mm/zsmalloc: allocate exactly size of struct zs_pool
[linux/fpc-iii.git] / mm / zsmalloc.c
blob4d0a063145ec45647a65654dd09388e8b7936fde
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
56 * For _first_ page only:
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
103 #define ZS_ALIGN 8
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
120 * This is made more complicated by various memory models and PAE.
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
160 * We do not maintain any list for completely empty or full pages
162 enum fullness_group {
163 ZS_ALMOST_FULL,
164 ZS_ALMOST_EMPTY,
165 _ZS_NR_FULLNESS_GROUPS,
167 ZS_EMPTY,
168 ZS_FULL
172 * number of size_classes
174 static int zs_size_classes;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac = 4;
192 struct size_class {
194 * Size of objects stored in this class. Must be multiple
195 * of ZS_ALIGN.
197 int size;
198 unsigned int index;
200 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
201 int pages_per_zspage;
203 spinlock_t lock;
205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, first_page->freelist gives head of this list.
212 * This must be power of 2 and less than or equal to ZS_ALIGN
214 struct link_free {
215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 void *next;
219 struct zs_pool {
220 struct size_class **size_class;
222 gfp_t flags; /* allocation flags used when growing pool */
223 atomic_long_t pages_allocated;
227 * A zspage's class index and fullness group
228 * are encoded in its (first)page->mapping
230 #define CLASS_IDX_BITS 28
231 #define FULLNESS_BITS 4
232 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
233 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
235 struct mapping_area {
236 #ifdef CONFIG_PGTABLE_MAPPING
237 struct vm_struct *vm; /* vm area for mapping object that span pages */
238 #else
239 char *vm_buf; /* copy buffer for objects that span pages */
240 #endif
241 char *vm_addr; /* address of kmap_atomic()'ed pages */
242 enum zs_mapmode vm_mm; /* mapping mode */
245 /* zpool driver */
247 #ifdef CONFIG_ZPOOL
249 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
251 return zs_create_pool(gfp);
254 static void zs_zpool_destroy(void *pool)
256 zs_destroy_pool(pool);
259 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
260 unsigned long *handle)
262 *handle = zs_malloc(pool, size);
263 return *handle ? 0 : -1;
265 static void zs_zpool_free(void *pool, unsigned long handle)
267 zs_free(pool, handle);
270 static int zs_zpool_shrink(void *pool, unsigned int pages,
271 unsigned int *reclaimed)
273 return -EINVAL;
276 static void *zs_zpool_map(void *pool, unsigned long handle,
277 enum zpool_mapmode mm)
279 enum zs_mapmode zs_mm;
281 switch (mm) {
282 case ZPOOL_MM_RO:
283 zs_mm = ZS_MM_RO;
284 break;
285 case ZPOOL_MM_WO:
286 zs_mm = ZS_MM_WO;
287 break;
288 case ZPOOL_MM_RW: /* fallthru */
289 default:
290 zs_mm = ZS_MM_RW;
291 break;
294 return zs_map_object(pool, handle, zs_mm);
296 static void zs_zpool_unmap(void *pool, unsigned long handle)
298 zs_unmap_object(pool, handle);
301 static u64 zs_zpool_total_size(void *pool)
303 return zs_get_total_pages(pool) << PAGE_SHIFT;
306 static struct zpool_driver zs_zpool_driver = {
307 .type = "zsmalloc",
308 .owner = THIS_MODULE,
309 .create = zs_zpool_create,
310 .destroy = zs_zpool_destroy,
311 .malloc = zs_zpool_malloc,
312 .free = zs_zpool_free,
313 .shrink = zs_zpool_shrink,
314 .map = zs_zpool_map,
315 .unmap = zs_zpool_unmap,
316 .total_size = zs_zpool_total_size,
319 MODULE_ALIAS("zpool-zsmalloc");
320 #endif /* CONFIG_ZPOOL */
322 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
323 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
325 static int is_first_page(struct page *page)
327 return PagePrivate(page);
330 static int is_last_page(struct page *page)
332 return PagePrivate2(page);
335 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
336 enum fullness_group *fullness)
338 unsigned long m;
339 BUG_ON(!is_first_page(page));
341 m = (unsigned long)page->mapping;
342 *fullness = m & FULLNESS_MASK;
343 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
346 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
347 enum fullness_group fullness)
349 unsigned long m;
350 BUG_ON(!is_first_page(page));
352 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
353 (fullness & FULLNESS_MASK);
354 page->mapping = (struct address_space *)m;
358 * zsmalloc divides the pool into various size classes where each
359 * class maintains a list of zspages where each zspage is divided
360 * into equal sized chunks. Each allocation falls into one of these
361 * classes depending on its size. This function returns index of the
362 * size class which has chunk size big enough to hold the give size.
