2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
135 #include <linux/filter.h>
137 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex
);
146 static LIST_HEAD(proto_list
);
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
158 bool sk_ns_capable(const struct sock
*sk
,
159 struct user_namespace
*user_ns
, int cap
)
161 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
162 ns_capable(user_ns
, cap
);
164 EXPORT_SYMBOL(sk_ns_capable
);
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
175 bool sk_capable(const struct sock
*sk
, int cap
)
177 return sk_ns_capable(sk
, &init_user_ns
, cap
);
179 EXPORT_SYMBOL(sk_capable
);
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
190 bool sk_net_capable(const struct sock
*sk
, int cap
)
192 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
194 EXPORT_SYMBOL(sk_net_capable
);
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
203 mutex_lock(&proto_list_mutex
);
204 list_for_each_entry(proto
, &proto_list
, node
) {
205 if (proto
->init_cgroup
) {
206 ret
= proto
->init_cgroup(memcg
, ss
);
212 mutex_unlock(&proto_list_mutex
);
215 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
216 if (proto
->destroy_cgroup
)
217 proto
->destroy_cgroup(memcg
);
218 mutex_unlock(&proto_list_mutex
);
222 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
226 mutex_lock(&proto_list_mutex
);
227 list_for_each_entry_reverse(proto
, &proto_list
, node
)
228 if (proto
->destroy_cgroup
)
229 proto
->destroy_cgroup(memcg
);
230 mutex_unlock(&proto_list_mutex
);
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
238 static struct lock_class_key af_family_keys
[AF_MAX
];
239 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled
;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
251 static const char *const af_family_key_strings
[AF_MAX
+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
267 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
283 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
304 static struct lock_class_key af_callback_keys
[AF_MAX
];
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
318 EXPORT_SYMBOL(sysctl_wmem_max
);
319 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
320 EXPORT_SYMBOL(sysctl_rmem_max
);
321 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
322 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
326 EXPORT_SYMBOL(sysctl_optmem_max
);
328 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
329 EXPORT_SYMBOL_GPL(memalloc_socks
);
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
339 void sk_set_memalloc(struct sock
*sk
)
341 sock_set_flag(sk
, SOCK_MEMALLOC
);
342 sk
->sk_allocation
|= __GFP_MEMALLOC
;
343 static_key_slow_inc(&memalloc_socks
);
345 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
347 void sk_clear_memalloc(struct sock
*sk
)
349 sock_reset_flag(sk
, SOCK_MEMALLOC
);
350 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
351 static_key_slow_dec(&memalloc_socks
);
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
362 if (WARN_ON(sk
->sk_forward_alloc
))
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
367 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
370 unsigned long pflags
= current
->flags
;
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
375 current
->flags
|= PF_MEMALLOC
;
376 ret
= sk
->sk_backlog_rcv(sk
, skb
);
377 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
381 EXPORT_SYMBOL(__sk_backlog_rcv
);
383 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
387 if (optlen
< sizeof(tv
))
389 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
391 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
395 static int warned __read_mostly
;
398 if (warned
< 10 && net_ratelimit()) {
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__
, current
->comm
, task_pid_nr(current
));
405 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
406 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
408 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
409 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
413 static void sock_warn_obsolete_bsdism(const char *name
)
416 static char warncomm
[TASK_COMM_LEN
];
417 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
418 strcpy(warncomm
, current
->comm
);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
427 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
429 if (sk
->sk_flags
& flags
) {
430 sk
->sk_flags
&= ~flags
;
431 if (!(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
432 net_disable_timestamp();
437 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
441 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
443 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
444 atomic_inc(&sk
->sk_drops
);
445 trace_sock_rcvqueue_full(sk
, skb
);
449 err
= sk_filter(sk
, skb
);
453 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
454 atomic_inc(&sk
->sk_drops
);
459 skb_set_owner_r(skb
, sk
);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list
->lock
, flags
);
467 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
468 __skb_queue_tail(list
, skb
);
469 spin_unlock_irqrestore(&list
->lock
, flags
);
471 if (!sock_flag(sk
, SOCK_DEAD
))
472 sk
->sk_data_ready(sk
);
475 EXPORT_SYMBOL(sock_queue_rcv_skb
);
477 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
479 int rc
= NET_RX_SUCCESS
;
481 if (sk_filter(sk
, skb
))
482 goto discard_and_relse
;
486 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
487 atomic_inc(&sk
->sk_drops
);
488 goto discard_and_relse
;
491 bh_lock_sock_nested(sk
);
494 if (!sock_owned_by_user(sk
)) {
496 * trylock + unlock semantics:
498 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
500 rc
= sk_backlog_rcv(sk
, skb
);
502 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
503 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
505 atomic_inc(&sk
->sk_drops
);
506 goto discard_and_relse
;
517 EXPORT_SYMBOL(sk_receive_skb
);
519 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
521 struct dst_entry
*dst
= __sk_dst_get(sk
);
523 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
524 sk_tx_queue_clear(sk
);
525 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
532 EXPORT_SYMBOL(__sk_dst_check
);
534 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
536 struct dst_entry
*dst
= sk_dst_get(sk
);
538 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
546 EXPORT_SYMBOL(sk_dst_check
);
548 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
551 int ret
= -ENOPROTOOPT
;
552 #ifdef CONFIG_NETDEVICES
553 struct net
*net
= sock_net(sk
);
554 char devname
[IFNAMSIZ
];
559 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
566 /* Bind this socket to a particular device like "eth0",
567 * as specified in the passed interface name. If the
568 * name is "" or the option length is zero the socket
571 if (optlen
> IFNAMSIZ
- 1)
572 optlen
= IFNAMSIZ
- 1;
573 memset(devname
, 0, sizeof(devname
));
576 if (copy_from_user(devname
, optval
, optlen
))
580 if (devname
[0] != '\0') {
581 struct net_device
*dev
;
584 dev
= dev_get_by_name_rcu(net
, devname
);
586 index
= dev
->ifindex
;
594 sk
->sk_bound_dev_if
= index
;
606 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
607 int __user
*optlen
, int len
)
609 int ret
= -ENOPROTOOPT
;
610 #ifdef CONFIG_NETDEVICES
611 struct net
*net
= sock_net(sk
);
612 char devname
[IFNAMSIZ
];
614 if (sk
->sk_bound_dev_if
== 0) {
623 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
627 len
= strlen(devname
) + 1;
630 if (copy_to_user(optval
, devname
, len
))
635 if (put_user(len
, optlen
))
646 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
649 sock_set_flag(sk
, bit
);
651 sock_reset_flag(sk
, bit
);
655 * This is meant for all protocols to use and covers goings on
656 * at the socket level. Everything here is generic.
