1 /* flow.c: Generic flow cache.
3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/list.h>
10 #include <linux/jhash.h>
11 #include <linux/interrupt.h>
13 #include <linux/random.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/completion.h>
18 #include <linux/percpu.h>
19 #include <linux/bitops.h>
20 #include <linux/notifier.h>
21 #include <linux/cpu.h>
22 #include <linux/cpumask.h>
23 #include <linux/mutex.h>
25 #include <linux/atomic.h>
26 #include <linux/security.h>
27 #include <net/net_namespace.h>
29 struct flow_cache_entry
{
31 struct hlist_node hlist
;
32 struct list_head gc_list
;
39 struct flow_cache_object
*object
;
42 struct flow_flush_info
{
43 struct flow_cache
*cache
;
45 struct completion completion
;
48 static struct kmem_cache
*flow_cachep __read_mostly
;
50 #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
51 #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
53 static void flow_cache_new_hashrnd(unsigned long arg
)
55 struct flow_cache
*fc
= (void *) arg
;
58 for_each_possible_cpu(i
)
59 per_cpu_ptr(fc
->percpu
, i
)->hash_rnd_recalc
= 1;
61 fc
->rnd_timer
.expires
= jiffies
+ FLOW_HASH_RND_PERIOD
;
62 add_timer(&fc
->rnd_timer
);
65 static int flow_entry_valid(struct flow_cache_entry
*fle
,
66 struct netns_xfrm
*xfrm
)
68 if (atomic_read(&xfrm
->flow_cache_genid
) != fle
->genid
)
70 if (fle
->object
&& !fle
->object
->ops
->check(fle
->object
))
75 static void flow_entry_kill(struct flow_cache_entry
*fle
,
76 struct netns_xfrm
*xfrm
)
79 fle
->object
->ops
->delete(fle
->object
);
80 kmem_cache_free(flow_cachep
, fle
);
83 static void flow_cache_gc_task(struct work_struct
*work
)
85 struct list_head gc_list
;
86 struct flow_cache_entry
*fce
, *n
;
87 struct netns_xfrm
*xfrm
= container_of(work
, struct netns_xfrm
,
90 INIT_LIST_HEAD(&gc_list
);
91 spin_lock_bh(&xfrm
->flow_cache_gc_lock
);
92 list_splice_tail_init(&xfrm
->flow_cache_gc_list
, &gc_list
);
93 spin_unlock_bh(&xfrm
->flow_cache_gc_lock
);
95 list_for_each_entry_safe(fce
, n
, &gc_list
, u
.gc_list
)
96 flow_entry_kill(fce
, xfrm
);
99 static void flow_cache_queue_garbage(struct flow_cache_percpu
*fcp
,
100 int deleted
, struct list_head
*gc_list
,
101 struct netns_xfrm
*xfrm
)
104 fcp
->hash_count
-= deleted
;
105 spin_lock_bh(&xfrm
->flow_cache_gc_lock
);
106 list_splice_tail(gc_list
, &xfrm
->flow_cache_gc_list
);
107 spin_unlock_bh(&xfrm
->flow_cache_gc_lock
);
108 schedule_work(&xfrm
->flow_cache_gc_work
);
112 static void __flow_cache_shrink(struct flow_cache
*fc
,
113 struct flow_cache_percpu
*fcp
,
116 struct flow_cache_entry
*fle
;
117 struct hlist_node
*tmp
;
120 struct netns_xfrm
*xfrm
= container_of(fc
, struct netns_xfrm
,
123 for (i
= 0; i
< flow_cache_hash_size(fc
); i
++) {
126 hlist_for_each_entry_safe(fle
, tmp
,
127 &fcp
->hash_table
[i
], u
.hlist
) {
128 if (saved
< shrink_to