364 static int get_size_class_index(int size)
366 int idx = 0;
368 if (likely(size > ZS_MIN_ALLOC_SIZE))
369 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
370 ZS_SIZE_CLASS_DELTA);
372 return idx;
376 * For each size class, zspages are divided into different groups
377 * depending on how "full" they are. This was done so that we could
378 * easily find empty or nearly empty zspages when we try to shrink
379 * the pool (not yet implemented). This function returns fullness
380 * status of the given page.
382 static enum fullness_group get_fullness_group(struct page *page)
384 int inuse, max_objects;
385 enum fullness_group fg;
386 BUG_ON(!is_first_page(page));
388 inuse = page->inuse;
389 max_objects = page->objects;
391 if (inuse == 0)
392 fg = ZS_EMPTY;
393 else if (inuse == max_objects)
394 fg = ZS_FULL;
395 else if (inuse <= max_objects / fullness_threshold_frac)
396 fg = ZS_ALMOST_EMPTY;
397 else
398 fg = ZS_ALMOST_FULL;
400 return fg;
404 * Each size class maintains various freelists and zspages are assigned
405 * to one of these freelists based on the number of live objects they
406 * have. This functions inserts the given zspage into the freelist
407 * identified by <class, fullness_group>.
409 static void insert_zspage(struct page *page, struct size_class *class,
410 enum fullness_group fullness)
412 struct page **head;
414 BUG_ON(!is_first_page(page));
416 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
417 return;
419 head = &class->fullness_list[fullness];
420 if (*head)
421 list_add_tail(&page->lru, &(*head)->lru);
423 *head = page;
427 * This function removes the given zspage from the freelist identified
428 * by <class, fullness_group>.
430 static void remove_zspage(struct page *page, struct size_class *class,
431 enum fullness_group fullness)
433 struct page **head;
435 BUG_ON(!is_first_page(page));
437 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
438 return;
440 head = &class->fullness_list[fullness];
441 BUG_ON(!*head);
442 if (list_empty(&(*head)->lru))
443 *head = NULL;
444 else if (*head == page)
445 *head = (struct page *)list_entry((*head)->lru.next,
446 struct page, lru);
448 list_del_init(&page->lru);
452 * Each size class maintains zspages in different fullness groups depending
453 * on the number of live objects they contain. When allocating or freeing
454 * objects, the fullness status of the page can change, say, from ALMOST_FULL
455 * to ALMOST_EMPTY when freeing an object. This function checks if such
456 * a status change has occurred for the given page and accordingly moves the
457 * page from the freelist of the old fullness group to that of the new
458 * fullness group.
460 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
461 struct page *page)
463 int class_idx;
464 struct size_class *class;
465 enum fullness_group currfg, newfg;
467 BUG_ON(!is_first_page(page));
469 get_zspage_mapping(page, &class_idx, &currfg);
470 newfg = get_fullness_group(page);
471 if (newfg == currfg)
472 goto out;
474 class = pool->size_class[class_idx];
475 remove_zspage(page, class, currfg);
476 insert_zspage(page, class, newfg);
477 set_zspage_mapping(page, class_idx, newfg);
479 out:
480 return newfg;
484 * We have to decide on how many pages to link together
485 * to form a zspage for each size class. This is important
486 * to reduce wastage due to unusable space left at end of
487 * each zspage which is given as:
488 * wastage = Zp - Zp % size_class
489 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
491 * For example, for size class of 3/8 * PAGE_SIZE, we should
492 * link together 3 PAGE_SIZE sized pages to form a zspage
493 * since then we can perfectly fit in 8 such objects.