659 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
660 char __user
*optval
, unsigned int optlen
)
662 struct sock
*sk
= sock
->sk
;
669 * Options without arguments
672 if (optname
== SO_BINDTODEVICE
)
673 return sock_setbindtodevice(sk
, optval
, optlen
);
675 if (optlen
< sizeof(int))
678 if (get_user(val
, (int __user
*)optval
))
681 valbool
= val
? 1 : 0;
687 if (val
&& !capable(CAP_NET_ADMIN
))
690 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
693 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
696 sk
->sk_reuseport
= valbool
;
705 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
708 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
711 /* Don't error on this BSD doesn't and if you think
712 * about it this is right. Otherwise apps have to
713 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 * are treated in BSD as hints
716 val
= min_t(u32
, val
, sysctl_wmem_max
);
718 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
719 sk
->sk_sndbuf
= max_t(u32
, val
* 2, SOCK_MIN_SNDBUF
);
720 /* Wake up sending tasks if we upped the value. */
721 sk
->sk_write_space(sk
);
725 if (!capable(CAP_NET_ADMIN
)) {
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
737 val
= min_t(u32
, val
, sysctl_rmem_max
);
739 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
741 * We double it on the way in to account for
742 * "struct sk_buff" etc. overhead. Applications
743 * assume that the SO_RCVBUF setting they make will
744 * allow that much actual data to be received on that
747 * Applications are unaware that "struct sk_buff" and
748 * other overheads allocate from the receive buffer
749 * during socket buffer allocation.
751 * And after considering the possible alternatives,
752 * returning the value we actually used in getsockopt
753 * is the most desirable behavior.
755 sk
->sk_rcvbuf
= max_t(u32
, val
* 2, SOCK_MIN_RCVBUF
);
759 if (!capable(CAP_NET_ADMIN
)) {
767 if (sk
->sk_protocol
== IPPROTO_TCP
&&
768 sk
->sk_type
== SOCK_STREAM
)
769 tcp_set_keepalive(sk
, valbool
);
771 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
775 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
779 sk
->sk_no_check_tx
= valbool
;
783 if ((val
>= 0 && val
<= 6) ||
784 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
785 sk
->sk_priority
= val
;
791 if (optlen
< sizeof(ling
)) {
792 ret
= -EINVAL
; /* 1003.1g */
795 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
800 sock_reset_flag(sk
, SOCK_LINGER
);
802 #if (BITS_PER_LONG == 32)
803 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
804 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
807 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
808 sock_set_flag(sk
, SOCK_LINGER
);
813 sock_warn_obsolete_bsdism("setsockopt");
818 set_bit(SOCK_PASSCRED
, &sock
->flags
);
820 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
826 if (optname
== SO_TIMESTAMP
)
827 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
829 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
830 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
831 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
833 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
834 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
838 case SO_TIMESTAMPING
:
839 if (val
& ~SOF_TIMESTAMPING_MASK
) {
843 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
844 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
845 if (sk
->sk_protocol
== IPPROTO_TCP
) {
846 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
850 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
855 sk
->sk_tsflags
= val
;
856 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
857 sock_enable_timestamp(sk
,
858 SOCK_TIMESTAMPING_RX_SOFTWARE
);
860 sock_disable_timestamp(sk
,
861 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
867 sk
->sk_rcvlowat
= val
? : 1;
871 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
875 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
878 case SO_ATTACH_FILTER
:
880 if (optlen
== sizeof(struct sock_fprog
)) {
881 struct sock_fprog fprog
;
884 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
887 ret
= sk_attach_filter(&fprog
, sk
);
893 if (optlen
== sizeof(u32
)) {
897 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
900 ret
= sk_attach_bpf(ufd
, sk
);
904 case SO_DETACH_FILTER
:
905 ret
= sk_detach_filter(sk
);
909 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
912 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
917 set_bit(SOCK_PASSSEC
, &sock
->flags
);
919 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
922 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
928 /* We implement the SO_SNDLOWAT etc to
929 not be settable (1003.1g 5.3) */
931 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
935 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
939 if (sock
->ops
->set_peek_off
)
940 ret
= sock
->ops
->set_peek_off(sk
, val
);
946 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
949 case SO_SELECT_ERR_QUEUE
:
950 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
953 #ifdef CONFIG_NET_RX_BUSY_POLL
955 /* allow unprivileged users to decrease the value */
956 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
962 sk
->sk_ll_usec
= val
;
967 case SO_MAX_PACING_RATE
:
968 sk
->sk_max_pacing_rate
= val
;
969 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
970 sk
->sk_max_pacing_rate
);
980 EXPORT_SYMBOL(sock_setsockopt
);
983 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
986 ucred
->pid
= pid_vnr(pid
);
987 ucred
->uid
= ucred
->gid
= -1;
989 struct user_namespace
*current_ns
= current_user_ns();
991 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
992 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
996 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
997 char __user
*optval
, int __user
*optlen
)
999 struct sock
*sk
= sock
->sk
;
1007 int lv
= sizeof(int);
1010 if (get_user(len
, optlen
))
1015 memset(&v
, 0, sizeof(v
));
1019 v
.val
= sock_flag(sk
, SOCK_DBG
);
1023 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1027 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1031 v
.val
= sk
->sk_sndbuf
;
1035 v
.val
= sk
->sk_rcvbuf
;
1039 v
.val
= sk
->sk_reuse
;
1043 v
.val
= sk
->sk_reuseport
;
1047 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1051 v
.val
= sk
->sk_type
;
1055 v
.val
= sk
->sk_protocol
;
1059 v
.val
= sk
->sk_family
;
1063 v
.val
= -sock_error(sk
);
1065 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1069 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1073 v
.val
= sk
->sk_no_check_tx
;
1077 v
.val
= sk
->sk_priority
;
1081 lv
= sizeof(v
.ling
);
1082 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1083 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1087 sock_warn_obsolete_bsdism("getsockopt");
1091 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1092 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1095 case SO_TIMESTAMPNS
:
1096 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1099 case SO_TIMESTAMPING
:
1100 v
.val
= sk
->sk_tsflags
;
1104 lv
= sizeof(struct timeval
);
1105 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1109 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1110 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1115 lv
= sizeof(struct timeval
);
1116 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1120 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1121 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1126 v
.val
= sk
->sk_rcvlowat
;
1134 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1139 struct ucred peercred
;
1140 if (len
> sizeof(peercred
))
1141 len
= sizeof(peercred
);
1142 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1143 if (copy_to_user(optval
, &peercred
, len
))
1152 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1156 if (copy_to_user(optval
, address
, len
))
1161 /* Dubious BSD thing... Probably nobody even uses it, but
1162 * the UNIX standard wants it for whatever reason... -DaveM
1165 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1169 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1173 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1176 v
.val
= sk
->sk_mark
;
1180 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1183 case SO_WIFI_STATUS
:
1184 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1188 if (!sock
->ops
->set_peek_off
)
1191 v
.val
= sk
->sk_peek_off
;
1194 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1197 case SO_BINDTODEVICE
:
1198 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1201 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1207 case SO_LOCK_FILTER
:
1208 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1211 case SO_BPF_EXTENSIONS
:
1212 v
.val
= bpf_tell_extensions();
1215 case SO_SELECT_ERR_QUEUE
:
1216 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1219 #ifdef CONFIG_NET_RX_BUSY_POLL
1221 v
.val
= sk
->sk_ll_usec
;
1225 case SO_MAX_PACING_RATE
:
1226 v
.val
= sk
->sk_max_pacing_rate
;
1229 case SO_INCOMING_CPU
:
1230 v
.val
= sk
->sk_incoming_cpu
;
1234 return -ENOPROTOOPT
;
1239 if (copy_to_user(optval
, &v
, len
))
1242 if (put_user(len
, optlen
))
1248 * Initialize an sk_lock.
