1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection
*con
);
177 static void cancel_con(struct ceph_connection
*con
);
178 static void con_work(struct work_struct
*);
179 static void con_fault(struct ceph_connection
*con
);
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
191 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
193 static struct page
*zero_page
; /* used in certain error cases */
195 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
199 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
200 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
202 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
205 switch (ss
->ss_family
) {
207 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
208 ntohs(in4
->sin_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
213 ntohs(in6
->sin6_port
));
217 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
223 EXPORT_SYMBOL(ceph_pr_addr
);
225 static void encode_my_addr(struct ceph_messenger
*msgr
)
227 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
228 ceph_encode_addr(&msgr
->my_enc_addr
);
232 * work queue for all reading and writing to/from the socket.
234 static struct workqueue_struct
*ceph_msgr_wq
;
236 static int ceph_msgr_slab_init(void)
238 BUG_ON(ceph_msg_cache
);
239 ceph_msg_cache
= kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg
),
241 __alignof__(struct ceph_msg
), 0, NULL
);
246 BUG_ON(ceph_msg_data_cache
);
247 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data
),
249 __alignof__(struct ceph_msg_data
),
251 if (ceph_msg_data_cache
)
254 kmem_cache_destroy(ceph_msg_cache
);
255 ceph_msg_cache
= NULL
;
260 static void ceph_msgr_slab_exit(void)
262 BUG_ON(!ceph_msg_data_cache
);
263 kmem_cache_destroy(ceph_msg_data_cache
);
264 ceph_msg_data_cache
= NULL
;
266 BUG_ON(!ceph_msg_cache
);
267 kmem_cache_destroy(ceph_msg_cache
);
268 ceph_msg_cache
= NULL
;
271 static void _ceph_msgr_exit(void)
274 destroy_workqueue(ceph_msgr_wq
);
278 ceph_msgr_slab_exit();
280 BUG_ON(zero_page
== NULL
);
282 page_cache_release(zero_page
);
286 int ceph_msgr_init(void)
288 BUG_ON(zero_page
!= NULL
);
289 zero_page
= ZERO_PAGE(0);
290 page_cache_get(zero_page
);
292 if (ceph_msgr_slab_init())
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
299 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
303 pr_err("msgr_init failed to create workqueue\n");
308 EXPORT_SYMBOL(ceph_msgr_init
);
310 void ceph_msgr_exit(void)
312 BUG_ON(ceph_msgr_wq
== NULL
);
316 EXPORT_SYMBOL(ceph_msgr_exit
);
318 void ceph_msgr_flush(void)
320 flush_workqueue(ceph_msgr_wq
);
322 EXPORT_SYMBOL(ceph_msgr_flush
);
324 /* Connection socket state transition functions */
326 static void con_sock_state_init(struct ceph_connection
*con
)
330 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
331 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
332 printk("%s: unexpected old state %d\n", __func__
, old_state
);
333 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
334 CON_SOCK_STATE_CLOSED
);
337 static void con_sock_state_connecting(struct ceph_connection
*con
)
341 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
342 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
343 printk("%s: unexpected old state %d\n", __func__
, old_state
);
344 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
345 CON_SOCK_STATE_CONNECTING
);
348 static void con_sock_state_connected(struct ceph_connection
*con
)
352 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
353 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
354 printk("%s: unexpected old state %d\n", __func__
, old_state
);
355 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
356 CON_SOCK_STATE_CONNECTED
);
359 static void con_sock_state_closing(struct ceph_connection
*con
)
363 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
364 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTED
&&
366 old_state
!= CON_SOCK_STATE_CLOSING
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSING
);
372 static void con_sock_state_closed(struct ceph_connection
*con
)
376 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
377 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
378 old_state
!= CON_SOCK_STATE_CLOSING
&&
379 old_state
!= CON_SOCK_STATE_CONNECTING
&&
380 old_state
!= CON_SOCK_STATE_CLOSED
))
381 printk("%s: unexpected old state %d\n", __func__
, old_state
);
382 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
383 CON_SOCK_STATE_CLOSED
);
387 * socket callback functions
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock
*sk
)
393 struct ceph_connection
*con
= sk
->sk_user_data
;
394 if (atomic_read(&con
->msgr
->stopping
)) {
398 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
399 dout("%s on %p state = %lu, queueing work\n", __func__
,
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock
*sk
)
408 struct ceph_connection
*con
= sk
->sk_user_data
;
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
417 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
418 if (sk_stream_is_writeable(sk
)) {
419 dout("%s %p queueing write work\n", __func__
, con
);
420 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
424 dout("%s %p nothing to write\n", __func__
, con
);
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock
*sk
)
431 struct ceph_connection
*con
= sk
->sk_user_data
;
433 dout("%s %p state = %lu sk_state = %u\n", __func__
,
434 con
, con
->state
, sk
->sk_state
);
436 switch (sk
->sk_state
) {
438 dout("%s TCP_CLOSE\n", __func__
);
440 dout("%s TCP_CLOSE_WAIT\n", __func__
);
441 con_sock_state_closing(con
);
442 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
445 case TCP_ESTABLISHED
:
446 dout("%s TCP_ESTABLISHED\n", __func__
);
447 con_sock_state_connected(con
);
450 default: /* Everything else is uninteresting */
456 * set up socket callbacks
458 static void set_sock_callbacks(struct socket
*sock
,
459 struct ceph_connection
*con
)
461 struct sock
*sk
= sock
->sk
;
462 sk
->sk_user_data
= con
;
463 sk
->sk_data_ready
= ceph_sock_data_ready
;
464 sk
->sk_write_space
= ceph_sock_write_space
;
465 sk
->sk_state_change
= ceph_sock_state_change
;
474 * initiate connection to a remote socket.
476 static int ceph_tcp_connect(struct ceph_connection
*con
)
478 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
483 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
487 sock
->sk
->sk_allocation
= GFP_NOFS
| __GFP_MEMALLOC
;
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
493 set_sock_callbacks(sock
, con
);
495 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
497 con_sock_state_connecting(con
);
498 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
500 if (ret
== -EINPROGRESS
) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con
->peer_addr
.in_addr
),
504 } else if (ret
< 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
508 con
->error_msg
= "connect error";
513 sk_set_memalloc(sock
->sk
);
519 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
521 struct kvec iov
= {buf
, len
};
522 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
525 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
531 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
532 int page_offset
, size_t length
)
537 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
541 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
548 * write something. @more is true if caller will be sending more data
551 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
552 size_t kvlen
, size_t len
, int more
)
554 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
558 msg
.msg_flags
|= MSG_MORE
;
560 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
562 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
568 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
569 int offset
, size_t size
, bool more
)
571 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
574 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
581 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
582 int offset
, size_t size
, bool more
)
587 /* sendpage cannot properly handle pages with page_count == 0,
588 * we need to fallback to sendmsg if that's the case */
589 if (page_count(page
) >= 1)
590 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
592 iov
.iov_base
= kmap(page
) + offset
;
594 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
601 * Shutdown/close the socket for the given connection.
603 static int con_close_socket(struct ceph_connection
*con
)
607 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
609 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
610 sock_release(con
->sock
);
615 * Forcibly clear the SOCK_CLOSED flag. It gets set
616 * independent of the connection mutex, and we could have
617 * received a socket close event before we had the chance to
618 * shut the socket down.
620 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
622 con_sock_state_closed(con
);
627 * Reset a connection. Discard all incoming and outgoing messages
628 * and clear *_seq state.