495 static int get_pages_per_zspage(int class_size)
497 int i, max_usedpc = 0;
498 /* zspage order which gives maximum used size per KB */
499 int max_usedpc_order = 1;
501 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
502 int zspage_size;
503 int waste, usedpc;
505 zspage_size = i * PAGE_SIZE;
506 waste = zspage_size % class_size;
507 usedpc = (zspage_size - waste) * 100 / zspage_size;
509 if (usedpc > max_usedpc) {
510 max_usedpc = usedpc;
511 max_usedpc_order = i;
515 return max_usedpc_order;
519 * A single 'zspage' is composed of many system pages which are
520 * linked together using fields in struct page. This function finds
521 * the first/head page, given any component page of a zspage.
523 static struct page *get_first_page(struct page *page)
525 if (is_first_page(page))
526 return page;
527 else
528 return page->first_page;
531 static struct page *get_next_page(struct page *page)
533 struct page *next;
535 if (is_last_page(page))
536 next = NULL;
537 else if (is_first_page(page))
538 next = (struct page *)page_private(page);
539 else
540 next = list_entry(page->lru.next, struct page, lru);
542 return next;
546 * Encode <page, obj_idx> as a single handle value.
547 * On hardware platforms with physical memory starting at 0x0 the pfn
548 * could be 0 so we ensure that the handle will never be 0 by adjusting the
549 * encoded obj_idx value before encoding.
551 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
553 unsigned long handle;
555 if (!page) {
556 BUG_ON(obj_idx);
557 return NULL;
560 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
561 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
563 return (void *)handle;
567 * Decode <page, obj_idx> pair from the given object handle. We adjust the
568 * decoded obj_idx back to its original value since it was adjusted in
569 * obj_location_to_handle().
571 static void obj_handle_to_location(unsigned long handle, struct page **page,
572 unsigned long *obj_idx)
574 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
575 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
578 static unsigned long obj_idx_to_offset(struct page *page,
579 unsigned long obj_idx, int class_size)
581 unsigned long off = 0;
583 if (!is_first_page(page))
584 off = page->index;
586 return off + obj_idx * class_size;
589 static void reset_page(struct page *page)
591 clear_bit(PG_private, &page->flags);
592 clear_bit(PG_private_2, &page->flags);
593 set_page_private(page, 0);
594 page->mapping = NULL;
595 page->freelist = NULL;
596 page_mapcount_reset(page);
599 static void free_zspage(struct page *first_page)
601 struct page *nextp, *tmp, *head_extra;
603 BUG_ON(!is_first_page(first_page));
604 BUG_ON(first_page->inuse);
606 head_extra = (struct page *)page_private(first_page);
608 reset_page(first_page);
609 __free_page(first_page);
611 /* zspage with only 1 system page */
612 if (!head_extra)
613 return;
615 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
616 list_del(&nextp->lru);
617 reset_page(nextp);
618 __free_page(nextp);
620 reset_page(head_extra);
621 __free_page(head_extra);
624 /* Initialize a newly allocated zspage */
625 static void init_zspage(struct page *first_page, struct size_class *class)
627 unsigned long off = 0;
628 struct page *page = first_page;
630 BUG_ON(!is_first_page(first_page));
631 while (page) {
632 struct page *next_page;
633 struct link_free *link;
634 unsigned int i = 1;
635 void *vaddr;
638 * page->index stores offset of first object starting
639 * in the page. For the first page, this is always 0,
640 * so we use first_page->index (aka ->freelist) to store
641 * head of corresponding zspage's freelist.