1250 * (We also register the sk_lock with the lock validator.)
1252 static inline void sock_lock_init(struct sock
*sk
)
1254 sock_lock_init_class_and_name(sk
,
1255 af_family_slock_key_strings
[sk
->sk_family
],
1256 af_family_slock_keys
+ sk
->sk_family
,
1257 af_family_key_strings
[sk
->sk_family
],
1258 af_family_keys
+ sk
->sk_family
);
1262 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1263 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1264 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1266 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1268 #ifdef CONFIG_SECURITY_NETWORK
1269 void *sptr
= nsk
->sk_security
;
1271 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1273 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1274 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1276 #ifdef CONFIG_SECURITY_NETWORK
1277 nsk
->sk_security
= sptr
;
1278 security_sk_clone(osk
, nsk
);
1282 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1284 unsigned long nulls1
, nulls2
;
1286 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1287 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1288 if (nulls1
> nulls2
)
1289 swap(nulls1
, nulls2
);
1292 memset((char *)sk
, 0, nulls1
);
1293 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1294 nulls2
- nulls1
- sizeof(void *));
1295 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1296 size
- nulls2
- sizeof(void *));
1298 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1300 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1304 struct kmem_cache
*slab
;
1308 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1311 if (priority
& __GFP_ZERO
) {
1313 prot
->clear_sk(sk
, prot
->obj_size
);
1315 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1318 sk
= kmalloc(prot
->obj_size
, priority
);
1321 kmemcheck_annotate_bitfield(sk
, flags
);
1323 if (security_sk_alloc(sk
, family
, priority
))
1326 if (!try_module_get(prot
->owner
))
1328 sk_tx_queue_clear(sk
);
1334 security_sk_free(sk
);
1337 kmem_cache_free(slab
, sk
);
1343 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1345 struct kmem_cache
*slab
;
1346 struct module
*owner
;
1348 owner
= prot
->owner
;
1351 security_sk_free(sk
);
1353 kmem_cache_free(slab
, sk
);
1359 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1360 void sock_update_netprioidx(struct sock
*sk
)
1365 sk
->sk_cgrp_prioidx
= task_netprioidx(current
);
1367 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1371 * sk_alloc - All socket objects are allocated here
1372 * @net: the applicable net namespace
1373 * @family: protocol family
1374 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1375 * @prot: struct proto associated with this new sock instance
1377 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1382 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1384 sk
->sk_family
= family
;
1386 * See comment in struct sock definition to understand
1387 * why we need sk_prot_creator -acme
1389 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1391 sock_net_set(sk
, get_net(net
));
1392 atomic_set(&sk
->sk_wmem_alloc
, 1);
1394 sock_update_classid(sk
);
1395 sock_update_netprioidx(sk
);
1400 EXPORT_SYMBOL(sk_alloc
);
1402 static void __sk_free(struct sock
*sk
)
1404 struct sk_filter
*filter
;
1406 if (sk
->sk_destruct
)
1407 sk
->sk_destruct(sk
);
1409 filter
= rcu_dereference_check(sk
->sk_filter
,
1410 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1412 sk_filter_uncharge(sk
, filter
);
1413 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1416 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1418 if (atomic_read(&sk
->sk_omem_alloc
))
1419 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1420 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1422 if (sk
->sk_peer_cred
)
1423 put_cred(sk
->sk_peer_cred
);
1424 put_pid(sk
->sk_peer_pid
);
1425 put_net(sock_net(sk
));
1426 sk_prot_free(sk
->sk_prot_creator
, sk
);
1429 void sk_free(struct sock
*sk
)
1432 * We subtract one from sk_wmem_alloc and can know if
1433 * some packets are still in some tx queue.
1434 * If not null, sock_wfree() will call __sk_free(sk) later
1436 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1439 EXPORT_SYMBOL(sk_free
);
1442 * Last sock_put should drop reference to sk->sk_net. It has already
1443 * been dropped in sk_change_net. Taking reference to stopping namespace
1445 * Take reference to a socket to remove it from hash _alive_ and after that
1446 * destroy it in the context of init_net.