&&
129 flow_entry_valid(fle
, xfrm
)) {
133 hlist_del(&fle
->u
.hlist
);
134 list_add_tail(&fle
->u
.gc_list
, &gc_list
);
139 flow_cache_queue_garbage(fcp
, deleted
, &gc_list
, xfrm
);
142 static void flow_cache_shrink(struct flow_cache
*fc
,
143 struct flow_cache_percpu
*fcp
)
145 int shrink_to
= fc
->low_watermark
/ flow_cache_hash_size(fc
);
147 __flow_cache_shrink(fc
, fcp
, shrink_to
);
150 static void flow_new_hash_rnd(struct flow_cache
*fc
,
151 struct flow_cache_percpu
*fcp
)
153 get_random_bytes(&fcp
->hash_rnd
, sizeof(u32
));
154 fcp
->hash_rnd_recalc
= 0;
155 __flow_cache_shrink(fc
, fcp
, 0);
158 static u32
flow_hash_code(struct flow_cache
*fc
,
159 struct flow_cache_percpu
*fcp
,
160 const struct flowi
*key
,
163 const u32
*k
= (const u32
*) key
;
164 const u32 length
= keysize
* sizeof(flow_compare_t
) / sizeof(u32
);
166 return jhash2(k
, length
, fcp
->hash_rnd
)
167 & (flow_cache_hash_size(fc
) - 1);
170 /* I hear what you're saying, use memcmp. But memcmp cannot make
171 * important assumptions that we can here, such as alignment.
173 static int flow_key_compare(const struct flowi
*key1
, const struct flowi
*key2
,
176 const flow_compare_t
*k1
, *k1_lim
, *k2
;
178 k1
= (const flow_compare_t
*) key1
;
179 k1_lim
= k1
+ keysize
;
181 k2
= (const flow_compare_t
*) key2
;
186 } while (k1
< k1_lim
);
191 struct flow_cache_object
*
192 flow_cache_lookup(struct net
*net
, const struct flowi
*key
, u16 family
, u8 dir
,
193 flow_resolve_t resolver
, void *ctx
)
195 struct flow_cache
*fc
= &net
->xfrm
.flow_cache_global
;
196 struct flow_cache_percpu
*fcp
;
197 struct flow_cache_entry
*fle
, *tfle
;
198 struct flow_cache_object
*flo
;
203 fcp
= this_cpu_ptr(fc
->percpu
);
208 keysize
= flow_key_size(family
);
212 /* Packet really early in init? Making flow_cache_init a
213 * pre-smp initcall would solve this. --RR */
214 if (!fcp
->hash_table
)
217 if (fcp
->hash_rnd_recalc
)
218 flow_new_hash_rnd(fc
, fcp
);
220 hash
= flow_hash_code(fc
, fcp
, key
, keysize
);
221 hlist_for_each_entry(tfle
, &fcp
->hash_table
[hash
], u
.hlist
) {
222 if (tfle
->net
== net
&&
223 tfle
->family
== family
&&
225 flow_key_compare(key
, &tfle
->key
, keysize
) == 0) {
231 if (unlikely(!fle
)) {
232 if (fcp
->hash_count
> fc
->high_watermark
)
233 flow_cache_shrink(fc
, fcp
);
235 fle
= kmem_cache_alloc(flow_cachep
, GFP_ATOMIC
);
238 fle
->family
= family
;
240 memcpy(&fle
->key
, key
, keysize
* sizeof(flow_compare_t
));
242 hlist_add_head(&fle
->u
.hlist
, &fcp
->hash_table
[hash
]);
245 } else if (likely(fle
->genid
== atomic_read(&net
->xfrm
.flow_cache_genid
))) {
249 flo
= flo
->ops
->get(flo
);
252 } else if (fle
->object
) {
254 flo
->ops
->delete(flo
);
264 flo
= resolver(net
, key
, family
, dir
, flo
, ctx
);
266 fle
->genid
= atomic_read(&net
->xfrm
.flow_cache_genid
);
