2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
56 * For _first_ page only:
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
75 #ifdef CONFIG_ZSMALLOC_DEBUG
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
120 * This is made more complicated by various memory models and PAE.
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
145 * On systems with 4K page size, this gives 255 size classes! There is a
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
160 * We do not maintain any list for completely empty or full pages
162 enum fullness_group
{
165 _ZS_NR_FULLNESS_GROUPS
,
172 * number of size_classes
174 static int zs_size_classes
;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac
= 4;
194 * Size of objects stored in this class. Must be multiple
200 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
201 int pages_per_zspage
;
205 struct page
*fullness_list
[_ZS_NR_FULLNESS_GROUPS
];
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, first_page->freelist gives head of this list.
212 * This must be power of 2 and less than or equal to ZS_ALIGN
215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
220 struct size_class
**size_class
;
222 gfp_t flags
; /* allocation flags used when growing pool */
223 atomic_long_t pages_allocated
;
227 * A zspage's class index and fullness group
228 * are encoded in its (first)page->mapping
230 #define CLASS_IDX_BITS 28
231 #define FULLNESS_BITS 4
232 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
233 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
235 struct mapping_area
{
236 #ifdef CONFIG_PGTABLE_MAPPING
237 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
239 char *vm_buf
; /* copy buffer for objects that span pages */
241 char *vm_addr
; /* address of kmap_atomic()'ed pages */
242 enum zs_mapmode vm_mm
; /* mapping mode */
249 static void *zs_zpool_create(gfp_t gfp
, struct zpool_ops
*zpool_ops
)
251 return zs_create_pool(gfp
);
254 static void zs_zpool_destroy(void *pool
)
256 zs_destroy_pool(pool
);
259 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
260 unsigned long *handle
)
262 *handle
= zs_malloc(pool
, size
);
263 return *handle
? 0 : -1;
265 static void zs_zpool_free(void *pool
, unsigned long handle
)
267 zs_free(pool
, handle
);
270 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
271 unsigned int *reclaimed
)
276 static void *zs_zpool_map(void *pool
, unsigned long handle
,
277 enum zpool_mapmode mm
)
279 enum zs_mapmode zs_mm
;
288 case ZPOOL_MM_RW
: /* fallthru */
294 return zs_map_object(pool
, handle
, zs_mm
);
296 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
298 zs_unmap_object(pool
, handle
);
301 static u64
zs_zpool_total_size(void *pool
)
303 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
306 static struct zpool_driver zs_zpool_driver
= {
308 .owner
= THIS_MODULE
,
309 .create
= zs_zpool_create
,
310 .destroy
= zs_zpool_destroy
,
311 .malloc
= zs_zpool_malloc
,
312 .free
= zs_zpool_free
,
313 .shrink
= zs_zpool_shrink
,
315 .unmap
= zs_zpool_unmap
,
316 .total_size
= zs_zpool_total_size
,
319 MODULE_ALIAS("zpool-zsmalloc");
320 #endif /* CONFIG_ZPOOL */
322 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
323 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
325 static int is_first_page(struct page
*page
)
327 return PagePrivate(page
);
330 static int is_last_page(struct page
*page
)
332 return PagePrivate2(page
);
335 static void get_zspage_mapping(struct page
*page
, unsigned int *class_idx
,
336 enum fullness_group
*fullness
)
339 BUG_ON(!is_first_page(page
));
341 m
= (unsigned long)page
->mapping
;
342 *fullness
= m
& FULLNESS_MASK
;
343 *class_idx
= (m
>> FULLNESS_BITS
) & CLASS_IDX_MASK
;
346 static void set_zspage_mapping(struct page
*page
, unsigned int class_idx
,
347 enum fullness_group fullness
)
350 BUG_ON(!is_first_page(page
));
352 m
= ((class_idx
& CLASS_IDX_MASK
) << FULLNESS_BITS
) |
353 (fullness
& FULLNESS_MASK
);
354 page
->mapping
= (struct address_space
*)m
;
358 * zsmalloc divides the pool into various size classes where each
359 * class maintains a list of zspages where each zspage is divided
360 * into equal sized chunks. Each allocation falls into one of these
361 * classes depending on its size. This function returns index of the
362 * size class which has chunk size big enough to hold the give size.