1448 void sk_release_kernel(struct sock
*sk
)
1450 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1454 sock_release(sk
->sk_socket
);
1455 release_net(sock_net(sk
));
1456 sock_net_set(sk
, get_net(&init_net
));
1459 EXPORT_SYMBOL(sk_release_kernel
);
1461 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1463 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1464 sock_update_memcg(newsk
);
1468 * sk_clone_lock - clone a socket, and lock its clone
1469 * @sk: the socket to clone
1470 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1472 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1474 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1477 bool is_charged
= true;
1479 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1480 if (newsk
!= NULL
) {
1481 struct sk_filter
*filter
;
1483 sock_copy(newsk
, sk
);
1486 get_net(sock_net(newsk
));
1487 sk_node_init(&newsk
->sk_node
);
1488 sock_lock_init(newsk
);
1489 bh_lock_sock(newsk
);
1490 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1491 newsk
->sk_backlog
.len
= 0;
1493 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1495 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1497 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1498 atomic_set(&newsk
->sk_omem_alloc
, 0);
1499 skb_queue_head_init(&newsk
->sk_receive_queue
);
1500 skb_queue_head_init(&newsk
->sk_write_queue
);
1502 spin_lock_init(&newsk
->sk_dst_lock
);
1503 rwlock_init(&newsk
->sk_callback_lock
);
1504 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1505 af_callback_keys
+ newsk
->sk_family
,
1506 af_family_clock_key_strings
[newsk
->sk_family
]);
1508 newsk
->sk_dst_cache
= NULL
;
1509 newsk
->sk_wmem_queued
= 0;
1510 newsk
->sk_forward_alloc
= 0;
1511 newsk
->sk_send_head
= NULL
;
1512 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1514 sock_reset_flag(newsk
, SOCK_DONE
);
1515 skb_queue_head_init(&newsk
->sk_error_queue
);
1517 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1519 /* though it's an empty new sock, the charging may fail
1520 * if sysctl_optmem_max was changed between creation of
1521 * original socket and cloning
1523 is_charged
= sk_filter_charge(newsk
, filter
);
1525 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
))) {
1526 /* It is still raw copy of parent, so invalidate
1527 * destructor and make plain sk_free() */
1528 newsk
->sk_destruct
= NULL
;
1529 bh_unlock_sock(newsk
);
1536 newsk
->sk_priority
= 0;
1537 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1539 * Before updating sk_refcnt, we must commit prior changes to memory
1540 * (Documentation/RCU/rculist_nulls.txt for details)
1543 atomic_set(&newsk
->sk_refcnt
, 2);
1546 * Increment the counter in the same struct proto as the master
1547 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1548 * is the same as sk->sk_prot->socks, as this field was copied
1551 * This _changes_ the previous behaviour, where
1552 * tcp_create_openreq_child always was incrementing the
1553 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1554 * to be taken into account in all callers. -acme
1556 sk_refcnt_debug_inc(newsk
);
1557 sk_set_socket(newsk
, NULL
);
1558 newsk
->sk_wq
= NULL
;
1560 sk_update_clone(sk
, newsk
);
1562 if (newsk
->sk_prot
->sockets_allocated
)
1563 sk_sockets_allocated_inc(newsk
);
1565 if (newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1566 net_enable_timestamp();
1571 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1573 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1575 __sk_dst_set(sk
, dst
);
1576 sk
->sk_route_caps
= dst
->dev
->features
;
1577 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1578 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1579 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1580 if (sk_can_gso(sk
)) {
1581 if (dst
->header_len
) {
1582 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1584 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1585 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1586 sk
->sk_gso_max_segs
= dst
->dev
->gso_max_segs
;
1590 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1593 * Simple resource managers for sockets.
1598 * Write buffer destructor automatically called from kfree_skb.
1600 void sock_wfree(struct sk_buff
*skb
)
1602 struct sock
*sk
= skb
->sk
;
1603 unsigned int len
= skb
->truesize
;
1605 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1607 * Keep a reference on sk_wmem_alloc, this will be released
1608 * after sk_write_space() call
1610 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1611 sk
->sk_write_space(sk
);
1615 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1616 * could not do because of in-flight packets
1618 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1621 EXPORT_SYMBOL(sock_wfree
);
1623 void skb_orphan_partial(struct sk_buff
*skb
)
1625 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1626 * so we do not completely orphan skb, but transfert all
1627 * accounted bytes but one, to avoid unexpected reorders.
1629 if (skb
->destructor
== sock_wfree
1631 || skb
->destructor
== tcp_wfree
1634 atomic_sub(skb
->truesize
- 1, &skb
->sk
->sk_wmem_alloc
);
1640 EXPORT_SYMBOL(skb_orphan_partial
);
1643 * Read buffer destructor automatically called from kfree_skb.
1645 void sock_rfree(struct sk_buff
*skb
)
1647 struct sock
*sk
= skb
->sk
;
1648 unsigned int len
= skb
->truesize
;
1650 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1651 sk_mem_uncharge(sk
, len
);
1653 EXPORT_SYMBOL(sock_rfree
);
1655 void sock_efree(struct sk_buff
*skb
)
1659 EXPORT_SYMBOL(sock_efree
);
1662 void sock_edemux(struct sk_buff
*skb
)
1664 struct sock
*sk
= skb
->sk
;
1666 if (sk
->sk_state
== TCP_TIME_WAIT
)
1667 inet_twsk_put(inet_twsk(sk
));
1671 EXPORT_SYMBOL(sock_edemux
);
1674 kuid_t
sock_i_uid(struct sock
*sk
)
1678 read_lock_bh(&sk
->sk_callback_lock
);
1679 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1680 read_unlock_bh(&sk
->sk_callback_lock
);
1683 EXPORT_SYMBOL(sock_i_uid
);
1685 unsigned long sock_i_ino(struct sock
*sk
)
1689 read_lock_bh(&sk
->sk_callback_lock
);
1690 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1691 read_unlock_bh(&sk
->sk_callback_lock
);
1694 EXPORT_SYMBOL(sock_i_ino
);
1697 * Allocate a skb from the socket's send buffer.
1699 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1702 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1703 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1705 skb_set_owner_w(skb
, sk
);
1711 EXPORT_SYMBOL(sock_wmalloc
);
1714 * Allocate a memory block from the socket's option memory buffer.
1716 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1718 if ((unsigned int)size
<= sysctl_optmem_max
&&
1719 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1721 /* First do the add, to avoid the race if kmalloc
1724 atomic_add(size
, &sk
->sk_omem_alloc
);
1725 mem
= kmalloc(size
, priority
);
1728 atomic_sub(size
, &sk
->sk_omem_alloc
);
1732 EXPORT_SYMBOL(sock_kmalloc
);
1735 * Free an option memory block.
1737 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1739 if (WARN_ON_ONCE(!mem
))
1742 atomic_sub(size
, &sk
->sk_omem_alloc
);
1744 EXPORT_SYMBOL(sock_kfree_s
);
1746 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1747 I think, these locks should be removed for datagram sockets.