272 if (!IS_ERR_OR_NULL(flo
))
273 flo
->ops
->delete(flo
);
279 EXPORT_SYMBOL(flow_cache_lookup
);
281 static void flow_cache_flush_tasklet(unsigned long data
)
283 struct flow_flush_info
*info
= (void *)data
;
284 struct flow_cache
*fc
= info
->cache
;
285 struct flow_cache_percpu
*fcp
;
286 struct flow_cache_entry
*fle
;
287 struct hlist_node
*tmp
;
290 struct netns_xfrm
*xfrm
= container_of(fc
, struct netns_xfrm
,
293 fcp
= this_cpu_ptr(fc
->percpu
);
294 for (i
= 0; i
< flow_cache_hash_size(fc
); i
++) {
295 hlist_for_each_entry_safe(fle
, tmp
,
296 &fcp
->hash_table
[i
], u
.hlist
) {
297 if (flow_entry_valid(fle
, xfrm
))
301 hlist_del(&fle
->u
.hlist
);
302 list_add_tail(&fle
->u
.gc_list
, &gc_list
);
306 flow_cache_queue_garbage(fcp
, deleted
, &gc_list
, xfrm
);
308 if (atomic_dec_and_test(&info
->cpuleft
))
309 complete(&info
->completion
);
313 * Return whether a cpu needs flushing. Conservatively, we assume
314 * the presence of any entries means the core may require flushing,
315 * since the flow_cache_ops.check() function may assume it's running
316 * on the same core as the per-cpu cache component.
318 static int flow_cache_percpu_empty(struct flow_cache
*fc
, int cpu
)
320 struct flow_cache_percpu
*fcp
;
323 fcp
= per_cpu_ptr(fc
->percpu
, cpu
);
324 for (i
= 0; i
< flow_cache_hash_size(fc
); i
++)
325 if (!hlist_empty(&fcp
->hash_table
[i
]))
330 static void flow_cache_flush_per_cpu(void *data
)
332 struct flow_flush_info
*info
= data
;
333 struct tasklet_struct
*tasklet
;
335 tasklet
= &this_cpu_ptr(info
->cache
->percpu
)->flush_tasklet
;
336 tasklet
->data
= (unsigned long)info
;
337 tasklet_schedule(tasklet
);
340 void flow_cache_flush(struct net
*net
)
342 struct flow_flush_info info
;
346 /* Track which cpus need flushing to avoid disturbing all cores. */
347 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
351 /* Don't want cpus going down or up during this. */
353 mutex_lock(&net
->xfrm
.flow_flush_sem
);
354 info
.cache
= &net
->xfrm
.flow_cache_global
;
355 for_each_online_cpu(i
)
356 if (!flow_cache_percpu_empty(info
.cache
, i
))
357 cpumask_set_cpu(i
, mask
);
358 atomic_set(&info
.cpuleft
, cpumask_weight(mask
));
359 if (atomic_read(&info
.cpuleft
) == 0)
362 init_completion(&info
.completion
);
365 self
= cpumask_test_and_clear_cpu(smp_processor_id(), mask
);
366 on_each_cpu_mask(mask
, flow_cache_flush_per_cpu
, &info
, 0);
368 flow_cache_flush_tasklet((unsigned long)&info
);
371 wait_for_completion(&info
.completion
);
374 mutex_unlock(&net
->xfrm
.flow_flush_sem
);
376 free_cpumask_var(mask
);
379 static void flow_cache_flush_task(struct work_struct
*work
)
381 struct netns_xfrm
*xfrm
= container_of(work
, struct netns_xfrm
,
383 struct net
*net
= container_of(xfrm
, struct net
, xfrm
);
385 flow_cache_flush(net
);
388 void flow_cache_flush_deferred(struct net