364 static int get_size_class_index(int size
)
368 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
369 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
370 ZS_SIZE_CLASS_DELTA
);
376 * For each size class, zspages are divided into different groups
377 * depending on how "full" they are. This was done so that we could
378 * easily find empty or nearly empty zspages when we try to shrink
379 * the pool (not yet implemented). This function returns fullness
380 * status of the given page.
382 static enum fullness_group
get_fullness_group(struct page
*page
)
384 int inuse
, max_objects
;
385 enum fullness_group fg
;
386 BUG_ON(!is_first_page(page
));
389 max_objects
= page
->objects
;
393 else if (inuse
== max_objects
)
395 else if (inuse
<= max_objects
/ fullness_threshold_frac
)
396 fg
= ZS_ALMOST_EMPTY
;
404 * Each size class maintains various freelists and zspages are assigned
405 * to one of these freelists based on the number of live objects they
406 * have. This functions inserts the given zspage into the freelist
407 * identified by <class, fullness_group>.
409 static void insert_zspage(struct page
*page
, struct size_class
*class,
410 enum fullness_group fullness
)
414 BUG_ON(!is_first_page(page
));
416 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
419 head
= &class->fullness_list
[fullness
];
421 list_add_tail(&page
->lru
, &(*head
)->lru
);
427 * This function removes the given zspage from the freelist identified
428 * by <class, fullness_group>.
430 static void remove_zspage(struct page
*page
, struct size_class
*class,
431 enum fullness_group fullness
)
435 BUG_ON(!is_first_page(page
));
437 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
440 head
= &class->fullness_list
[fullness
];
442 if (list_empty(&(*head
)->lru
))
444 else if (*head
== page
)
445 *head
= (struct page
*)list_entry((*head
)->lru
.next
,
448 list_del_init(&page
->lru
);
452 * Each size class maintains zspages in different fullness groups depending
453 * on the number of live objects they contain. When allocating or freeing
454 * objects, the fullness status of the page can change, say, from ALMOST_FULL
455 * to ALMOST_EMPTY when freeing an object. This function checks if such
456 * a status change has occurred for the given page and accordingly moves the
457 * page from the freelist of the old fullness group to that of the new
460 static enum fullness_group
fix_fullness_group(struct zs_pool
*pool
,
464 struct size_class
*class;
465 enum fullness_group currfg
, newfg
;
467 BUG_ON(!is_first_page(page
));
469 get_zspage_mapping(page
, &class_idx
, &currfg
);
470 newfg
= get_fullness_group(page
);
474 class = pool
->size_class
[class_idx
];
475 remove_zspage(page
, class, currfg
);
476 insert_zspage(page
, class, newfg
);
477 set_zspage_mapping(page
, class_idx
, newfg
);
484 * We have to decide on how many pages to link together
485 * to form a zspage for each size class. This is important
486 * to reduce wastage due to unusable space left at end of
487 * each zspage which is given as:
488 * wastage = Zp - Zp % size_class
489 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
491 * For example, for size class of 3/8 * PAGE_SIZE, we should
492 * link together 3 PAGE_SIZE sized pages to form a zspage
493 * since then we can perfectly fit in 8 such objects.
495 static int get_pages_per_zspage(int class_size
)
497 int i
, max_usedpc
= 0;
498 /* zspage order which gives maximum used size per KB */
499 int max_usedpc_order
= 1;
501 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
505 zspage_size
= i
* PAGE_SIZE
;
506 waste
= zspage_size
% class_size
;
507 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
509 if (usedpc
> max_usedpc
) {
511 max_usedpc_order
= i
;
515 return max_usedpc_order
;
519 * A single 'zspage' is composed of many system pages which are
520 * linked together using fields in struct page. This function finds
521 * the first/head page, given any component page of a zspage.
523 static struct page
*get_first_page(struct page
*page
)
525 if (is_first_page(page
))
528 return page
->first_page
;
531 static struct page
*get_next_page(struct page
*page
)
535 if (is_last_page(page
))
537 else if (is_first_page(page
))
538 next
= (struct page
*)page_private(page
);
540 next
= list_entry(page
->lru
.next
, struct page
, lru
);
546 * Encode <page, obj_idx> as a single handle value.
547 * On hardware platforms with physical memory starting at 0x0 the pfn
548 * could be 0 so we ensure that the handle will never be 0 by adjusting the
549 * encoded obj_idx value before encoding.