643 if (page != first_page)
644 page->index = off;
646 vaddr = kmap_atomic(page);
647 link = (struct link_free *)vaddr + off / sizeof(*link);
649 while ((off += class->size) < PAGE_SIZE) {
650 link->next = obj_location_to_handle(page, i++);
651 link += class->size / sizeof(*link);
655 * We now come to the last (full or partial) object on this
656 * page, which must point to the first object on the next
657 * page (if present)
659 next_page = get_next_page(page);
660 link->next = obj_location_to_handle(next_page, 0);
661 kunmap_atomic(vaddr);
662 page = next_page;
663 off %= PAGE_SIZE;
668 * Allocate a zspage for the given size class
670 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
672 int i, error;
673 struct page *first_page = NULL, *uninitialized_var(prev_page);
676 * Allocate individual pages and link them together as:
677 * 1. first page->private = first sub-page
678 * 2. all sub-pages are linked together using page->lru
679 * 3. each sub-page is linked to the first page using page->first_page
681 * For each size class, First/Head pages are linked together using
682 * page->lru. Also, we set PG_private to identify the first page
683 * (i.e. no other sub-page has this flag set) and PG_private_2 to
684 * identify the last page.
686 error = -ENOMEM;
687 for (i = 0; i < class->pages_per_zspage; i++) {
688 struct page *page;
690 page = alloc_page(flags);
691 if (!page)
692 goto cleanup;
694 INIT_LIST_HEAD(&page->lru);
695 if (i == 0) { /* first page */
696 SetPagePrivate(page);
697 set_page_private(page, 0);
698 first_page = page;
699 first_page->inuse = 0;
701 if (i == 1)
702 set_page_private(first_page, (unsigned long)page);
703 if (i >= 1)
704 page->first_page = first_page;
705 if (i >= 2)
706 list_add(&page->lru, &prev_page->lru);
707 if (i == class->pages_per_zspage - 1) /* last page */
708 SetPagePrivate2(page);
709 prev_page = page;
712 init_zspage(first_page, class);
714 first_page->freelist = obj_location_to_handle(first_page, 0);
715 /* Maximum number of objects we can store in this zspage */
716 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
718 error = 0; /* Success */
720 cleanup:
721 if (unlikely(error) && first_page) {
722 free_zspage(first_page);
723 first_page = NULL;
726 return first_page;
729 static struct page *find_get_zspage(struct size_class *class)
731 int i;
732 struct page *page;
734 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
735 page = class->fullness_list[i];
736 if (page)
737 break;
740 return page;
743 #ifdef CONFIG_PGTABLE_MAPPING
744 static inline int __zs_cpu_up(struct mapping_area *area)
747 * Make sure we don't leak memory if a cpu UP notification
748 * and zs_init() race and both call zs_cpu_up() on the same cpu
750 if (area->vm)
751 return 0;
752 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
753 if (!area->vm)
754 return -ENOMEM;
755 return 0;
758 static inline void __zs_cpu_down(struct mapping_area *area)
760 if (area->vm)
761 free_vm_area(area->vm);
762 area->vm = NULL;
765 static inline void *__zs_map_object(struct mapping_area *area,
766 struct page *pages[2], int off, int size)
768 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
769 area->vm_addr = area->vm->addr;
770 return area->vm_addr + off;
773 static inline void __zs_unmap_object(struct mapping_area *area,
774 struct page *pages[2], int off, int size)
776 unsigned long addr = (unsigned long)area->vm_addr;
778 unmap_kernel_range(addr, PAGE_SIZE * 2);
781 #else /* CONFIG_PGTABLE_MAPPING */
783 static inline int __zs_cpu_up(struct mapping_area *area)
786 * Make sure we don't leak memory if a cpu UP notification
787 * and zs_init() race and both call zs_cpu_up() on the same cpu
789 if (area->vm_buf)
790 return 0;
791 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
792 if (!area->vm_buf)
793 return -ENOMEM;
794 return 0;
797 static inline void __zs_cpu_down(struct mapping_area *area)