630 static void ceph_msg_remove(struct ceph_msg
*msg
)
632 list_del_init(&msg
->list_head
);
633 BUG_ON(msg
->con
== NULL
);
634 msg
->con
->ops
->put(msg
->con
);
639 static void ceph_msg_remove_list(struct list_head
*head
)
641 while (!list_empty(head
)) {
642 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
644 ceph_msg_remove(msg
);
648 static void reset_connection(struct ceph_connection
*con
)
650 /* reset connection, out_queue, msg_ and connect_seq */
651 /* discard existing out_queue and msg_seq */
652 dout("reset_connection %p\n", con
);
653 ceph_msg_remove_list(&con
->out_queue
);
654 ceph_msg_remove_list(&con
->out_sent
);
657 BUG_ON(con
->in_msg
->con
!= con
);
658 con
->in_msg
->con
= NULL
;
659 ceph_msg_put(con
->in_msg
);
664 con
->connect_seq
= 0;
667 ceph_msg_put(con
->out_msg
);
671 con
->in_seq_acked
= 0;
675 * mark a peer down. drop any open connections.
677 void ceph_con_close(struct ceph_connection
*con
)
679 mutex_lock(&con
->mutex
);
680 dout("con_close %p peer %s\n", con
,
681 ceph_pr_addr(&con
->peer_addr
.in_addr
));
682 con
->state
= CON_STATE_CLOSED
;
684 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
685 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
686 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
687 con_flag_clear(con
, CON_FLAG_BACKOFF
);
689 reset_connection(con
);
690 con
->peer_global_seq
= 0;
692 con_close_socket(con
);
693 mutex_unlock(&con
->mutex
);
695 EXPORT_SYMBOL(ceph_con_close
);
698 * Reopen a closed connection, with a new peer address.
700 void ceph_con_open(struct ceph_connection
*con
,
701 __u8 entity_type
, __u64 entity_num
,
702 struct ceph_entity_addr
*addr
)
704 mutex_lock(&con
->mutex
);
705 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
707 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
708 con
->state
= CON_STATE_PREOPEN
;
710 con
->peer_name
.type
= (__u8
) entity_type
;
711 con
->peer_name
.num
= cpu_to_le64(entity_num
);
713 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
714 con
->delay
= 0; /* reset backoff memory */
715 mutex_unlock(&con
->mutex
);
718 EXPORT_SYMBOL(ceph_con_open
);
721 * return true if this connection ever successfully opened
723 bool ceph_con_opened(struct ceph_connection
*con
)
725 return con
->connect_seq
> 0;
729 * initialize a new connection.
731 void ceph_con_init(struct ceph_connection
*con
, void *private,
732 const struct ceph_connection_operations
*ops
,
733 struct ceph_messenger
*msgr
)
735 dout("con_init %p\n", con
);
736 memset(con
, 0, sizeof(*con
));
737 con
->private = private;
741 con_sock_state_init(con
);
743 mutex_init(&con
->mutex
);
744 INIT_LIST_HEAD(&con
->out_queue
);
745 INIT_LIST_HEAD(&con
->out_sent
);
746 INIT_DELAYED_WORK(&con
->work
, con_work
);
748 con
->state
= CON_STATE_CLOSED
;
750 EXPORT_SYMBOL(ceph_con_init
);
754 * We maintain a global counter to order connection attempts. Get
755 * a unique seq greater than @gt.
757 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
761 spin_lock(&msgr
->global_seq_lock
);
762 if (msgr
->global_seq
< gt
)
763 msgr
->global_seq
= gt
;
764 ret
= ++msgr
->global_seq
;
765 spin_unlock(&msgr
->global_seq_lock
);
769 static void con_out_kvec_reset(struct ceph_connection
*con
)
771 con
->out_kvec_left
= 0;
772 con
->out_kvec_bytes
= 0;
773 con
->out_kvec_cur
= &con
->out_kvec
[0];
776 static void con_out_kvec_add(struct ceph_connection
*con
,
777 size_t size
, void *data
)
781 index
= con
->out_kvec_left
;
782 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
784 con
->out_kvec
[index
].iov_len
= size
;
785 con
->out_kvec
[index
].iov_base
= data
;
786 con
->out_kvec_left
++;
787 con
->out_kvec_bytes
+= size
;
793 * For a bio data item, a piece is whatever remains of the next
794 * entry in the current bio iovec, or the first entry in the next
797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
800 struct ceph_msg_data
*data
= cursor
->data
;
803 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
808 cursor
->resid
= min(length
, data
->bio_length
);
810 cursor
->bvec_iter
= bio
->bi_iter
;
812 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
815 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
819 struct ceph_msg_data
*data
= cursor
->data
;
821 struct bio_vec bio_vec
;
823 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
828 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
830 *page_offset
= (size_t) bio_vec
.bv_offset
;
831 BUG_ON(*page_offset
>= PAGE_SIZE
);
832 if (cursor
->last_piece
) /* pagelist offset is always 0 */
833 *length
= cursor
->resid
;
835 *length
= (size_t) bio_vec
.bv_len
;
836 BUG_ON(*length
> cursor
->resid
);
837 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
839 return bio_vec
.bv_page
;
842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
846 struct bio_vec bio_vec
;
848 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
853 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
855 /* Advance the cursor offset */
857 BUG_ON(cursor
->resid
< bytes
);
858 cursor
->resid
-= bytes
;
860 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
862 if (bytes
< bio_vec
.bv_len
)
863 return false; /* more bytes to process in this segment */
865 /* Move on to the next segment, and possibly the next bio */
867 if (!cursor
->bvec_iter
.bi_size
) {
871 cursor
->bvec_iter
= bio
->bi_iter
;
873 memset(&cursor
->bvec_iter
, 0,
874 sizeof(cursor
->bvec_iter
));
877 if (!cursor
->last_piece
) {
878 BUG_ON(!cursor
->resid
);
880 /* A short read is OK, so use <= rather than == */
881 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
882 cursor
->last_piece
= true;
887 #endif /* CONFIG_BLOCK */
890 * For a page array, a piece comes from the first page in the array
891 * that has not already been fully consumed.
893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
896 struct ceph_msg_data
*data
= cursor
->data
;
899 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
901 BUG_ON(!data
->pages
);
902 BUG_ON(!data
->length
);
904 cursor
->resid
= min(length
, data
->length
);
905 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
906 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
907 cursor
->page_index
= 0;
908 BUG_ON(page_count
> (int)USHRT_MAX
);
909 cursor
->page_count
= (unsigned short)page_count
;
910 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
911 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
916 size_t *page_offset
, size_t *length
)
918 struct ceph_msg_data
*data
= cursor
->data
;
920 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
922 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
923 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
925 *page_offset
= cursor
->page_offset
;
926 if (cursor
->last_piece
)
927 *length
= cursor
->resid
;
929 *length
= PAGE_SIZE
- *page_offset
;
931 return data
->pages
[cursor
->page_index
];
934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
937 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
939 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
941 /* Advance the cursor page offset */
943 cursor
->resid
-= bytes
;
944 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
945 if (!bytes
|| cursor
->page_offset
)
946 return false; /* more bytes to process in the current page */
949 return false; /* no more data */
951 /* Move on to the next page; offset is already at 0 */
953 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
954 cursor
->page_index
++;
955 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
961 * For a pagelist, a piece is whatever remains to be consumed in the
962 * first page in the list, or the front of the next page.