551 static void *obj_location_to_handle(struct page
*page
, unsigned long obj_idx
)
553 unsigned long handle
;
560 handle
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
561 handle
|= ((obj_idx
+ 1) & OBJ_INDEX_MASK
);
563 return (void *)handle
;
567 * Decode <page, obj_idx> pair from the given object handle. We adjust the
568 * decoded obj_idx back to its original value since it was adjusted in
569 * obj_location_to_handle().
571 static void obj_handle_to_location(unsigned long handle
, struct page
**page
,
572 unsigned long *obj_idx
)
574 *page
= pfn_to_page(handle
>> OBJ_INDEX_BITS
);
575 *obj_idx
= (handle
& OBJ_INDEX_MASK
) - 1;
578 static unsigned long obj_idx_to_offset(struct page
*page
,
579 unsigned long obj_idx
, int class_size
)
581 unsigned long off
= 0;
583 if (!is_first_page(page
))
586 return off
+ obj_idx
* class_size
;
589 static void reset_page(struct page
*page
)
591 clear_bit(PG_private
, &page
->flags
);
592 clear_bit(PG_private_2
, &page
->flags
);
593 set_page_private(page
, 0);
594 page
->mapping
= NULL
;
595 page
->freelist
= NULL
;
596 page_mapcount_reset(page
);
599 static void free_zspage(struct page
*first_page
)
601 struct page
*nextp
, *tmp
, *head_extra
;
603 BUG_ON(!is_first_page(first_page
));
604 BUG_ON(first_page
->inuse
);
606 head_extra
= (struct page
*)page_private(first_page
);
608 reset_page(first_page
);
609 __free_page(first_page
);
611 /* zspage with only 1 system page */
615 list_for_each_entry_safe(nextp
, tmp
, &head_extra
->lru
, lru
) {
616 list_del(&nextp
->lru
);
620 reset_page(head_extra
);
621 __free_page(head_extra
);
624 /* Initialize a newly allocated zspage */
625 static void init_zspage(struct page
*first_page
, struct size_class
*class)
627 unsigned long off
= 0;
628 struct page
*page
= first_page
;
630 BUG_ON(!is_first_page(first_page
));
632 struct page
*next_page
;
633 struct link_free
*link
;
638 * page->index stores offset of first object starting
639 * in the page. For the first page, this is always 0,
640 * so we use first_page->index (aka ->freelist) to store
641 * head of corresponding zspage's freelist.
643 if (page
!= first_page
)
646 vaddr
= kmap_atomic(page
);
647 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
649 while ((off
+= class->size
) < PAGE_SIZE
) {
650 link
->next
= obj_location_to_handle(page
, i
++);
651 link
+= class->size
/ sizeof(*link
);
655 * We now come to the last (full or partial) object on this
656 * page, which must point to the first object on the next
659 next_page
= get_next_page(page
);
660 link
->next
= obj_location_to_handle(next_page
, 0);
661 kunmap_atomic(vaddr
);
668 * Allocate a zspage for the given size class
670 static struct page
*alloc_zspage(struct size_class
*class, gfp_t flags
)
673 struct page
*first_page
= NULL
, *uninitialized_var(prev_page
);
676 * Allocate individual pages and link them together as:
677 * 1. first page->private = first sub-page
678 * 2. all sub-pages are linked together using page->lru
679 * 3. each sub-page is linked to the first page using page->first_page
681 * For each size class, First/Head pages are linked together using
682 * page->lru. Also, we set PG_private to identify the first page
683 * (i.e. no other sub-page has this flag set) and PG_private_2 to
684 * identify the last page.