799 kfree(area->vm_buf);
800 area->vm_buf = NULL;
803 static void *__zs_map_object(struct mapping_area *area,
804 struct page *pages[2], int off, int size)
806 int sizes[2];
807 void *addr;
808 char *buf = area->vm_buf;
810 /* disable page faults to match kmap_atomic() return conditions */
811 pagefault_disable();
813 /* no read fastpath */
814 if (area->vm_mm == ZS_MM_WO)
815 goto out;
817 sizes[0] = PAGE_SIZE - off;
818 sizes[1] = size - sizes[0];
820 /* copy object to per-cpu buffer */
821 addr = kmap_atomic(pages[0]);
822 memcpy(buf, addr + off, sizes[0]);
823 kunmap_atomic(addr);
824 addr = kmap_atomic(pages[1]);
825 memcpy(buf + sizes[0], addr, sizes[1]);
826 kunmap_atomic(addr);
827 out:
828 return area->vm_buf;
831 static void __zs_unmap_object(struct mapping_area *area,
832 struct page *pages[2], int off, int size)
834 int sizes[2];
835 void *addr;
836 char *buf = area->vm_buf;
838 /* no write fastpath */
839 if (area->vm_mm == ZS_MM_RO)
840 goto out;
842 sizes[0] = PAGE_SIZE - off;
843 sizes[1] = size - sizes[0];
845 /* copy per-cpu buffer to object */
846 addr = kmap_atomic(pages[0]);
847 memcpy(addr + off, buf, sizes[0]);
848 kunmap_atomic(addr);
849 addr = kmap_atomic(pages[1]);
850 memcpy(addr, buf + sizes[0], sizes[1]);
851 kunmap_atomic(addr);
853 out:
854 /* enable page faults to match kunmap_atomic() return conditions */
855 pagefault_enable();
858 #endif /* CONFIG_PGTABLE_MAPPING */
860 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
861 void *pcpu)
863 int ret, cpu = (long)pcpu;
864 struct mapping_area *area;
866 switch (action) {
867 case CPU_UP_PREPARE:
868 area = &per_cpu(zs_map_area, cpu);
869 ret = __zs_cpu_up(area);
870 if (ret)
871 return notifier_from_errno(ret);
872 break;
873 case CPU_DEAD:
874 case CPU_UP_CANCELED:
875 area = &per_cpu(zs_map_area, cpu);
876 __zs_cpu_down(area);
877 break;
880 return NOTIFY_OK;
883 static struct notifier_block zs_cpu_nb = {
884 .notifier_call = zs_cpu_notifier
887 static void zs_unregister_cpu_notifier(void)
889 int cpu;
891 cpu_notifier_register_begin();
893 for_each_online_cpu(cpu)
894 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
895 __unregister_cpu_notifier(&zs_cpu_nb);
897 cpu_notifier_register_done();
900 static int zs_register_cpu_notifier(void)
902 int cpu, uninitialized_var(ret);
904 cpu_notifier_register_begin();
906 __register_cpu_notifier(&zs_cpu_nb);
907 for_each_online_cpu(cpu) {
908 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
909 if (notifier_to_errno(ret))
910 break;
913 cpu_notifier_register_done();
914 return notifier_to_errno(ret);
917 static void init_zs_size_classes(void)
919 int nr;
921 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
922 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
923 nr += 1;
925 zs_size_classes = nr;
928 static void __exit zs_exit(void)
930 #ifdef CONFIG_ZPOOL
931 zpool_unregister_driver(&zs_zpool_driver);
932 #endif
933 zs_unregister_cpu_notifier();
936 static int __init zs_init(void)
938 int ret = zs_register_cpu_notifier();
940 if (ret) {
941 zs_unregister_cpu_notifier();
942 return ret;
945 init_zs_size_classes();
947 #ifdef CONFIG_ZPOOL
948 zpool_register_driver(&zs_zpool_driver);
949 #endif
950 return 0;
953 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
955 return pages_per_zspage * PAGE_SIZE / size;
958 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
960 if (prev->pages_per_zspage != pages_per_zspage)
961 return false;
963 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
964 != get_maxobj_per_zspage(size, pages_per_zspage))
965 return false;
967 return true;
971 * zs_create_pool - Creates an allocation pool to work from.
972 * @flags: allocation flags used to allocate pool metadata
974 * This function must be called before anything when using
975 * the zsmalloc allocator.
977 * On success, a pointer to the newly created pool is returned,
978 * otherwise NULL.