965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
968 struct ceph_msg_data
*data
= cursor
->data
;
969 struct ceph_pagelist
*pagelist
;
972 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
974 pagelist
= data
->pagelist
;
978 return; /* pagelist can be assigned but empty */
980 BUG_ON(list_empty(&pagelist
->head
));
981 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
983 cursor
->resid
= min(length
, pagelist
->length
);
986 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
991 size_t *page_offset
, size_t *length
)
993 struct ceph_msg_data
*data
= cursor
->data
;
994 struct ceph_pagelist
*pagelist
;
996 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
998 pagelist
= data
->pagelist
;
1001 BUG_ON(!cursor
->page
);
1002 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1004 /* offset of first page in pagelist is always 0 */
1005 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1006 if (cursor
->last_piece
)
1007 *length
= cursor
->resid
;
1009 *length
= PAGE_SIZE
- *page_offset
;
1011 return cursor
->page
;
1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1017 struct ceph_msg_data
*data
= cursor
->data
;
1018 struct ceph_pagelist
*pagelist
;
1020 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1022 pagelist
= data
->pagelist
;
1025 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1026 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1028 /* Advance the cursor offset */
1030 cursor
->resid
-= bytes
;
1031 cursor
->offset
+= bytes
;
1032 /* offset of first page in pagelist is always 0 */
1033 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1034 return false; /* more bytes to process in the current page */
1037 return false; /* no more data */
1039 /* Move on to the next page */
1041 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1042 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1043 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1049 * Message data is handled (sent or received) in pieces, where each
1050 * piece resides on a single page. The network layer might not
1051 * consume an entire piece at once. A data item's cursor keeps
1052 * track of which piece is next to process and how much remains to
1053 * be processed in that piece. It also tracks whether the current
1054 * piece is the last one in the data item.
1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1058 size_t length
= cursor
->total_resid
;
1060 switch (cursor
->data
->type
) {
1061 case CEPH_MSG_DATA_PAGELIST
:
1062 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1064 case CEPH_MSG_DATA_PAGES
:
1065 ceph_msg_data_pages_cursor_init(cursor
, length
);
1068 case CEPH_MSG_DATA_BIO
:
1069 ceph_msg_data_bio_cursor_init(cursor
, length
);
1071 #endif /* CONFIG_BLOCK */
1072 case CEPH_MSG_DATA_NONE
:
1077 cursor
->need_crc
= true;
1080 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1082 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1083 struct ceph_msg_data
*data
;
1086 BUG_ON(length
> msg
->data_length
);
1087 BUG_ON(list_empty(&msg
->data
));
1089 cursor
->data_head
= &msg
->data
;
1090 cursor
->total_resid
= length
;
1091 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1092 cursor
->data
= data
;
1094 __ceph_msg_data_cursor_init(cursor
);
1098 * Return the page containing the next piece to process for a given
1099 * data item, and supply the page offset and length of that piece.
1100 * Indicate whether this is the last piece in this data item.
1102 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1103 size_t *page_offset
, size_t *length
,
1108 switch (cursor
->data
->type
) {
1109 case CEPH_MSG_DATA_PAGELIST
:
1110 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1112 case CEPH_MSG_DATA_PAGES
:
1113 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1116 case CEPH_MSG_DATA_BIO
:
1117 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1119 #endif /* CONFIG_BLOCK */
1120 case CEPH_MSG_DATA_NONE
:
1126 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1129 *last_piece
= cursor
->last_piece
;
1135 * Returns true if the result moves the cursor on to the next piece
1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1143 BUG_ON(bytes
> cursor
->resid
);
1144 switch (cursor
->data
->type
) {
1145 case CEPH_MSG_DATA_PAGELIST
:
1146 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1148 case CEPH_MSG_DATA_PAGES
:
1149 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1152 case CEPH_MSG_DATA_BIO
:
1153 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1155 #endif /* CONFIG_BLOCK */
1156 case CEPH_MSG_DATA_NONE
:
1161 cursor
->total_resid
-= bytes
;
1163 if (!cursor
->resid
&& cursor
->total_resid
) {
1164 WARN_ON(!cursor
->last_piece
);
1165 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1166 cursor
->data
= list_entry_next(cursor
->data
, links
);
1167 __ceph_msg_data_cursor_init(cursor
);
1170 cursor
->need_crc
= new_piece
;
1175 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1180 /* Initialize data cursor */
1182 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1186 * Prepare footer for currently outgoing message, and finish things
1187 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1189 static void prepare_write_message_footer(struct ceph_connection
*con
)
1191 struct ceph_msg
*m
= con
->out_msg
;
1192 int v
= con
->out_kvec_left
;
1194 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1196 dout("prepare_write_message_footer %p\n", con
);
1197 con
->out_kvec_is_msg
= true;
1198 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1199 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1200 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1201 con
->out_kvec_left
++;
1202 con
->out_more
= m
->more_to_follow
;
1203 con
->out_msg_done
= true;
1207 * Prepare headers for the next outgoing message.
1209 static void prepare_write_message(struct ceph_connection
*con
)
1214 con_out_kvec_reset(con
);
1215 con
->out_kvec_is_msg
= true;
1216 con
->out_msg_done
= false;
1218 /* Sneak an ack in there first? If we can get it into the same
1219 * TCP packet that's a good thing. */
1220 if (con
->in_seq
> con
->in_seq_acked
) {
1221 con
->in_seq_acked
= con
->in_seq
;
1222 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1223 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1224 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1225 &con
->out_temp_ack
);
1228 BUG_ON(list_empty(&con
->out_queue
));
1229 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1231 BUG_ON(m
->con
!= con
);
1233 /* put message on sent list */
1235 list_move_tail(&m
->list_head
, &con
->out_sent
);
1238 * only assign outgoing seq # if we haven't sent this message
1239 * yet. if it is requeued, resend with it's original seq.
1241 if (m
->needs_out_seq
) {
1242 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1243 m
->needs_out_seq
= false;
1245 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1247 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1248 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1249 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1251 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1253 /* tag + hdr + front + middle */
1254 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1255 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1256 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1259 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1260 m
->middle
->vec
.iov_base
);
1262 /* fill in crc (except data pages), footer */
1263 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1264 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1265 con
->out_msg
->footer
.flags
= 0;
1267 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1268 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1270 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1271 m
->middle
->vec
.iov_len
);
1272 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1274 con
->out_msg
->footer
.middle_crc
= 0;
1275 dout("%s front_crc %u middle_crc %u\n", __func__
,
1276 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1277 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1279 /* is there a data payload? */
1280 con
->out_msg
->footer
.data_crc
= 0;
1281 if (m
->data_length
) {
1282 prepare_message_data(con
->out_msg
, m
->data_length
);
1283 con
->out_more
= 1; /* data + footer will follow */
1285 /* no, queue up footer too and be done */
1286 prepare_write_message_footer(con
);
1289 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1295 static void prepare_write_ack(struct ceph_connection
*con
)
1297 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1298 con
->in_seq_acked
, con
->in_seq
);
1299 con
->in_seq_acked
= con
->in_seq
;
1301 con_out_kvec_reset(con
);
1303 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1305 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1306 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1307 &con
->out_temp_ack
);
1309 con
->out_more
= 1; /* more will follow.. eventually.. */
1310 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1314 * Prepare to share the seq during handshake
1316 static void prepare_write_seq(struct ceph_connection
*con
)
1318 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1319 con
->in_seq_acked
, con
->in_seq
);
1320 con
->in_seq_acked
= con
->in_seq
;
1322 con_out_kvec_reset(con
);
1324 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1325 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1326 &con
->out_temp_ack
);
1328 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1332 * Prepare to write keepalive byte.
1334 static void prepare_write_keepalive(struct ceph_connection
*con
)
1336 dout("prepare_write_keepalive %p\n", con
);
1337 con_out_kvec_reset(con
);
1338 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1339 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1343 * Connection negotiation.
1346 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1349 struct ceph_auth_handshake
*auth
;
1351 if (!con
->ops
->get_authorizer
) {
1352 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1353 con
->out_connect
.authorizer_len
= 0;
1357 /* Can't hold the mutex while getting authorizer */
1358 mutex_unlock(&con
->mutex
);
1359 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1360 mutex_lock(&con
->mutex
);
1364 if (con
->state
!= CON_STATE_NEGOTIATING
)
1365 return ERR_PTR(-EAGAIN
);
1367 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1368 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1373 * We connected to a peer and are saying hello.