1749 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1753 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1757 if (signal_pending(current
))
1759 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1760 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1761 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1763 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1767 timeo
= schedule_timeout(timeo
);
1769 finish_wait(sk_sleep(sk
), &wait
);
1775 * Generic send/receive buffer handlers
1778 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1779 unsigned long data_len
, int noblock
,
1780 int *errcode
, int max_page_order
)
1782 struct sk_buff
*skb
;
1786 timeo
= sock_sndtimeo(sk
, noblock
);
1788 err
= sock_error(sk
);
1793 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1796 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
1799 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1800 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1804 if (signal_pending(current
))
1806 timeo
= sock_wait_for_wmem(sk
, timeo
);
1808 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
1809 errcode
, sk
->sk_allocation
);
1811 skb_set_owner_w(skb
, sk
);
1815 err
= sock_intr_errno(timeo
);
1820 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1822 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1823 int noblock
, int *errcode
)
1825 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1827 EXPORT_SYMBOL(sock_alloc_send_skb
);
1829 /* On 32bit arches, an skb frag is limited to 2^15 */
1830 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1833 * skb_page_frag_refill - check that a page_frag contains enough room
1834 * @sz: minimum size of the fragment we want to get
1835 * @pfrag: pointer to page_frag
1836 * @gfp: priority for memory allocation
1838 * Note: While this allocator tries to use high order pages, there is
1839 * no guarantee that allocations succeed. Therefore, @sz MUST be
1840 * less or equal than PAGE_SIZE.
1842 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
1845 if (atomic_read(&pfrag
->page
->_count
) == 1) {
1849 if (pfrag
->offset
+ sz
<= pfrag
->size
)
1851 put_page(pfrag
->page
);
1855 if (SKB_FRAG_PAGE_ORDER
) {
1856 pfrag
->page
= alloc_pages(gfp
| __GFP_COMP
|
1857 __GFP_NOWARN
| __GFP_NORETRY
,
1858 SKB_FRAG_PAGE_ORDER
);
1859 if (likely(pfrag
->page
)) {
1860 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
1864 pfrag
->page
= alloc_page(gfp
);
1865 if (likely(pfrag
->page
)) {
1866 pfrag
->size
= PAGE_SIZE
;
1871 EXPORT_SYMBOL(skb_page_frag_refill
);
1873 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
1875 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
1878 sk_enter_memory_pressure(sk
);
1879 sk_stream_moderate_sndbuf(sk
);
1882 EXPORT_SYMBOL(sk_page_frag_refill
);
1884 static void __lock_sock(struct sock
*sk
)
1885 __releases(&sk
->sk_lock
.slock
)
1886 __acquires(&sk
->sk_lock
.slock
)
1891 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1892 TASK_UNINTERRUPTIBLE
);
1893 spin_unlock_bh(&sk
->sk_lock
.slock
);
1895 spin_lock_bh(&sk
->sk_lock
.slock
);
1896 if (!sock_owned_by_user(sk
))
1899 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1902 static void __release_sock(struct sock
*sk
)
1903 __releases(&sk
->sk_lock
.slock
)
1904 __acquires(&sk
->sk_lock
.slock
)
1906 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1909 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1913 struct sk_buff
*next
= skb
->next
;
1916 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1918 sk_backlog_rcv(sk
, skb
);
1921 * We are in process context here with softirqs
1922 * disabled, use cond_resched_softirq() to preempt.
1923 * This is safe to do because we've taken the backlog
1926 cond_resched_softirq();
1929 } while (skb
!= NULL
);
1932 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1935 * Doing the zeroing here guarantee we can not loop forever
1936 * while a wild producer attempts to flood us.
1938 sk
->sk_backlog
.len
= 0;
1942 * sk_wait_data - wait for data to arrive at sk_receive_queue
1943 * @sk: sock to wait on
1944 * @timeo: for how long
1946 * Now socket state including sk->sk_err is changed only under lock,
1947 * hence we may omit checks after joining wait queue.
1948 * We check receive queue before schedule() only as optimization;
1949 * it is very likely that release_sock() added new data.
1951 int sk_wait_data(struct sock
*sk
, long *timeo
)
1956 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1957 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1958 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1959 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1960 finish_wait(sk_sleep(sk
), &wait
);
1963 EXPORT_SYMBOL(sk_wait_data
);
1966 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1968 * @size: memory size to allocate
1969 * @kind: allocation type
1971 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1972 * rmem allocation. This function assumes that protocols which have
1973 * memory_pressure use sk_wmem_queued as write buffer accounting.
1975 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1977 struct proto
*prot
= sk
->sk_prot
;
1978 int amt
= sk_mem_pages(size
);
1980 int parent_status
= UNDER_LIMIT
;
1982 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1984 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
1987 if (parent_status
== UNDER_LIMIT
&&
1988 allocated
<= sk_prot_mem_limits(sk
, 0)) {
1989 sk_leave_memory_pressure(sk
);
1993 /* Under pressure. (we or our parents) */
1994 if ((parent_status
> SOFT_LIMIT
) ||
1995 allocated
> sk_prot_mem_limits(sk
, 1))
1996 sk_enter_memory_pressure(sk
);
1998 /* Over hard limit (we or our parents) */
1999 if ((parent_status
== OVER_LIMIT
) ||
2000 (allocated
> sk_prot_mem_limits(sk
, 2)))
2001 goto suppress_allocation
;
2003 /* guarantee minimum buffer size under pressure */
2004 if (kind
== SK_MEM_RECV
) {
2005 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2008 } else { /* SK_MEM_SEND */
2009 if (sk
->sk_type
== SOCK_STREAM
) {
2010 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2012 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
2013 prot
->sysctl_wmem
[0])
2017 if (sk_has_memory_pressure(sk
)) {
2020 if (!sk_under_memory_pressure(sk
))
2022 alloc
= sk_sockets_allocated_read_positive(sk
);
2023 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2024 sk_mem_pages(sk
->sk_wmem_queued
+
2025 atomic_read(&sk
->sk_rmem_alloc
) +
2026 sk
->sk_forward_alloc
))
2030 suppress_allocation
:
2032 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2033 sk_stream_moderate_sndbuf(sk
);
2035 /* Fail only if socket is _under_ its sndbuf.
2036 * In this case we cannot block, so that we have to fail.
2038 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2042 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2044 /* Alas. Undo changes. */
2045 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2047 sk_memory_allocated_sub(sk
, amt
);
2051 EXPORT_SYMBOL(__sk_mem_schedule
);
2054 * __sk_reclaim - reclaim memory_allocated
2057 void __sk_mem_reclaim(struct sock
*sk
)
2059 sk_memory_allocated_sub(sk
,
2060 sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
);
2061 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
2063 if (sk_under_memory_pressure(sk
) &&
2064 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2065 sk_leave_memory_pressure(sk
);
2067 EXPORT_SYMBOL(__sk_mem_reclaim
);
2071 * Set of default routines for initialising struct proto_ops when
2072 * the protocol does not support a particular function. In certain
2073 * cases where it makes no sense for a protocol to have a "do nothing"
2074 * function, some default processing is provided.