980 struct zs_pool *zs_create_pool(gfp_t flags)
982 int i;
983 struct zs_pool *pool;
984 struct size_class *prev_class = NULL;
986 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
987 if (!pool)
988 return NULL;
990 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
991 GFP_KERNEL);
992 if (!pool->size_class) {
993 kfree(pool);
994 return NULL;
998 * Iterate reversly, because, size of size_class that we want to use
999 * for merging should be larger or equal to current size.
1001 for (i = zs_size_classes - 1; i >= 0; i--) {
1002 int size;
1003 int pages_per_zspage;
1004 struct size_class *class;
1006 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1007 if (size > ZS_MAX_ALLOC_SIZE)
1008 size = ZS_MAX_ALLOC_SIZE;
1009 pages_per_zspage = get_pages_per_zspage(size);
1012 * size_class is used for normal zsmalloc operation such
1013 * as alloc/free for that size. Although it is natural that we
1014 * have one size_class for each size, there is a chance that we
1015 * can get more memory utilization if we use one size_class for
1016 * many different sizes whose size_class have same
1017 * characteristics. So, we makes size_class point to
1018 * previous size_class if possible.
1020 if (prev_class) {
1021 if (can_merge(prev_class, size, pages_per_zspage)) {
1022 pool->size_class[i] = prev_class;
1023 continue;
1027 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1028 if (!class)
1029 goto err;
1031 class->size = size;
1032 class->index = i;
1033 class->pages_per_zspage = pages_per_zspage;
1034 spin_lock_init(&class->lock);
1035 pool->size_class[i] = class;
1037 prev_class = class;
1040 pool->flags = flags;
1042 return pool;
1044 err:
1045 zs_destroy_pool(pool);
1046 return NULL;
1048 EXPORT_SYMBOL_GPL(zs_create_pool);
1050 void zs_destroy_pool(struct zs_pool *pool)
1052 int i;
1054 for (i = 0; i < zs_size_classes; i++) {
1055 int fg;
1056 struct size_class *class = pool->size_class[i];
1058 if (!class)
1059 continue;
1061 if (class->index != i)
1062 continue;
1064 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1065 if (class->fullness_list[fg]) {
1066 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1067 class->size, fg);
1070 kfree(class);
1073 kfree(pool->size_class);
1074 kfree(pool);
1076 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1079 * zs_malloc - Allocate block of given size from pool.
1080 * @pool: pool to allocate from
1081 * @size: size of block to allocate
1083 * On success, handle to the allocated object is returned,
1084 * otherwise 0.
1085 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1087 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1089 unsigned long obj;
1090 struct link_free *link;
1091 struct size_class *class;
1092 void *vaddr;
1094 struct page *first_page, *m_page;
1095 unsigned long m_objidx, m_offset;
1097 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1098 return 0;
1100 class = pool->size_class[get_size_class_index(size)];
1102 spin_lock(&class->lock);
1103 first_page = find_get_zspage(class);
1105 if (!first_page) {
1106 spin_unlock(&class->lock);
1107 first_page = alloc_zspage(class, pool->flags);
1108 if (unlikely(!first_page))
1109 return 0;
1111 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1112 atomic_long_add(class->pages_per_zspage,
1113 &pool->pages_allocated);
1114 spin_lock(&class->lock);
1117 obj = (unsigned long)first_page->freelist;
1118 obj_handle_to_location(obj, &m_page, &m_objidx);
1119 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1121 vaddr = kmap_atomic(m_page);
1122 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1123 first_page->freelist = link->next;
1124 memset(link, POISON_INUSE, sizeof(*link));
1125 kunmap_atomic(vaddr);
1127 first_page->inuse++;
1128 /* Now move the zspage to another fullness group, if required */
1129 fix_fullness_group(pool, first_page);
1130 spin_unlock(&class->lock);
1132 return obj;
1134 EXPORT_SYMBOL_GPL(zs_malloc);
1136 void zs_free(struct zs_pool *pool, unsigned long obj)
1138 struct link_free *link;
1139 struct page *first_page, *f_page;
1140 unsigned long f_objidx, f_offset;
1141 void *vaddr;
1143 int class_idx;
1144 struct size_class *class;
1145 enum fullness_group fullness;
1147 if (unlikely(!obj))
1148 return;
1150 obj_handle_to_location(obj, &f_page, &f_objidx);
1151 first_page = get_first_page(f_page);
1153 get_zspage_mapping(first_page, &class_idx, &fullness);
1154 class = pool->size_class[class_idx];
1155 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1157 spin_lock(&class->lock);
1159 /* Insert this object in containing zspage's freelist */
1160 vaddr = kmap_atomic(f_page);
1161 link = (struct link_free *)(vaddr + f_offset);
1162 link->next = first_page->freelist;
1163 kunmap_atomic(vaddr);
1164 first_page->freelist = (void *)obj;
1166 first_page->inuse--;
1167 fullness = fix_fullness_group(pool, first_page);
1168 spin_unlock(&class->lock);
1170 if (fullness == ZS_EMPTY) {
1171 atomic_long_sub(class->pages_per_zspage,
1172 &pool->pages_allocated);
1173 free_zspage(first_page);
1176 EXPORT_SYMBOL_GPL(zs_free);
1179 * zs_map_object - get address of allocated object from handle.
