;
2522 /* try to eat the UNIT_ATTENTION if there are enough retries */
2523 do {
2524 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2525 timeout, retries, NULL);
2526 if (sdev->removable && scsi_sense_valid(sshdr) &&
2527 sshdr->sense_key == UNIT_ATTENTION)
2528 sdev->changed = 1;
2529 } while (scsi_sense_valid(sshdr) &&
2530 sshdr->sense_key == UNIT_ATTENTION && --retries);
2532 if (!sshdr_external)
2533 kfree(sshdr);
2534 return result;
2536 EXPORT_SYMBOL(scsi_test_unit_ready);
2539 * scsi_device_set_state - Take the given device through the device state model.
2540 * @sdev: scsi device to change the state of.
2541 * @state: state to change to.
2543 * Returns zero if unsuccessful or an error if the requested
2544 * transition is illegal.
2547 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2549 enum scsi_device_state oldstate = sdev->sdev_state;
2551 if (state == oldstate)
2552 return 0;
2554 switch (state) {
2555 case SDEV_CREATED:
2556 switch (oldstate) {
2557 case SDEV_CREATED_BLOCK:
2558 break;
2559 default:
2560 goto illegal;
2562 break;
2564 case SDEV_RUNNING:
2565 switch (oldstate) {
2566 case SDEV_CREATED:
2567 case SDEV_OFFLINE:
2568 case SDEV_TRANSPORT_OFFLINE:
2569 case SDEV_QUIESCE:
2570 case SDEV_BLOCK:
2571 break;
2572 default:
2573 goto illegal;
2575 break;
2577 case SDEV_QUIESCE:
2578 switch (oldstate) {
2579 case SDEV_RUNNING:
2580 case SDEV_OFFLINE:
2581 case SDEV_TRANSPORT_OFFLINE:
2582 break;
2583 default:
2584 goto illegal;
2586 break;
2588 case SDEV_OFFLINE:
2589 case SDEV_TRANSPORT_OFFLINE:
2590 switch (oldstate) {
2591 case SDEV_CREATED:
2592 case SDEV_RUNNING:
2593 case SDEV_QUIESCE:
2594 case SDEV_BLOCK:
2595 break;
2596 default:
2597 goto illegal;
2599 break;
2601 case SDEV_BLOCK:
2602 switch (oldstate) {
2603 case SDEV_RUNNING:
2604 case SDEV_CREATED_BLOCK:
2605 break;
2606 default:
2607 goto illegal;
2609 break;
2611 case SDEV_CREATED_BLOCK:
2612 switch (oldstate) {
2613 case SDEV_CREATED:
2614 break;
2615 default:
2616 goto illegal;
2618 break;
2620 case SDEV_CANCEL:
2621 switch (oldstate) {
2622 case SDEV_CREATED:
2623 case SDEV_RUNNING:
2624 case SDEV_QUIESCE:
2625 case SDEV_OFFLINE:
2626 case SDEV_TRANSPORT_OFFLINE:
2627 case SDEV_BLOCK:
2628 break;
2629 default:
2630 goto illegal;
2632 break;
2634 case SDEV_DEL:
2635 switch (oldstate) {
2636 case SDEV_CREATED:
2637 case SDEV_RUNNING:
2638 case SDEV_OFFLINE:
2639 case SDEV_TRANSPORT_OFFLINE:
2640 case SDEV_CANCEL:
2641 case SDEV_CREATED_BLOCK:
2642 break;
2643 default:
2644 goto illegal;
2646 break;
2649 sdev->sdev_state = state;
2650 return 0;
2652 illegal:
2653 SCSI_LOG_ERROR_RECOVERY(1,
2654 sdev_printk(KERN_ERR, sdev,
2655 "Illegal state transition %s->%s",
2656 scsi_device_state_name(oldstate),
2657 scsi_device_state_name(state))
2659 return -EINVAL;
2661 EXPORT_SYMBOL(scsi_device_set_state);
2664 * sdev_evt_emit - emit a single SCSI device uevent
2665 * @sdev: associated SCSI device
2666 * @evt: event to emit
2668 * Send a single uevent (scsi_event) to the associated scsi_device.