2077 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2081 EXPORT_SYMBOL(sock_no_bind
);
2083 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2088 EXPORT_SYMBOL(sock_no_connect
);
2090 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2094 EXPORT_SYMBOL(sock_no_socketpair
);
2096 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2100 EXPORT_SYMBOL(sock_no_accept
);
2102 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2107 EXPORT_SYMBOL(sock_no_getname
);
2109 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2113 EXPORT_SYMBOL(sock_no_poll
);
2115 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2119 EXPORT_SYMBOL(sock_no_ioctl
);
2121 int sock_no_listen(struct socket
*sock
, int backlog
)
2125 EXPORT_SYMBOL(sock_no_listen
);
2127 int sock_no_shutdown(struct socket
*sock
, int how
)
2131 EXPORT_SYMBOL(sock_no_shutdown
);
2133 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2134 char __user
*optval
, unsigned int optlen
)
2138 EXPORT_SYMBOL(sock_no_setsockopt
);
2140 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2141 char __user
*optval
, int __user
*optlen
)
2145 EXPORT_SYMBOL(sock_no_getsockopt
);
2147 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2152 EXPORT_SYMBOL(sock_no_sendmsg
);
2154 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2155 size_t len
, int flags
)
2159 EXPORT_SYMBOL(sock_no_recvmsg
);
2161 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2163 /* Mirror missing mmap method error code */
2166 EXPORT_SYMBOL(sock_no_mmap
);
2168 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2171 struct msghdr msg
= {.msg_flags
= flags
};
2173 char *kaddr
= kmap(page
);
2174 iov
.iov_base
= kaddr
+ offset
;
2176 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2180 EXPORT_SYMBOL(sock_no_sendpage
);
2183 * Default Socket Callbacks
2186 static void sock_def_wakeup(struct sock
*sk
)
2188 struct socket_wq
*wq
;
2191 wq
= rcu_dereference(sk
->sk_wq
);
2192 if (wq_has_sleeper(wq
))
2193 wake_up_interruptible_all(&wq
->wait
);
2197 static void sock_def_error_report(struct sock
*sk
)
2199 struct socket_wq
*wq
;
2202 wq
= rcu_dereference(sk
->sk_wq
);
2203 if (wq_has_sleeper(wq
))
2204 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2205 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2209 static void sock_def_readable(struct sock
*sk
)
2211 struct socket_wq
*wq
;
2214 wq
= rcu_dereference(sk
->sk_wq
);
2215 if (wq_has_sleeper(wq
))
2216 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2217 POLLRDNORM
| POLLRDBAND
);
2218 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2222 static void sock_def_write_space(struct sock
*sk
)
2224 struct socket_wq
*wq
;
2228 /* Do not wake up a writer until he can make "significant"
2231 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2232 wq
= rcu_dereference(sk
->sk_wq
);
2233 if (wq_has_sleeper(wq
))
2234 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2235 POLLWRNORM
| POLLWRBAND
);
2237 /* Should agree with poll, otherwise some programs break */
2238 if (sock_writeable(sk
))
2239 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2245 static void sock_def_destruct(struct sock
*sk
)
2247 kfree(sk
->sk_protinfo
);
2250 void sk_send_sigurg(struct sock
*sk
)
2252 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2253 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2254 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2256 EXPORT_SYMBOL(sk_send_sigurg
);
2258 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2259 unsigned long expires
)
2261 if (!mod_timer(timer
, expires
))
2264 EXPORT_SYMBOL(sk_reset_timer
);
2266 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2268 if (del_timer(timer
))
2271 EXPORT_SYMBOL(sk_stop_timer
);
2273 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2275 skb_queue_head_init(&sk
->sk_receive_queue
);
2276 skb_queue_head_init(&sk
->sk_write_queue
);
2277 skb_queue_head_init(&sk
->sk_error_queue
);
2279 sk
->sk_send_head
= NULL
;
2281 init_timer(&sk
->sk_timer
);
2283 sk
->sk_allocation
= GFP_KERNEL
;
2284 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2285 sk
->sk_sndbuf
= sysctl_wmem_default
;
2286 sk
->sk_state
= TCP_CLOSE
;
2287 sk_set_socket(sk
, sock
);
2289 sock_set_flag(sk
, SOCK_ZAPPED
);
2292 sk
->sk_type
= sock
->type
;
2293 sk
->sk_wq
= sock
->wq
;
2298 spin_lock_init(&sk
->sk_dst_lock
);
2299 rwlock_init(&sk
->sk_callback_lock
);
2300 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2301 af_callback_keys
+ sk
->sk_family
,
2302 af_family_clock_key_strings
[sk
->sk_family
]);
2304 sk
->sk_state_change
= sock_def_wakeup
;
2305 sk
->sk_data_ready
= sock_def_readable
;
2306 sk
->sk_write_space
= sock_def_write_space
;
2307 sk
->sk_error_report
= sock_def_error_report
;
2308 sk
->sk_destruct
= sock_def_destruct
;
2310 sk
->sk_frag
.page
= NULL
;
2311 sk
->sk_frag
.offset
= 0;
2312 sk
->sk_peek_off
= -1;
2314 sk
->sk_peer_pid
= NULL
;
2315 sk
->sk_peer_cred
= NULL
;
2316 sk
->sk_write_pending
= 0;
2317 sk
->sk_rcvlowat
= 1;
2318 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2319 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2321 sk
->sk_stamp
= ktime_set(-1L, 0);
2323 #ifdef CONFIG_NET_RX_BUSY_POLL
2325 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2328 sk
->sk_max_pacing_rate
= ~0U;
2329 sk
->sk_pacing_rate
= ~0U;
2331 * Before updating sk_refcnt, we must commit prior changes to memory
2332 * (Documentation/RCU/rculist_nulls.txt for details)
2335 atomic_set(&sk
->sk_refcnt
, 1);
2336 atomic_set(&sk
->sk_drops
, 0);
2338 EXPORT_SYMBOL(sock_init_data
);
2340 void lock_sock_nested(struct sock
*sk
, int subclass
)
2343 spin_lock_bh(&sk
->sk_lock
.slock
);
2344 if (sk
->sk_lock
.owned
)
2346 sk
->sk_lock
.owned
= 1;
2347 spin_unlock(&sk
->sk_lock
.slock
);
2349 * The sk_lock has mutex_lock() semantics here:
2351 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2354 EXPORT_SYMBOL(lock_sock_nested
);
2356 void release_sock(struct sock
*sk
)
2359 * The sk_lock has mutex_unlock() semantics:
2361 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2363 spin_lock_bh(&sk
->sk_lock
.slock
);
2364 if (sk
->sk_backlog
.tail
)
2367 /* Warning : release_cb() might need to release sk ownership,
2368 * ie call sock_release_ownership(sk) before us.