1180 * @pool: pool from which the object was allocated
1181 * @handle: handle returned from zs_malloc
1183 * Before using an object allocated from zs_malloc, it must be mapped using
1184 * this function. When done with the object, it must be unmapped using
1185 * zs_unmap_object.
1187 * Only one object can be mapped per cpu at a time. There is no protection
1188 * against nested mappings.
1190 * This function returns with preemption and page faults disabled.
1192 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1193 enum zs_mapmode mm)
1195 struct page *page;
1196 unsigned long obj_idx, off;
1198 unsigned int class_idx;
1199 enum fullness_group fg;
1200 struct size_class *class;
1201 struct mapping_area *area;
1202 struct page *pages[2];
1204 BUG_ON(!handle);
1207 * Because we use per-cpu mapping areas shared among the
1208 * pools/users, we can't allow mapping in interrupt context
1209 * because it can corrupt another users mappings.
1211 BUG_ON(in_interrupt());
1213 obj_handle_to_location(handle, &page, &obj_idx);
1214 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1215 class = pool->size_class[class_idx];
1216 off = obj_idx_to_offset(page, obj_idx, class->size);
1218 area = &get_cpu_var(zs_map_area);
1219 area->vm_mm = mm;
1220 if (off + class->size <= PAGE_SIZE) {
1221 /* this object is contained entirely within a page */
1222 area->vm_addr = kmap_atomic(page);
1223 return area->vm_addr + off;
1226 /* this object spans two pages */
1227 pages[0] = page;
1228 pages[1] = get_next_page(page);
1229 BUG_ON(!pages[1]);
1231 return __zs_map_object(area, pages, off, class->size);
1233 EXPORT_SYMBOL_GPL(zs_map_object);
1235 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1237 struct page *page;
1238 unsigned long obj_idx, off;
1240 unsigned int class_idx;
1241 enum fullness_group fg;
1242 struct size_class *class;
1243 struct mapping_area *area;
1245 BUG_ON(!handle);
1247 obj_handle_to_location(handle, &page, &obj_idx);
1248 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1249 class = pool->size_class[class_idx];
1250 off = obj_idx_to_offset(page, obj_idx, class->size);
1252 area = this_cpu_ptr(&zs_map_area);
1253 if (off + class->size <= PAGE_SIZE)
1254 kunmap_atomic(area->vm_addr);
1255 else {
1256 struct page *pages[2];
1258 pages[0] = page;
1259 pages[1] = get_next_page(page);
1260 BUG_ON(!pages[1]);
1262 __zs_unmap_object(area, pages, off, class->size);
1264 put_cpu_var(zs_map_area);
1266 EXPORT_SYMBOL_GPL(zs_unmap_object);
1268 unsigned long zs_get_total_pages(struct zs_pool *pool)
1270 return atomic_long_read(&pool->pages_allocated);
1272 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1274 module_init(zs_init);
1275 module_exit(zs_exit);
1277 MODULE_LICENSE("Dual BSD/GPL");
1278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");