2670 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2672 int idx = 0;
2673 char *envp[3];
2675 switch (evt->evt_type) {
2676 case SDEV_EVT_MEDIA_CHANGE:
2677 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2678 break;
2679 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2680 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2681 break;
2682 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2683 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2684 break;
2685 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2686 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2687 break;
2688 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2689 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2690 break;
2691 case SDEV_EVT_LUN_CHANGE_REPORTED:
2692 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2693 break;
2694 default:
2695 /* do nothing */
2696 break;
2699 envp[idx++] = NULL;
2701 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2705 * sdev_evt_thread - send a uevent for each scsi event
2706 * @work: work struct for scsi_device
2708 * Dispatch queued events to their associated scsi_device kobjects
2709 * as uevents.
2711 void scsi_evt_thread(struct work_struct *work)
2713 struct scsi_device *sdev;
2714 enum scsi_device_event evt_type;
2715 LIST_HEAD(event_list);
2717 sdev = container_of(work, struct scsi_device, event_work);
2719 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2720 if (test_and_clear_bit(evt_type, sdev->pending_events))
2721 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2723 while (1) {
2724 struct scsi_event *evt;
2725 struct list_head *this, *tmp;
2726 unsigned long flags;
2728 spin_lock_irqsave(&sdev->list_lock, flags);
2729 list_splice_init(&sdev->event_list, &event_list);
2730 spin_unlock_irqrestore(&sdev->list_lock, flags);
2732 if (list_empty(&event_list))
2733 break;
2735 list_for_each_safe(this, tmp, &event_list) {
2736 evt = list_entry(this, struct scsi_event, node);
2737 list_del(&evt->node);
2738 scsi_evt_emit(sdev, evt);
2739 kfree(evt);
2745 * sdev_evt_send - send asserted event to uevent thread
2746 * @sdev: scsi_device event occurred on
2747 * @evt: event to send
2749 * Assert scsi device event asynchronously.
2751 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2753 unsigned long flags;
2755 #if 0
2756 /* FIXME: currently this check eliminates all media change events
2757 * for polled devices. Need to update to discriminate between AN
2758 * and polled events */
2759 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2760 kfree(evt);
2761 return;
2763 #endif
2765 spin_lock_irqsave(&sdev->list_lock, flags);
2766 list_add_tail(&evt->node, &sdev->event_list);
2767 schedule_work(&sdev->event_work);
2768 spin_unlock_irqrestore(&sdev->list_lock, flags);
2770 EXPORT_SYMBOL_GPL(sdev_evt_send);
2773 * sdev_evt_alloc - allocate a new scsi event
2774 * @evt_type: type of event to allocate
2775 * @gfpflags: GFP flags for allocation
2777 * Allocates and returns a new scsi_event.
2779 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2780 gfp_t gfpflags)
2782 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2783 if (!evt)
2784 return NULL;
2786 evt->evt_type = evt_type;
2787 INIT_LIST_HEAD(&evt->node);
2789 /* evt_type-specific initialization, if any */
2790 switch (evt_type) {
2791 case SDEV_EVT_MEDIA_CHANGE:
2792 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2793 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2794 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2795 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2796 case SDEV_EVT_LUN_CHANGE_REPORTED:
2797 default:
2798 /* do nothing */
2799 break;
2802 return evt;
2804 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2807 * sdev_evt_send_simple - send asserted event to uevent thread
2808 * @sdev: scsi_device event occurred on
2809 * @evt_type: type of event to send
2810 * @gfpflags: GFP flags for allocation
2812 * Assert scsi device event asynchronously, given an event type.
2814 void sdev_evt_send_simple(struct scsi_device *sdev,
2815 enum scsi_device_event evt_type, gfp_t gfpflags)
2817 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2818 if (!evt) {
2819 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2820 evt_type);
2821 return;
2824 sdev_evt_send(sdev, evt);
2826 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2829 * scsi_device_quiesce - Block user issued commands.
2830 * @sdev: scsi device to quiesce.
2832 * This works by trying to transition to the SDEV_QUIESCE state
2833 * (which must be a legal transition). When the device is in this
2834 * state, only special requests will be accepted, all others will
2835 * be deferred. Since special requests may also be requeued requests,
2836 * a successful return doesn't guarantee the device will be
2837 * totally quiescent.