*net
)
390 schedule_work(&net
->xfrm
.flow_cache_flush_work
);
393 static int flow_cache_cpu_prepare(struct flow_cache
*fc
, int cpu
)
395 struct flow_cache_percpu
*fcp
= per_cpu_ptr(fc
->percpu
, cpu
);
396 size_t sz
= sizeof(struct hlist_head
) * flow_cache_hash_size(fc
);
398 if (!fcp
->hash_table
) {
399 fcp
->hash_table
= kzalloc_node(sz
, GFP_KERNEL
, cpu_to_node(cpu
));
400 if (!fcp
->hash_table
) {
401 pr_err("NET: failed to allocate flow cache sz %zu\n", sz
);
404 fcp
->hash_rnd_recalc
= 1;
406 tasklet_init(&fcp
->flush_tasklet
, flow_cache_flush_tasklet
, 0);
411 static int flow_cache_cpu(struct notifier_block
*nfb
,
412 unsigned long action
,
415 struct flow_cache
*fc
= container_of(nfb
, struct flow_cache
,
417 int res
, cpu
= (unsigned long) hcpu
;
418 struct flow_cache_percpu
*fcp
= per_cpu_ptr(fc
->percpu
, cpu
);
422 case CPU_UP_PREPARE_FROZEN
:
423 res
= flow_cache_cpu_prepare(fc
, cpu
);
425 return notifier_from_errno(res
);
428 case CPU_DEAD_FROZEN
:
429 __flow_cache_shrink(fc
, fcp
, 0);
435 int flow_cache_init(struct net
*net
)
438 struct flow_cache
*fc
= &net
->xfrm
.flow_cache_global
;
441 flow_cachep
= kmem_cache_create("flow_cache",
442 sizeof(struct flow_cache_entry
),
443 0, SLAB_PANIC
, NULL
);
444 spin_lock_init(&net
->xfrm
.flow_cache_gc_lock
);
445 INIT_LIST_HEAD(&net
->xfrm
.flow_cache_gc_list
);
446 INIT_WORK(&net
->xfrm
.flow_cache_gc_work
, flow_cache_gc_task
);
447 INIT_WORK(&net
->xfrm
.flow_cache_flush_work
, flow_cache_flush_task
);
448 mutex_init(&net
->xfrm
.flow_flush_sem
);
451 fc
->low_watermark
= 2 * flow_cache_hash_size(fc
);
452 fc
->high_watermark
= 4 * flow_cache_hash_size(fc
);
454 fc
->percpu
= alloc_percpu(struct flow_cache_percpu
);
458 cpu_notifier_register_begin();
460 for_each_online_cpu(i
) {
461 if (flow_cache_cpu_prepare(fc
, i
))
464 fc
->hotcpu_notifier
= (struct notifier_block
){
465 .notifier_call
= flow_cache_cpu
,
467 __register_hotcpu_notifier(&fc
->hotcpu_notifier
);
469 cpu_notifier_register_done();
471 setup_timer(&fc
->rnd_timer
, flow_cache_new_hashrnd
,
473 fc
->rnd_timer
.expires
= jiffies
+ FLOW_HASH_RND_PERIOD
;
474 add_timer(&fc
->rnd_timer
);
479 for_each_possible_cpu(i
) {
480 struct flow_cache_percpu
*fcp
= per_cpu_ptr(fc
->percpu
, i
);
481 kfree(fcp
->hash_table
);
482 fcp
->hash_table
= NULL
;
485 cpu_notifier_register_done();
487 free_percpu(fc
->percpu
);
492 EXPORT_SYMBOL(flow_cache_init
);
494 void flow_cache_fini(struct net
*net
)
497 struct flow_cache
*fc
= &net
->xfrm
.flow_cache_global
;
499 del_timer_sync(&fc
->rnd_timer
);
500 unregister_hotcpu_notifier(&fc
->hotcpu_notifier
);
502 for_each_possible_cpu(i
) {
503 struct flow_cache_percpu
*fcp
= per_cpu_ptr(fc
->percpu
, i
);
504 kfree(fcp
->hash_table
);
505 fcp
->hash_table
= NULL
;
508 free_percpu(fc
->percpu
);
511 EXPORT_SYMBOL(flow_cache_fini
);