2370 if (sk
->sk_prot
->release_cb
)
2371 sk
->sk_prot
->release_cb(sk
);
2373 sock_release_ownership(sk
);
2374 if (waitqueue_active(&sk
->sk_lock
.wq
))
2375 wake_up(&sk
->sk_lock
.wq
);
2376 spin_unlock_bh(&sk
->sk_lock
.slock
);
2378 EXPORT_SYMBOL(release_sock
);
2381 * lock_sock_fast - fast version of lock_sock
2384 * This version should be used for very small section, where process wont block
2385 * return false if fast path is taken
2386 * sk_lock.slock locked, owned = 0, BH disabled
2387 * return true if slow path is taken
2388 * sk_lock.slock unlocked, owned = 1, BH enabled
2390 bool lock_sock_fast(struct sock
*sk
)
2393 spin_lock_bh(&sk
->sk_lock
.slock
);
2395 if (!sk
->sk_lock
.owned
)
2397 * Note : We must disable BH
2402 sk
->sk_lock
.owned
= 1;
2403 spin_unlock(&sk
->sk_lock
.slock
);
2405 * The sk_lock has mutex_lock() semantics here:
2407 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2411 EXPORT_SYMBOL(lock_sock_fast
);
2413 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2416 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2417 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2418 tv
= ktime_to_timeval(sk
->sk_stamp
);
2419 if (tv
.tv_sec
== -1)
2421 if (tv
.tv_sec
== 0) {
2422 sk
->sk_stamp
= ktime_get_real();
2423 tv
= ktime_to_timeval(sk
->sk_stamp
);
2425 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2427 EXPORT_SYMBOL(sock_get_timestamp
);
2429 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2432 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2433 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2434 ts
= ktime_to_timespec(sk
->sk_stamp
);
2435 if (ts
.tv_sec
== -1)
2437 if (ts
.tv_sec
== 0) {
2438 sk
->sk_stamp
= ktime_get_real();
2439 ts
= ktime_to_timespec(sk
->sk_stamp
);
2441 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2443 EXPORT_SYMBOL(sock_get_timestampns
);
2445 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2447 if (!sock_flag(sk
, flag
)) {
2448 unsigned long previous_flags
= sk
->sk_flags
;
2450 sock_set_flag(sk
, flag
);
2452 * we just set one of the two flags which require net
2453 * time stamping, but time stamping might have been on
2454 * already because of the other one
2456 if (!(previous_flags
& SK_FLAGS_TIMESTAMP
))
2457 net_enable_timestamp();
2461 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2462 int level
, int type
)
2464 struct sock_exterr_skb
*serr
;
2465 struct sk_buff
*skb
;
2469 skb
= sock_dequeue_err_skb(sk
);
2475 msg
->msg_flags
|= MSG_TRUNC
;
2478 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2482 sock_recv_timestamp(msg
, sk
, skb
);
2484 serr
= SKB_EXT_ERR(skb
);
2485 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2487 msg
->msg_flags
|= MSG_ERRQUEUE
;
2495 EXPORT_SYMBOL(sock_recv_errqueue
);
2498 * Get a socket option on an socket.
2500 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2501 * asynchronous errors should be reported by getsockopt. We assume
2502 * this means if you specify SO_ERROR (otherwise whats the point of it).
2504 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2505 char __user
*optval
, int __user
*optlen
)
2507 struct sock
*sk
= sock
->sk
;
2509 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2511 EXPORT_SYMBOL(sock_common_getsockopt
);
2513 #ifdef CONFIG_COMPAT
2514 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2515 char __user
*optval
, int __user
*optlen
)
2517 struct sock
*sk
= sock
->sk
;
2519 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2520 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2522 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2524 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2527 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2528 struct msghdr
*msg
, size_t size
, int flags
)
2530 struct sock
*sk
= sock
->sk
;
2534 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2535 flags
& ~MSG_DONTWAIT
, &addr_len
);
2537 msg
->msg_namelen
= addr_len
;
2540 EXPORT_SYMBOL(sock_common_recvmsg
);
2543 * Set socket options on an inet socket.
2545 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2546 char __user
*optval
, unsigned int optlen
)
2548 struct sock
*sk
= sock
->sk
;
2550 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2552 EXPORT_SYMBOL(sock_common_setsockopt
);
2554 #ifdef CONFIG_COMPAT
2555 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2556 char __user
*optval
, unsigned int optlen
)
2558 struct sock
*sk
= sock
->sk
;
2560 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2561 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2563 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2565 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2568 void sk_common_release(struct sock
*sk
)
2570 if (sk
->sk_prot
->destroy
)
2571 sk
->sk_prot
->destroy(sk
);
2574 * Observation: when sock_common_release is called, processes have
2575 * no access to socket. But net still has.
2576 * Step one, detach it from networking:
2578 * A. Remove from hash tables.
2581 sk
->sk_prot
->unhash(sk
);
2584 * In this point socket cannot receive new packets, but it is possible
2585 * that some packets are in flight because some CPU runs receiver and
2586 * did hash table lookup before we unhashed socket. They will achieve
2587 * receive queue and will be purged by socket destructor.
2589 * Also we still have packets pending on receive queue and probably,
2590 * our own packets waiting in device queues. sock_destroy will drain
2591 * receive queue, but transmitted packets will delay socket destruction
2592 * until the last reference will be released.