2839 * Must be called with user context, may sleep.
2841 * Returns zero if unsuccessful or an error if not.
2844 scsi_device_quiesce(struct scsi_device *sdev)
2846 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2847 if (err)
2848 return err;
2850 scsi_run_queue(sdev->request_queue);
2851 while (atomic_read(&sdev->device_busy)) {
2852 msleep_interruptible(200);
2853 scsi_run_queue(sdev->request_queue);
2855 return 0;
2857 EXPORT_SYMBOL(scsi_device_quiesce);
2860 * scsi_device_resume - Restart user issued commands to a quiesced device.
2861 * @sdev: scsi device to resume.
2863 * Moves the device from quiesced back to running and restarts the
2864 * queues.
2866 * Must be called with user context, may sleep.
2868 void scsi_device_resume(struct scsi_device *sdev)
2870 /* check if the device state was mutated prior to resume, and if
2871 * so assume the state is being managed elsewhere (for example
2872 * device deleted during suspend)
2874 if (sdev->sdev_state != SDEV_QUIESCE ||
2875 scsi_device_set_state(sdev, SDEV_RUNNING))
2876 return;
2877 scsi_run_queue(sdev->request_queue);
2879 EXPORT_SYMBOL(scsi_device_resume);
2881 static void
2882 device_quiesce_fn(struct scsi_device *sdev, void *data)
2884 scsi_device_quiesce(sdev);
2887 void
2888 scsi_target_quiesce(struct scsi_target *starget)
2890 starget_for_each_device(starget, NULL, device_quiesce_fn);
2892 EXPORT_SYMBOL(scsi_target_quiesce);
2894 static void
2895 device_resume_fn(struct scsi_device *sdev, void *data)
2897 scsi_device_resume(sdev);
2900 void
2901 scsi_target_resume(struct scsi_target *starget)
2903 starget_for_each_device(starget, NULL, device_resume_fn);
2905 EXPORT_SYMBOL(scsi_target_resume);
2908 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2909 * @sdev: device to block
2911 * Block request made by scsi lld's to temporarily stop all
2912 * scsi commands on the specified device. Called from interrupt
2913 * or normal process context.
2915 * Returns zero if successful or error if not
2917 * Notes:
2918 * This routine transitions the device to the SDEV_BLOCK state
2919 * (which must be a legal transition). When the device is in this
2920 * state, all commands are deferred until the scsi lld reenables
2921 * the device with scsi_device_unblock or device_block_tmo fires.
2924 scsi_internal_device_block(struct scsi_device *sdev)
2926 struct request_queue *q = sdev->request_queue;
2927 unsigned long flags;
2928 int err = 0;
2930 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2931 if (err) {
2932 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2934 if (err)
2935 return err;
2939 * The device has transitioned to SDEV_BLOCK. Stop the
2940 * block layer from calling the midlayer with this device's
2941 * request queue.
2943 if (q->mq_ops) {
2944 blk_mq_stop_hw_queues(q);
2945 } else {
2946 spin_lock_irqsave(q->queue_lock, flags);
2947 blk_stop_queue(q);
2948 spin_unlock_irqrestore(q->queue_lock, flags);
2951 return 0;
2953 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2956 * scsi_internal_device_unblock - resume a device after a block request
2957 * @sdev: device to resume
2958 * @new_state: state to set devices to after unblocking
2960 * Called by scsi lld's or the midlayer to restart the device queue
2961 * for the previously suspended scsi device. Called from interrupt or
2962 * normal process context.
2964 * Returns zero if successful or error if not.
2966 * Notes:
2967 * This routine transitions the device to the SDEV_RUNNING state
2968 * or to one of the offline states (which must be a legal transition)
2969 * allowing the midlayer to goose the queue for this device.
2972 scsi_internal_device_unblock(struct scsi_device *sdev,
2973 enum scsi_device_state new_state)
2975 struct request_queue *q = sdev->request_queue;
2976 unsigned long flags;
2979 * Try to transition the scsi device to SDEV_RUNNING or one of the
2980 * offlined states and goose the device queue if successful.