687 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
690 page
= alloc_page(flags
);
694 INIT_LIST_HEAD(&page
->lru
);
695 if (i
== 0) { /* first page */
696 SetPagePrivate(page
);
697 set_page_private(page
, 0);
699 first_page
->inuse
= 0;
702 set_page_private(first_page
, (unsigned long)page
);
704 page
->first_page
= first_page
;
706 list_add(&page
->lru
, &prev_page
->lru
);
707 if (i
== class->pages_per_zspage
- 1) /* last page */
708 SetPagePrivate2(page
);
712 init_zspage(first_page
, class);
714 first_page
->freelist
= obj_location_to_handle(first_page
, 0);
715 /* Maximum number of objects we can store in this zspage */
716 first_page
->objects
= class->pages_per_zspage
* PAGE_SIZE
/ class->size
;
718 error
= 0; /* Success */
721 if (unlikely(error
) && first_page
) {
722 free_zspage(first_page
);
729 static struct page
*find_get_zspage(struct size_class
*class)
734 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
735 page
= class->fullness_list
[i
];
743 #ifdef CONFIG_PGTABLE_MAPPING
744 static inline int __zs_cpu_up(struct mapping_area
*area
)
747 * Make sure we don't leak memory if a cpu UP notification
748 * and zs_init() race and both call zs_cpu_up() on the same cpu
752 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
758 static inline void __zs_cpu_down(struct mapping_area
*area
)
761 free_vm_area(area
->vm
);
765 static inline void *__zs_map_object(struct mapping_area
*area
,
766 struct page
*pages
[2], int off
, int size
)
768 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
769 area
->vm_addr
= area
->vm
->addr
;
770 return area
->vm_addr
+ off
;
773 static inline void __zs_unmap_object(struct mapping_area
*area
,
774 struct page
*pages
[2], int off
, int size
)
776 unsigned long addr
= (unsigned long)area
->vm_addr
;
778 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
781 #else /* CONFIG_PGTABLE_MAPPING */
783 static inline int __zs_cpu_up(struct mapping_area
*area
)
786 * Make sure we don't leak memory if a cpu UP notification
787 * and zs_init() race and both call zs_cpu_up() on the same cpu
791 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
797 static inline void __zs_cpu_down(struct mapping_area
*area
)
803 static void *__zs_map_object(struct mapping_area
*area
,
804 struct page
*pages
[2], int off
, int size
)
808 char *buf
= area
->vm_buf
;
810 /* disable page faults to match kmap_atomic() return conditions */
813 /* no read fastpath */
814 if (area
->vm_mm
== ZS_MM_WO
)
817 sizes
[0] = PAGE_SIZE
- off
;
818 sizes
[1] = size
- sizes
[0];
820 /* copy object to per-cpu buffer */
821 addr
= kmap_atomic(pages
[0]);
822 memcpy(buf
, addr
+ off
, sizes
[0]);
824 addr
= kmap_atomic(pages
[1]);
825 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
831 static void __zs_unmap_object(struct mapping_area
*area
,
832 struct page
*pages
[2], int off
, int size
)
836 char *buf
= area
->vm_buf
;
838 /* no write fastpath */
839 if (area
->vm_mm
== ZS_MM_RO
)
842 sizes
[0] = PAGE_SIZE
- off
;
843 sizes
[1] = size
- sizes
[0];
845 /* copy per-cpu buffer to object */
846 addr
= kmap_atomic(pages
[0]);
847 memcpy(addr
+ off
, buf
, sizes
[0]);
849 addr
= kmap_atomic(pages
[1]);
850 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
854 /* enable page faults to match kunmap_atomic() return conditions */
858 #endif /* CONFIG_PGTABLE_MAPPING */
860 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
863 int ret
, cpu
= (long)pcpu
;
864 struct mapping_area
*area
;
868 area
= &per_cpu(zs_map_area
, cpu
);
869 ret
= __zs_cpu_up(area
);
871 return notifier_from_errno(ret
);
874 case CPU_UP_CANCELED
:
875 area
= &per_cpu(zs_map_area
, cpu
);
883 static struct notifier_block zs_cpu_nb
= {
884 .notifier_call
= zs_cpu_notifier
887 static void zs_unregister_cpu_notifier(void)
891 cpu_notifier_register_begin();
893 for_each_online_cpu(cpu
)
894 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
895 __unregister_cpu_notifier(&zs_cpu_nb
);
897 cpu_notifier_register_done();
900 static int zs_register_cpu_notifier(void)
902 int cpu
, uninitialized_var(ret
);
904 cpu_notifier_register_begin();
906 __register_cpu_notifier(&zs_cpu_nb
);
907 for_each_online_cpu(cpu
) {
908 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
909 if (notifier_to_errno(ret
))
913 cpu_notifier_register_done();
914 return notifier_to_errno(ret
);
917 static void init_zs_size_classes(void)
921 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
922 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
925 zs_size_classes
= nr
;
928 static void __exit
zs_exit(void)
931 zpool_unregister_driver(&zs_zpool_driver
);
933 zs_unregister_cpu_notifier();
936 static int __init
zs_init(void)
938 int ret
= zs_register_cpu_notifier();
941 zs_unregister_cpu_notifier();
945 init_zs_size_classes();
948 zpool_register_driver(&zs_zpool_driver
);
953 static unsigned int get_maxobj_per_zspage(int size
, int pages_per_zspage
)
955 return pages_per_zspage
* PAGE_SIZE
/ size
;
958 static bool can_merge(struct size_class
*prev
, int size
, int pages_per_zspage
)
960 if (prev
->pages_per_zspage
!= pages_per_zspage
)
963 if (get_maxobj_per_zspage(prev
->size
, prev
->pages_per_zspage
)
964 != get_maxobj_per_zspage(size
, pages_per_zspage
))
971 * zs_create_pool - Creates an allocation pool to work from.