2597 xfrm_sk_free_policy(sk
);
2599 sk_refcnt_debug_release(sk
);
2601 if (sk
->sk_frag
.page
) {
2602 put_page(sk
->sk_frag
.page
);
2603 sk
->sk_frag
.page
= NULL
;
2608 EXPORT_SYMBOL(sk_common_release
);
2610 #ifdef CONFIG_PROC_FS
2611 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2613 int val
[PROTO_INUSE_NR
];
2616 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2618 #ifdef CONFIG_NET_NS
2619 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2621 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2623 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2625 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2627 int cpu
, idx
= prot
->inuse_idx
;
2630 for_each_possible_cpu(cpu
)
2631 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2633 return res
>= 0 ? res
: 0;
2635 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2637 static int __net_init
sock_inuse_init_net(struct net
*net
)
2639 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2640 return net
->core
.inuse
? 0 : -ENOMEM
;
2643 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2645 free_percpu(net
->core
.inuse
);
2648 static struct pernet_operations net_inuse_ops
= {
2649 .init
= sock_inuse_init_net
,
2650 .exit
= sock_inuse_exit_net
,
2653 static __init
int net_inuse_init(void)
2655 if (register_pernet_subsys(&net_inuse_ops
))
2656 panic("Cannot initialize net inuse counters");
2661 core_initcall(net_inuse_init
);
2663 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2665 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2667 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2669 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2671 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2673 int cpu
, idx
= prot
->inuse_idx
;
2676 for_each_possible_cpu(cpu
)
2677 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2679 return res
>= 0 ? res
: 0;
2681 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2684 static void assign_proto_idx(struct proto
*prot
)
2686 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2688 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2689 pr_err("PROTO_INUSE_NR exhausted\n");
2693 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2696 static void release_proto_idx(struct proto
*prot
)
2698 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2699 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2702 static inline void assign_proto_idx(struct proto
*prot
)
2706 static inline void release_proto_idx(struct proto
*prot
)
2711 int proto_register(struct proto
*prot
, int alloc_slab
)
2714 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2715 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2718 if (prot
->slab
== NULL
) {
2719 pr_crit("%s: Can't create sock SLAB cache!\n",
2724 if (prot
->rsk_prot
!= NULL
) {
2725 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2726 if (prot
->rsk_prot
->slab_name
== NULL
)
2727 goto out_free_sock_slab
;
2729 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2730 prot
->rsk_prot
->obj_size
, 0,
2731 SLAB_HWCACHE_ALIGN
, NULL
);
2733 if (prot
->rsk_prot
->slab
== NULL
) {
2734 pr_crit("%s: Can't create request sock SLAB cache!\n",
2736 goto out_free_request_sock_slab_name
;
2740 if (prot
->twsk_prot
!= NULL
) {
2741 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2743 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2744 goto out_free_request_sock_slab
;
2746 prot
->twsk_prot
->twsk_slab
=
2747 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2748 prot
->twsk_prot
->twsk_obj_size
,
2750 SLAB_HWCACHE_ALIGN
|
2753 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2754 goto out_free_timewait_sock_slab_name
;
2758 mutex_lock(&proto_list_mutex
);
2759 list_add(&prot
->node
, &proto_list
);
2760 assign_proto_idx(prot
);
2761 mutex_unlock(&proto_list_mutex
);
2764 out_free_timewait_sock_slab_name
:
2765 kfree(prot
->twsk_prot
->twsk_slab_name
);
2766 out_free_request_sock_slab
:
2767 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2768 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2769 prot
->rsk_prot
->slab
= NULL
;
2771 out_free_request_sock_slab_name
:
2773 kfree(prot
->rsk_prot
->slab_name
);
2775 kmem_cache_destroy(prot
->slab
);
2780 EXPORT_SYMBOL(proto_register
);
2782 void proto_unregister(struct proto
*prot
)
2784 mutex_lock(&proto_list_mutex
);
2785 release_proto_idx(prot
);
2786 list_del(&prot
->node
);
2787 mutex_unlock(&proto_list_mutex
);
2789 if (prot
->slab
!= NULL
) {
2790 kmem_cache_destroy(prot
->slab
);
2794 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2795 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2796 kfree(prot
->rsk_prot
->slab_name
);
2797 prot
->rsk_prot
->slab
= NULL
;
2800 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2801 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2802 kfree(prot
->twsk_prot
->twsk_slab_name
);
2803 prot
->twsk_prot
->twsk_slab
= NULL
;
2806 EXPORT_SYMBOL(proto_unregister
);
2808 #ifdef CONFIG_PROC_FS
2809 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2810 __acquires(proto_list_mutex
)
2812 mutex_lock(&proto_list_mutex
);
2813 return seq_list_start_head(&proto_list
, *pos
);
2816 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2818 return seq_list_next(v
, &proto_list
, pos
);
2821 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2822 __releases(proto_list_mutex
)
2824 mutex_unlock(&proto_list_mutex
);
2827 static char proto_method_implemented(const void *method
)
2829 return method
== NULL
? 'n' : 'y';
2831 static long sock_prot_memory_allocated(struct proto
*proto
)
2833 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2836 static char *sock_prot_memory_pressure(struct proto
*proto
)
2838 return proto
->memory_pressure
!= NULL
?
2839 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2842 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2845 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2846 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2849 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2850 sock_prot_memory_allocated(proto
),
2851 sock_prot_memory_pressure(proto
),
2853 proto
->slab
== NULL
? "no" : "yes",
2854 module_name(proto
->owner
),
2855 proto_method_implemented(proto
->close
),
2856 proto_method_implemented(proto
->connect
),
2857 proto_method_implemented(proto
->disconnect
),
2858 proto_method_implemented(proto
->accept
),
2859 proto_method_implemented(proto
->ioctl
),
2860 proto_method_implemented(proto
->init
),
2861 proto_method_implemented(proto
->destroy
),
2862 proto_method_implemented(proto
->shutdown
),
2863 proto_method_implemented(proto
->setsockopt
),
2864 proto_method_implemented(proto
->getsockopt
),
2865 proto_method_implemented(proto
->sendmsg
),
2866 proto_method_implemented(proto
->recvmsg
),
2867 proto_method_implemented(proto
->sendpage
),
2868 proto_method_implemented(proto
->bind
),
2869 proto_method_implemented(proto
->backlog_rcv
),
2870 proto_method_implemented(proto
->hash
),
2871 proto_method_implemented(proto
->unhash
),
2872 proto_method_implemented(proto
->get_port
),
2873 proto_method_implemented(proto
->enter_memory_pressure
));
2876 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2878 if (v
== &proto_list
)
2879 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2888 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2890 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2894 static const struct seq_operations proto_seq_ops
= {
2895 .start
= proto_seq_start
,
2896 .next
= proto_seq_next
,
2897 .stop
= proto_seq_stop
,
2898 .show
= proto_seq_show
,
2901 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2903 return seq_open_net(inode
, file
, &proto_seq_ops
,
2904 sizeof(struct seq_net_private
));
2907 static const struct file_operations proto_seq_fops
= {
2908 .owner
= THIS_MODULE
,
2909 .open
= proto_seq_open
,
2911 .llseek
= seq_lseek
,
2912 .release
= seq_release_net
,
2915 static __net_init
int proto_init_net(struct net
*net
)
2917 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
2923 static __net_exit
void proto_exit_net(struct net
*net
)
2925 remove_proc_entry("protocols", net
->proc_net
);
2929 static __net_initdata
struct pernet_operations proto_net_ops
= {
2930 .init
= proto_init_net
,
2931 .exit
= proto_exit_net
,
2934 static int __init
proto_init(void)
2936 return register_pernet_subsys(&proto_net_ops
);
2939 subsys_initcall(proto_init
);
2941 #endif /* PROC_FS */