2982 if ((sdev->sdev_state == SDEV_BLOCK) ||
2983 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2984 sdev->sdev_state = new_state;
2985 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2986 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2987 new_state == SDEV_OFFLINE)
2988 sdev->sdev_state = new_state;
2989 else
2990 sdev->sdev_state = SDEV_CREATED;
2991 } else if (sdev->sdev_state != SDEV_CANCEL &&
2992 sdev->sdev_state != SDEV_OFFLINE)
2993 return -EINVAL;
2995 if (q->mq_ops) {
2996 blk_mq_start_stopped_hw_queues(q, false);
2997 } else {
2998 spin_lock_irqsave(q->queue_lock, flags);
2999 blk_start_queue(q);
3000 spin_unlock_irqrestore(q->queue_lock, flags);
3003 return 0;
3005 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3007 static void
3008 device_block(struct scsi_device *sdev, void *data)
3010 scsi_internal_device_block(sdev);
3013 static int
3014 target_block(struct device *dev, void *data)
3016 if (scsi_is_target_device(dev))
3017 starget_for_each_device(to_scsi_target(dev), NULL,
3018 device_block);
3019 return 0;
3022 void
3023 scsi_target_block(struct device *dev)
3025 if (scsi_is_target_device(dev))
3026 starget_for_each_device(to_scsi_target(dev), NULL,
3027 device_block);
3028 else
3029 device_for_each_child(dev, NULL, target_block);
3031 EXPORT_SYMBOL_GPL(scsi_target_block);
3033 static void
3034 device_unblock(struct scsi_device *sdev, void *data)
3036 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3039 static int
3040 target_unblock(struct device *dev, void *data)
3042 if (scsi_is_target_device(dev))
3043 starget_for_each_device(to_scsi_target(dev), data,
3044 device_unblock);
3045 return 0;
3048 void
3049 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3051 if (scsi_is_target_device(dev))
3052 starget_for_each_device(to_scsi_target(dev), &new_state,
3053 device_unblock);
3054 else
3055 device_for_each_child(dev, &new_state, target_unblock);
3057 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3060 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3061 * @sgl: scatter-gather list
3062 * @sg_count: number of segments in sg
3063 * @offset: offset in bytes into sg, on return offset into the mapped area
3064 * @len: bytes to map, on return number of bytes mapped
3066 * Returns virtual address of the start of the mapped page
3068 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3069 size_t *offset, size_t *len)
3071 int i;
3072 size_t sg_len = 0, len_complete = 0;
3073 struct scatterlist *sg;
3074 struct page *page;
3076 WARN_ON(!irqs_disabled());
3078 for_each_sg(sgl, sg, sg_count, i) {
3079 len_complete = sg_len; /* Complete sg-entries */
3080 sg_len += sg->length;
3081 if (sg_len > *offset)
3082 break;
3085 if (unlikely(i == sg_count)) {
3086 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3087 "elements %d\n",
3088 __func__, sg_len, *offset, sg_count);
3089 WARN_ON(1);
3090 return NULL;
3093 /* Offset starting from the beginning of first page in this sg-entry */
3094 *offset = *offset - len_complete + sg->offset;
3096 /* Assumption: contiguous pages can be accessed as "page + i" */
3097 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3098 *offset &= ~PAGE_MASK;
3100 /* Bytes in this sg-entry from *offset to the end of the page */
3101 sg_len = PAGE_SIZE - *offset;
3102 if (*len > sg_len)
3103 *len = sg_len;
3105 return kmap_atomic(page);
3107 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3110 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3111 * @virt: virtual address to be unmapped
3113 void scsi_kunmap_atomic_sg(void *virt)
3115 kunmap_atomic(virt);
3117 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3119 void sdev_disable_disk_events(struct scsi_device *sdev)
3121 atomic_inc(&sdev->disk_events_disable_depth);
3123 EXPORT_SYMBOL(sdev_disable_disk_events);
3125 void sdev_enable_disk_events(struct scsi_device *sdev)
3127 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3128 return;
3129 atomic_dec(&sdev->disk_events_disable_depth);
3131 EXPORT_SYMBOL(sdev_enable_disk_events);