972 * @flags: allocation flags used to allocate pool metadata
974 * This function must be called before anything when using
975 * the zsmalloc allocator.
977 * On success, a pointer to the newly created pool is returned,
980 struct zs_pool
*zs_create_pool(gfp_t flags
)
983 struct zs_pool
*pool
;
984 struct size_class
*prev_class
= NULL
;
986 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
990 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
992 if (!pool
->size_class
) {
998 * Iterate reversly, because, size of size_class that we want to use
999 * for merging should be larger or equal to current size.
1001 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1003 int pages_per_zspage
;
1004 struct size_class
*class;
1006 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
1007 if (size
> ZS_MAX_ALLOC_SIZE
)
1008 size
= ZS_MAX_ALLOC_SIZE
;
1009 pages_per_zspage
= get_pages_per_zspage(size
);
1012 * size_class is used for normal zsmalloc operation such
1013 * as alloc/free for that size. Although it is natural that we
1014 * have one size_class for each size, there is a chance that we
1015 * can get more memory utilization if we use one size_class for
1016 * many different sizes whose size_class have same
1017 * characteristics. So, we makes size_class point to
1018 * previous size_class if possible.
1021 if (can_merge(prev_class
, size
, pages_per_zspage
)) {
1022 pool
->size_class
[i
] = prev_class
;
1027 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
1033 class->pages_per_zspage
= pages_per_zspage
;
1034 spin_lock_init(&class->lock
);
1035 pool
->size_class
[i
] = class;
1040 pool
->flags
= flags
;
1045 zs_destroy_pool(pool
);
1048 EXPORT_SYMBOL_GPL(zs_create_pool
);
1050 void zs_destroy_pool(struct zs_pool
*pool
)
1054 for (i
= 0; i
< zs_size_classes
; i
++) {
1056 struct size_class
*class = pool
->size_class
[i
];
1061 if (class->index
!= i
)
1064 for (fg
= 0; fg
< _ZS_NR_FULLNESS_GROUPS
; fg
++) {
1065 if (class->fullness_list
[fg
]) {
1066 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1073 kfree(pool
->size_class
);
1076 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
1079 * zs_malloc - Allocate block of given size from pool.