1375 static void prepare_write_banner(struct ceph_connection
*con
)
1377 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1378 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1379 &con
->msgr
->my_enc_addr
);
1382 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1385 static int prepare_write_connect(struct ceph_connection
*con
)
1387 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1390 struct ceph_auth_handshake
*auth
;
1392 switch (con
->peer_name
.type
) {
1393 case CEPH_ENTITY_TYPE_MON
:
1394 proto
= CEPH_MONC_PROTOCOL
;
1396 case CEPH_ENTITY_TYPE_OSD
:
1397 proto
= CEPH_OSDC_PROTOCOL
;
1399 case CEPH_ENTITY_TYPE_MDS
:
1400 proto
= CEPH_MDSC_PROTOCOL
;
1406 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1407 con
->connect_seq
, global_seq
, proto
);
1409 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1410 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1411 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1412 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1413 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1414 con
->out_connect
.flags
= 0;
1416 auth_proto
= CEPH_AUTH_UNKNOWN
;
1417 auth
= get_connect_authorizer(con
, &auth_proto
);
1419 return PTR_ERR(auth
);
1421 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1422 con
->out_connect
.authorizer_len
= auth
?
1423 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1425 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1427 if (auth
&& auth
->authorizer_buf_len
)
1428 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1429 auth
->authorizer_buf
);
1432 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1438 * write as much of pending kvecs to the socket as we can.
1440 * 0 -> socket full, but more to do
1443 static int write_partial_kvec(struct ceph_connection
*con
)
1447 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1448 while (con
->out_kvec_bytes
> 0) {
1449 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1450 con
->out_kvec_left
, con
->out_kvec_bytes
,
1454 con
->out_kvec_bytes
-= ret
;
1455 if (con
->out_kvec_bytes
== 0)
1458 /* account for full iov entries consumed */
1459 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1460 BUG_ON(!con
->out_kvec_left
);
1461 ret
-= con
->out_kvec_cur
->iov_len
;
1462 con
->out_kvec_cur
++;
1463 con
->out_kvec_left
--;
1465 /* and for a partially-consumed entry */
1467 con
->out_kvec_cur
->iov_len
-= ret
;
1468 con
->out_kvec_cur
->iov_base
+= ret
;
1471 con
->out_kvec_left
= 0;
1472 con
->out_kvec_is_msg
= false;
1475 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1476 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1477 return ret
; /* done! */
1480 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1481 unsigned int page_offset
,
1482 unsigned int length
)
1487 BUG_ON(kaddr
== NULL
);
1488 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1494 * Write as much message data payload as we can. If we finish, queue
1496 * 1 -> done, footer is now queued in out_kvec[].
1497 * 0 -> socket full, but more to do
1500 static int write_partial_message_data(struct ceph_connection
*con
)
1502 struct ceph_msg
*msg
= con
->out_msg
;
1503 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1504 bool do_datacrc
= !con
->msgr
->nocrc
;
1507 dout("%s %p msg %p\n", __func__
, con
, msg
);
1509 if (list_empty(&msg
->data
))
1513 * Iterate through each page that contains data to be
1514 * written, and send as much as possible for each.
1516 * If we are calculating the data crc (the default), we will
1517 * need to map the page. If we have no pages, they have
1518 * been revoked, so use the zero page.
1520 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1521 while (cursor
->resid
) {
1529 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1531 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1532 length
, last_piece
);
1535 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1539 if (do_datacrc
&& cursor
->need_crc
)
1540 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1541 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1544 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1546 /* prepare and queue up footer, too */
1548 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1550 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1551 con_out_kvec_reset(con
);
1552 prepare_write_message_footer(con
);
1554 return 1; /* must return > 0 to indicate success */
1560 static int write_partial_skip(struct ceph_connection
*con
)
1564 while (con
->out_skip
> 0) {
1565 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1567 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1570 con
->out_skip
-= ret
;
1578 * Prepare to read connection handshake, or an ack.
1580 static void prepare_read_banner(struct ceph_connection
*con
)
1582 dout("prepare_read_banner %p\n", con
);
1583 con
->in_base_pos
= 0;
1586 static void prepare_read_connect(struct ceph_connection
*con
)
1588 dout("prepare_read_connect %p\n", con
);
1589 con
->in_base_pos
= 0;
1592 static void prepare_read_ack(struct ceph_connection
*con
)
1594 dout("prepare_read_ack %p\n", con
);
1595 con
->in_base_pos
= 0;
1598 static void prepare_read_seq(struct ceph_connection
*con
)
1600 dout("prepare_read_seq %p\n", con
);
1601 con
->in_base_pos
= 0;
1602 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1605 static void prepare_read_tag(struct ceph_connection
*con
)
1607 dout("prepare_read_tag %p\n", con
);
1608 con
->in_base_pos
= 0;
1609 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1613 * Prepare to read a message.
1615 static int prepare_read_message(struct ceph_connection
*con
)
1617 dout("prepare_read_message %p\n", con
);
1618 BUG_ON(con
->in_msg
!= NULL
);
1619 con
->in_base_pos
= 0;
1620 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1625 static int read_partial(struct ceph_connection
*con
,
1626 int end
, int size
, void *object
)
1628 while (con
->in_base_pos
< end
) {
1629 int left
= end
- con
->in_base_pos
;
1630 int have
= size
- left
;
1631 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1634 con
->in_base_pos
+= ret
;
1641 * Read all or part of the connect-side handshake on a new connection
1643 static int read_partial_banner(struct ceph_connection
*con
)
1649 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1652 size
= strlen(CEPH_BANNER
);
1654 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1658 size
= sizeof (con
->actual_peer_addr
);
1660 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1664 size
= sizeof (con
->peer_addr_for_me
);
1666 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1674 static int read_partial_connect(struct ceph_connection
*con
)
1680 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1682 size
= sizeof (con
->in_reply
);
1684 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1688 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1690 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1694 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1695 con
, (int)con
->in_reply
.tag
,
1696 le32_to_cpu(con
->in_reply
.connect_seq
),
1697 le32_to_cpu(con
->in_reply
.global_seq
));
1704 * Verify the hello banner looks okay.
1706 static int verify_hello(struct ceph_connection
*con
)
1708 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1709 pr_err("connect to %s got bad banner\n",
1710 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1711 con
->error_msg
= "protocol error, bad banner";
1717 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1719 switch (ss
->ss_family
) {
1721 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1724 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1725 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1726 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1727 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1732 static int addr_port(struct sockaddr_storage
*ss
)
1734 switch (ss
->ss_family
) {
1736 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1738 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1743 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1745 switch (ss
->ss_family
) {
1747 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1750 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1756 * Unlike other *_pton function semantics, zero indicates success.
1758 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1759 char delim
, const char **ipend
)
1761 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1762 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1764 memset(ss
, 0, sizeof(*ss
));
1766 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1767 ss
->ss_family
= AF_INET
;
1771 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1772 ss
->ss_family
= AF_INET6
;
1780 * Extract hostname string and resolve using kernel DNS facility.
1782 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1783 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1784 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1786 const char *end
, *delim_p
;
1787 char *colon_p
, *ip_addr
= NULL
;
1791 * The end of the hostname occurs immediately preceding the delimiter or
1792 * the port marker (':') where the delimiter takes precedence.
1794 delim_p
= memchr(name
, delim
, namelen
);
1795 colon_p
= memchr(name
, ':', namelen
);
1797 if (delim_p
&& colon_p
)
1798 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1799 else if (!delim_p
&& colon_p
)
1803 if (!end
) /* case: hostname:/ */
1804 end
= name
+ namelen
;
1810 /* do dns_resolve upcall */
1811 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1813 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1821 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1822 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1827 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1828 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1835 * Parse a server name (IP or hostname). If a valid IP address is not found
1836 * then try to extract a hostname to resolve using userspace DNS upcall.
1838 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1839 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1843 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1845 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1851 * Parse an ip[:port] list into an addr array. Use the default
1852 * monitor port if a port isn't specified.
1854 int ceph_parse_ips(const char *c
, const char *end
,
1855 struct ceph_entity_addr
*addr
,
1856 int max_count
, int *count
)
1858 int i
, ret
= -EINVAL
;
1861 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1862 for (i
= 0; i
< max_count
; i
++) {
1864 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1873 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1882 dout("missing matching ']'\n");
1889 if (p
< end
&& *p
== ':') {
1892 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1893 port
= (port
* 10) + (*p
- '0');
1897 port
= CEPH_MON_PORT
;
1898 else if (port
> 65535)
1901 port
= CEPH_MON_PORT
;
1904 addr_set_port(ss
, port
);
1906 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1923 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1926 EXPORT_SYMBOL(ceph_parse_ips
);
1928 static int process_banner(struct ceph_connection
*con
)
1930 dout("process_banner on %p\n", con
);
1932 if (verify_hello(con
) < 0)
1935 ceph_decode_addr(&con
->actual_peer_addr
);
1936 ceph_decode_addr(&con
->peer_addr_for_me
);
1939 * Make sure the other end is who we wanted. note that the other
1940 * end may not yet know their ip address, so if it's 0.0.0.0, give
1941 * them the benefit of the doubt.
1943 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1944 sizeof(con
->peer_addr
)) != 0 &&
1945 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1946 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1947 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1948 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1949 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1950 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1951 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1952 con
->error_msg
= "wrong peer at address";
1957 * did we learn our address?
1959 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1960 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1962 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1963 &con
->peer_addr_for_me
.in_addr
,
1964 sizeof(con
->peer_addr_for_me
.in_addr
));
1965 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1966 encode_my_addr(con
->msgr
);
1967 dout("process_banner learned my addr is %s\n",
1968 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1974 static int process_connect(struct ceph_connection
*con
)
1976 u64 sup_feat
= con
->msgr
->supported_features
;
1977 u64 req_feat
= con
->msgr
->required_features
;
1978 u64 server_feat
= ceph_sanitize_features(
1979 le64_to_cpu(con
->in_reply
.features
));
1982 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1984 switch (con
->in_reply
.tag
) {
1985 case CEPH_MSGR_TAG_FEATURES
:
1986 pr_err("%s%lld %s feature set mismatch,"
1987 " my %llx < server's %llx, missing %llx\n",
1988 ENTITY_NAME(con
->peer_name
),
1989 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1990 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1991 con
->error_msg
= "missing required protocol features";
1992 reset_connection(con
);
1995 case CEPH_MSGR_TAG_BADPROTOVER
:
1996 pr_err("%s%lld %s protocol version mismatch,"
1997 " my %d != server's %d\n",
1998 ENTITY_NAME(con
->peer_name
),
1999 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2000 le32_to_cpu(con
->out_connect
.protocol_version
),
2001 le32_to_cpu(con
->in_reply
.protocol_version
));
2002 con
->error_msg
= "protocol version mismatch";
2003 reset_connection(con
);
2006 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2008 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2010 if (con
->auth_retry
== 2) {
2011 con
->error_msg
= "connect authorization failure";
2014 con_out_kvec_reset(con
);
2015 ret
= prepare_write_connect(con
);
2018 prepare_read_connect(con
);
2021 case CEPH_MSGR_TAG_RESETSESSION
:
2023 * If we connected with a large connect_seq but the peer
2024 * has no record of a session with us (no connection, or
2025 * connect_seq == 0), they will send RESETSESION to indicate
2026 * that they must have reset their session, and may have
2029 dout("process_connect got RESET peer seq %u\n",
2030 le32_to_cpu(con
->in_reply
.connect_seq
));
2031 pr_err("%s%lld %s connection reset\n",
2032 ENTITY_NAME(con
->peer_name
),
2033 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2034 reset_connection(con
);
2035 con_out_kvec_reset(con
);
2036 ret
= prepare_write_connect(con
);
2039 prepare_read_connect(con
);
2041 /* Tell ceph about it. */
2042 mutex_unlock(&con
->mutex
);
2043 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2044 if (con
->ops
->peer_reset
)
2045 con
->ops
->peer_reset(con
);
2046 mutex_lock(&con
->mutex
);
2047 if (con
->state
!= CON_STATE_NEGOTIATING
)
2051 case CEPH_MSGR_TAG_RETRY_SESSION
:
2053 * If we sent a smaller connect_seq than the peer has, try
2054 * again with a larger value.
2056 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2057 le32_to_cpu(con
->out_connect
.connect_seq
),
2058 le32_to_cpu(con
->in_reply
.connect_seq
));
2059 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2060 con_out_kvec_reset(con
);
2061 ret
= prepare_write_connect(con
);
2064 prepare_read_connect(con
);
2067 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2069 * If we sent a smaller global_seq than the peer has, try
2070 * again with a larger value.
2072 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2073 con
->peer_global_seq
,
2074 le32_to_cpu(con
->in_reply
.global_seq
));
2075 get_global_seq(con
->msgr
,
2076 le32_to_cpu(con
->in_reply
.global_seq
));
2077 con_out_kvec_reset(con
);
2078 ret
= prepare_write_connect(con
);
2081 prepare_read_connect(con
);
2084 case CEPH_MSGR_TAG_SEQ
:
2085 case CEPH_MSGR_TAG_READY
:
2086 if (req_feat
& ~server_feat
) {
2087 pr_err("%s%lld %s protocol feature mismatch,"
2088 " my required %llx > server's %llx, need %llx\n",
2089 ENTITY_NAME(con
->peer_name
),
2090 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2091 req_feat
, server_feat
, req_feat
& ~server_feat
);
2092 con
->error_msg
= "missing required protocol features";
2093 reset_connection(con
);
2097 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2098 con
->state
= CON_STATE_OPEN
;
2099 con
->auth_retry
= 0; /* we authenticated; clear flag */
2100 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2102 con
->peer_features
= server_feat
;
2103 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2104 con
->peer_global_seq
,
2105 le32_to_cpu(con
->in_reply
.connect_seq
),
2107 WARN_ON(con
->connect_seq
!=
2108 le32_to_cpu(con
->in_reply
.connect_seq
));
2110 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2111 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2113 con
->delay
= 0; /* reset backoff memory */
2115 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2116 prepare_write_seq(con
);
2117 prepare_read_seq(con
);
2119 prepare_read_tag(con
);
2123 case CEPH_MSGR_TAG_WAIT
:
2125 * If there is a connection race (we are opening
2126 * connections to each other), one of us may just have
2127 * to WAIT. This shouldn't happen if we are the
2130 pr_err("process_connect got WAIT as client\n");
2131 con
->error_msg
= "protocol error, got WAIT as client";
2135 pr_err("connect protocol error, will retry\n");
2136 con
->error_msg
= "protocol error, garbage tag during connect";
2144 * read (part of) an ack
2146 static int read_partial_ack(struct ceph_connection
*con
)
2148 int size
= sizeof (con
->in_temp_ack
);
2151 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2155 * We can finally discard anything that's been acked.
2157 static void process_ack(struct ceph_connection
*con
)
2160 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2163 while (!list_empty(&con
->out_sent
)) {
2164 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2166 seq
= le64_to_cpu(m
->hdr
.seq
);
2169 dout("got ack for seq %llu type %d at %p\n", seq
,
2170 le16_to_cpu(m
->hdr
.type
), m
);
2171 m
->ack_stamp
= jiffies
;
2174 prepare_read_tag(con
);
2178 static int read_partial_message_section(struct ceph_connection
*con
,
2179 struct kvec
*section
,
2180 unsigned int sec_len
, u32
*crc
)
2186 while (section
->iov_len
< sec_len
) {
2187 BUG_ON(section
->iov_base
== NULL
);
2188 left
= sec_len
- section
->iov_len
;
2189 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2190 section
->iov_len
, left
);
2193 section
->iov_len
+= ret
;
2195 if (section
->iov_len
== sec_len
)
2196 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2201 static int read_partial_msg_data(struct ceph_connection
*con
)
2203 struct ceph_msg
*msg
= con
->in_msg
;
2204 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2205 const bool do_datacrc
= !con
->msgr
->nocrc
;
2213 if (list_empty(&msg
->data
))
2217 crc
= con
->in_data_crc
;
2218 while (cursor
->resid
) {
2219 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2221 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2224 con
->in_data_crc
= crc
;
2230 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2231 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2234 con
->in_data_crc
= crc
;
2236 return 1; /* must return > 0 to indicate success */
2240 * read (part of) a message.