1080 * @pool: pool to allocate from
1081 * @size: size of block to allocate
1083 * On success, handle to the allocated object is returned,
1085 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1087 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
)
1090 struct link_free
*link
;
1091 struct size_class
*class;
1094 struct page
*first_page
, *m_page
;
1095 unsigned long m_objidx
, m_offset
;
1097 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1100 class = pool
->size_class
[get_size_class_index(size
)];
1102 spin_lock(&class->lock
);
1103 first_page
= find_get_zspage(class);
1106 spin_unlock(&class->lock
);
1107 first_page
= alloc_zspage(class, pool
->flags
);
1108 if (unlikely(!first_page
))
1111 set_zspage_mapping(first_page
, class->index
, ZS_EMPTY
);
1112 atomic_long_add(class->pages_per_zspage
,
1113 &pool
->pages_allocated
);
1114 spin_lock(&class->lock
);
1117 obj
= (unsigned long)first_page
->freelist
;
1118 obj_handle_to_location(obj
, &m_page
, &m_objidx
);
1119 m_offset
= obj_idx_to_offset(m_page
, m_objidx
, class->size
);
1121 vaddr
= kmap_atomic(m_page
);
1122 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1123 first_page
->freelist
= link
->next
;
1124 memset(link
, POISON_INUSE
, sizeof(*link
));
1125 kunmap_atomic(vaddr
);
1127 first_page
->inuse
++;
1128 /* Now move the zspage to another fullness group, if required */
1129 fix_fullness_group(pool
, first_page
);
1130 spin_unlock(&class->lock
);
1134 EXPORT_SYMBOL_GPL(zs_malloc
);
1136 void zs_free(struct zs_pool
*pool
, unsigned long obj
)
1138 struct link_free
*link
;
1139 struct page
*first_page
, *f_page
;
1140 unsigned long f_objidx
, f_offset
;
1144 struct size_class
*class;
1145 enum fullness_group fullness
;
1150 obj_handle_to_location(obj
, &f_page
, &f_objidx
);
1151 first_page
= get_first_page(f_page
);
1153 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1154 class = pool
->size_class
[class_idx
];
1155 f_offset
= obj_idx_to_offset(f_page
, f_objidx
, class->size
);
1157 spin_lock(&class->lock
);
1159 /* Insert this object in containing zspage's freelist */
1160 vaddr
= kmap_atomic(f_page
);
1161 link
= (struct link_free
*)(vaddr
+ f_offset
);
1162 link
->next
= first_page
->freelist
;
1163 kunmap_atomic(vaddr
);
1164 first_page
->freelist
= (void *)obj
;
1166 first_page
->inuse
--;
1167 fullness
= fix_fullness_group(pool
, first_page
);
1168 spin_unlock(&class->lock
);
1170 if (fullness
== ZS_EMPTY
) {
1171 atomic_long_sub(class->pages_per_zspage
,
1172 &pool
->pages_allocated
);
1173 free_zspage(first_page
);
1176 EXPORT_SYMBOL_GPL(zs_free
);
1179 * zs_map_object - get address of allocated object from handle.
1180 * @pool: pool from which the object was allocated
1181 * @handle: handle returned from zs_malloc
1183 * Before using an object allocated from zs_malloc, it must be mapped using
1184 * this function. When done with the object, it must be unmapped using
1187 * Only one object can be mapped per cpu at a time. There is no protection
1188 * against nested mappings.
1190 * This function returns with preemption and page faults disabled.
1192 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1196 unsigned long obj_idx
, off
;
1198 unsigned int class_idx
;
1199 enum fullness_group fg
;
1200 struct size_class
*class;
1201 struct mapping_area
*area
;
1202 struct page
*pages
[2];
1207 * Because we use per-cpu mapping areas shared among the
1208 * pools/users, we can't allow mapping in interrupt context
1209 * because it can corrupt another users mappings.
1211 BUG_ON(in_interrupt());
1213 obj_handle_to_location(handle
, &page
, &obj_idx
);
1214 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1215 class = pool
->size_class
[class_idx
];
1216 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1218 area
= &get_cpu_var(zs_map_area
);
1220 if (off
+ class->size
<= PAGE_SIZE
) {
1221 /* this object is contained entirely within a page */
1222 area
->vm_addr
= kmap_atomic(page
);
1223 return area
->vm_addr
+ off
;
1226 /* this object spans two pages */
1228 pages
[1] = get_next_page(page
);
1231 return __zs_map_object(area
, pages
, off
, class->size
);
1233 EXPORT_SYMBOL_GPL(zs_map_object
);
1235 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1238 unsigned long obj_idx
, off
;
1240 unsigned int class_idx
;
1241 enum fullness_group fg
;
1242 struct size_class
*class;
1243 struct mapping_area
*area
;
1247 obj_handle_to_location(handle
, &page
, &obj_idx
);
1248 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1249 class = pool
->size_class
[class_idx
];
1250 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1252 area
= this_cpu_ptr(&zs_map_area
);
1253 if (off
+ class->size
<= PAGE_SIZE
)
1254 kunmap_atomic(area
->vm_addr
);
1256 struct page
*pages
[2];
1259 pages
[1] = get_next_page(page
);
1262 __zs_unmap_object(area
, pages
, off
, class->size
);
1264 put_cpu_var(zs_map_area
);
1266 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1268 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1270 return atomic_long_read(&pool
->pages_allocated
);
1272 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1274 module_init(zs_init
);
1275 module_exit(zs_exit
);
1277 MODULE_LICENSE("Dual BSD/GPL");
1278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");