2242 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2244 static int read_partial_message(struct ceph_connection
*con
)
2246 struct ceph_msg
*m
= con
->in_msg
;
2250 unsigned int front_len
, middle_len
, data_len
;
2251 bool do_datacrc
= !con
->msgr
->nocrc
;
2255 dout("read_partial_message con %p msg %p\n", con
, m
);
2258 size
= sizeof (con
->in_hdr
);
2260 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2264 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2265 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2266 pr_err("read_partial_message bad hdr "
2267 " crc %u != expected %u\n",
2268 crc
, con
->in_hdr
.crc
);
2272 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2273 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2275 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2276 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2278 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2279 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2283 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2284 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2285 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2286 ENTITY_NAME(con
->peer_name
),
2287 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2288 seq
, con
->in_seq
+ 1);
2289 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2291 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2293 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2294 pr_err("read_partial_message bad seq %lld expected %lld\n",
2295 seq
, con
->in_seq
+ 1);
2296 con
->error_msg
= "bad message sequence # for incoming message";
2300 /* allocate message? */
2304 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2305 front_len
, data_len
);
2306 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2310 BUG_ON(!con
->in_msg
^ skip
);
2311 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2312 pr_warn("%s skipping long message (%u > %zd)\n",
2313 __func__
, data_len
, con
->in_msg
->data_length
);
2314 ceph_msg_put(con
->in_msg
);
2319 /* skip this message */
2320 dout("alloc_msg said skip message\n");
2321 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2323 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2328 BUG_ON(!con
->in_msg
);
2329 BUG_ON(con
->in_msg
->con
!= con
);
2331 m
->front
.iov_len
= 0; /* haven't read it yet */
2333 m
->middle
->vec
.iov_len
= 0;
2335 /* prepare for data payload, if any */
2338 prepare_message_data(con
->in_msg
, data_len
);
2342 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2343 &con
->in_front_crc
);
2349 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2351 &con
->in_middle_crc
);
2358 ret
= read_partial_msg_data(con
);
2364 size
= sizeof (m
->footer
);
2366 ret
= read_partial(con
, end
, size
, &m
->footer
);
2370 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2371 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2372 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2375 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2376 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2377 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2380 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2381 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2382 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2386 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2387 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2388 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2389 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2393 return 1; /* done! */
2397 * Process message. This happens in the worker thread. The callback should
2398 * be careful not to do anything that waits on other incoming messages or it
2401 static void process_message(struct ceph_connection
*con
)
2403 struct ceph_msg
*msg
;
2405 BUG_ON(con
->in_msg
->con
!= con
);
2406 con
->in_msg
->con
= NULL
;
2411 /* if first message, set peer_name */
2412 if (con
->peer_name
.type
== 0)
2413 con
->peer_name
= msg
->hdr
.src
;
2416 mutex_unlock(&con
->mutex
);
2418 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2419 msg
, le64_to_cpu(msg
->hdr
.seq
),
2420 ENTITY_NAME(msg
->hdr
.src
),
2421 le16_to_cpu(msg
->hdr
.type
),
2422 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2423 le32_to_cpu(msg
->hdr
.front_len
),
2424 le32_to_cpu(msg
->hdr
.data_len
),
2425 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2426 con
->ops
->dispatch(con
, msg
);
2428 mutex_lock(&con
->mutex
);
2433 * Write something to the socket. Called in a worker thread when the
2434 * socket appears to be writeable and we have something ready to send.
2436 static int try_write(struct ceph_connection
*con
)
2440 dout("try_write start %p state %lu\n", con
, con
->state
);
2443 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2445 /* open the socket first? */
2446 if (con
->state
== CON_STATE_PREOPEN
) {
2448 con
->state
= CON_STATE_CONNECTING
;
2450 con_out_kvec_reset(con
);
2451 prepare_write_banner(con
);
2452 prepare_read_banner(con
);
2454 BUG_ON(con
->in_msg
);
2455 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2456 dout("try_write initiating connect on %p new state %lu\n",
2458 ret
= ceph_tcp_connect(con
);
2460 con
->error_msg
= "connect error";
2466 /* kvec data queued? */
2467 if (con
->out_skip
) {
2468 ret
= write_partial_skip(con
);
2472 if (con
->out_kvec_left
) {
2473 ret
= write_partial_kvec(con
);
2480 if (con
->out_msg_done
) {
2481 ceph_msg_put(con
->out_msg
);
2482 con
->out_msg
= NULL
; /* we're done with this one */
2486 ret
= write_partial_message_data(con
);
2488 goto more_kvec
; /* we need to send the footer, too! */
2492 dout("try_write write_partial_message_data err %d\n",
2499 if (con
->state
== CON_STATE_OPEN
) {
2500 /* is anything else pending? */
2501 if (!list_empty(&con
->out_queue
)) {
2502 prepare_write_message(con
);
2505 if (con
->in_seq
> con
->in_seq_acked
) {
2506 prepare_write_ack(con
);
2509 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2510 prepare_write_keepalive(con
);
2515 /* Nothing to do! */
2516 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2517 dout("try_write nothing else to write.\n");
2520 dout("try_write done on %p ret %d\n", con
, ret
);
2527 * Read what we can from the socket.
2529 static int try_read(struct ceph_connection
*con
)
2534 dout("try_read start on %p state %lu\n", con
, con
->state
);
2535 if (con
->state
!= CON_STATE_CONNECTING
&&
2536 con
->state
!= CON_STATE_NEGOTIATING
&&
2537 con
->state
!= CON_STATE_OPEN
)
2542 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2545 if (con
->state
== CON_STATE_CONNECTING
) {
2546 dout("try_read connecting\n");
2547 ret
= read_partial_banner(con
);
2550 ret
= process_banner(con
);
2554 con
->state
= CON_STATE_NEGOTIATING
;
2557 * Received banner is good, exchange connection info.
2558 * Do not reset out_kvec, as sending our banner raced
2559 * with receiving peer banner after connect completed.
2561 ret
= prepare_write_connect(con
);
2564 prepare_read_connect(con
);
2566 /* Send connection info before awaiting response */
2570 if (con
->state
== CON_STATE_NEGOTIATING
) {
2571 dout("try_read negotiating\n");
2572 ret
= read_partial_connect(con
);
2575 ret
= process_connect(con
);
2581 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2583 if (con
->in_base_pos
< 0) {
2585 * skipping + discarding content.
2587 * FIXME: there must be a better way to do this!
2589 static char buf
[SKIP_BUF_SIZE
];
2590 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2592 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2593 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2596 con
->in_base_pos
+= ret
;
2597 if (con
->in_base_pos
)
2600 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2604 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2607 dout("try_read got tag %d\n", (int)con
->in_tag
);
2608 switch (con
->in_tag
) {
2609 case CEPH_MSGR_TAG_MSG
:
2610 prepare_read_message(con
);
2612 case CEPH_MSGR_TAG_ACK
:
2613 prepare_read_ack(con
);
2615 case CEPH_MSGR_TAG_CLOSE
:
2616 con_close_socket(con
);
2617 con
->state
= CON_STATE_CLOSED
;
2623 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2624 ret
= read_partial_message(con
);
2628 con
->error_msg
= "bad crc";
2632 con
->error_msg
= "io error";
2637 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2639 process_message(con
);
2640 if (con
->state
== CON_STATE_OPEN
)
2641 prepare_read_tag(con
);
2644 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2645 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2647 * the final handshake seq exchange is semantically
2648 * equivalent to an ACK
2650 ret
= read_partial_ack(con
);
2658 dout("try_read done on %p ret %d\n", con
, ret
);
2662 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2663 con
->error_msg
= "protocol error, garbage tag";
2670 * Atomically queue work on a connection after the specified delay.
2671 * Bump @con reference to avoid races with connection teardown.
2672 * Returns 0 if work was queued, or an error code otherwise.
2674 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2676 if (!con
->ops
->get(con
)) {
2677 dout("%s %p ref count 0\n", __func__
, con
);
2681 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2682 dout("%s %p - already queued\n", __func__
, con
);
2687 dout("%s %p %lu\n", __func__
, con
, delay
);
2691 static void queue_con(struct ceph_connection
*con
)
2693 (void) queue_con_delay(con
, 0);
2696 static void cancel_con(struct ceph_connection
*con
)
2698 if (cancel_delayed_work(&con
->work
)) {
2699 dout("%s %p\n", __func__
, con
);
2704 static bool con_sock_closed(struct ceph_connection
*con
)
2706 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2710 case CON_STATE_ ## x: \
2711 con->error_msg = "socket closed (con state " #x ")"; \
2714 switch (con
->state
) {
2722 pr_warn("%s con %p unrecognized state %lu\n",
2723 __func__
, con
, con
->state
);
2724 con
->error_msg
= "unrecognized con state";
2733 static bool con_backoff(struct ceph_connection
*con
)
2737 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2740 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2742 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2744 BUG_ON(ret
== -ENOENT
);
2745 con_flag_set(con
, CON_FLAG_BACKOFF
);
2751 /* Finish fault handling; con->mutex must *not* be held here */
2753 static void con_fault_finish(struct ceph_connection
*con
)
2756 * in case we faulted due to authentication, invalidate our
2757 * current tickets so that we can get new ones.
2759 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2760 dout("calling invalidate_authorizer()\n");
2761 con
->ops
->invalidate_authorizer(con
);
2764 if (con
->ops
->fault
)
2765 con
->ops
->fault(con
);
2769 * Do some work on a connection. Drop a connection ref when we're done.
2771 static void con_work(struct work_struct
*work
)
2773 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2775 unsigned long pflags
= current
->flags
;
2778 current
->flags
|= PF_MEMALLOC
;
2780 mutex_lock(&con
->mutex
);
2784 if ((fault
= con_sock_closed(con
))) {
2785 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2788 if (con_backoff(con
)) {
2789 dout("%s: con %p BACKOFF\n", __func__
, con
);
2792 if (con
->state
== CON_STATE_STANDBY
) {
2793 dout("%s: con %p STANDBY\n", __func__
, con
);
2796 if (con
->state
== CON_STATE_CLOSED
) {
2797 dout("%s: con %p CLOSED\n", __func__
, con
);
2801 if (con
->state
== CON_STATE_PREOPEN
) {
2802 dout("%s: con %p PREOPEN\n", __func__
, con
);
2806 ret
= try_read(con
);
2810 con
->error_msg
= "socket error on read";
2815 ret
= try_write(con
);
2819 con
->error_msg
= "socket error on write";
2823 break; /* If we make it to here, we're done */
2827 mutex_unlock(&con
->mutex
);
2830 con_fault_finish(con
);
2834 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
2838 * Generic error/fault handler. A retry mechanism is used with
2839 * exponential backoff
2841 static void con_fault(struct ceph_connection
*con
)
2843 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2844 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2845 dout("fault %p state %lu to peer %s\n",
2846 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2848 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2849 con
->state
!= CON_STATE_NEGOTIATING
&&
2850 con
->state
!= CON_STATE_OPEN
);
2852 con_close_socket(con
);
2854 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2855 dout("fault on LOSSYTX channel, marking CLOSED\n");
2856 con
->state
= CON_STATE_CLOSED
;
2861 BUG_ON(con
->in_msg
->con
!= con
);
2862 con
->in_msg
->con
= NULL
;
2863 ceph_msg_put(con
->in_msg
);
2868 /* Requeue anything that hasn't been acked */
2869 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2871 /* If there are no messages queued or keepalive pending, place
2872 * the connection in a STANDBY state */
2873 if (list_empty(&con
->out_queue
) &&
2874 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2875 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2876 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2877 con
->state
= CON_STATE_STANDBY
;
2879 /* retry after a delay. */
2880 con
->state
= CON_STATE_PREOPEN
;
2881 if (con
->delay
== 0)
2882 con
->delay
= BASE_DELAY_INTERVAL
;
2883 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2885 con_flag_set(con
, CON_FLAG_BACKOFF
);
2893 * initialize a new messenger instance
2895 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2896 struct ceph_entity_addr
*myaddr
,
2897 u64 supported_features
,
2898 u64 required_features
,
2901 msgr
->supported_features
= supported_features
;
2902 msgr
->required_features
= required_features
;
2904 spin_lock_init(&msgr
->global_seq_lock
);
2907 msgr
->inst
.addr
= *myaddr
;
2909 /* select a random nonce */
2910 msgr
->inst
.addr
.type
= 0;
2911 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2912 encode_my_addr(msgr
);
2913 msgr
->nocrc
= nocrc
;
2915 atomic_set(&msgr
->stopping
, 0);
2917 dout("%s %p\n", __func__
, msgr
);
2919 EXPORT_SYMBOL(ceph_messenger_init
);
2921 static void clear_standby(struct ceph_connection
*con
)
2923 /* come back from STANDBY? */
2924 if (con
->state
== CON_STATE_STANDBY
) {
2925 dout("clear_standby %p and ++connect_seq\n", con
);
2926 con
->state
= CON_STATE_PREOPEN
;
2928 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2929 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2934 * Queue up an outgoing message on the given connection.
2936 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2939 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2940 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2941 msg
->needs_out_seq
= true;
2943 mutex_lock(&con
->mutex
);
2945 if (con
->state
== CON_STATE_CLOSED
) {
2946 dout("con_send %p closed, dropping %p\n", con
, msg
);
2948 mutex_unlock(&con
->mutex
);
2952 BUG_ON(msg
->con
!= NULL
);
2953 msg
->con
= con
->ops
->get(con
);
2954 BUG_ON(msg
->con
== NULL
);
2956 BUG_ON(!list_empty(&msg
->list_head
));
2957 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2958 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2959 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2960 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2961 le32_to_cpu(msg
->hdr
.front_len
),
2962 le32_to_cpu(msg
->hdr
.middle_len
),
2963 le32_to_cpu(msg
->hdr
.data_len
));
2966 mutex_unlock(&con
->mutex
);
2968 /* if there wasn't anything waiting to send before, queue
2970 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2973 EXPORT_SYMBOL(ceph_con_send
);
2976 * Revoke a message that was previously queued for send
2978 void ceph_msg_revoke(struct ceph_msg
*msg
)
2980 struct ceph_connection
*con
= msg
->con
;
2983 return; /* Message not in our possession */
2985 mutex_lock(&con
->mutex
);
2986 if (!list_empty(&msg
->list_head
)) {
2987 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2988 list_del_init(&msg
->list_head
);
2989 BUG_ON(msg
->con
== NULL
);
2990 msg
->con
->ops
->put(msg
->con
);
2996 if (con
->out_msg
== msg
) {
2997 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2998 con
->out_msg
= NULL
;
2999 if (con
->out_kvec_is_msg
) {
3000 con
->out_skip
= con
->out_kvec_bytes
;
3001 con
->out_kvec_is_msg
= false;
3007 mutex_unlock(&con
->mutex
);
3011 * Revoke a message that we may be reading data into
3013 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3015 struct ceph_connection
*con
;
3017 BUG_ON(msg
== NULL
);
3019 dout("%s msg %p null con\n", __func__
, msg
);
3021 return; /* Message not in our possession */
3025 mutex_lock(&con
->mutex
);
3026 if (con
->in_msg
== msg
) {
3027 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3028 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3029 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3031 /* skip rest of message */
3032 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3033 con
->in_base_pos
= con
->in_base_pos
-
3034 sizeof(struct ceph_msg_header
) -
3038 sizeof(struct ceph_msg_footer
);
3039 ceph_msg_put(con
->in_msg
);
3041 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3044 dout("%s %p in_msg %p msg %p no-op\n",
3045 __func__
, con
, con
->in_msg
, msg
);
3047 mutex_unlock(&con
->mutex
);
3051 * Queue a keepalive byte to ensure the tcp connection is alive.
3053 void ceph_con_keepalive(struct ceph_connection
*con
)
3055 dout("con_keepalive %p\n", con
);
3056 mutex_lock(&con
->mutex
);
3058 mutex_unlock(&con
->mutex
);
3059 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3060 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3063 EXPORT_SYMBOL(ceph_con_keepalive
);
3065 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3067 struct ceph_msg_data
*data
;
3069 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3072 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3075 INIT_LIST_HEAD(&data
->links
);
3080 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3085 WARN_ON(!list_empty(&data
->links
));
3086 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3087 ceph_pagelist_release(data
->pagelist
);
3088 kmem_cache_free(ceph_msg_data_cache
, data
);
3091 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3092 size_t length
, size_t alignment
)
3094 struct ceph_msg_data
*data
;
3099 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3101 data
->pages
= pages
;
3102 data
->length
= length
;
3103 data
->alignment
= alignment
& ~PAGE_MASK
;
3105 list_add_tail(&data
->links
, &msg
->data
);
3106 msg
->data_length
+= length
;
3108 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3110 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3111 struct ceph_pagelist
*pagelist
)
3113 struct ceph_msg_data
*data
;
3116 BUG_ON(!pagelist
->length
);
3118 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3120 data
->pagelist
= pagelist
;
3122 list_add_tail(&data
->links
, &msg
->data
);
3123 msg
->data_length
+= pagelist
->length
;
3125 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3128 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3131 struct ceph_msg_data
*data
;
3135 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3138 data
->bio_length
= length
;
3140 list_add_tail(&data
->links
, &msg
->data
);
3141 msg
->data_length
+= length
;
3143 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3144 #endif /* CONFIG_BLOCK */
3147 * construct a new message with given type, size
3148 * the new msg has a ref count of 1.
3150 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3155 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3159 m
->hdr
.type
= cpu_to_le16(type
);
3160 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3161 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3163 INIT_LIST_HEAD(&m
->list_head
);
3164 kref_init(&m
->kref
);
3165 INIT_LIST_HEAD(&m
->data
);
3169 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3170 if (m
->front
.iov_base
== NULL
) {
3171 dout("ceph_msg_new can't allocate %d bytes\n",
3176 m
->front
.iov_base
= NULL
;
3178 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3180 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3187 pr_err("msg_new can't create type %d front %d\n", type
,
3191 dout("msg_new can't create type %d front %d\n", type
,
3196 EXPORT_SYMBOL(ceph_msg_new
);
3199 * Allocate "middle" portion of a message, if it is needed and wasn't
3200 * allocated by alloc_msg. This allows us to read a small fixed-size
3201 * per-type header in the front and then gracefully fail (i.e.,
3202 * propagate the error to the caller based on info in the front) when
3203 * the middle is too large.
3205 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3207 int type
= le16_to_cpu(msg
->hdr
.type
);
3208 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3210 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3211 ceph_msg_type_name(type
), middle_len
);
3212 BUG_ON(!middle_len
);
3213 BUG_ON(msg
->middle
);
3215 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3222 * Allocate a message for receiving an incoming message on a
3223 * connection, and save the result in con->in_msg. Uses the
3224 * connection's private alloc_msg op if available.
3226 * Returns 0 on success, or a negative error code.
3228 * On success, if we set *skip = 1:
3229 * - the next message should be skipped and ignored.
3230 * - con->in_msg == NULL
3231 * or if we set *skip = 0:
3232 * - con->in_msg is non-null.
3233 * On error (ENOMEM, EAGAIN, ...),
3234 * - con->in_msg == NULL
3236 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3238 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3239 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3240 struct ceph_msg
*msg
;
3243 BUG_ON(con
->in_msg
!= NULL
);
3244 BUG_ON(!con
->ops
->alloc_msg
);
3246 mutex_unlock(&con
->mutex
);
3247 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3248 mutex_lock(&con
->mutex
);
3249 if (con
->state
!= CON_STATE_OPEN
) {
3257 con
->in_msg
->con
= con
->ops
->get(con
);
3258 BUG_ON(con
->in_msg
->con
== NULL
);
3261 * Null message pointer means either we should skip
3262 * this message or we couldn't allocate memory. The
3263 * former is not an error.
3267 con
->error_msg
= "error allocating memory for incoming message";
3271 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3273 if (middle_len
&& !con
->in_msg
->middle
) {
3274 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3276 ceph_msg_put(con
->in_msg
);
3286 * Free a generically kmalloc'd message.
3288 static void ceph_msg_free(struct ceph_msg
*m
)
3290 dout("%s %p\n", __func__
, m
);
3291 ceph_kvfree(m
->front
.iov_base
);
3292 kmem_cache_free(ceph_msg_cache
, m
);
3295 static void ceph_msg_release(struct kref
*kref
)
3297 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3299 struct list_head
*links
;
3300 struct list_head
*next
;
3302 dout("%s %p\n", __func__
, m
);
3303 WARN_ON(!list_empty(&m
->list_head
));
3305 /* drop middle, data, if any */
3307 ceph_buffer_put(m
->middle
);
3311 list_splice_init(&m
->data
, &data
);
3312 list_for_each_safe(links
, next
, &data
) {
3313 struct ceph_msg_data
*data
;
3315 data
= list_entry(links
, struct ceph_msg_data
, links
);
3316 list_del_init(links
);
3317 ceph_msg_data_destroy(data
);
3322 ceph_msgpool_put(m
->pool
, m
);
3327 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3329 dout("%s %p (was %d)\n", __func__
, msg
,
3330 atomic_read(&msg
->kref
.refcount
));
3331 kref_get(&msg
->kref
);
3334 EXPORT_SYMBOL(ceph_msg_get
);
3336 void ceph_msg_put(struct ceph_msg
*msg
)
3338 dout("%s %p (was %d)\n", __func__
, msg
,
3339 atomic_read(&msg
->kref
.refcount
));
3340 kref_put(&msg
->kref
, ceph_msg_release
);
3342 EXPORT_SYMBOL(ceph_msg_put
);
3344 void ceph_msg_dump(struct ceph_msg
*msg
)
3346 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3347 msg
->front_alloc_len
, msg
->data_length
);
3348 print_hex_dump(KERN_DEBUG
, "header: ",
3349 DUMP_PREFIX_OFFSET
, 16, 1,
3350 &msg
->hdr
, sizeof(msg
->hdr
), true);
3351 print_hex_dump(KERN_DEBUG
, " front: ",
3352 DUMP_PREFIX_OFFSET
, 16, 1,
3353 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3355 print_hex_dump(KERN_DEBUG
, "middle: ",
3356 DUMP_PREFIX_OFFSET
, 16, 1,
3357 msg
->middle
->vec
.iov_base
,
3358 msg
->middle
->vec
.iov_len
, true);
3359 print_hex_dump(KERN_DEBUG
, "footer: ",
3360 DUMP_PREFIX_OFFSET
, 16, 1,
3361 &msg
->footer
, sizeof(msg
->footer
), true);
3363 EXPORT_SYMBOL(ceph_msg_dump
);